新课标A版必修3导学案 概率的基本性质

合集下载

山东省高中数学《3.1.3 概率的基本性质》导学案2 新人教A版必修3

山东省高中数学《3.1.3 概率的基本性质》导学案2 新人教A版必修3
§3.1.3 概率的基本性质 2
授 课 时 间 学 习 目 标 重 点 难 点 第 周 星期 第 节 课型 习题课 主备课 人
1 理解互斥事件与对立事件的概念,会判断所给事件的类型; 2.能利用互斥事件与对立事件的概率公式进行相应的概率运算。
重点:概率的加法公式及其应用;事件的关系与运算 难点:互斥事件与对立事件的区别与联系 自主学习 1 复习:(1)互斥事 件: . (2)事件 A+B:给定事件 A,B,规定 A+B 为 ,事件 A+B 发生是指事件 A 和 事件 B________。 (3)对立事件:事件“A 不发生”称为 A 的对立事件,记作_________,对立事件也称 为________,在每一次试验中,相互对立的事件 A 与事件 A 不会__________,并且
P( A1 A2 An ) ____________。
(5)对立事件的概率运算: P(A) _____________。
2 探索新知: 阅读教材 p147 例 7,你得到的结论是什么?
1
精讲互动 例 1.某公司部门有男职工 4 名,女职工 3 名,由于工作需要,需从中任选 3 名职工 出国洽谈业务,判断下列每对事件是否为互斥事件,如果是,再判断它们是否为对立 事件: (1)至少 1 名女职工与全是男职工; (2)至少 1 名女职工与至少 1 名男职工; (3)恰有 1 名女职工与恰有 1 名男职工; (4)至多 1 名女职工与至多 1 名男职工。
例 2.课本 p148 例 8
例 3.(选讲)袋中有红、黄、白 3 种颜色的球各一只,每次从中任取 1 只,有放回的 抽取 3 次,求: (1)3 只球颜色全相同的概率; (2)3 只球颜色不全相同的概率。

[精品]新人教A版必修3高中数学3.1.3概率的基本性质导学案

[精品]新人教A版必修3高中数学3.1.3概率的基本性质导学案

§3.1.3 概率的基本性质(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(2)概率的几个基本性质:1)必然事件的概率为1,不可能事件的概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A ∪B)= P(A)+P(B)=1,于是有P(A)=1—P(B).(3)正确理解和事件与交事件,以及互斥事件与对立事件的区别与联系.重点: 并事件、交事件、互斥事件和对立事件的概念,以及互斥事件的加法公式.难点: 并事件、交事件、互斥事件和对立事件的区别与联系.通过事件的关系、运算与集合的关系、运算进行类比学习,培养类比与归纳的数学思想。

1.集合之间包含与相等关系、集合的交、并、补运算【提出问题】1.两个集合之间存在着包含与相等的关系,集合可以进行交、并、补运算,你还记得子集、等集、交集、并集和补集的含义及其符号表示吗?2. 我们可以把一次试验可能出现的结果看成一个集合(如连续抛掷两枚硬币),那么必然事件对应全集,随机事件对应子集,不可能事件对应空集,从而可以类比集合的关系与运算,分析事件之间的关系与运算,使我们对概率有进一步的理解和认识.【探究新知】(一):事件的关系与运算在掷骰子试验中,我们用集合形式定义如下事件:C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于4},D3={出现的点数小于6},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},等等.思考1:上述事件中,是必然事件的有 ,是随机事件的有 , 是不可能事件的有 .思考2:如果事件C1发生,则一定有 发生。

在集合中,集合C1与这些集合之间的关系怎样描述?思考3:一般地,对于事件A 与事件B,如果事件A 发生,则事件B 一定发生,这时称 。

说课稿 人教版 高中数学必修三 第三章第一节《概率的基本性质》

说课稿 人教版 高中数学必修三 第三章第一节《概率的基本性质》

概率的基本性质一、说教材1.教材分析《概率的基本性质》是人教版高中数学必修第三册第三章第一节的内容。

本节内容是在学生学习了频率和概率的基础上,与集合类比研究事件的关系、运算和概率的性质。

它不仅使学生加深对频率和概率的理解,还能进一步认识集合,同时为后面“古典概型”和“几何概型”的学习打下基础。

因此,本节内容在学习概率知识的过程中起到承上启下的重要过渡作用。

2. 教学目标通过以上对教材的分析,并依据新课标的要求,我确定了以下教学目标:首先,知识与技能目标是:了解随机事件间的基本关系与运算;掌握概率的几个基本性质,并会用其解决简单的概率问题。

其次,过程与方法目标是:在借助掷骰子试验探究事件的关系和运算的过程中,体会类比的数学思想方法;通过研究概率的基本性质,发展分析和推理能力。

最后,情感态度和价值观目标是:通过数学活动,了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的兴趣。

3.教学重点和难点根据上述对教材的分析以及制定的教学目标,我确定本节课的教学重点为:事件的关系与运算;概率的加法公式及其应用。

考虑到学生已有的知识基础与认知能力,我确定本节课的教学难点是:互斥事件与对立事件的区别与联系。

二、说学情奥苏伯尔认为:“影响学习的最重要的因素,就是学习者已经知道了什么,要探明这一点,并应据此进行教学”,因而在教学之始,必须关注学生的基本情况。

学生在学习本节课以前,已经掌握了集合关系、运算,频率与概率的内在联系,对用频率估计概率研究问题的方法也有所掌握,特别是学生进入高二以后,数学学习能力有了很大提高,他们的观察探究能力也有了长足的进步。

学生在学习本节课内容时,一般会出现的问题或困难是:概率加法公式的发现以及将其公式化的过程。

三、说教法教学方法是课堂教学的基本要素之一。

它在学生获取知识、培养科学的思维方法和能力,特别是创造能力的过程中,具有重要的作用。

对于本课我主要采用的教法是以启发式教学法为主,讨论交流法为辅的教学方法。

山东省高中数学《3.1.3 概率的基本性质》教案 新人教A版必修3

山东省高中数学《3.1.3 概率的基本性质》教案 新人教A版必修3

3.1.3 概率的基本性质教学目标:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类比与归纳的数学思想.(2)概率的几个基本性质:①必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;②当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);③若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1-P(B).(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系,通过数学活动,了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣.教学重点:概率的加法公式及其应用.教学难点:事件的关系与运算.教学方法:讲授法课时安排1课时教学过程一、导入新课:全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是2/7和1/5,则该省夺取该次冠军的概率是2/7+1/5,对吗?为什么?为解决这个问题,我们学习概率的基本性质.二、新课讲解:Ⅰ、事件的关系与运算1、提出问题在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于3},D3={出现的点数小于5},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},……类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件.(1)如果事件C1发生,则一定发生的事件有哪些?反之,成立吗?(2)如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生?(3)如果事件D2与事件H同时发生,就意味着哪个事件发生?(4)事件D3与事件F能同时发生吗?(5)事件G与事件H能同时发生吗?它们两个事件有什么关系?2、活动:学生思考或交流,教师提示点拨,事件与事件的关系要判断准确.3、讨论结果:(1)如果事件C1发生,则一定发生的事件有D1,E,D3,H,反之,如果事件D1,E,D3,H分别成立,能推出事件C1发生的只有D1.(2)如果事件C2发生或C4发生或C6发生,就意味着事件G发生.(3)如果事件D2与事件H同时发生,就意味着C5事件发生.(4)事件D3与事件F不能同时发生.(5)事件G与事件H不能同时发生,但必有一个发生.4、总结:由此我们得到事件A,B的关系和运算如下:①如果事件A发生,则事件B一定发生,这时我们说事件B包含事件A(或事件A包含于事件B),记为B⊇A(或A⊆B),不可能事件记为∅,任何事件都包含不可能事件.②如果事件A发生,则事件B一定发生,反之也成立,(若B⊇A同时A⊆B),我们说这两个事件相等,即A=B.如C1=D1.③如果某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与B的并事件(或和事件),记为A∪B或A+B.④如果某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与B的交事件(或积事件),记为A∩B或AB.⑤如果A∩B为不可能事件(A∩B=∅),那么称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生.⑥如果A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生.Ⅱ、概率的几个基本性质1、提出以下问题:(1)概率的取值范围是多少?(2)必然事件的概率是多少?(3)不可能事件的概率是多少?(4)互斥事件的概率应怎样计算?(5)对立事件的概率应怎样计算?2、活动:学生根据试验的结果,结合自己对各种事件的理解,教师引导学生,根据概率的意义: (1)由于事件的频数总是小于或等于试验的次数,所以,频率在0—1之间,因而概率的取值范围也在0—1之间.(2)必然事件是在试验中一定要发生的事件,所以频率为1,因而概率是1.(3)不可能事件是在试验中一定不发生的事件,所以频率为0,因而概率是0.(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和.(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,则A∪B的频率为1,因而概率是1,由(4)可知事件B的概率是1与事件A发生的概率的差.3、讨论结果:(1)概率的取值范围是0—1之间,即0≤P(A)≤1.(2)必然事件的概率是1.如在掷骰子试验中,E={出现的点数小于7},因此P(E)=1.(3)不可能事件的概率是0,如在掷骰子试验中,F={出现的点数大于6},因此P(F)=0. (4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(A∪B)=P(A)+P(B),这就是概率的加法公式.也称互斥事件的概率的加法公式.(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,P(A∪B)=1.所以1=P(A)+P(B),P(B)=1-P(A),P(A)=1-P(B).如在掷骰子试验中,事件G={出现的点数为偶数}与H={出现的点数为奇数}互为对立事件,因此P(G)=1-P(H).三、例题讲解:例:如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是41,取到方块(事件B )的概率是41,问:(1)取到红色牌(事件C )的概率是多少? (2)取到黑色牌(事件D )的概率是多少? 活动:学生先思考或交流,教师及时指导提示,事件C 是事件A 与事件B 的并,且A 与B 互斥,因此可用互斥事件的概率和公式求解,事件C 与事件D 是对立事件,因此P(D)=1-P(C). 解:(1)因为C=A∪B,且A 与B 不会同时发生,所以事件A 与事件B 互斥,根据概率的加法公式得P(C)=P(A)+P(B)=21.(2)事件C 与事件D 互斥,且C∪D 为必然事件,因此事件C 与事件D 是对立事件,P(D)=1-P(C)=21.四、课堂练习:教材第121页练习:1、2、3、4、5五、课堂小结:1.概率的基本性质是学习概率的基础.不可能事件一定不出现,因此其概率为0,必然事件一定发生,因此其概率为1.当事件A 与事件B 互斥时,A∪B 发生的概率等于A 发生的概率与B 发生的概率的和,从而有公式P (A∪B)=P (A )+P (B );对立事件是指事件A 与事件B 有且仅有一个发生.2.在利用概率的性质时,一定要注意互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形:①事件A 发生B 不发生;②事件B 发生事件A 不发生,对立事件是互斥事件的特殊情形. 六、课后作业:习题3.1A 组5,B 组1、2. 预习教材3.2.1 板书设计。

高中数学必修3导学案:3.1.3概率的基本性质

高中数学必修3导学案:3.1.3概率的基本性质

《 3.1.3概率的基本性质》导学案【学法指导】1.认真阅读教科书,努力完成“基础导学”部分的内容;2.探究部分内容可借助资料,但是必须谈出自己的理解;不能独立解决的问题,用红笔做好标记;3.课堂上通过合作交流研讨,认真听取同学讲解及教师点拨,排除疑难;4.全力以赴,相信自己!学习目标知识与技能过程与方法情感态度与价值观(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(2)掌握概率的几个基本性质(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系. 通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。

通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。

学习重点概率的加法公式及其应用,事件的关系与运算。

学习难点概率的加法公式及其应用,事件的关系与运算。

【学习过程】一、事件的关系和运算事件的关系:1.包含关系2.等价关系事件的运算:3.事件的并 (或和)4.事件的交 (或积)5.事件的互斥6.对立事件二、概率的几个基本性质(1)、对于任何事件的概率的范围是:_____________________________ 其中不可能事件的概率是:__________________________必然事件的概率是:___________________________不可能事件与必然事件是一般事件的特殊情况(2)、当事件A与事件B互斥时,A∪B的频率:___________________________ 由此得到概率的加法公式:如果事件A与事件B互斥,则_________________________ (3)、特别地,当事件A与事件B是对立事件时,有P(A)=_____________________________ 三、当堂检测:1.教材121页例题。

2.教材121页练习。

必修三3.1.2&3概率的意义与基本性质

必修三3.1.2&3概率的意义与基本性质

3.1.2《概率的意义》导学案【学习目标】1、正确理解概率的意义,利用概率知识正确理解现实生活中的实际问题;2、通过对现实生活中问题的探究,感知应用数学知识解决数学问题的方法;3、进一步理解概率统计中随机性与规律性的关系。

【知识清单】1、随机事件在一次试验中能够发生与否是随机的,但随机性中含有,认识了这种随机性中的,就能使我们比较准确地预测随机事件发生的。

2、如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性”可以作为决策的准则,这种判断问题的方法称为。

3、在一次试验中的事件称为小概率事件,的事件称为大概率事件.4、概率的意义就是用概率的大小反映事件A发生的,但在一次试验中仍有两种可能,即事件A可能也可能。

【教材分析】认真阅读课本P113——P118,说明概率的意义在课本的六个实际例子中的体现。

【合作探究】题型一例1.(1)某校共有学生12000人,学校为使学生增强交通安全观念,准备随机抽查12名学生进行交通安全知识测试,其中某学生认为抽查的几率为11000,不可能抽查到他,所以不再准备交通安全知识以便应试,你认为他的做法对吗?并说明理由。

(2)若某次数学测验,全班50人的及格率为90%,若从该班任意抽取10人,其中有5人及格是可能的吗?为什么?题型二例 2. 元旦就要到了,某校将举行联欢活动,每班派一人主持节目,高二(1)班的小明、小华和小丽实力相当,都争着要去,班主任决定用抽签的方法来决定,机灵的小强给小华出主意,要小华先抽,说先抽的机会大,你是怎么认为的?说说看.题型三例3.设有外形完全相同的两个箱子,甲箱有99个白球1个黑球,乙箱有1个白球99个黑球,随机地抽取一箱,再从取出的一箱中抽取一球,结果取得白球,问这个球是从哪个箱子中取出的?题型四例4.某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多少?中9环的概率约为多少?【巩固练习】1.某医院治疗一种病的治愈率是90%,这个90%指的是()A.100个病人中能治愈90个B.100个病人中能治愈10个C. 100个病人中可能治愈90个D.以上说法都正确2.气象台预报“本市明天降雨概率是70%”,以下理解正确的是( )A.本市明天将有70%的地区降雨B.本市明天将有70%的时间降雨C.明天出行不带雨具肯定淋雨D.明天出行不带雨具淋雨的可能性很大.3.甲乙两人做游戏,下列游戏中不公平的是()A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B.同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜.C.从一副不含大、小王的扑克中抽一张,扑克牌是红色则甲胜,是黑色乙胜.D.甲乙两人各写一个字,若是同奇或同偶则甲胜,否则乙胜.4.设某厂产品的次品率为2%,估计该厂8000件产品中合格品的件数可能为()A.160B.7840C.7998D.78005.某位同学在做四选一的12道选择题时,他全不会做,只好在各题中随机选一个答案,若每道题选对得5分,选错得0分,你认为他大约得多少分()A.30分 B.0分 C.15分 D.20分6.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是。

【成才之路】2014-2015学年高中数学 3.1.3 概率的基本性质课件 新人教A版必修3

【成才之路】2014-2015学年高中数学 3.1.3 概率的基本性质课件 新人教A版必修3
即如图所示的阴影部分.
(3)互斥事件. ∩ 不可能事件 若A______ B为______________( A∩B=Ø),那么称事件A与 事件 B 互斥 ,其 含 义是 , 事件 A 与事件 B 在任何一次试验中 不会同时 发生. __________
[破疑点]
①事件A、事件B互斥是指事件A与事件B在一次
3.概率的几个性质
(1)范围. [0,1] . 任何事件的概率P(A)∈________ (2)必然事件的概率. 1 必然事件的概率P(A)=_______.
(3)不可能事件的概率.
0 不可能事件的概率P(A)=______. (4)概率加法公式. P(A)+P(B) . 如果事件A与事件B互斥,则有P(A∪B)=____________
[破疑点]
①事件A与事件B互斥,如果没有这一条件,加
法公式将不能应用. ②如果事件 A1,A2 ,„ ,An 彼此互斥,那么P(A1+A2 +„ +An)=P(A1)+P(A2)+„+P(An),即彼此互斥事件和的概率等
于其概率的和.
③在求某些稍复杂的事件的概率时,可将其分解成一些概 率较易求的彼此互斥的事件,化整为零,化难为易.
生会导致事件E一定不发生,且事件E发生会导致事件B一定不
发生,故B与E还是对立事件. (3)事件B“至少订一种报纸”中包括“只订乙报”,即有 可能“不订甲报”,也就是说事件B和事件D有可能同时发生, 故B与D不是互斥事件.
(4)事件B“至少订一种报纸”中包括“只订甲报”、“只 订乙报”、“订甲、乙两种报”.事件C“至多订一种报纸 ” 中包括“一种报纸也不订”、“只订甲报”、“只订乙 报”.也就是说事件 B与事件C可能同时发生,故 B与 C不是互
(1)利用基本概念:判断两个事件是否为互斥事件,注意看 它们能否同时发生,若不同时发生,则这两个事件是互斥事 件,若能同时发生,则这两个事件不是互斥事件. 判断两个事件是否为对立事件,主要看是否同时满足两个

概率的基本性质

概率的基本性质
概率的性质.
背景分析 教学目标 教学重难点 教学方法 教学过程 板书设计 2.新知探索——概率的几个基本性质
思考2-7:必然事件发生的概率是多少?为什么? 思考2-8:不可能事件发生的概率是多少?为什么? 思考2-9:事件发生概率的取值范围是多少?为什么?
设计 基于学生发现,深入探究,看出来的数学,增加 意图 学习成就感.
事件的关系与运算 概率的几个基本性质
设计 意图
习得数学知识的同时,形成相应的数学思想方法.
02 过程与方法
03 情感、态度 与价值观
①了解事件之 间的关系与运 算;
②能应用互斥 事件的概率加 法公式解决简 单问题。
①经历事件的 关系与运算的 形成过程与概 率基本性质的 探索过程;
②体会类比与 归纳的思想方 法。
感受数学知识 之间以及数学 与现实生活之 间的密切联系。
背景分析 教学目标 教学重难点 教学方法 教学过程 板书设计
概率的基本性质
高中数学人教A版 必修3 第三章 第1节 第三课时

1

2
3
4
高中数学人教A 5
版必修3第三章 第1节第三课时
6
背景分析 教学目标 教学重难点 教学方法 教学过程 板书设计
背景分析 教学目标 教学重难点 教学方法 教学过程 板书设计
1.知识结构
随机事件
频率、概率
概率的意义
承前启后
概率的 基本性质
教学
内容分析
重点
理解概率的加法公式
学情分析
教学目标 教学
难点
探究概率加法公式
背景分析 教学目标 教学重难点 教法学法 教学过程 板书设计
自主探究 观察发现 学法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:SX2-020
第1页 第2页


线
批阅记录


线
概率的基本性质 姓名 班级 组别 使用时间
学习目标
(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念; (2)概率的几个基本性质:
(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系. 学习重难点:概率的加法公式及其应用,事件的关系与运算。

知识链接:讨论法,师生共同讨论,从而使加深对概率基本性质的理解和认识。

个人独立完成知识链接和自主学习部分的知识,小组合作对探究部分初步完成并画出疑问。

知识链接:1、必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2、当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B); 3、若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B) 自主学习: 基本概念: (1)事件的包含、并事件、交事件、相等事件的概念理解; (2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B_____________;
(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为________事件; (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B). (C 级)例1、 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A :命中环数大于7环; 事件B :命中环数为10环; 事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环. 合作探究: (C 级)例2、抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)=21,P(B)=21
,求出“出现奇数点或偶数点”的概率。

(B 级)例3 、如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的
概率是4
1,取到方块(事件B )的概率是4
1
,问:
(1)取到红色牌(事件C )的概率是多少? (2)取到黑色牌(事件D )的概率是多少?

B 级)例4 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为
31,得到黑球或黄球的概率是125,得到黄球或绿球的概率也是12
5,试求得到黑球、得到黄球、得到绿球的概率各是多少?
当堂检测:
(C 级)1.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件。

(1)恰好有1件次品恰好有2件次品; (2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品; (4)至少有1件次品和全是正品;
(B 级)2.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )=
21,P (B )=6
1
,求出现奇数点或2点的概率之和。

(B 级)3.某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中: (1)射中10环或9环的概率; (2)少于7环的概率。

(B 级)4.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是71,从中取出2粒都是白子的概率是35
12,现从中任意取出2粒恰好是同一色的概率是多少?。

相关文档
最新文档