三年级奥数专题-配对求和

合集下载

三年级奥数第02讲 - 配对求和

三年级奥数第02讲 - 配对求和
【变式5-1】计算:1000-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1=。
【变式5-2】计算:1000-71-29-72-28-73-27-74-26-75-25-76-24-77-23-78-22-79-21=。
1、计算:21+22+23+24+…+50=。
2、计算:56+5711+12+13+…+90=。
【例2】你能迅速算出下列算式的结果吗?
1+2+3+4+5+6+7+8+9=()
解:1、2、3、4、5、6、7、8、9一共9个数,如果我们还像例1那样两个数组成一组,就有一个数多出来,那怎样做呢?我们可以这样想:
9个10是90,90是两组1加到9的和,它的一半是90÷2=45。当加数个数成单时,我们可以用第一个数与最后一个数相加,乘这组数的个数,再除以2,其实这种方法也适用于加数个数成双的求和。
数据配对
【知识梳理】
被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+…+99+100的结果。小高斯是用什么办法算得这么快的呢?原来,他用了一种简便的方法:先配对再求和。
数列的第一项叫首项,最后一项叫末项。如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。
计算等差数列的和,可以用以下关系式:
【例题精讲】
【例1】你有好办法算一算吗?
1+2+3+4+5+6+7+8+9+10=()
解:1、2、3、4、5、6、7、8、9、10共10个数,我们可以把10个数分成5组:1+10,2+9,3+8,……,每组两个数的和是11,它们的和就有5个11即11×5=55。
【变式1-1】计算:1+2+3+4+…+20=。

三年级配对求和

三年级配对求和

A、400 B、200 C、210
正确答案:C
练习一
2、你能迅速算出结果吗? 1+2+3+4+…+100;
A、5000 B、5050 C、5500
正确答案:B
【例题】2、你能迅速算出下列算式的 结果吗? 1+2+3+4+5+6+7+8+9=( )
思路导航:1、2、3、4、5、6、7、8、9一共9个数,如 果我们还像例1那样两个数组成一组,就有一个数多出 来,那怎样做呢? 我们可以这样想:
思路导航:通过观察,我们可以发现每两个减数相加的 和是100 我们可以把81和19,82和18,83和17,84和16,85和15, 86和14,87和13,88和12,89和11这几组数先加起来
和为9个100即900 最后我们得到:1000-900=100
练习四
1、计算:
1000―71―29―72―28―73―27―74―26―75―25―7 6―24―77―23―78―22―79―21=( )
【例题】1 你有好办法算一算吗?
1+2+3+4+5+6+7+8+9+10=( )
思路导航:1、2、3、4、5、6、7、8 、9、10共10个数,我们可以把10个数 分成5组: 1+10,2+9,3+8,4+7,5+6 每组两个数的和是11,它们的和就有5 个11即11×5=55。
练习一
1、计算: 1+2+3+4+…+20
= 6972
练习三
1、1997+1998+1999=( )
A、5993
B、5994
C、5995
正确答案 B
2、9997+9998+9999=( )
A、19994
B、29994 C、39994
正确答案 B
【例题】4、计算:

三奥配对求和

三奥配对求和

三年级数学思维训练(配对求和)
专题分析:
数列的第一个数叫首项,最后一个数叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。

计算等差数列的和,可以用一下关系式:
等差数列的和=(首项+末项)×项数÷2
末项=首项+公差×(项数-1)
项数=(末项-首项)÷公差+1
1:计算。

(1)32+34+36+38+40+42
(2)203+207+211+215+219
1、速算。

(1)1+2+3+4+5+……+100 (2)21+22+23+24+……+50
2、简便计算。

(1)1+4+7+10+13+16+19 (2)71+73+75+77+79+81
(3)48+50+52+54 (4)128+138+148+158+168
4、有一串数,第1个数是10,以后每个数比前一个数答5,最后一个数是90,这串数连加的和是多少?
5、有一个钟,一点钟敲1下,两点钟敲2下,……十二点点钟敲12下,分针指向6敲1下,这个钟一昼夜敲多少下?。

(精选)2021-2022学年人教版三年级下册奥数培优专题:配对求和(附答案)

(精选)2021-2022学年人教版三年级下册奥数培优专题:配对求和(附答案)

2021-2022学年三年级下册奥数培优专题:配对求和姓名:___________班级:___________考号:___________一、其他计算1.计算。

1+2+3=4+5+6+7+8=24+25+26=60+70+80+90+100=2.计算。

68+69+70+71+72+73+74+75+763.计算。

①94+95+96+97+98②45+46+47+48+49+50+51③18+21+24+27+30+33+36+39+42④5+10+15+20+25+30+35⑤16+18+20+22+24+26+28+30+324.计算。

①37+38+……+95②3+6+9+12+15+18+21+24+27+30③2+4+6+8+10+12+14+16+18+20+22+24④17+18+19+20+……+405.计算。

800-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1 (1995+1993+1991+1989)-(1994+1992+1990+1988)6.计算。

①460-33-61-67-39②496-24-65-35-76③274-68+126-14-18④(2+4+6+8......+100)-(1+3+5+7+ (99)二、解答题7.明明用棋子摆了一个五层圈,每两层棋子的个数相差5个,最内层用了18个棋子,一共用了多少个棋子?8.小明练大字,第一次写10个,以后每天比前一天多写3个,那么他一周共写多少个大字?9.小军看一本书,第一天看2页,以后每天比前一天多看2页,10天正好看完,这本书共有多少页?10.有10个盒子,44个乒乓球,能不能将44个乒乓球放入盒中去,使各盒中乒乓球的数目不相等。

11.一个书架,每一层比上一层多放10本书,第一层放5本,最下面一层放45本,问这个书架一共放了多少本书?参考答案1.6;30;75;400【分析】观察发现每个算式中加数的个数都是奇数个,可以用中间数乘加数个数求解。

配对求和(三年级适合)

配对求和(三年级适合)

配对求和专题简析:被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+…+99+100的结果。

小高斯是用什么办法算得这么快的呢?原来,他用了一种简便的方法:先配对再求和。

数列的第一项叫首项,最后一项叫末项。

如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。

计算等差数列的和,可以用以下关系式:等差数列的和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项)÷公差+1配对求和例题1 你有好办法算一算吗?1+2+3+4+5+6+7+8+9+10=()思路导航:1、2、3、4、5、6、7、8、9、10共10个数,我们可以把10个数分成5组:1+10,2+9,3+8,……,每组两个数的和是11,它们的和就有5个11即11×5=55。

01小试牛刀1,计算:1+2+3+4+ (20)2,你能迅速算出结果吗?1+2+3+4+ (100)3,想一想,该怎样计算方便?21+22+23+24+ (50)例题2 你能迅速算出下列算式的结果吗?1+2+3+4+5+6+7+8+9=()思路导航:1、2、3、4、5、6、7、8、9一共9个数,如果我们还像例1那样两个数组成一组,就有一个数多出来,那怎样做呢?我们可以这样想:9个10是90,90是两组1加到9的和,它的一半是90÷2=45。

当加数个数成单时,我们可以用第一个数与最后一个数相加,乘这组数的个数,再除以2,其实这种方法也适用于加数个数成双的求和。

02小试牛刀用简单方法迅速算出下面的题。

1,1+2+3+4+ (55)2,1+2+3+4+ (99)3,56+57+58+ (76)例题3 计算:(1)32+34+36+38+40+42(2)203+207+211+215+219思路导航:(1)32、34、36、38、40、42共6个数相加,后一个数与前一个数相差都是2,我们可以把它们分为3组,每组的和都是74,那么几个数的和就是3个74即74×3=222;(2)203+207+211+215+219共5个数相加,后一个数与前一个数相差都是4,我们也可以仿照例2的方法进行计算,用第一个数和最后一个数相加203+219=422,乘上数的个数5,即422×5=2110,再除以2得到2110÷2=1055。

三年级奥数举一反三第0304周之配对求和加减巧算

三年级奥数举一反三第0304周之配对求和加减巧算

三年级奥数举一反三第0304周之配对求和加减巧算第3讲配对求和一、知识要点被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+……+99+100的结果。

小高斯是用什么办法算得这么快呢?原来,他用了一种简便的方法:先配对再求和。

数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。

计算等差数列的和,可以用以下关系式:等差数列的和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项)÷公差+1二、精讲精练【例题1】你有好办法算一算吗?1+2+3+4+5+6+7+8+9+10=()练习1:速算。

(1) 1+2+3+4+5+……+20 (2) 1+2+3+4+……+99+100(3) 21+22+23+24+……+100【例题2】计算。

(1) 21+23+25+27+29+31 (2) 312+315+318+321+324练习2:计算。

(1) 48+50+52+54+56+58+60+62 (2) 108+128+148+168+188【例题3】有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,……下面每层比上层多一根,这堆木材共有多少根?练习3:(1)体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?(2)有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?(3)有一个钟,一点钟敲1下,两点钟敲2下,……十二点钟敲12下,分钟指向6敲1下,这个钟一昼夜敲多少下?【例题4】计算992+993+994+995+996+997+998+999。

练习4:计算。

(1) 95+96+97+98+99 (2) 2006+2007+2008+2009(3) 9997+9998+9999 (4) 100-1-3-5-7-9-11-13-15-17-19【例题5】计算1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81练习5:计算。

【小学三年级奥数讲义】配对求和

【小学三年级奥数讲义】配对求和

【小学三年级奥数讲义】配对求和一、知要点被人称“数学王子”的高斯在年 8 ,就以一种非常巧妙的方法又快又好地算出了 1+2+3+4+⋯⋯ +99+100 的果。

小高斯是用什么法算得么快呢?原来,他用了一种便的方法:先配再求和。

数列的第一个数(第一)叫首,最后一个数(最后一)叫末,如果一个数列从第二起,每一与前一的差是一个不的数,的数列叫做等差数列,个不的数称个数列的公差。

算等差数列的和,可以用以下关系式:等差数列的和=(首+末)× 数÷2末=首+公差×(数- 1)数=(末-首)÷公差+ 1二、精精【例 1】你有好法算一算?1+2+3+4+5+6+7+8+9+10=()1:速算。

(1) 1+2+3+4+5+⋯⋯+20(2) 1+2+3+4+⋯⋯+99+100(3) 21+22+23+24+⋯⋯+100【例 2】算。

(1) 21+23+25+27+29+31(2) 312+315+318+321+3242:算。

(1) 48+50+52+54+56+58+60+62(2) 108+128+148+168+188【例 3】有一堆木材叠堆在一起,一共是10,第1有16根,第2有 17 根,⋯⋯下面每比上多一根,堆木材共有多少根?3:(1)体育的区共有30 排座位,呈梯形,第 1 排有 10 个座位,第 2 排有 11个座位,⋯⋯ 个体育区共有多少个座位?(2)有一串数,第 1 个数是 10,以后每个数比前一个数大4,最后一个数是 90,串数加的和是多少?(3)有一个,一点敲 1 下,两点敲 2 下,⋯⋯十二点敲 12 下,分指向 6 敲 1 下,个一昼夜敲多少下?【例 4】算992+993+994+995+996+997+998+999。

4:算。

(1) 95+96+97+98+99(2) 2006+2007+2008+2009(3) 9997+9998+9999(4) 100-1-3-5-7-9-11-13-15-17-19例 5:1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-815:算。

三年级数列求和先配对奥数题

三年级数列求和先配对奥数题

三年级数列求和先配对奥数题
以下是一个适合三年级学生的数列求和先配对的奥数题:
题目:有一个数列,它的前几个数是这样的:1、2、3、4、5、6、5、4、3、2、1。

从第一个数开始,依次取两个数相加,直到最后两个数相加为止,求所有和的总和。

解析:观察数列,我们可以看到这是一个对称的数列,中间的数是最大的数6。

因此,我们可以将数列分为两部分:前半部分和后半部分。

每一对相加的两个数,一个是前半部分的数,一个是后半部分的数。

由于数列是对称的,每一对的和都是相同的。

解答:我们可以将数列分成以下几组配对的数:(1,5),(2,4),(3,3),(4,2),(5,1),(6,6),(5,1),(4,2),(3,3),(2,4),(1,5)。

每一对的和分别是6、6、6、6、6、12、6、6、6、6、6。

因此,所有和的总和是6×10+12=72。

类似的题目可以帮助学生锻炼数列求和和观察数列规律的能力,同时也可以培养学生的逻辑思维和数学思维能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年级奥数专题-配对求和
一、知识要点
被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+……+99+100的结果.小高斯是用什么办法算得这么快呢?原来,他用了一种简便的方法:先配对再求和.
数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差.
计算等差数列的和,可以用以下关系式:
等差数列的和=(首项+末项)×项数÷2
末项=首项+公差×(项数-1)
项数=(末项-首项)÷公差+1
二、精讲精练
【例题1】你有好办法算一算吗?
1+2+3+4+5+6+7+8+9+10=()
练习1:速算.
(1) 1+2+3+4+5+……+20 (2) 1+2+3+4+……+99+100
(3) 21+22+23+24+……+100
【例题2】计算.
(1) 21+23+25+27+29+31 (2) 312+315+318+321+324
练习2:计算.
(1) 48+50+52+54+56+58+60+62 (2) 108+128+148+168+188
【例题3】有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,……下面每层比上层多一根,这堆木材共有多少根?
练习3:
(1)体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?
(2)有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?
(3)有一个钟,一点钟敲1下,两点钟敲2下,……十二点钟敲12下,分钟指向6敲1下,这个钟一昼夜敲多少下?
【例题4】计算992+993+994+995+996+997+998+999.
练习4:计算.
(1) 95+96+97+98+99 (2) 2006+2007+2008+2009
(3) 9997+9998+9999 (4) 100-1-3-5-7-9-11-13-15-17-19
【例题5】计算1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81
练习5:计算.
(1) 1000-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1
(2) 1000-81-11-82-12-83-13-84-14-85-15-86-16-87-17-88-18-89-19
(3) 2001-1+2-3+4-5+6-7+8-9+10-11+12-13+14-15+16。

相关文档
最新文档