《整式的加减》复习课课件

合集下载

【课件】第四章整式的加减复习课课件+2024-2025学年人教版数学七年级上册

【课件】第四章整式的加减复习课课件+2024-2025学年人教版数学七年级上册

(2)当a=1.5,b=2时, 10ab=10×1.5×2=30, 15ab=15×1.5×2=45. 因为地砖的价格为100元/平方米,木地板的价格为200元/平 方米, 所以每套公租房铺地面所需费用为 30×200+45×100=10500(元). 答:每套公租房铺地面所需费用为10500元.
变式训练 下列各题去括号所得结果正确的是 ( D ) A.x2-(x-y+2z)=x2-x+y+2z B.x-2(-2x+3y-1)=x+4x-6y+1 C.3x-[5x-(x-1)]=3x-5x-x+1 D.(x-1)-2(x2-2)=x-1-2x2+4
整式的化简求值 例4 已知A=x2-3xy+2y,B=-2x2+xy-y. (1)化简:A-B. (2)当x=-1,y=2时,求2A-3B的值.
变式训练 1.若3x2+4x+1=0,则代数式6x2+8x+2026的值是( D ) A.2021 B.2022 C.2023 D.2024
2.当x=1时,代数式px3+qx+2的值为2029,则当x=-1时,代数式 px3+qx+2的值为 -2025 .
利用整式运算解决实际问题 例6 公租房作为一种保障 性住房,租金低、设施全受 到很多家庭的欢迎.某市为 解决市民的住房问题,专门 设计了如图所示的一种户型,并为每户卧室铺了木地板,其 余部分铺了地砖.
整式中的整体思想 例5 理解与思考:整体代换是数学的一种思想方法.例如:如 果x2+x=0,求x2+x+520的值. 解 题 方 法 : 我 们 将 x2+x 作 为 一 个 整 体 代 入 , 则 原 式 =0+520=520.

《整式》整式的加减PPT课件 (共12张PPT)

《整式》整式的加减PPT课件 (共12张PPT)
在多项式中,每个单项式叫做多项式的项.
不含字母的项叫做常数项.
新知
多项式 项
学习
3x-7y
3x、-7y
边学边练:
x2-2x+4 ab-a2-1 x3+x2+xy-y2
x2、-2x、 ab、-a2 、-1 x3、x2、xy、 4 -y2 2、1、0
每一项的 1、1 次数
2、2 、0
3、2、2、2
a
2r
课堂
检测
(3)某种商品原价每件b元,第一次降价打 八折,第二次降价每件又减10元,第一次 降价后售价________元,第二次降价后的 售价是_________元。 3、(选作)三个植树队,第一队植树x棵, 第二队植的树比第一队的2倍少25棵,第三 队植的树比第一队植树的一半多42棵,则 第二队、第三队各植树多少棵?当 x=100 时,求三队共植树多少棵?
2米 x米 x米 3米 3米 2米
新知
学习
15a 2x-10
-a
1 2 ab r 2
单项式:
s 10
1 a
3x+5y+2z
s v
x2+2x+18
新知
学习
1 2 ab r 、x2+2x+18 2x -10 、 3x+5y+2z、 2
单项式 单项式 单项式 单项式
定义:几个单项式的和叫做多项式.
课堂
检测
1 2 x x y 2的项有 1、多项式 3 __________________ ,常数项是_______,一
次项系数是____________,属于_____次_____ 项式。 2、用整式填空,指出单项式的系数、次数以及多 项式的项和次数。 (1)某种苹果的售价是每千克x元,用面值是50元 的人民币购买6千克,花费_____元,应找回 _______元。 (2)图中的阴影部分的面积为____________.

整式的加减全章复习课课件

整式的加减全章复习课课件

三、整式的应用
1,“A+2B”类型的易错题:
例1 若多项式 A 3x2 2x 1,计B算多项2x式2A-2xB;1;
解:A 2B (3x2 2x 1) 2(2x2 x 1)
3x2 2x 1 4x2 2x 2 3x2 4x2 2x 2x 1 2 7x2 4x 1
当x=-2时 (代入)
原式= (2)3 5 (2)2 12 (2) 1
=8
20
3 24
1
(代入时注意添上括号,乘号
=39 2 3
改回“×”)
3
小结:
1,这节课我们学到了什么?
一、整式的基本概念: (1)整式的定义和系数,项数,次数的判断; (2)注意数字与字母的区别; (3)注意书写格式; 二、整式的运算: (1)同类项的定义与合并同类项的法则; (2)去括号的方法与该注意的事项; (3)化简求值的方法与注意事项;
3,化简求值:
1,求多项式3( x 2 4x 1) 1 (3x 3 4x 2 6)的值,其中x 2;
解:原式=3x 2
3
12x
3
x3
4
x2
2
(先去括号)
3
= x 3 3x 2 4 x 2 12x 3 2(降幂排列) 3
= x3 5 x2 12x 1 3
(合并同类项,化简完成)
(2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母
例4 请说出下列各多项式是几次几项式,并写出多项式的最高
次项和常数项;
(1)25 x 2 y xy3是 __四___次 __三___项式,最高次项是_____x__y_3_,常数项是_____2_5___;
(2)

整式的加减(公开课) ppt课件

整式的加减(公开课)  ppt课件

ppt课件
6
整式的加减 去括号
ppt课件
7
知识结构:
整式的概念 整式的加减
整式的计算
单项式 多项式
系数
次数 项,项数,常数项, 最高次项 次数
同类项与合并同类项 去括号 化简求值
用字母来表示生活中的量
ppt课件
8
如何进行整式的加减呢? 八字诀
去括号、合并同类项
ppt课件
9
口诀: 去括号,看符号: 是“+”号,不变号; 是“-”号,全变号.
整式的加减整式的加减整式的整式的概念整式的整式的计算单项式单项式多项式多项式系数系数次数次数项项数常数项项项数常数项最高次项最高次项次数次数同类项与合并同类项与合并同类项去括号去括号化简求值化简求值用字母来表示生活中的量用字母来表示生活中的量10例如
一、复习
什么是整式、单项式、多项式
整式
单项式(系数和次数) 多项式(项和次数)
合并同类项概念: _把__多__项_式__中__的__同__类_项__合__并__成__一_项_.
合并同类项法则: 1.__系_数___相加减;
2._字__母__和__字_母__的__指__数___不变。
ppt课件
5
1.下列各式中,是同类项的是:__③__⑤_⑥______
① 2x2 y3 与 x3 y2 ② x2 yz 与 x2 y
思维分析:把多项式看作一个整体,并用括号
括起来。 见多必括
解 (2x2 -3x + 1)+( -3x2 + 5x-7) = 2x2 -3x + 1 -3x2 + 5x-7
= (2x2 -3x2 )+(-3x + 5x)+(1-7)

第4章整式的加减整理与复习 复习课件(共35张PPT)

第4章整式的加减整理与复习  复习课件(共35张PPT)

单项式
系数 次数
项,项数,常数项,最高次项 多项式
次数 同类项与合并同类项
去括号
化简求值
用字母来表示生活中的量
知识点梳理1
单项式:
定义: 由_数__字__或__字__母__的__乘__积__组成的式子. 单独的 一个数 或 一个字母也是单项式.
系数: 单项式中的_数__字__因__数__.
次数: 单项式中的_所__有__字__母__的__指__数__和___.
课堂小结
考点分析
多项式的项与次数
例4:请说出下列各多项式是几次几项式,并写出多项式的 最高次项和常数项.
四三
知识点梳理4
同类项的定义: 1. 字母 相同,
2. 相同的字母的指数也相同. 1.与系___数_无关
同类项:
2.与_字__母__的__位__置_无关.
注意:几个常数项也是_同__类__项_.
合并同类项概念:
“去括号,看符号. 是 ‘+’号,不变号,是‘-’号,全变号”.
(二)计算
1. 找同类项,做好标记.

2. 利用加法的交换律和结合律把同类项放在一起. 搬
3. 利用乘法分配律计算结果.

4. 按要求按“升”或“降”幂排列. 排
考点分析
去括号
例9:已知A=x3+2y3-xy2,B=-y3+x3+2xy2,
(两相同) (两无关)
把多项式中的同类项合并成一项 .
1._系__数___相加减; 合并同类项法则:
2._字__母__和__字__母__的__指__数__不变.
考点分析
同类项
例5:(2024•内江)下列单项式中,ab3的同类项是( )
A.3ab3

整式的加减复习课件

整式的加减复习课件
2
2
典型例题
2、先化简,再求值:
ቤተ መጻሕፍቲ ባይዱ
( x 5 4x) (5x 4 2x )
2 2
其中
x 2
B x5
3、已知 A 3 x 2
求(1) A B (2) 3 A 2 B
典型例题
4、已知长方形的宽为(2a-b)cm,长 比宽多(a-b)cm,求这个长方形的周 长。 长方形的周长=(长+宽)×2 宽:2a-b 长:?
同类项 把多项式中的_______合并成一项,叫做合并同类项。
3x
a+b-c-d a-b+c-d
负变正不 变,要变 全都变
12x-6
12a -12b 4x+3
-5+x
合并同类项 去括号 整式加减的法则:有括号就先________,然后再__________。
典型例题
(1)4a 2 3b 2 2ab 4a 2 4b 2 1、计算:
解: 4a 4a 3b 2 4b 2 2ab 原式= 2 (4 4)a (3 4)b 2 2ab =
2 2
= b 2ab
2
(2) 5xy 3( xy x ) 2(3xy 2 x )
2 2
解: 原式= 5xy 3xy 3x 6xy 4x (5 3 6) xy (3 4) x 2 = 2 = 8 xy 7x
初一数学上学期期末复习四
整式的加减
1、理解同类项的概念,能正确合并同类项。
2、掌握去分括号的方法,能正确的去括号。
3、熟练掌握整式加减的运算。 4、运用整式的加减运算计算有关的应用问题。
初一数学上学期期末复习四

人教版七年级数学上册《整式》整式的加减PPT课件

人教版七年级数学上册《整式》整式的加减PPT课件

B.系数是1,次数是6; D.系数是-1,次数是6;
2.单项式 -4πr2 的系数及次数分别为( C )
A. -4,2
B.-4,3
C. 4π ,2
D. 4π ,3
当堂训练
3.如果 1 a2b2n1 是五次单项式,则n的值为( B )
2
A.1
B.2
C.3
D.4
课堂小结
单项式
概念:数或字母的积组成的式子 (包括单独的数或字母) 系数:单项式中的数字因数 次数:所有字母的指数的和
第四章 整式的加减
4.1 整式
第2课时 多项式和整式
学习目标
1. 掌握多项式、多项式的项、次数以及常数项 的概念. 2. 会准确迅速的确定一个多项式的项数和次数. 3. 归纳出整式的概念会区别单项式和多项式.
学习重难点
学习重点:理解多项式、多项式的项与次 数概念以及整式的概念.
学习难点:正确的找出多项式的项和次数.
单项式与多项式统称为整式。
巩固练习
用多项式填空,并指出它们的项和次数。
(1)一个长方形相邻两边长分别为a,b,则这个长方形的
周长为 2a+2b . (2)m为一个有理数,m的立方与2的差为 m3-2 .
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环 保和安全起见,从第三年年初起不再投放,且每个月回b辆,第
课堂小结
巩固练习
练一练:判断下列代数式是否是单项式?
4b2

π,2+3m
,3xy

a 3

1 t
答:4b2

π,3xy

a 3
是单项式.
探究新知
学生活动二 【一起探究】

七年级数学上册 第二章 整式的加减单元复习课件

七年级数学上册 第二章 整式的加减单元复习课件
解:原式=(3-4+1)a3b3+(-12 +14 +14 )a2b+(1-2)b2+b+3=b- b2+3.因为多项式化简的结果中不含有字母 a,所以多项式的值与 a 的 取值无关
第十二页,共十七页。
考点四 整式规律探究
16.(青海中考)如图,将图1中的菱形剪开得到(dédào)图2,图中共有4个菱形;将 图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5个图中共有 ______个菱形……第13n个图中共有_______个菱形. 3n-2
第八页,共十七页。
11.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余
(shèngyú)部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则周
长是(
)
B
ቤተ መጻሕፍቲ ባይዱ
A.2m+6 B.4m+12 C.2m+3 D.m+6
第九页,共十七页。
12.求3x2+y2-5xy与4xy-x2+7y2的2倍的差. 解:5x2-13y2-13xy
第十三页,共十七页。
考点五 数学思想方法的应用 (整体思想) 17.(菏泽(hézé)中考)一组“数值转换机”按下面的程序计算,如果输入的数是 36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 _____1_5_.
第十四页,共十七页。
18.已知x+y=-2,xy=3,求2xy+x+y的值. 解:4 19.已知2x2-5x+4=5,求式子(shìzi)(15x2-18x+4)-(-3x2+19x-32)-8x的
第四页,共十七页。
5.-13 πx2y 的系数是_-__13__π_______次数是___3_____
6.3x2-y+5是_____二次______三_项式. 7.(三门峡期中(qī zhōnɡ))若3a3bnc2-5amb4c2所得的差是单项式,则这个 单项式为___-__2_a_3_b_4_c_2 ______.

人教版七年级上册数学《整式的加减》教学说课复习课件

人教版七年级上册数学《整式的加减》教学说课复习课件
解: 4a 2 3b 2 2ab 3a 2 b 2

(4a 2 3a 2 ) 2ab (3b 2 b 2 ) 移
(4 3)a 2 2ab (3 1)b 2
a 2 2ab 4b 2 .

加法交换律
加法结合律
巩固练习
合并同类项:
(1)6x+2x2-3x+x2+1;
( C )
A.3
B.6
C.8
D. 10
2. 下列运算中正确的是( A )
A.3a2-2a2=a2
B.3a2-2a2=1
C.3x2-x2=3
D.3x2-x=2x
课堂检测
2
1
3.如果5x2y与xmyn是同类项,那么m =____,n
=____.
4.合并同类项:
-4a
(1)-a-a-2a=________;
(2)如果2a2bn+1与-4amb3是同类项,则m= 2 ,n= 2
.
分析:根据同类项的定义,可知a的指数相同,b的指数
也相同,即m=2,n+1=3.
巩固练习
下列各组中的两个单项式是同类项的是( C )
A.3x与x2
B.3m2n与3mn2
C. abc与-abc
D.2与x
3
±4
已知x|m|y3与-ynx4是同类项,则m=______,n=____.
课堂检测
拓广探索题
有这样一道题:计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)






的值,其中x= ,y=-1”. 甲同学把“x= ”错抄成“x=- ”, 但

整式的加减(公开课)课件

整式的加减(公开课)课件
完善完整知识网络, 我将会成为最棒的!
ppt课件
36
补充例题:
3.求当x= 时,多项式
解:原式=
= = 把x= 带入
∴原式=5
中,得
ppt课件
的值。
37
4.已知数a,b在数轴上的位置如图所示
a
0b
化简下列式子:
解:由题意知:a<0,b>0且|a|>|b|
∴原式=-a-2[-(a+b)]-3(b-a) =-a+2[a+b]-3b+3a =-a+2a+2b-3b+3a = (-a+2a+3a) + (2b-3b) =4a-b
点拨:对于(1)、 (3),考察的是同类项的定义,所含字母相同, 相同字母的指数也相同的称为同类项;所以(1)、 (3)不是同类项;
对于(2),虽然好像它们的次数不一样,但其实它们 都是常数项,所以,它们都是同类项;
对于(4),虽然它们的系数不同,字母的顺序也不同, 但它依然满足同类项的定义,是同类项;
ppt课件
12
•-
7 括号前面出现系数怎么办?
( a + b )
•原 式
=
-
(
ppt课件
13
• -3(xy+yz+7) 试试
• = -3xy-3yz-21
-3(xy-yz-7) =-3xy+3yz+21
3 (2x2 -3x + 1)
=6x2 -9x+3 -3 (2x2 -3x + 1) =6x2 + 9x-3
答:(2) 、(4)是同类项 ppt课(件1)(3)不是同类项; ,

人教版七年级数学上册 4.2整式的加法与减法(第四章 整式的加减 自学、复习、上课课件)

人教版七年级数学上册 4.2整式的加法与减法(第四章 整式的加减 自学、复习、上课课件)

感悟新知
知3-讲
2. 去括号的注意事项 (1)括号内的每一项都包含前面的符号,特别是括号外的
数是负数时,注意符号; (2)不要漏乘括号内的项,特别是常数项.
感悟新知
知3-讲
特别解读 1. 去括号的根据是乘法分配律. 2. 括号内多项式本来是和的形式,所以乘括
号外的数所得的结果要相加.
感悟新知
知2-练
例 4 (1)某中学七年级一班数学活动中分为三个组,第一 组有a 人,第二组比第一组的一半多5 人,第三组 人数等于前两组人数的和,则第三组有 _(32_a_+__5_)人;
解题秘方:先根据数量关系列出整式,然后合并
同类项得到最后结果. 解:因为第一组有a 人,所以第二组有(12a+5)人. 由a+ 12a+5 =32a+5,可知,第三组有32a+5 人.
知2-讲
感悟新知
知2-讲
4.
升降幂排列:把一个多项式各项按某个字母的指数从大 ••
到小的顺序排列,叫作这个多项式按这个字母的降幂排
••
•••
列• . 若按某个字母的指数从小到大的顺序排列,叫作这
个多项式按这个字母的升幂排列. ••••
感悟新知
特别解读
知2-讲
1. 合并同类项法则可简记为“一相加,两不变”.其中,“一相
知2-练
感悟新知
知2-练
3-1.[期末·广州天河区] 下列各式中正确的是( C ) A.2x+2y=4xy B.3x2 - x2=2 C.3xy - 2xy=xy D.2x+4x=6x2
感悟新知
知2-练
3-2.[中考·黄冈] 先化简,再求值:4xy-2xy-(-3xy), 其 中x=2,y=-1. 解:4xy-2xy-(-3xy)=4xy-2xy+3xy=5xy. 当x=2,y=-1时,原式=5×2×(-1)=-10.

整式的加减ppt课件_图文

整式的加减ppt课件_图文

( 交换律 )
2.类比探究,学习新知
例题 4x2 2x 7 3x 8x2 2
解:4x2 2x 7 3x 8x2 2
4x2 8x2 2x 3x 7 2
( 交换律 )
(4x2 8x2 ) (2x 3x) (7 2) ( 结合律 )
母及其指数一同提出来,再把系数部分相加); (4)按同一个字母的降幂(或升幂排列).
3.学以致用,应用新知
例1 合并下列各式的同类项:
(1)xy2 1 xy2 5
(2)3 x2 y 2 x2 y 3 xy2 2 xy2
(3)4a2 3b2 2ab 4a2 4b2
4.基础训练,巩固新知
练习1 判断下列说法是否正确,正确的
在括号内打“√”,错误的打“×”
(1) 3x 与 3mx 是同类项( )
(2) 2ab 与 5ab 是同类项( )
(3) 3xy2 与 1 y2 x 是同类项(

(4) 5a2b

2 2a
2bc
是同类项(

(5) 23 与 32 是同类项( )
4.基础训练,巩固新知
(3) 2ab 2ba 0
(4)3 x2 y 5 xy2 2 x2 y
例2 (1)求多项式 2x2-5x+x2+4x-3x2-2 的值,
其中 x= 1 ; 2
(2)求多项式3a+abc- 1 c2-3a+ 1 c2 的值,
3
3
其中 a - 1 , b 2 ,c -3
6
2x2 3xy 6x2 0 0 0
8x2 3xy
86
2
例6 若 a2 ab 20, ab b2 13 ,

《整式运算复习》课件

《整式运算复习》课件
《整式运算复习》ppt 课件
目录
• 整式运算的回顾 • 整式运算的进阶知识 • 整式运算的应用 • 整式运算的常见错误与纠正 • 习题与解答
整式运算的回顾
01
整式的定义与表示
总结词:理解整式的定义和表示方法
整式是由数字、字母通过有限次四则运算得到的代数式。
整式可以表示为 $ax^n + bx^{n-1} + cx^{n-2} + ldots + e$ 的形式, 其中 $a, b, c, ldots, e$ 是常数,$x$ 是字母,$n$ 是非负整数。
进阶习题
进阶习题1
计算(2x^2y - xy^2 frac{1}{3}x^3) + (3xy^2 frac{2}{3}x^3 - 4x^2y)的结果

进阶习题2
化简整式:2x^2 - 5x + 3 x^2 + 6x - 4。
进阶习题3
计算整式的乘积:(2x + 3y)(3x + 2y)。
进阶习题4
有按照四则运算法则进行。
02 03
详细描述
在进行整式运算时,应遵循先乘除后加减的原则,同时需要注意括号内 的内容优先进行计算。如果运算顺序出现错误,会导致计算结果不正确 。
纠正方法
在运算过程中,应先进行乘法和除法运算,再进行加法和减法运算,并 注意括号内的内容优先计算。对于复杂的表达式,可以使用括号来明确 运算的顺序。
计算整式的除法:(x^4 - 1)/(x - 1)。
综合习题
综合习题1
求整式2x^2 - 5x + 7的最小值。
综合习题3
求整式(x + 1)^2 - x(x - 7)的值,其中x = 5 。

人教版七年级数学上册第二章《整式的加减》复习课课件

人教版七年级数学上册第二章《整式的加减》复习课课件
【解析】可以发现每个图形的五角星个数都比前面一 个图形的五角星个数多3个.由于第1个图形的五角星个数是 3×1+1,所以第n个图形的五角星个数是3n+1,故第202X个 图形五角星个数是3×202X+1=6052.
知识框架
用字母表示数 整 整 单项式:系数、次数
式 式 多项式: 项、次数、常数项 同类项: 定义、“两相同、两无关”
方法技能:
在求多项式的值时,一般情况是先化简,然后再 把字母的值代入化简后的式子中求值,化简的过 程就是整式运算的过程.
针对训练
5.化简后再求值:5x2-2y-8(x2-2y)+3(2x2-3y),其中 |x+12|+(y-13)2=0. 分析:原式去括号合并得到最简结果,利用非负 数的性质求出x与y的值,代入计算即可求出值. 解:原式=5x2-2y-8x2+16y+6x2-9y=3x2-5y. 因为|x+2|+(y-3)2=0,所以x+2=0,y-3=0, 即x=-2,y=3,则原式=12-15= -3.
s=1002×(1002+1)=1005006.
即2+4+6+8+……+2004=1005006.
考点讲授
小结:视察是解题的前提条件,当已知数据有很多组 时,需要仔细视察,反复比较,才能发现其中的规律.
针对训练
6. 视察下列图形:它们是按一定规律排列的,依照 此规律,第202X个图形中共有__6_0_5_2___个五角星.
易错警示:
单项式的次数和系数、多项式的次数和项是 容易混淆的概念,须辨别清楚.
考点2 同类项
考点讲授
例2 若3xm+5y2与x3yn的和是单项式,求mn的值.

整式的加减复习课件公开课一等奖课件

整式的加减复习课件公开课一等奖课件
总结词
去括号时,学生容易忘记改变负号如果括号前的符号是负号,那么学生在 去掉括号后,需要将括号内的每一项的符号都改变。但是 ,学生往往在处理这个问题时,会忘记改变符号,从而导 致结果错误。
总结词
去括号时,学生容易将括号内的项漏掉。
详细描述
在整式的加减中,学生去括号时可能会漏掉括号内的项。 这可能是因为学生在处理问题时不够细心,或者对整式的 加减规则理解不够深入。无论哪种原因,漏掉括号内的项 都会导致结果错误。
THANKS
[ 感谢观看 ]
化简代数式时易错点解析
总结词
化简代数式时,学生容易忽略代数式的符号 。
详细描述
在整式的加减中,化简代数式时需要注意代 数式的符号。如果忽略了代数式的符号,就 会导致结果错误。例如,学生在化简代数式 时可能会将正负号混淆或忽略正负号,导致 结果不正确。
CHAPTER 05
复习与巩固练习
基础练习题
CHAPTER 02
整式的加减运算技巧
去括号法则
01
括号前面是加号时,去 掉括号,括号内的各项 不变。
02
括号前面是减号时,去 掉括号,括号内各项都 变号。
03
括号前面有乘号时,去 掉括号,括号内的各项 都乘以括号前的乘数。
04
括号前面有除号时,去 掉括号,括号内的各项 都除以括号前的除数。
同类项合并
整式的加减运算规则
总结词
掌握整式的加减运算规则,理解合并 同类项的方法
详细描述
整式的加减运算需遵循一定的规则, 如乘法分配律、合并同类项等。合并 同类项是指将相同或相似项进行合并 ,简化整式的形式。
整式加减在实际问题中的应用
总结词
了解整式加减在解决实际问题中的应用,提高数学应用能力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题1
已知A=3a2+b2-5ab,B=2ab-3b2+4a2, 求-B+2A
解:-B+2A=-(2ab-3b2+4a2)+2(3a2+b2-5ab) 打括号
习得:整式加减步骤 先____去__括_号_____,再___合__并_同__类__项__
变式练习:判断下列变形是否正确,如果不正确,写出正
变1、若单项式(a-2)x2y︱m︱+1是关于
x、y的五次单项式,系数是-3,则a=_-1___,
m=__±__2____.
变2、若单项式-23xy和关于x、y的单项式
(a﹢2)xy∣a+1∣的次数相同,则a=__0__.
例题3、如果关于x的多项式(a-1)x3+5X2
-(b+3)x-4中不含x3项和x项,则a=__1___, b=___-3___
点拨:在多项式中如果不含某一项,那么这 一 项的系数为0
由已知可得a-1=0,-(b+3)=0
变1、关于y的多项式ay2-5y+6y2-8中不含
二次项,则a=_-6____
变2、关于x的多项式是3xa+1+(b2-1)x-5是一
个三次二项式,则a=_2__,b=__±__1__
例题4、已知x2-x=-7,则代数式-x2+x+4的
值=___1_1___
点拨:-x2+x+4 =-(X2-4)+4 变号 =-(-7)+4 整体代入
=11
变1、已知a2+a_____. 变2、已知3a2-ab=4,3b2-2ab=-2,求代数 式3a2-6b2-ab+4ab-5的值。
经验总结
数学知识方法: 数学思想: 你的收获或遇到的困惑:
- =(1-6) xy2+( 2+5) x2y+(7-8)系数包含前面的符号
4、4ab-3a3-5ab+4a3= -1ab+1a3 -ab+a3
例题2、已知关于x、y的单项式-2axm+3y5的
系数为8,次数为10,则a=_-_4__,m=__2__
点拨:根据系数和次数的定义得到-2a=8, m+3+5=10
确的变形。
-6y2+3
1、(2x-y2)-3(-4x+2y2-1)=2x-y2+12x+y2-1
变号不彻底以及漏乘
2、3a2b-4ab2-5-2a2b+3ab2+9
- - =(3a2b-2a2b) +–( 4ab2+3ab2 )连-+(同符5号+一9)起交换
3、xy2+7-6x2y-2xy2+5x2y-8
相关文档
最新文档