八年级数学平移与旋转全章复习与测试(含答案)

合集下载

2021中考数学一轮知识点系统复习之图形的平移、旋转与轴对称能力达标测试题(附答案详解)

2021中考数学一轮知识点系统复习之图形的平移、旋转与轴对称能力达标测试题(附答案详解)

2021中考数学一轮知识点系统复习之图形的平移、旋转与轴对称能力达标测试题(附答案详解)1.在平行四边形ABCD 中,AB=6,AD=8,∠B 是锐角,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处.如果AE 过BC 的中点,则平行四边形ABCD 的面积等于( )A .48 B .106 C .127 D .242 2.如图,在直角坐标系中,△OBC 的顶点O (0,0),B (﹣6,0),且∠OCB=90°,OC=BC ,则点C 关于y 轴对称的点的坐标是( )A .(3,3)B .(﹣3,3)C .(﹣3,﹣3)D .(32,32) 3.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A .B .C .D . 4.如图,COD 是AOB 绕点O 顺时针方向旋转38后所得的图形,点C 恰好在AB 上,AOD 90∠=,那么BOC ∠的度数为( )A .12°B .14°C .24°D .30°5.点P (﹣4,﹣3)关于原点对称的点的坐标是( )A .(4,3)B .(﹣4,3)C .(﹣4,﹣3)D .(4,﹣3)6.如图,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A′D 重合,A′E 与AE 重合,若∠A=30°,则∠1+∠2=( )A .50°B .60°C .45°D .以上都不对 7.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )8.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列分子结构模型平面图中,只有一条对称轴的是()A.B.C.D.10.如图,ABCD和DCGH是两块全等的正方形铁皮,要使它们重合,则存在的旋转中心有()A.1个B.2个C.3个D.4个11.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为________.12.如图,正方形ABCD的边长为4,E是边BC上的一点且BE=1,P为对角线AC上的一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值是____.13.如图,把△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为________.14.如图,将△ABE向右平移3cm得到△DCF,如果△ABE的周长是12cm,那么四边形ABFD的周长是_____cm.15.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.16.已知平面直角坐标系内点P的坐标为(-1,3),如果将平面直角坐标系.......向左平移3个单位,再向下平移2个单位,那么平移后点P的坐标为___________17.在平面直角坐标系中,已知点P0的坐标为(1,0),将P0绕原点O按逆时针方向旋转30°得点P1,延长OP1到P2,使OP2=2OP1,再将点P2绕原点O按逆时针方向转动30°得到点P3,延长OP3到P4,使OP4=2OP3,…,如果继续下去,点P2016的坐标为_________.18.如图,△ABC中,AC=10,AB=12,△ABC的面积为48,AD平分∠BAC,F,E分别为AC,AD上两动点,连接CE,EF,则CE+EF的最小值为______.19.在等腰三角形ABC中,∠C=90°,BC=2cm.如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的原来位置相距_____cm.20.如图①,在平面直角坐标系中,等边△ABC的顶点A,B的坐标分别为(5,0),(9,0),点D是x轴正半轴上一个动点,连接CD,将△ACD绕点C逆时针旋转60°得到△BCE,连接DE.(1)直接写出点C的坐标,并判断△CDE的形状,说明理由;(2)如图②,当点D在线段AB上运动时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长及此时点D的坐标;若不存在,说明理由;(3)当△BDE是直角三角形时,求点D的坐标.(直接写出结果即可)21.三角形右边的是由左边的怎样平移得到的?22.如图,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中的直角),并分别写出所拼四边形的对角线的长.(只需写出结果即可)23.如图,正方形ABCD和正方形A1B1C1D1的对角线(正方形相对顶点之间所连的线段)BD,B1D1都在x轴上,O,O1分别为正方形ABCD和正方形A1B1C1D1的中心(正方形对角线的交点称为正方形的中心),O为平面直角坐标系的原点.OD=3,O1D1=2.(1)如果O1在x轴上平移时,正方形A1B1C1D1也随之平移,其形状、大小没有改变,当中心O1在x轴上平移到两个正方形只有一个公共点时,求此时正方形A1B1C1D1各顶点的坐标;(2)如果O在x轴上平移时,正方形ABCD也随之平移,其形状、大小没有改变,当中心O在x轴上平移到两个正方形公共部分的面积为2个平方单位时,求此时正方形ABCD 各顶点的坐标.24.如图,正方形网格中的△ABC,若小方格边长为1,格点三角形(顶点是网格线交点的三角形)ABC的顶点A,C的坐标分别为(﹣1,1),(0,﹣2),请你根据所学的知识.(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出三角形ABC关于y轴对称的三角形A1B1C1;(3)判断△ABC的形状,并求出△ABC的面积.25.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.26.如图,在正方形网格中,每个小正方形的边长为1,格点△ABC(顶点在网格线的交点上)的顶点A、C的坐标分别为A(﹣3,4)C(0,2)(1)请在网格所在的平面内建立平面直角坐标系,并写出点B的坐标;(2)画出△ABC关于原点对称的图形△A1B1C1;(3)求△ABC的面积;(4)在x轴上存在一点P,使PA+PB的值最小,请直接写出点P的坐标.27.已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=5,AC=3,求∠BAD 的度数与AD的长.28.将△ABC的∠C折起,翻折后角的顶点位置记作C′,当C′落在AC上时(如图1),易证:∠1=2∠2.当C′点落在CA和CB之间(如图2)时,或当C′落在CB、CA的同旁(如图3)时,∠1、∠2、∠3关系又如何,请写出你的猜想,并就其中一种情况给出证明.图1 图2 图329.已知,△AOB中,AB=BC=2,∠ABC=90°,点O是线段AC的中点,连接OB,将△AOB 绕点A逆时针旋转α度得到△ANM,连接CM,点P是线段CM的中点,连接PN、PB.(1)如图1,当α=180°时,直接写出线段PN和PB之间的位置关系和数量关系;(2)如图2,当α=90°时,探究线段PN和PB之间的位置关系和数量关系,并给出完整的证明过程;(3)如图3,直接写出当△AOB在绕点A逆时针旋转的过程中,线段PN的最大值和最小值.参考答案1.C【解析】设AE 与BC 交于O 点,O 点是BC 的中点.∵四边形ABCD 是平行四边形,∴∠B =∠D .AB ∥CD ,又由折叠的性质推知∠D =∠E ,CE =CD∴∠B =∠E .CE =AB∴△ABO 和△ECO 中 ,所以△ABO ≌△CEO (AAS ),所以AO =CO =4,OE =OB =4.∴AE =AD =8.∴△AED 为等腰三角形,又C 为底边中点,故三线合一可知∠ACE =90°,从而由勾股定理求得AC =. 平行四边形ABCD 的面积=AC ×CD =12.故选:C .2.A【解析】试题解析:已知90,OCB OC BC ∠=︒=,∴OBC 为等腰直角三角形,又因为顶点()()00,60,O B -,, 过点C 作CD OB ⊥于点D ,则 3.OD DC ==所以C 点坐标为()33-,,点C 关于y 轴对称的点的坐标是()33., 故选A .点睛:关于y轴对称的点的坐标特征:纵坐标不变,横坐标互为相反数. 3.A【解析】试题分析:根据平移的性质,结合图形对选项进行一一分析,选出正确答案.解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形的大小发生变化,不符合平移的性质,不属于平移得到;C、图形的方向发生变化,不符合平移的性质,不属于平移得到;D、图形由轴对称得到,不属于平移得到.故选A.考点:生活中的平移现象.4.B【解析】【分析】直接利用旋转的性质得出∠AOC=∠BOD=38°,进而得出∠BOC的度数.【详解】∵△COD是△AOB绕点O顺时针方向旋转38°后所得的图形,∴∠AOC=∠BOD=38°,∵∠AOD=90°,∴∠BOC=90°-38°-38°=14°.故选:B.【点睛】此题主要考查了旋转的性质,正确得出∠AOC=∠BOD是解题关键.5.A【解析】解:点P(-4,-3)关于原点对称的点的坐标是(4,3).故选A.6.B【解析】试题解析:∵∠1=180﹣2∠ADE;∠2=180﹣2∠AED.∴∠1+∠2=360°﹣2(∠ADE+∠AED)=360°﹣2(180°﹣30°)=60°.故选B.7.C【解析】【分析】根据轴对称图形的定义进行判断即可得到对称轴.【详解】解:观察可知沿l1折叠时,直线两旁的部分不能够完全重合,故l1不是对称轴;沿l2折叠时,直线两旁的部分不能够完全重合,故l2不是对称轴;沿l3折叠时,直线两旁的部分能够完全重合,故l3是对称轴,所以该图形的对称轴是直线l3,故选C.【点睛】本题主要考查了轴对称图形,关键是掌握轴对称图形的定义.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.8.B【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.详解:A.该图形是是轴对称图形不是中心对称图形,故本选项错误;B.该图形既是轴对称图形,又是中心对称图形,故本选项正确;C.该图形不是轴对称图形,是中心对称图形,故本选项错误;D.该图形是是轴对称图形,不是中心对称图形,故本选项错误.故选B.点睛:本题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.9.A【解析】根据图形可得:选项A有1条对称轴,选项B、C各有2条对称轴,选项D有6条对称轴,故选A.【点睛】本题主要考查了轴对称图形的定义,关键是正确找出每个图形的对称轴.10.C【解析】分析:旋转中心即是对应点连线的垂直平分线的交点.详解:根据旋转中心即是对应点连线的垂直平分线的交点,可得要使正方形ABCD和DCGH重合,有3种方法,可以分别绕D,C或CD的中点旋转,即旋转中心有3个.故选C.点睛:本题考查了旋转的性质旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等,旋转中心即是对应点连线的垂直平分线的交点.11.35.【解析】解:连接PP′.如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6.∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA.在△PCB和△P′CA中,∵PC=P′C,∠PCB=∠P′CA,CB=CA,∴△PCB≌△P′CA,∴PB=P′A=10.∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠P AP′='6'10PPP A=35.故答案为35.12.6【解析】连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,故答案为6.13.(﹣a﹣2,﹣b)【解析】由图可知,△ABC关于点(﹣1,0)对称变换得到△A′B′C′,∵△ABC上的点P的坐标为(a,b),∴它的对应点P′的坐标为(﹣a﹣2,﹣b),故答案为:(﹣a﹣2,﹣b).14.18.【解析】【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】∵△ABE向右平移3cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为3cm,∴AD=EF=3cm,∵△ABE的周长是12cm,∴四边形ABFD的周长=12+3+3=18cm.故答案为18cm.【点睛】本题考查了平移的性质,解题的关键是熟练的掌握平移的性质.15.(1,﹣3)【解析】【分析】画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).故答案是:(1,-3).【点睛】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.16.(2,5)【解析】【分析】平面直角坐标系.......向左平移3个单位,再向下平移2个单位,相当于将点(-1,3)向右平移3个单位,再向上平移2个单位.应用点的平移与坐标关系便可得出答案.【详解】因为将平面直角坐标系.......向左平移3个单位,再向下平移2个单位,相当于将点(-1,3)向右平移3个单位,再向上平移2个单位,此时得到对应点的坐标是(-1+3,3+2),即(2,5).故正确答案为: (2,5).【点睛】此题考核知识点:点的平移和坐标.关键要弄清点移动的方向和距离,特别要注意此题是移动平面直角坐标系........17.(21008,0)【解析】∵点P0的坐标为(1,0),∴OP0=1,∴OP2=2OP1=2,OP3=OP2=2,OP4=2OP3=2×2=22,…,OP2016=21008,∵2016÷24=84,∴点P2016是第84循环组的最后一个点,在x轴正半轴,∴点P2016的坐标为(21008,0).故答案为:(21008,0).点睛:本田考查了坐标与图形的变化-旋转,点的坐标变化规律,读懂题目信息,理解点的规律变化是解题的关键.18.8【解析】【分析】根据题意画出符合条件的图形,作F关于AD的对称点为M,作AB边上的高CP,求出EM+EC=MC,根据垂线段最短得出EM+EC=MC≥PC,求出PC即可得出CE+EF的最小值.【详解】试题分析:作F关于AD的对称点为M,作AB边上的高CP,∵AD平分∠CAB,△ABC为锐角三角形,∴M必在AC上,∵F关于AD的对称点为M,∴ME=EF,∴EF+EC=EM+EC,即EM+EC=MC≥PC(垂线段最短),∵△ABC的面积是48,AB=12,∴12×12×PC=48,∴PC=8,即CE+EF的最小值为8.故答案为8.点睛:本题考查了最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.19..【解析】分析:由中心对称的性质得OA=OC,OB=OB′,用勾股定理求出OB即可.详解:根据中心对称的性质得,OB=OB′,OC=1,又BC=2,由勾股定理得BO BB′=2OB=故答案为点睛:中心对称的性质有:①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等.20.(Ⅰ)C(7,△CDE是等边三角形;(Ⅱ)存在;4 ;D(7,0);(Ⅲ)D(1,0)或(13,0).【解析】分析:(1)如图1,过点C作CH⊥x轴于点H,由△ABC是等边三角形易得AH=12AB=2,结合AC=AB=4、OA=5,可得CH=OH=7,由此即可得到点C的坐标;由旋转的性质可知CE=CD,结合旋转角∠DCE=60°可知△CDE是等边三角形;(2)如图2,由(1)可知△CDE是等边三角形,由此可得DE=CD,由△CDE是由△CAD绕点C旋转得到的,由此可得BE=AD,从而可得△BDE的周长=BD+BE+DE=BD+AD+CD=AB+CD=4+CD,由此可知,当CD⊥AB时,CD最小,此时△BDE 的周长最小,由(1)可知,此时CD=23,OD=7,即当点D的坐标为(7,0)时,△BDE 的周长最小,最小值为423+;(3)如图3,由∠CBE=∠CAD=120°可得∠ABC=60°,由此可得∠DBE=60°≠90°,结合△BDE是直角三角形,可知:存在①∠BED=90°;②∠BDE=90°(如图3,∠BD'E'=90°)两种情况,分两种情况画出符合要求的图形,并结合已知条件进行分析计算即可.详解:(Ⅰ)如图1,过点C作CH⊥AB于H,∵△ABC是等边三角形,CH⊥AB于点H,∴∠AHC=90°,AH=12AB=12(9﹣5)=2,∴OH=OA+AH=7,∵AC=AB=4,∴在Rt△ACH中,224223-=∴ C(723),;∵△CBE是由△CAD绕点C逆时针旋转60°得到的,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(Ⅱ)存在,理由如下:如图2,由(Ⅰ)知,△CDE是等边三角形,∴DE=CD,由旋转知,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE=4+CD,由垂线段最短可知,CD⊥AB于D时,△BDE的周长最小,此时,由(1)可知CD=23,OD=7,∴△BDE的周长最小值为4+23,点D(7,0);(Ⅲ)如图3,∵由旋转知,∠CBE=∠CAD=120°,∵∠ABC=60°,∴∠DBE=60°≠90°,∵△BDE是直角三角形,∴存在∠BED=90°或∠BDE=90°(如图3,∠BD'E'=90°)两种情况,①当∠BED=90°时,∵△CDE是等边三角形,∴∠CED=60°,∴∠BEC=30°,∵∠CBE=∠CAD=120°,∴∠BCE=30°,∴BE=BC=AB=4,在Rt△BDE中,∠DBE=∠CBE﹣∠ABC=60°,∴BD=2BE=8,∵OB=9,∴OD=OB﹣BD=1,∴D(1,0),②当∠BD'E'=90°时,∵△CD'E'是等边三角形,∴∠CD'E'=60°,∴∠BD'C=30°,∵∠ABC=60°,∴∠BCD'=30°=∠BD'E,∴BD'=BC=6,∵OB=9,∴OD'=OB+BD'=13,∴D'(13,0),即:存在点D使△BDE是直角三角形,此时点D的坐标分别为:(1,0)或(13,0).点睛:(1)解第1小题的关键是:作出如图1所示的辅助线,利用等边三角形的性质和直角三角形的性质求得AH和CH的长;(2)解第2小题的关键是:利用旋转的性质得到BE=AD,从而把△BDE的周长转化为为:(4+CD)来表达,这样当CD⊥x轴时,CD最短,则△BDE 的周长就最小,由此即可使问题得到解决;(3)解第3小题的要点是:根据已知条件分析存在∠BED=90°或∠BDE=90°两种情况,然后画出符合题意的图形,再进行分析计算即可得到所求结果.21.向右平移7个单位.【解析】试题分析:观察图形中对应点的变化,即可得出图形的变化规律.试题解析:找出对应点来后会发现右边的图形是由左边的向右平移7个单位长度得到的.22.略【解析】可让两斜边重合,得到一个矩形和一个一般的四边形,根据勾股定理和三角形的面积公式可求得对角线长;让两长直角边重合或两短直角边重合,可得到一个平行四边形,利用勾股定理求得一对角线的长.图1是矩形,两条对角线长相等,均为2;图2是平行四边形,两条对角线长4和4;图3是平行四边形,两条对角线长2和2;图4是一般的四边形,两条对角线长2和.23.(1)A1(5,2),B1(3,0),C1(5,-2),D1(7,0);(2)A(11,3),B(8,0),C(11,-3),D(14,0).【解析】【分析】(1)两个正方形只有一个公共点时,分D和B1为公共点,B和D1为公共点两种情况,结合平移的性质写出各点的坐标;(2)根据两个正方形的位置可知公共部分肯定是个正方形,面积是2,可以算出它的对角线长为2,所以有两种情况:点D和O1重合,点B和O1重合,据此解答.【详解】解:(1)当点B1与点D重合时,两个正方形只有一个公共点,此时A1(5,2),B1(3,0),C1(5,-2),D1(7,0);当点B与D1重合时,两个正方形只有一个公共点,此时A1(-5,2),B1(-7,0),C1(-5,-2),D1(-3,0).(2)当点D与O1重合时,两个正方形公共部分的面积为2个平方单位,此时A(5,3),B(2,0),C (5,-3),D (8,0);当点B 与O 1重合时,两个正方形公共部分的面积为2个平方单位,此时A (11,3),B (8,0),C (11,-3),D (14,0).【点睛】本题考查了坐标与图形变化-平移,解题的关键是熟练的掌握平移的相关知识点. 24.(1)见解析;(2)见解析;(3)直角三角形,2.【解析】【分析】(1)根据点A 和点C 的坐标即可作出坐标系;(2)分别作出三角形的三顶点关于y 轴的对称点,顺次连接可得;(3)根据勾股定理的逆定理可得.【详解】解:(1)如图所示:(2)如图所示,△A 1B 1C 1即为所求;(3)∵正方形小方格边长为1,∴AB 2211+2,BC 2222+2,AC 2213+10,∴AB 2+BC 2=AC 2,∴网格中的△ABC 是直角三角形.△ABC 的面积为122×2=2. 【点睛】本题考查的是作图﹣轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键. 25.(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据网格结构找出点A 、B 、C 关于原点对称的点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1关于y轴对称的点A2、B2、C2的位置,然后顺次连接即可.试题解析:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.考点:(1)作图-旋转变换;(2)作图-轴对称变换26.(1)坐标系详见解析,点B的坐标(﹣2,0);(2)详见解析;(3)5;(4)点P 的坐标(﹣2,0).【解析】【分析】(1)根据A、C点坐标,作出的平面直角坐标系即可,根据作出的平面直角坐标系写出B 点的坐标即可;(2)根据原点对称的特点画出图形即可;(3)利用矩形面积减去周围三角形面积得出即可;(4)根据轴对称的性质解答即可.【详解】解:(1)如图所示:点B的坐标(-2,0);(2)如图所示,△A1B1C1即为所求;(3)△ABC的面积111 34222314222=⨯-⨯⨯-⨯⨯-⨯⨯=5;(4)点P的坐标(-2,0).【点睛】本题考查的知识点是平移变换以及三角形面积求法和坐标轴确定方法,解题关键是正确平移顶点.27.∠BAD=60°,AD=8.【解析】【分析】根据旋转的性质先证明△ADE是等边三角形,由相似三角形的性质可得∠EAD=60°,AD=AE,即可得到∠BAD=∠BAC﹣∠CAD=60°,AD=AE=AC+CE=AC+AB=3+5=8.【详解】∵△ABD≌△ECD,∴AD=DE,∠BDA=∠DCE,∴∠BDC=∠ADE=60°,∠ABD=∠ECD,∵∠BAC=120°,∠BDC=60°,∴∠BAC+∠BDC=180°,∴∠ABD+∠ACD=180°,∴∠ACD+∠ECD=180°,∴A、C、E共线,∴△ADE是等边三角形,∴∠EAD=60°,AD=AE,∴∠BAD=∠BAC﹣∠CAD=60°,∴AD=AE=AC+CE=AC+AB=3+5=8.【点睛】本题考查了旋转的性质、等边三角形的判定与性质,证明△AED是等边三角形是解决问题的关键.28.∠1-∠3=2∠2,证明见解析.【解析】【分析】利用轴对称的知识找出等解即可进行推理判断.【详解】解:当C′点落在CA和CB之间(如图2)时,∠1+∠3=2∠2;当C′落在CB、CA的同旁(如图3)时,∠1-∠3=2∠2;对于图2证明如下:连结CC’,如图4所示,∵⊿EC’D是由⊿ECD翻折得到的,∴⊿EC’D≌⊿ECD,由此得EC=EC’,DC=DC’,∠EC’D=∠ECD,∴∠EC’C=∠ECC;∠DC’C=∠DCC,∵∠1=∠DC’C+∠DCC’ ,∠3=∠EC’C+∠ECC’ ,∴∠1+∠3=∠DC’C+∠DCC’ +∠EC’C+∠ECC’=2∠D C’C+2∠ EC’C =2(∠DC’C+∠EC’C)= 2∠2;∴∠1+∠3=2∠2;对于图3证明如下:设AC与DC’在⊿ABC内部所夹角为∠4,如图5所示,则有∠1=∠C +∠4,∠4=∠3+∠2,又由翻折得:∠2=∠C ,∴∠1=∠2+∠3+∠2=∠3+2∠2,∴∠1-∠3=2∠2.【点睛】本题主要考查了轴对称的性质.找准对称轴是解题的关键.29.(1)PN=PB ,PN⊥PB;(2)略;221-【解析】(1)由旋转的性质可得△ABC ≌△ANM ,再由直角三角形斜边的中线等于斜边的一半,得到PN 和PB 之间的位置关系和数量关系;(2)结论一样,证明的方法与(1)一样;(3)连接OP ,利用勾股定理可得出线段PN 的最大值和最小值.解:(1)PN PB ⊥,PN PB =.(2)连接PO ,∵90α=︒,∴90MAB ∠=︒.∵90ABC ∠=︒,∴//AM BC . ∵AMN ≌ABO ,∴AB AM =,OB MN =,∴//AM BC ,=AM BC ,又∵90ABC ∠=︒,∴四边形ABCM 为正方形.∵P 为CM 中点,O 为AC 中点,∴12OP AM , ∴OP PM =,45POC MAC ∠=∠=︒, ∴135BOP BOC POC ∠=∠+∠=︒. ∵9045135PMN ∠=︒+︒=︒, ∴PMN POB ∠=∠. PMN ≌POB , ∴PN PB =,MPN OPB ∠=∠. ∵90MPO ∠=︒, ∴90NPB ∠=︒, ∴PN PB ⊥.(3)连接OP . ∵P ,O 为AC ,MC 中点, ∴11122OP AM AB ===. 在Rt AOB 中, ∵OA OB =,2AB =,∴OB =PO OP PB BO PO -≤≤+. ∵PB PN =,11PN ≤≤.PN ∴11.。

北师大八年级下《第三章图形的平移与旋转》单元测试(含答案)

北师大八年级下《第三章图形的平移与旋转》单元测试(含答案)

第三章图形的平移与旋转一、旋转题1.如图,所给图形中是中心对称图形但不是轴对称图形的是()A. B. C. D.2.用放大镜将图形放大,应该属于()A. 平移变换B. 相似变换C. 对称变换D. 旋转变换3.将点M(﹣1,﹣5)向右平移3个单位长度得到点N,则点N所处的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB向右平移得到△DEF.若四边形ABED 的面积等于8,则平移距离等于()A. 2B. 4C. 8D. 165.如图,OA=OB=6cm,线段OB从与OA重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB的中点为P(当OA与OB重合时,记点P与点A重合),则点P运动的路径长为()A. 6cmB. 4πcmC. 2πcmD. 3cm6.如图,Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连结CC′,则∠CC′B′的度数是()A. 45°B. 30°C. 25°D. 15°7.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC 与B′C′相交于点H,则图中△AHC′的面积等于()A. 12﹣6B. 14﹣6C. 18﹣6D. 18+68.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A. ②B. ③C. ④D. ⑤9.如图,在正方形ABCD中,AB=3,点E在CD边上,DE=1,把△ADE绕点A顺时针旋转90°,得到△ABE′,连接EE′,则线段EE′的长为()A. B. C. 4 D.10.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( ).A. 75°B. 60°C. 45°D. 15°二、填空题11.在等边三角形、正方形、直角三角形、等腰梯形中,既是轴对称图形,又是中心对称图形的是________ .12.在△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB'C',则∠B'AC=________.13.如图,△ABC沿射线AC方向平移2cm得到△A′B′C′,若AC=3cm,则A′C=________ cm.14.点P(﹣2,1)向上平移2个单位后的点的坐标为________15.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为________ cm.16.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为________m.三、解答题17.如图所示,有一条宽相等的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,若要硬化这条小路,且每平方米造价50元,则需要多少元钱?18.请把下面的小船图案先向上平移3格,再向右平移4格,最后为这个图案配上一句简短的解说词.19.每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2.参考答案一、旋转题C BD A C D C D A B二、填空题11.正方形12.17°13.114.(﹣2,3)15.1316.200三、解答题17.解:在矩形ABCD中,AF∥EC,又∵AF=EC,∴四边形AECF是平行四边形.在Rt△ABE中,AB=60,AE=100,根据勾股定理得BE=80,∴EC=BC﹣BE=4,所以这条小路的面积S=EC•AB=4×60=240(m2).240×50=1200元.答:需要1200元钱18.解:如图所示:解说词:两只小船在水中向前滑行19.解:如图所示:。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图①,将两个完全相同的三角形纸片ABC与DEC重合放置,其中∠C=90°,∠B=∠E=30°。

(1)如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,则线段DF与AC有怎样的关系?请说明理由。

(2)当△DEC绕点C旋转到图③所示的位置时,设△BDC的面积为S1,△AEC的面积为S2。

猜想:S1与S2有怎样的数量关系?并证明你的猜想。

【答案】(1) DF∥AC;(2) S1=S2.【解析】(1)根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;(2)过D点作DN⊥BC于N,AM⊥CE于M,先依据ASA求得△ACM≌△DCN求得AM=DN,然后根据等底等高的三角形面积相等.试题解析:(1)DF∥AC;解:如图②所示,∵∠ACB=90°,∠B=∠E=30°,∴∠A=∠CDE=60°,∵AC=DC,∴△ACD是等边三角形,∴∠ACD=60°=∠CDE,∴DF∥AC,∴∠CFD=90°,∠DCF=30°,∴DF=DC=AC;(2)猜想:S1=S2;证明:过D点作DN⊥BC于N,AM⊥CE于M,∵∠ECD=90°,∴∠DCM=90°∴∠DCN=90°-∠NCM,又∵∠ACM=90°-∠NCM,∴∠ACM=∠DCN,在△ACM与△DCN中∠ACM=∠DCNAC=CD∠AMC=∠DNC,∴△ACM≌△DCN(ASA),∴AM=DN,又∵CE=BC,∴BC•DN=CE•AM,即S1=S2.【考点】全等三角形的判定与性质;等边三角形的判定与性质.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B.【解析】①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.【考点】1.中心对称图形;2.轴对称图形.3.如图,在平面直角坐标系中,,,.(1)求出的面积.(2分)(2)在图中作出绕点B顺时针旋转90度得到的.(2分)(3)写出点的坐标.(2分)【答案】(1)S△ABC =7.5;(2)图形见解析;(3).【解析】(1)由A、B的坐标,易求得AB的长,以AB为底,C到AB的距离为高,即可求出△ABC的面积;(2)找出将△ABC绕点B顺时针旋转90°的三角形各顶点的对应点,然后顺次连接即可;(3)根据图形写出即可.试题解析:(1)根据题意,得:AB=5﹣0=5;∴S △ABC =AB•(|x C |﹣1)=×5×3=7.5;(2)如图:(3)根据图形可得:.【考点】作图-旋转变换.4. 下列图形中,是轴对称图形的有( ) 个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形A .2B .3C .4D .5【答案】C .【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,是轴对称图形的有①角;②线段;③等腰三角形;⑤圆4个. 故选C .【考点】轴对称图形.5. 如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是______________【答案】10.【解析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.试题解析:如图,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小. ∵四边形ABCD 是正方形, ∴B 、D 关于AC 对称,∴PB=PD , ∴PB+PE=PD+PE=DE . ∵BE=2,AE=3BE , ∴AE=6,AB=8,∴DE=.故PB+PE 的最小值是10.【考点】1.轴对称-最短路线问题;2.正方形的性质.6. 如图1,将矩形纸片沿虚线AB 按箭头方向向右对折, 再将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为( )【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.7.下列说法错误的是()A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形【答案】B.【解析】 A.两个关于某直线对称的图形是全等的,此说法正确;B.平面内两个全等的图形不一定关于某直线对称,此说法错误;C.轴对称图形的对称轴至少有一条,此说法正确;D.线段是轴对称图形,此说法正确.故选;B.【考点】轴对称的性质.8.正九边形绕它的旋转中心至少旋转°后才能与原图形重合.【答案】400.【解析】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与原来的图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.要与原来的正九边形重合.可用一个圆周角的度数(即360度)除以9,便可知道至少要旋转多少度才能和原来的九边形重合.因为3600÷9=400,故填400.【考点】旋转对称图形.9.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.10.如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2B.C.D.【答案】D【解析】根据轴对称的性质得出∠AOB=∠BON=∠NOC=30°,进而利用勾股定理得出即可.解:∵∠EON=45°,AO=2,∠AOE=15°,点A关于EF的对称点是B,点B关于MN的对称点是C,∴∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2,∴∠AOB=∠BON=∠NOC=30°,∴∠AOC=90°,则AC的距离为:=2.故选:D.点评:此题主要考查了轴对称图形的性质,根据已知得出∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2是解题关键.11.将△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形向x轴负方向平移了1个单位【答案】C【解析】根据题意可得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称.解:△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称,故选:C.点评:此题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).12.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由题意其中一定是轴对称图形的有(2)线段;(3)角;(4)圆;(5)正方形.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.13.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.14.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析15.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键16.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN 交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是( )A.10cmB. 20cmC. 在10cm和20cm之间D.不能确定【答案】B【解析】根据轴对称的性质可得ME=PE,NF=PF,再结合△PEF的周长即可求得结果.∵点M、N分别是点P关于直线OA、OB的对称点∴ME=PE,NF=PF∵△PEF的周长=PE+EF+PF=20cm∴ME+EF+NF=20cm,即MN=20cm故选B.【考点】轴对称的性质点评:本题属于基础应用题,只需学生熟练掌握轴对称的性质,即可完成.17.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于轴对称的.(2)写出点的坐标(直接写答案).A1 _____________,B1______________,C1______________【答案】(1)如图所示:(2)A1(1,-2),B1(3,-1),C1(-2,1)【解析】(1)分别作出的三个顶点关于轴对称的对称点,再顺序连接即可.(2)根据(1)中所作的图形即可作出判断.(1)如图所示:【考点】基本作图,点的坐标点评:解题的关键是熟练掌握轴对称变换的作图方法,正确找到关键点的对称点.18.(本题满分6分)如下图,直线L是一条河,A,B是两个村庄。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.正方形C.等腰直角三角形D.平行四边形【答案】B【解析】正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,故选:B.【考点】1、中心对称图形;2、轴对称图形2.如图,在△ABC中,∠ACB=90°,∠A=35°,若以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,则θ值等于.【答案】70【解析】∵∠ACB=90°,∠A=35°,∴∠ABC=90°﹣35°=55°,∵以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,∴∠DEC=∠ABC=55°,∠ACD=∠BCE=θ°,CB=CE,∴∠CBE=∠BEC=55°,∴∠BCE=180°﹣∠CBE﹣∠BEC=70°,∴θ值为70.故答案为:70.【考点】旋转的性质3.下列图形:①线段;②等边三角形;③平行四边形;④等腰梯形;⑤长方形;⑥圆。

其中既是轴对称图形,又是中心对称图形的有(填序号)【答案】①⑤⑥.【解析】根据轴对称图形与中心对称图形的概念求解.试题解析:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③不是轴对称图形,是中心对称图形;④是轴对称图形,不是中心对称图形;⑤是轴对称图形,也是中心对称图形;⑥是轴对称图形,也是中心对称图形.故选答案为:①⑤⑥.【考点】1.中心对称图形;2.轴对称图形.4.作图题(6分):(1)把△ABC向右平移5个方格;(2)绕点B的对应点顺时针方向旋转90°.【答案】(1)作图见解析;(2)作图见解析.【解析】(1)找出平移后的点A、B、C的对应点的位置,然后顺次连接即可;(2)找出旋转变换后的点A'、C'的对应点的位置,然后顺次连接即可.试题解析:如图所示,(1)△A′B′C′即为平移后的图形;(2)△A″B'C″即为旋转后的图形.【考点】1.作图-旋转变换;2.作图-平移变换.5.如图,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为 ,如果∠ABC=40°,BC=3cm,则 .【答案】∠EDF,EF;∠DEF=40°,EF="3" cm .【解析】根据平移的性质,①对应线段相等且平行,对应角相等,对应点的连线相等且平行;②平移后的图形全等. 因此,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为∠EDF,EF;如果∠ABC=40°,BC=3cm,则∠DEF=40°,EF="3cm" .【考点】平移的性质.6.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B.【解析】图(1)、图(5)都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图(3)不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图(2)、图(4)既是轴对称图形,又是中心对称图形.故选B.【考点】1.中心对称图形2.轴对称图形.7.如图1,将矩形纸片沿虚线AB按箭头方向向右对折,再将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为()【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.8.下列图案是我国几家银行的标志,其中是中心对称图形的为( )【答案】A【解析】根据中心对称图形的概念,观察可知,只有第1个是中心对称图形,其它三个都不是中心对称图形.故选A.【考点】1.中心对称图形;2.生活中的旋转现象.9.如图所示,点为∠内一点,分别作出点关于、的对称点,,连接交于点,交于点,已知,则△的周长为_______.【答案】15【解析】∵点关于的对称点是,关于的对称点是,∴,.∴△的周长为.10.在平面直角坐标系中,已知△OAB,A(0,-3),B(-2,0).(1)在图1中画出△OAB关于x轴的轴对称图形;(2)将先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形;(3)点A平移后的坐标为 .【答案】(1)(2)如下图;(3)(3,-2).【解析】(1)根据轴对称的性质作出关键点的对称点,再顺次连接即可得到结果;(2)先将O、A、B分别按要求平移,然后顺次连接即可得出平移后的图形;(3)根据所作的图形即可得出平移后的点A的坐标.试题解析:(1)(2)如下图(3)点A平移后的坐标为:(3,-2).【考点】坐标与图形变化11.已知点和关于x轴对称,则的值为_________;【答案】﹣3.【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,所以a=2,b=﹣5,则a+b=﹣3.故答案为:﹣3.【考点】关于x轴、y轴对称的点的坐标.12.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.13.如图,草原上两个居民点A、B在河流L的同旁,一汽车从A出发到B,途中需要到河边加水.汽车在哪一点加水,可使行驶的路程最短?在图上画出该点.【答案】作图见试题解析.【解析】作点A关于l的对称点A',连接A'B交l于C,点C即为所求.试题解析:①作A关于直线l的对称点A′;②连接A′B交直线l于点C,则点C即为所求点.汽车在C点加水,可使行驶的路程最短.【考点】1.轴对称-最短路线问题;2.作图题.14.下列平面图形中,不是轴对称图形的是()【答案】A.【解析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.【考点】轴对称图形.15.点(-2,m)关于x轴的对称点的坐标为________________.【答案】(-2,-m)【解析】由题,点(-2,m)关于x轴的对称点的坐标为(-2,-m).两点关于x轴对称,横坐标互为相等,纵坐标相反数,由题,点(-2,m)关于x轴的对称点的坐标为(-2,-m).【考点】点关于x轴对称.16.下列为轴对称图形的是().【答案】A【解析】根据轴对称图形与中心对称图形的概念,分析各图形的特征求解.A、是轴对称图形,有5条对称轴;B、是中心对称图形;C、是中心对称图形;D、既不是轴对称图形,也不是中心对称图形.故选A.【考点】轴对称.17.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是,FG与DC的数量关系是;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.【答案】(1)FG⊥CD ,FG=CD;(2)成立【解析】(1)延长ED交AC的延长线于M,连接FC、FD、FM,根据矩形的性质可得CM=BD,根据等腰直角三角形的性质可得ED=BD=CM,再结合∠E=∠A=45º可证得△AEM是等腰直角三角形,由F是AE的中点可证得MF⊥AE,EF=MF,∠E=∠FMC=45º,即可证得△EFD≌△MFC,则可得FD=FC,∠EFD=∠MFC,又∠EFD+∠DFM=90º即得∠MFC+∠DFM=90º,即可得到△CDF是等腰直角三角形,从而可以证得结论;(2)证法同(1).解:(1)FG⊥CD ,FG=CD;(2)延长ED交AC的延长线于M,连接FC、FD、FM∴四边形 BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形.∴ED=BD=CM.∵∠E=∠A=45º∴△AEM是等腰直角三角形.又F是AE的中点.∴MF⊥AE,EF=MF,∠E=∠FMC=45º.∴△EFD≌△MFC.∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90º∴∠MFC+∠DFM=90º即△CDF是等腰直角三角形.又G是CD的中点.∴FG=CD,FG⊥CD.【考点】旋转问题的综合题点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.18.下面三图是由三个相同的小正方形拼成的图形,请你在A,B,C三图中再添加一个同样大小的小正方形,使所得的新图形分别为下列要求的图形,请画出示意图.(1)是中心对称图形,但不是轴对称图形;(2)是轴对称图形,但不是中心对称图形;(3)既是中心对称图形,又是轴对称图形.【答案】(1)(2)(3)如图所示:【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的定义:一个图形绕一点旋转180°后能够与原图形完全重合即是中心对称图形.(1)(2)(3)如图所示:【考点】基本作图-轴对称图形与中心对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形与中心对称图形的定义,即可完成.19.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键20.下列各图案中,不是中心对称图形的是().【答案】B【解析】中心对称图形,即围绕图形中心旋转180度后,所得的新图形与原图形重合,由此可知B旋转180度后不能与原图形重合【考点】中心对称图形的判断点评:中心对称图形,即围绕图形中心旋转180度后,所得的新图形与原图形重合21.下列图案中是轴对称图形的是()【答案】D【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由图可得只有D选项符合轴对称图形的定义,故选D.【考点】轴对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.22.把图中的五角星图案,绕着它的中心旋转,旋转角至少为()时,旋转后的五角星能与自身重合A.300B.450C.600D.720【答案】D【解析】五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、B、C都错误,能与其自身重合的是D,故选D【考点】旋转对称图形点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角23.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是 _.【答案】5【解析】先作点B关于y轴的对称点,连接,交y轴于点C,根据勾股定理求得的长,即可所求.作点B关于y轴的对称点,连接,交y轴于点C由题意得,则则光线从A点到B点经过的路线长是5.【考点】轴对称的应用,勾股定理点评:本题是勾股定理的应用,同时渗透光学中反射原理,构造直角三角形是解答本题的关键.24.下列四个图形中,不能通过基本图形平移得到的是()【答案】D【解析】根据平移的基本性质依次分析各选项即可判断。

北师大版八年级下册数学第三章 图形的平移与旋转含答案(学生专用)

北师大版八年级下册数学第三章 图形的平移与旋转含答案(学生专用)

北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、如图下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2、线段AB经过平移得到线段CD,若CD=5cm,则AB等于()A.3cmB.4cmC.5cmD.6cm3、如图,将周长为5的△ABC沿BC方向平移了1个单位长度得到△DEF,连接AD,则四边形ABFD的周长为()A.5B.6C.7D.84、下列车标,可看作图案的某一部分经过平移所形成的是 ( )A. B. C. D.5、下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是()A. B. C. D.6、下列说法错误的是()A.矩形的对角线相等B.正方形的对称轴有四条C.平行四边形既是中心对称图形又是轴对称图形D.菱形的对角线互相垂直且平分7、经过平移或旋转不可能将甲图案变成乙图案的是()A. B. C. D.8、下列电视台的台标,是中心对称图形的是()A. B. C. D.9、将下列图案通过平移后可以得到的图案是()A. B. C. D.10、观察下列图形,是中心对称图形的是()A. B. C. D.11、下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.12、下列电视台的台标,是中心对称图形的是()A. B. C. D.13、下列图形中,是中心对称图形的是( )A. B. C. D.14、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.15、如图,在△ABC中,∠ABC=90°,将△ABC沿AB方向平移AD的长度得到△DEF,已EF=8,BE=3,CG=3,则图中阴影部分的面积是()A.12.5B.19.5C.32D.45.5二、填空题(共10题,共计30分)16、如图,三角形DEF是三角形ABC沿射线BC平移的得到的,BE=2,DE与AC 交于点G,且满足DG=2GE.若三角形CEG的面积为1,CE=1,则点G到AD的距离为________.17、如图,与都是直角三角形,,点在上,.如果经顺时针旋转后能与重合,那么旋转中心是点________,旋转了________度.18、如图,往竖直放置的在A处山短软管连接的粗细均匀细管组成的“U形装置中注入一定量的水,水面高度为9cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水柱的长度为________cm.19、如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转到△A′B′C,使得点A′恰好落在AB上,则旋转角度为________.20、如图,将△ABC沿射线AC平移得到△DEF,若AF=17,DC=7,则AD=________21、如图,已知∠AOB=45°,将射线OA绕点O逆时针旋转α°(0 α 360),得到射线OA′.若OA′⊥OB,则α的值是________.22、钟表的时针匀速旋转一周需12小时,则时针经过3小时后,时针所转过的角度为________,如果时针从12时开始,绕中心旋转了120°,则它所指向的具体数字是________.23、“梅花朵朵迎春来”,下面四个图形是由小梅花摆成的一组有规律的图案,按图中规律,第n个图形中小梅花的个数是________.24、在图中,是由基本图案多边形ABCDE旋转而成的,它的旋转角为________.25、如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转________次,每次旋转________度形成的.三、解答题(共5题,共计25分)26、如图所示,△ABC平移后得到了△DEF,D在AB上,若∠A=26°,∠E=74°,求∠1,∠2,∠F,∠C的度数.27、如图,已知A(-2,-3),B(-3,-1),C(-1,-2)是平面直角坐标系中三点.(1)请你画出ABC关于原点O对称的A1B1C1;(2)请写出点A关于y轴对称的点A2的坐标.若将点A2向上平移h个单位,使其落在A1B1C1内部,指出h的取值范围.28、找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.29、在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1, AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值.30、在下面的正方形网格中,每个小正方形的边长为1.(1)直接写出图①共有多少条对称轴;(2)图②中的阴影图案可以看成是由某个基本图形绕着一个点依次旋转一定的角度后得到的.请在图中标出这个点;(3)利用图③的方格,设计一个新图案,要求与图①②的图案都不相同,但面积相同,且能沿某条直线分割后两旁的图形完全相同.(在图④中把你画的图案涂成阴影并画出分割线)参考答案一、单选题(共15题,共计45分)1、D2、C3、C4、B5、B6、C7、C8、D9、A10、D11、D12、D13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

《第4章图形的平移和旋转》单元测试卷含答案解析

《第4章图形的平移和旋转》单元测试卷含答案解析

鲁教五四新版八年级数学上册《第4章图形的平移和旋转》2019年单元测试卷一.[复习前测]1.下列图形中是中心对称图形的是( )A.B.C.D.2.已知如图所示的四张牌,若将其中一张牌旋转180°后得到图2,则旋转的牌是( )A.B.C.D.3.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是( )A.B.C.D.4.如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )A.①③B.①④C.②③D.②④5.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是( )A. B. C. D.6.如图,△ABC经过怎样的平移得到△DEF( )A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位7.如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是( )A.梯形ABCD是轴对称图形B.BC=2ADC.梯形ABCD是中心对称图形D.AC平分∠DCB8.如图中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.9.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A 落在F处,折痕为MN,则线段CN的长是( )A.2 B.3 C.4 D.510.下列图形中是轴对称图形的是( )A.B.C.D.11.如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )A.正三角形 B.正方形C.正五边形 D.正六边形12.下列图形中,既是轴对称图形又是中心对称图形的是( )A.菱形 B.梯形 C.正三角形 D.正五边形13.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是( )A.①⑤B.②④C.③⑤D.②⑤14.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )A.六边形B.八边形C.十二边形 D.十六边形15.下列图形中,既是轴对称图形,又是中心对称的是( )A.B.C.D.16.如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E (如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为( )A.60°B.67.5° C.72°D.75°17.下列图案中是轴对称图形的是( )A.2008年北京B.2004年雅典C.1988年汉城D.1980年莫斯科18.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A.①②B.①③C.②③D.①②③19.如图是用纸折叠成的生活图案,其中不是轴对称图形的是( )A.信封 B.飞机 C.裤子 D.衬衣20.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为__________.21.如图图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个22.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是( )A.平移和旋转B.对称和旋转C.对称和平移D.旋转和平移23.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )A.B.C.D.二、解答题(共3小题,满分0分)24.如图,镜子中号码的实际号码是__________.25.等边三角形、平行四边形、矩形、圆四个图形中,既是轴对称图形又是中心对称图形的是__________.26.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1),(1)写出A、B两点的坐标;(2)画出△ABC关于y轴对称的△A1B1C1;(3)画出△ABC绕点C旋转180°后得到的△A2B2C2.鲁教五四新版八年级数学上册《第4章图形的平移和旋转》2019年单元测试卷一.[复习前测]1.下列图形中是中心对称图形的是( )A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义进行解答,找到图形的对称中心.【解答】解:A、不是中心对称图形,故本选项错误,B、为轴对称图形,而不是中心对称图形,故本选项错误,C、为轴对称图形,而不是中心对称图形,故本选项错误,D、为中心对称图形,故本选项正确.故选D.【点评】本题主要考查对中心对称图形的定义的掌握,解题的关键是看那个图形能够找到对称中心,是否符合中心对称图形的定义.2.已知如图所示的四张牌,若将其中一张牌旋转180°后得到图2,则旋转的牌是( )A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的性质和扑克的花色特点解答.【解答】解:B、C、D中,红桃5,黑桃5,和梅花5,旋转180°后,新图形中间的桃心将有变化,故B、C、D错误;只有A没有变化,说明旋转的是方块5.故选:A.【点评】本题考查中心对称图形的定义.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是( )A.B.C.D.【考点】剪纸问题.【分析】严格按照所给方法向下对折,再向右对折,向右下对折,剪去上部分的等腰直角三角形,展开得到答案.【解答】解:易得剪去的4个小正方形正好两两位于原正方形一组对边的中间.故选C.【点评】主要考查了剪纸问题;学生空间想象能力,动手操作能力是比较重要的,做题时,要注意培养.4.如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )A.①③B.①④C.②③D.②④【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念和各图的特点求解.【解答】解:①、是轴对称图形,不是中心对称图形;②、是轴对称图形,也是中心对称图形;③、是轴对称图形,不是中心对称图形;④、是轴对称图形,也是中心对称图形.满足条件的是①③,故选A.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是( )A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形.故错误;B、不是中心对称图形.故错误;C、是中心对称图形.故正确;D、不是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.如图,△ABC经过怎样的平移得到△DEF( )A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位【考点】平移的性质.【专题】压轴题.【分析】根据平移的性质可知,图中DE与AB是对应线段,DE是AB向右平移4个单位,再向上平移2个单位得到的.【解答】解:由题意可知把△ABC向右平移4个单位,再向上平移2个单位得到△DEF.故选C.【点评】本题主要考查了平移的性质,观察图象,分析对应线段作答.7.如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是( )A.梯形ABCD是轴对称图形B.BC=2ADC.梯形ABCD是中心对称图形D.AC平分∠DCB【考点】梯形.【专题】压轴题.【分析】利用已知条件,对四个选逐个验证,即可得到答案.【解答】解:A、根据已知条件AB=CD,则该梯形是等腰梯形,等腰梯形是轴对称图形,正确;B、过点D作DE∥AB交BC于点E,得到平行四边形ABED和等边三角形CDE.所以BC=2AD,正确;C、根据中心对称图形的概念,等腰梯形一定不是中心对称图形,错误;D、根据等边对等角和平行线的性质,可得AC平分∠BCD,正确.故选C.【点评】要熟悉这个上底和腰相等且底角是60°的等腰梯形的性质;理解轴对称图形和中心对称图形的概念.8.如图中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A 落在F处,折痕为MN,则线段CN的长是( )A.2 B.3 C.4 D.5【考点】翻折变换(折叠问题).【专题】压轴题;数形结合.【分析】根据△CEN是直角三角形利用勾股定理求解即可.【解答】解:由折叠可得DN=EN,设CN=x,则EN=8﹣x,∵CN2+CE2=EN2,∴x2+42=(8﹣x)2,解得x=3.故选B.【点评】考查折叠问题;找到相应的直角三角形利用勾股定理求解是解决本题的关键.10.下列图形中是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11.如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )A.正三角形 B.正方形C.正五边形 D.正六边形【考点】剪纸问题.【专题】操作型.【分析】先求出∠O=60°,再根据直角三角形两锐角互余沿折痕展开依次进行判断即可得解.【解答】解:∵平角∠AOB三等分,∴∠O=60°,∵90°﹣60°=30°,∴剪出的直角三角形沿折痕展开一次得到底角是30°的等腰三角形,再沿另一折痕展开得到有一个角是30°的直角三角形,最后沿折痕AB展开得到等边三角形,即正三角形.故选:A.【点评】本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便.12.下列图形中,既是轴对称图形又是中心对称图形的是( )A.菱形 B.梯形 C.正三角形 D.正五边形【考点】轴对称图形;中心对称图形.【分析】关于某条直线对称的图形叫轴对称图形.绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形.【解答】解:A是轴对称图形,也是中心对称图形,符合题意;B、C、D都是轴对称图形,不是中心对称图形,不符合题意.故选A.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后与原图形重合.13.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是( )A.①⑤B.②④C.③⑤D.②⑤【考点】认识平面图形.【分析】根据分割与组合的原理对图形进行分析即解.【解答】解:分析原图可得:原图由②⑤两种图案组成.故选:D.【点评】此题考查了平面图形的分割与组成,主要培养学生的观察能力和空间想象能力.14.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )A.六边形B.八边形C.十二边形 D.十六边形【考点】剪纸问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解结合实际操作解题.【解答】解:此题需动手操作,可以通过折叠再减去4个重合,得出是八边形.故选:B.【点评】本题主要考查了与剪纸相关的知识;动手操作的能力是近几年常考的内容,要掌握熟练.15.下列图形中,既是轴对称图形,又是中心对称的是( )A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.16.如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E (如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为( )A.60°B.67.5° C.72°D.75°【考点】翻折变换(折叠问题);三角形内角和定理;三角形的外角性质.【专题】压轴题;操作型.【分析】折叠是一种对称变换,它属于轴对称,根据轴对称的性质,可利用角度的关系求解.【解答】解:第一次折叠后,∠EAD=45°,∠AEC=135°;第二次折叠后,∠AEF=67.5°,∠FAE=45°;故由三角形内角和定理知,∠AFE=67.5度.故选B.【点评】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.17.下列图案中是轴对称图形的是( )A.2008年北京B.2004年雅典C.1988年汉城D.1980年莫斯科【考点】轴对称图形.【分析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.结合定义可得答案.【解答】解:结合定义可得,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.故选D.【点评】本题涉及轴对称图形的相关知识,难度一般.18.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A.①②B.①③C.②③D.①②③【考点】中心对称图形;轴对称图形;生活中的旋转现象.【分析】依据轴对称图形与中心对称的概念即可解答.【解答】解:②不是中心对称图形,是旋转对称图形;④是轴对称图形;既是轴对称图形,又是中心对称图形的只有①③.故选:B.【点评】对轴对称与中心对称概念的考查:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.19.如图是用纸折叠成的生活图案,其中不是轴对称图形的是( )A.信封 B.飞机 C.裤子 D.衬衣【考点】轴对称图形.【分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,即可判断出.【解答】解:∵A,信封:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,故此选项错误;B:飞机:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,故此选项错误;C.裤子:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,故此选项错误D:此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了轴对称图形的定义,根据定义得出图形形状是解决问题的关键.20.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为1或5.【考点】旋转的性质;正方形的性质.【专题】压轴题.【分析】题目里只说“旋转”,并没有说顺时针还是逆时针,而且说的是“直线BC上的点”,所以有两种情况,即一个是逆时针旋转,一个顺时针旋转,根据旋转的性质可知.【解答】解:旋转得到F1点,∵AE=AF1,AD=AB,∠D=∠ABC=90°,∴△ADE≌△ABF1,∴F1C=1;旋转得到F2点,同理可得△ABF2≌△ADE,∴F2B=DE=2,F2C=F2B+BC=5.【点评】本题主要考查了旋转的性质.21.如图图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个、第三个图形既是轴对称图形又是中心对称图形.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.22.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是( )A.平移和旋转B.对称和旋转C.对称和平移D.旋转和平移【考点】生活中的旋转现象.【分析】根据对称和旋转定义来判断.【解答】解:根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.【点评】考查学生对对称和旋转的理解能力.要理解:“对镜贴花黄”是指人和镜像的对称关系;“坐地日行八万里”是指人绕地心旋转.23.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )A.B.C.D.【考点】剪纸问题;等腰直角三角形.【专题】压轴题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解结合实际操作解题.【解答】解:拿一张纸具体剪一剪,结果为A.故选A.【点评】本题着重考查学生对立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,由几何图形想象出实物的形状”的要求相一致,充分体现了实践操作性原则.要注意空间想象,哪一个平面展开图对面图案都相同.二、解答题(共3小题,满分0分)24.如图,镜子中号码的实际号码是3265.【考点】镜面对称.【分析】注意镜面反射与特点与实际问题的结合.【解答】解:根据镜面对称的性质,在镜子中的真实数字应该是:3265.故答案为:3265【点评】本题考查了图形的对称变换,学生在解题时可以再借用镜子看一下即可,也可以在卷子的反面看.25.等边三角形、平行四边形、矩形、圆四个图形中,既是轴对称图形又是中心对称图形的是矩形、圆.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:矩形、圆即是轴对称图形,又是中心对称图形.故答案为:矩形、圆.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.26.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1),(1)写出A、B两点的坐标;(2)画出△ABC关于y轴对称的△A1B1C1;(3)画出△ABC绕点C旋转180°后得到的△A2B2C2.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)结合直角坐标系可直接写出A、B两点的坐标.(2)找到A、B、C三点关于y轴的对称点,然后顺次连接可得出△A1B1C1;(3)旋转180°也即是中心对称,找到A、B、C三点关于C的中心对称点,顺次连接即可.【解答】解:(1)A(﹣1,2)B(﹣3,1);(2)画图答案如图所示:(3)画图答案如图所示:【点评】此题考查了旋转作图及中心对称的知识,解答本题的关键是根据旋转的三要素,中心对称的性质,得到各点的对应点,难度一般.。

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》检测卷(答案解析)

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》检测卷(答案解析)

一、选择题1.下列命题中真命题的是( ) A .42=± B .点A(2,1)与B(-2,-1)关于原点对称 C .64的立方根是±4D .若a<b ,则ac<bc2.如图,在平面直角坐标系xOy 中,点P 的坐标为22,22⎛⎫⎪ ⎪⎝⎭,将线段1OP ,绕点O 按顺时针方向旋转45,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP 、5OP 、、2021OP ,则20202021OP P ∆的面积为( )A .4038224B .40392C 403722D .40382 3.如图,指针OA ,OB 别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45°,OB 的转动速度是OA 的13,则第2020秒时,OA 与OB 之间夹角的度数为( )A .130°B .145°C .150°D .165°4.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .5.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-B .(2020,13)---C .(2019,13)-+D .(2019,13)-- 6.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .7.在下列四种图形变换中,如图图案包含的变换是( )A .平移、旋转和轴对称B .轴对称和平移C .平移和旋转D .旋转和轴对称 8.点(1,2)A m --与点(3,1)B n +关于原点对称,则m n +=( )A .1B .-1C .-5D .59.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .1210.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .11.已知点(,2)A a 与点,()3B b -关于原点对称,则+a b 的值为( ) A .5B .-5C .1D .-112.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 重合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按逆时针方向旋转n °后(0<n <180 ),如果BA ∥DE ,那么n 的值是( )A .105B .95C .90D .75二、填空题13.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向下平移,再向右平移,得到四边形1111D C B A ,已知点()3,5A -,点()4,3B -,点()13,3A ,则点1B 的坐标为___.14.如图,把ABC 绕点A 顺时针旋转50°得到ADE ,点B 的对应点是D ,则直线BC 与DE 所夹的锐角是______.15.如图,等边三角形ABC 中,点O 是ABC 的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODEBDE SS=;③四边形ODBE 的面积始终等于定值;④当OE BC ⊥时,BDE 周长最小.上述结论中正确的有__________(写出序号).16.如图在△ABC 中,∠ACB =90°,∠BAC =30°,将△ABC 绕C 点按逆时针方向旋转α角(0°<α<90°),得到△A′B′C ,设A′C 交AB 边于D ,连结AA′,若△AA′D 是等腰三角形,则旋转角α的度数为_____.17.如图,ABC 是等边三角形,点P 是ABC 内一点.APC △沿逆时针方向旋转后与AP B '△重合,最小旋转角等于__________︒.18.如图,在等边三角形网格中,已有两个小等边三角形被涂黑,若再将图中其余小等边三角形涂黑一个,使涂色邮分构成一个轴对称围形,则有_______种不同的涂法.19.如图所示,大长方形的长为8cm ,宽为4cm ,则阴影部分的面积是________.20.将△ABC 在平面内绕点A 旋转40°到△AB 'C '的位置,使CC '∥AB .则∠CAB '的度数为_____.三、解答题21.如图,在ABC 中,1AB =,45BAC ∠=︒,3AC =.将ABC 绕点B 逆时针旋转一个角α,得到A BC ''△,点A 恰好在A C ''边上. (1)求α的度数; (2)求AC '的长.22.在平面直角坐标系中,O 为原点,点A (2,0),点B (0,2),把△ABO 绕点B 逆时针旋转,得△A ′BO ′,点A ,O 旋转后的对应点为A ′,O ′.记旋转角为α.(1)如图①,当点O ′落在边AB 上时,求点O ′的坐标; (2)如图②,当α=60°时,求AA ′的长及点A ′的坐标.23.如图1,已知ABC 中,1,90,AB BC ABC ==∠=︒把一块含30角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为,DE 长直角边为DF ),将直角三角板DEE 绕D 点按逆时针方向旋转.(1)在图1中.DE 交AB 于,M DF 交BC 于N . ①求证:DM DN =;②在这一过程中,直角三角板DEF 与三角形ABC 的重叠部分为四边形,DMBN 请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明如何变化的;若不发生变化,请求出其面积.(2)继续旋转至如图2的位置,延长AB 交DE 于,M 延长BC 交DF 于,N DM DN =是否仍然成立?(请写出结论,不用证明.)(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于,M DM DN =是否仍然成立?(请写出结论,不用证明.)24.矩形ABCD 中,AB =4,AD =8,将矩形ABCD 绕点C 顺时针旋转,AD 交CBʹ于点E . (1)如图1,当∠BCE =60°,△CDDʹ的形状是 ; (2)如图2,当AE=CE 时,求阴影部分的面积.25.如图,在平面直角坐标系中,已知ABC 的顶点的坐标分别是A (5-,2),B (2-,4),C (1-,1).(1)在图中作出111A B C △,使111A B C △和ABC 关于x 轴对称; (2)画出将ABC 以点O 为旋转中心,顺时针旋转90︒对应的222A B C △; (3)直接写出点B 关于点C 对称点的坐标.26.有两个形状、大小完全相同的直角三角板ABC 和CDE ,其中90ACB DCE ∠=∠=︒.将两个直角三角板ABC 和CDE 如图①放置,点A ,C ,E 在直线MN 上.(1)三角板CDE 位置不动,将三角板ABC 绕点C 顺时针旋转一周, ①在旋转过程中,若30BCD ∠=︒,则ACE ∠=______°.②在旋转过程中,BCD ∠与ACE ∠有怎样的数量关系?请依据图②说明理由. (2)在图①基础上,三角板ABC 和CDE 同时绕点C 顺时针旋转,若三角板ABC 的边AC 从CM 处开始绕点C 顺时针旋转,转速为10°/秒,同时三角板CDE 的边CE 从CN 处开始绕点C 顺时针旋转,转速为1°/秒,当AC 旋转一周再落到CM 上时,两三角板都停止转动.如果设旋转时间为t 秒,则在旋转过程中,当t =______秒时,有3ACE BCD ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据算术平方根、点关于原点对称、立方根以及不等式的性质进行判断即可. 【详解】解:A 2=,故原选项是假命题,不符合题意;B . 点A (2,1)与B (-2,-1)关于原点对称,是真命题,故此选项是真命题,符合题意;C .64的立方根是4,故原选项是假命题,不符合题意;D .当c ≤0时ac ≥bc ,故原选项是假命题,不符合题意; 故选B 【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.C解析:C 【分析】根据题意得出OP 1=1,OP 2=2,OP 3=4,如此下去,得到线段OP 4=8=23,OP 5=16=24…,OP n =2n-1,由此即可解决问题. 【详解】解:根据题意得出OP 1=1,OP 2=2,OP 3=4,如此下去,得到线段OP 4=8=23,OP 5=16=24…,OP n =2n-1,∴△OP n P n+1的面积=12×2n-1×2×2n ×22n-1,则20202021OP P ∆的面积为12×21919×22020=4039240372, 故选C . 【点睛】本题考查坐标与图形变化-旋转,规律型问题,解直角三角形等知识,解题的关键是理解题意,学会探究规律的方法.3.C解析:C 【分析】先求出线段OA 、OB 第2020秒时旋转的度数,再除以360°,即可确定最终状态时OA 、OB的位置,再求其夹角度数即可.【详解】由题意可知OB的速度为每秒转动145153⨯︒=︒.则第2020秒时,线段OA旋转度数=2020×45°=90900°,线段OB旋转度数=2020×15°=30300°.90900°÷360°=252⋯⋯180°,30300°÷360°=84⋯⋯60°,此时OA、OB的位置如图所示,OA与OB之间的夹角度数=90°+60°=150°.故选:C.【点睛】本题考查线段的旋转,解题的关键是利用旋转周期确定最终状态时OA、OB所在位置.4.A解析:A【分析】根据轴对称图形和中心对称图形的定义即可判断结论;【详解】A是轴对称图形也是中心对称图形,故本项正确;B不是轴对称图形,也不是中心对称图形,故本项错误;C是轴对称图形不是中心对称图形,故本项错误;D不是轴对称图形,是中心对称图形,故本项错误;故选:A.本题考查轴对称图形,中心对称图形,熟记相关概念是解题的关键.5.D解析:D【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标.【详解】∵△ABC是等边三角形AB=3-1=2∴点C到x轴的距离为1+⨯=+2212∴C(2,1+由题意可得:第1次变换后点C的坐标变为(2-1,1),即(1,1-,第2次变换后点C的坐标变为(2-21),即(0,1+第3次变换后点C的坐标变为(2-3,1),即(-1,1--第n次变换后点C的坐标变为(2-n,1)(n为奇数)或(2-n,1+为偶数),∴连续经过2021次变换后,等边ABC的顶点C的坐标为(-2019,1-,故选:D.【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键.6.D解析:D【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、既不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,也是中心对称图形.故此选项正确.故选D.【点睛】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是轴对称图形是要寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.D【分析】根据图形的形状沿中间的竖线折叠,两部分可重合,里外各一个顺时针旋转8次,可得答案.【详解】解:图形的形状沿中间的竖线折叠,两部分可重合,得轴对称.里外各一个顺时针旋转8次,得旋转.故选:D .【点睛】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是沿某条直线翻折得到新图形.观察时要紧扣图形变换特点,认真判断.8.B解析:B【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点(1,2)A m --与点(3,1)B n +关于原点对称,∴1312m n -=-⎧⎨+=⎩, ∴21m n =-⎧⎨=⎩, ∴211m n +=-+=-;故选:B .【点睛】本题考查了关于原点 对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.9.C解析:C【分析】如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE , ABC 面积为2,122AC BG ∴⋅=,即4AC BG ⋅=,由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=, 113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF S S +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.10.B解析:B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A 、不是中心对称图形,是轴对称图形,不符合题意;B 、是中心对称图形,但不是轴对称图形,符合题意;C 、既是中心对称图形,又是轴对称图形,不符合题意;D 、不是中心对称图形,是轴对称图形,不符合题意;故选:B .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原图形重合. 11.C解析:C【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】解:∵点A (a ,2)与点B (-3,b )关于原点对称,∴a=3,b=-2,则a+b=1.故选:C.【点睛】本题考查了关于原点对称点的性质,正确得出a,b的值是解题的关键.12.A解析:A【分析】画出图形求解即可.【详解】解:∵三角尺DEF绕着点F按逆时针方向旋转n°后(0<n<180 ),BA∥DE,∴旋转角=90°+45°﹣30°=105°,故选:A.【点睛】本题考查了旋转变换,平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题13.(21)【分析】根据A和A1的坐标得出四边形ABCD先向下平移2个单位再向右平移6个单位得到四边形A1B1C1D1则B的平移方法与A点相同即可得到答案【详解】解:由A(-35)A1(33)可知四边形解析:(2,1)【分析】根据A和A1的坐标得出四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形A1B1C1D1,则B的平移方法与A点相同,即可得到答案.【详解】解:由A(-3,5),A1(3,3)可知四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形A1B1C1D1,∵B(-4,3),∴B1的坐标为(2,1),故答案为:(2,1).【点睛】此题主要考查了点的平移规律与图形的平移,关键是掌握平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减.14.50°【分析】根据旋转的性质即可得到结论【详解】解:∵将△ABC绕点A 顺时针旋转50°得到△ADE点B的对应点是点D∴直线BC与直线DE所夹的锐角=旋转角=50°故答案为:50°【点睛】本题考查了旋解析:50°【分析】根据旋转的性质即可得到结论.【详解】解:∵将△ABC绕点A顺时针旋转50°得到△ADE,点B的对应点是点D,∴直线BC与直线DE所夹的锐角=旋转角=50°,故答案为:50°.【点睛】本题考查了旋转的性质,熟记旋转变换时,对应线段的夹角与旋转角的关系是解题的关键.15.①③④【分析】连接OBOC如图利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°再证明∠BOD=∠COE于是可判断△BOD≌△COE所以BD=CEOD=OE则可对①进行判断;利用S△BOD=解析:①③④【分析】连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=13S△ABC,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=34OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=a+DE=a+3OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【详解】解:连接OB、OC,如图,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O 是△ABC 的中心,∴OB=OC ,OB 、OC 分别平分∠ABC 和∠ACB ,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE ,在△BOD 和△COE 中,BOD COE BO COOBD OCE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△BOD ≌△COE (ASA ),∴BD=CE ,OD=OE ,∴①正确;作OH ⊥DE 于H ,如图,则DH=EH ,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=12OE ,, ∴OE ,∴S △ODE =12×122, 即S △ODE 随OE 的变化而变化,而四边形ODBE 的面积为定值,∴S △ODE ≠S △BDE ;故②错误;设等边三角形ABC 的边长为a ,∵△BOD ≌△COE ,∴S △BOD =S △COE ,∴四边形ODBE 的面积=S △OBC ═13S △ABC =13×24a , ∴四边形ODBE 的面积始终等于定值;故③正确;∵BD=CE ,∴△BDE 的周长,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,此时,∴△BDE 周长的最小值=a+1322a a ,为定值 ∴④正确.故答案为:①③④.【点睛】 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.16.20°或40°【分析】根据旋转的性质可得AC =CA 根据等腰三角形的两底角相等求出∠AAC =∠CAA 再表示出∠DAA 根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ADA 然后分①∠AAC =∠D解析:20°或40°【分析】根据旋转的性质可得AC =CA',根据等腰三角形的两底角相等求出∠AA'C =∠CAA',再表示出∠DAA',根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ADA',然后分①∠AA'C =∠DAA',②∠AA'C =∠ADA',③∠DAA'=∠ADA'三种情况讨论求解.【详解】解:∵△ABC 绕C 点逆时针方向旋转得到△A'B'C ,∴AC =CA',∴∠AA'C =∠CAA'=12(180°﹣α), ∴∠DAA'=∠CAA'﹣∠BAC =12(180°﹣α)﹣30°, 根据三角形的外角性质,∠ADA'=∠BAC +∠ACA'=30°+α,△ADA'是等腰三角形,分三种情况讨论,①∠AA'C =∠DAA'时,12(180°﹣α)=12(180°﹣α)﹣30°,无解, ②∠AA'C =∠ADA'时,12(180°﹣α)=30°+α, 解得α=40°,③∠DAA'=∠ADA'时,12(180°﹣α)﹣30°=30°+α, 解得α=20°,综上所述,旋转角α度数为20°或40°.故答案为:20°或40°.【点睛】考核知识点:旋转性质.理解旋转的性质是解题关键. 17.60【分析】根据等边三角形的性质求出∠BAC=确定两个旋转的图形中的对应点即可得到答案【详解】由旋转知旋转角为∠BAC ∵是等边三角形∴∠BAC=故答案为:60【点睛】此题考查旋转的性质等边三角形的性解析:60【分析】根据等边三角形的性质求出∠BAC=60︒,确定两个旋转的图形中的对应点即可得到答案.【详解】由旋转知旋转角为∠BAC,∵ABC是等边三角形,∴∠BAC=60︒,故答案为:60.【点睛】此题考查旋转的性质,等边三角形的性质,正确理解图形中的旋转关系是解题的关键.18.3【分析】直接利用轴对称图形的性质得出符合题意的答案【详解】如图所示:当将123涂成黑色可以构成一个轴对称图形故有种不同3的涂法故答案为:3【点睛】本题主要考查了利用轴对称设计图案正确掌握轴对称图形解析:3【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】如图所示:当将1,2,3涂成黑色可以构成一个轴对称图形,故有种不同3的涂法.故答案为:3.【点睛】本题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.19.8cm2【分析】根据圆和长方形的轴对称性质可知阴影部分的面积和正好等于长方形面积的四分之一【详解】如图所示:根据题意可知扇形1的面积等于扇形2的面积所以1和3的面积和为矩形面积的八分之一4和5的面积解析:8cm2【分析】根据圆和长方形的轴对称性质可知,阴影部分的面积和正好等于长方形面积的四分之一.【详解】如图所示:根据题意可知,扇形1的面积等于扇形2的面积,所以1和3的面积和为矩形面积的八分之一,4和5的面积和同理为矩形面积的八分之一, 故阴影部分的面积为长方形面积的14, 所以阴影部分的面积=14×8×4=8. 故答案是:8.【点睛】考查了运用割补的办法把不规则的阴影部分拼接成规则图形来求算面积的方法.解决本题的关键是要知道阴影部分的面积和正好等于长方形面积的四分之一. 20.30°【分析】由旋转的性质可得∠CAC=∠BAB=40°AC=AC 由等腰三角形的性质可得∠ACC=70°由平行线的性质可得∠CCA=∠CAB=70°即可求解【详解】∵将△ABC 在平面内绕点A 旋转40解析:30°.【分析】由旋转的性质可得∠CAC '=∠BAB '=40°,AC =AC ',由等腰三角形的性质可得∠ACC '=70°,由平行线的性质可得∠C 'CA =∠CAB =70°,即可求解.【详解】∵将△ABC 在平面内绕点A 旋转40°到△AB 'C '的位置,∴∠CAC '=∠BAB '=40°,AC =AC ',∴∠ACC '=180402︒-︒=70°, ∵CC '∥AB ,∴∠C 'CA =∠CAB =70°, ∴∠CAB '=∠CAB ﹣∠BAB '=30°,故答案为:30°.【点睛】本题考查了旋转的性质,平行线的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.三、解答题21.(1)90°;(2)32【分析】(1)由旋转的性质求解即可;(2)根据勾股定理求出A A '【详解】解:(1)由旋转得到:ABC A BC ''∆≅∆∴45BA C BAC ''∠=∠=︒ ,1A B AB '==,3A C AC ''==∴45BAA BA A ''∠=∠=︒∴90ABA '∠=︒,即=90α︒(2)在Rt ABA '∆中,AA '=== ∴AC '=3A C A A '''-=【点睛】本题主要考查了旋转的性质及勾股定理,掌握旋转的性质是解答此题的关键.22.(1)点O ′,2);(2)AA ′=,点A ′的坐标为(,【分析】(1)根据点A (2,0),点B (0,2),可得△ABO 是等腰直角三角形,当点O′落在边AB 上时,α=45°,可得点O′的横坐标为12AB ,纵坐标为2,即可得答案; (2)根据勾股定理得AB ,由旋转性质可得∠A′BA =60°,A′B =AB ,继而得出AA′和点A′的坐标.【详解】解:(1)如图①,∵点A(2,0),点B(0,2),∴OA =OB =2,△ABO 是等腰直角三角形,∴AB =,当点O′落在边AB 上时,α=45°,∴点O′O ′B 2, ∴点O′的坐标为,2;(2)如图②,当α=60°时,∴∠ABA′=60°,AB =A′B ,∴△ABA′为等边三角形,∴AA′=A′B =AB =,连接OA′,在△OBA′和△OAA′中,OB OA OA OA A A A B '''=⎧='⎪⎨⎪=⎩, ∴△OBA′≌△OAA′(SSS ),∴∠BOA′=∠AOA′,∠BA′O =∠AA′O ,∴直线OA′的函数解析式为y =x ,∴OA′⊥AB ,∴OA′26,∴点A′的坐标为3,3.【点睛】本题主要考查旋转的性质及全等三角形的性质与判定、等边三角形的性质,等腰三角形的性质,熟练掌握旋转的性质是解题的关键.23.(1)①见解析;②不变,14;(2)成立;(3)成立 【分析】(1)连接BD ,证明△DMB ≌△DNC .根据已知,全等条件已具备两个,再证出∠MDB=∠NDC ,用ASA 证明全等,四边形DMBN 的面积不发生变化,因为它的面积始终等于△ABC 面积的一半;(2)成立.同样利用(1)中的证明方法可以证出△DMB ≌△DNC ;(3)结论仍然成立,方法同(1).【详解】解:()1①如图,连接DB ,在Rt ABC ∆中,,,AB BC AD DC ==45,90,45A C BDC ABD CBD ∴∠=∠=︒∠=︒∠=∠=︒45,ABD C ∴∠=∠=︒,DB DC AD ∴==90,MDB BDN CDN BDN ∠+∠=∠+∠=,MDB NDC ∴∠=∠,BMD CND ∴∆≅∆DM DN ∴=;②四边形DMBN 的面积不发生变化;由①知,,BMD CND ∆≅∆BMD CND S S ∆∴∆=DBN DMB DBN DNC DMBN S S S S S ∆∆∆∆∴=+=+四边形 1111112224DBC ABC S S ∆∆===⨯⨯⨯= ()2DM = DN 仍然成立.理由如下:连接BD 由(1)知BD ⊥AC ,BD= CD ,∴∠ABD=∠ACB = 45°,∴∠ABD+∠MBD= 180°,∠ACB+∠NCD= 180°,∴∠MBD=∠NCD,∵BD⊥AC,∴∠MDB +∠MDC = 90°,又∠NDC +∠MDC = 90°,∴∠MDB=∠NDC,在△MDB和△NDC中,∵∠MBD=∠NCD,BD= CD,∠MDB= ∠NDC.∴△MDB≌△NDC (ASA)∴DM = DN,()3DM = DN成立,理由如下:连接BD,由(1) 知BD⊥AC,BD= AD,∴∠BAD=∠ABD = 45°,∴∠MBD=∠NCD= 45°,∵BD⊥AC,∴∠MDB +∠NDB = 90°,又∠NDC +∠NDB = 90°,∴∠MDB=∠NDC,在△MDB和△NDC中∵∠MBD=∠NCD,BD= CD,∠MDB= ∠NDC.∴△MDB≌△NCD (ASA),∴DM = DN.【点睛】本题考查了利用ASA求三角形全等,还运用了全等三角形的性质,等腰直角三角形的性质,及等腰三角形三线合一定理,勾股定理和面积公式的利用等知识.24.(1)等边三角形;(2)6【分析】(1)根据旋转的性质和等边三角形的判定方法,∠BCE=60°=∠DCD′,DC=D′C可得△CDD′为等边三角形.(2)由勾股定理得,CD2+DE2=CE2,假设CE为x,DE=8-x,列方程,求出DE的长度,再根据三角形的面积公式,得出阴影面积.【详解】(1)△CDD′的形状是等边三角形,∵矩形ABCD绕点C顺时针旋转,∴∠BCE=60°=∠DCD′DC=D′C∴△CDD′为等边三角形(2)在△CDE中,由勾股定理得,CD2+DE2=CE2设CE为x,则DE=8-x∴42+(8-x)2=x2解得,x=5,∴DE=8-5=3S阴影=12DE CD⋅=1342⨯⨯=6.【点睛】本题考查了旋转的性质,和勾股定理的应用,解题的关键是掌握旋转的性质,会利用勾股定理求线段的长度.25.(1)见解析;(2)见解析;(3)()0,2-【分析】(1)根据轴对称性质即可在图中作出△A1B1C1,使△A1B1C1和△ABC关于x轴对称;(2)根据旋转的性质即可画出将△ABC以点O为旋转中心,顺时针旋转90°对应的△A2B2C2;(3)根据B(-2,4),C(-1,1).即可写出点B关于点C对称点的坐标.【详解】解:(1)如图,△A1B1C1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)点B 关于点C 对称点的坐标为(0,-2).【点睛】本题考查了作图-旋转变换,作图-轴对称变换,解决本题的关键是掌握旋转和轴对称的性质.26.(1)①150;② 180BCD ACE ∠+∠=︒,理由见解析;(2)5或35【分析】(1)①由30,90BCD ACB ∠=︒∠=︒,求解ACD ∠,再利用角的和差可得答案;②由ACE ACB BCE ∠=∠+∠,可得:ACE BCD ACB DCE ∠+∠=∠+∠,从而可得答案;(2)分两种情况讨论,当010t ≤≤时,由题意得:9,BCD t ∠=1809,ACE MCN ECN ACM t ∠=∠+∠-∠=︒-再列方程,解方程可得答案,当10<36t ≤时,由题意得:9180,ACE MCN ACM ECN t ∠=∠-∠-∠=-︒3609,BCD MCB B CD MCB t ''∠=∠+∠-∠=︒-再列方程,解方程可得答案.【详解】解:(1)①如图②,30,90,BCD ACB ∠=︒∠=︒903060ACD ∴∠=︒-︒=︒,90DCE ∠=︒,6090150.ACE ∴∠=︒+︒=︒故答案为:150;②数量关系为:180BCD ACE ∠+∠=︒,理由如下:如图②,ACE ACB BCE ∠=∠+∠,∴ ACE BCD ACB BCE BCD ACB DCE ∠+∠∠+∠+∠=∠+∠=,90ACB DCE ∠=∠=︒,∴ 180ACE BCD ∠+∠=︒.(2)如图③,当,BC CE 重合时,由1090,t t =︒+∴ 10t s =,当010t ≤≤时,由题意得:10,,109,ACM t NCE t BCD BCB B CD t t t ''∠=∠=∠=∠-∠=-=180101809,ACE MCN ECN ACM t t t ∴∠=∠+∠-∠=︒+-=︒-3ACE BCD ∠=∠,180939,t t ∴-=⨯36180,t ∴=5,t ∴=如图④,当10<36t ≤时,由题意得:36010,,ACM t NCE t ∠=︒-∠=()180360109180,ACE MCN ACM ECN t t t ∴∠=∠-∠-∠=︒--︒-=-︒()903601010270,BCM ACB ACM t t ∴∠=∠-∠=︒-︒-=-︒()90102703609,BCD MCB B CD MCB t t t ''∴∠=∠+∠-∠=︒+--︒=︒- 3ACE BCD ∠=∠()918033609,t t ∴-=-361260,t ∴=35,t ∴=所以当5t s =或35t s =时,3ACE BCD ∠=∠.故答案为:5或35.【点睛】本题考查的是旋转综合题,角的和差运算,几何图形中角度的计算问题,一元一次方程的应用,掌握以上知识是解题的关键.。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标(,);(2)将△ABC的三个顶点的横、纵坐标都乘以-1,分别得到对应点A2、B2、C2,画出△A2B2C2,则△ABC和△A2B2C2关于对称;(3)将△ABC在网格中平移,使点B的对应点B3坐标为(-6,1),画出△A3B3C3.【答案】(1) 5,﹣3; (2)画图见解析,原点;(3)画图见解析.【解析】(1)根据题意得出各对应点坐标进而求出即可;(2)利用已知得出各对应点坐标进而求出即可;(3)利用平移规律得出各对应点平移距离,进而求出即可.试题解析:(1)如图所示:△A1B1C1即为所求,点C1的坐标为;(5,﹣3);(2)如图所示:△A2B2C2即为所求,△ABC和△A2B2C2关于原点对称;(3)如图所示:△A3B3C3即为所求.【考点】1.作图-旋转变换;2.作图-轴对称变换;3.作图-平移变换.2.如图,有四块全等的直角三角形纸片,直角边长分别是1,2,请利用这四块纸片按下列要求在6×6方格纸中各拼一个图形(四块纸片都要用上,无缝隙且无重叠部分),直角顶点在格点上.(1)图甲中作出是轴对称图形而不是中心对称图形;(2)图乙中作出是中心对称图形而不是轴对称图形;(3)图丙中作出既是轴对称图形又是中心对称图形.【答案】【解析】理解轴对称中心对称的概念把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称.把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称 .根据其特征画出相应图形即可.【考点】1.轴对称;2.中心对称3.在图中,画出△ABC关于轴对称的△A1B1C1,写出△ABC关于轴对称的△A2B2C2的各点坐标.【答案】画图见解析,A2(-3,-2),B2(-4,3),C2(-1,1).【解析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.试题解析:△ABC的各顶点的坐标分别为:A(-3,2),B(-4,-3),C(-1,-1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(-3,-2),B2(-4,3),C2(-1,1).【考点】作图-轴对称变换.4.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长为 .【答案】5cm.【解析】∵O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,∴OE=ME,OF=NF,∵MN=5cm,∴△OEF的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm).故答案为:5cm.【考点】轴对称的性质.5.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.6.下列图形是四家电信公司的标志,其中是轴对称图形的是()【答案】C.【解析】根据轴对称图形的定义,沿着某一条直线折叠后,直线两旁的部分能够互相重合,选项A、B、D中的图形无论怎么折叠,都不能使左右两部重合,只有选项C符合题意,选项C可左右对折或上下对折都能使直线两旁的部分重合,故选C.【考点】轴对称图形的定义.7.一个汽车牌在水中的倒影为,则该车牌照号码___________.【答案】【解析】本题是轴对称中的镜面对称问题,水面相当于一个平面镜,因为镜面对称的性质是在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称。

初二数学平移旋转练习题

初二数学平移旋转练习题

初二数学平移旋转练习题题目1:已知点A(2, 3)和B(-4, 1),求将点A绕原点逆时针旋转90度后的坐标。

解答1:首先,将点A绕原点逆时针旋转90度可以等价于交换坐标,并将y坐标取反。

即原始点A(2, 3)旋转90度后的点为A'(-3, 2)。

题目2:已知图形A经过平移变换后得到图形B,平移向量为(4, -2)。

若图形A上某点坐标为C(-1, 3),求图形B上对应的点的坐标。

解答2:根据平移变换的性质,我们可以通过将平移向量(4, -2)与图形A上各点的坐标进行相加,得到图形B上对应点的坐标。

对于图形A上的点C(-1, 3),其在图形B上的对应点坐标为C'(3, 1)。

题目3:已知点D(5, -2)关于y轴进行镜像变换,求变换后的点坐标。

解答3:进行关于y轴的镜像变换时,只需要将点的横坐标取反即可。

对于点D(5, -2),进行关于y轴的镜像变换后,得到点D'(-5, -2)。

题目4:已知图形E绕原点顺时针旋转120度后得到图形F。

若图形E上某点坐标为G(4, 2),求图形F上对应点的坐标。

解答4:要将图形E绕原点顺时针旋转120度,可以通过将点G(4, 2)绕原点逆时针旋转240度来得到。

旋转240度后的点坐标为G'(-1, -3)。

题目5:已知图形H绕点(2, 1)逆时针旋转270度后得到图形I。

若图形H上某点坐标为J(3, -4),求图形I上对应点的坐标。

解答5:要将图形H绕点(2, 1)逆时针旋转270度,可以通过先将图形H绕原点顺时针旋转90度,再平移回原来的位置得到。

将点J(3, -4)绕原点顺时针旋转90度后的坐标为J'(-4, 3)。

然后,将J'平移两个单位向右,一个单位向下,得到图形I上对应点的坐标为J''(-2, -1)。

八年级下数学第11章图形的平移与旋转测试题及答案

八年级下数学第11章图形的平移与旋转测试题及答案

八下数学第11章图形的平移与旋转测试题一、选择题(每小题3分,共36分)1、下列现象是数学中的平移的是()A、冰化成水B、电梯由一楼升到二楼C、导弹击中目标后爆炸D、卫星绕地球运动2、下列运动是属于旋转的是()A、滾动过程中篮球的滚动B、钟表的钟摆的摆动C、气球升空的运动D、一个图形沿某直线对折过程3、P是正AABC内的一点,将△PBC逆时针方向旋转到△P1BA,则ZPBP1的度数是()A.45°B.60°C.90°D.120°4、下列说法正确的是()A.若△ABC^△DEF,则△ABC可以看作是由ADEF平移得到的B.若ZA=ZB,则ZA可以看作是由ZB平移得到的C.若ZA经过平移后为ZA',则ZA=ZA'D.若线段a//b,则线段a可以看作由线段b平移得到的5、.下列图形中,是由(1)仅通过平移得到的是()6、在如图所示的单位正方形网格中,△ABC经过平移后得到厶A1B1C1,已知在AC上一点P(2.42)平移后的对应点为P],点P]绕点0逆时针旋转180°得到对应点P2,则P2点的坐标为()A.(1.4,-1)B.(1.5,2)C.(1.6,1)D.(2.4,1)AP1BC旋转90。

得到△DCF,连结EF ,若ZBEC=6O o ,则ZEFD 的度数为()A 、100 B 、150 C 、200D 、250 7题图8、如图, 甲图案变成乙图案,既能用平移,又能用旋转的是OO甲乙9、下列图形中,绕某个点旋转180 ①正方形 A.5个10、如图,的度数为(A.60°XBC能与自身重合 ②长方形③等边三角形④线段B.2个C.3个D.4个将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若ZCAE=65°,ZE=70°). B.75°C.85°D.90°11、如图,两个边长相等的两个正方形ABCD 和OEFG ,若将正方形OEFG 绕点0按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN 的面积(A.不变B.先增大再减小C.先减小再增大) D.不断增大 7、如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向乙,且AD 丄BC ,则ZBACAGB11题图F三、 21、.O12、如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)二、填空题(每小题3分,共24分)13、图形的平移、旋转、中心对称中,其相同的性质是14、经过平移,对应点所连的线段;经过旋转,对应点到旋转中心的距离 15、等边三角形绕着它的三边中线的交点旋转至少度,能够与本身重合.16、甲图向上平移2个单位得到乙图,乙图向左平移2个单位得到丙图,丙图向下平移2个单位得到丁那么丁图向平移个单位可以得到甲图..19、如图,在等边厶ABC 中,AB=6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为20、如图,把,QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),贝U 将此叫Q ” 笑脸向右平移3个单位后,右眼B 的坐标是解答题(60分) (6分)经过平移,AABC 的边AB 移到了E .作出平移后的三角形.22、(6分)如图,四边形ABCD 的ZBAD=ZC=90,AB=AD,AE 丄BC 于E,BEA 旋转后能与DFA 重合.(1)旋转中心是哪一点? (2)旋转了多少度?3)若AE=5cm,求四边形AECF 的面积.23、(8分)如图,在平面直角坐标系xoy 中,A (1,),B (1,),①求出△ABC 的面积.② 作出△ABC 向下平移1个单位,再向左平移2个单位后ABC.19题图18、、如图,将矩形ABCD 绕点A 顺时针旋转到矩形''勺位置,旋转角为20题图(0〈<90)。

初二数学平移与旋转单元测试题及参考答案

初二数学平移与旋转单元测试题及参考答案

初二数学平移与旋转单元测试题及参考答

一、选择题 (每题2分,共20分)
1,下列运动属于平移的是( )
A.空中放飞的风筝
B.飞机在跑道上滑行到停止的运动
C.球运动员投出并进入篮筐的过程
D.乒乓球比赛中的高抛发球后,乒乓球的运动方式
2,下列说法正确的是( )
A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小
B.平移和旋转的共同点是改变图形的位置
C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离
D.在平移和旋转图形中,对应角相等,对应线段相等且平行
3,如图1,△DEF是由△ABC经过平移后得到的,则平移的距离是( )
A.线段BE的长度
B.线段EC的长度
C.线段BC的长度
D.线段EF的长度
4,将一图形绕着点O顺时针方向旋转70deg;后,再绕着点O逆时针方向旋转120deg;,这时如果要使图形回到原来的位置,需要将图形绕着点O什么方向旋转的度是( )
A.顺时针方向50deg;
B.逆时针方向50deg;
C.顺时针方向190deg;
D.逆时针方向190deg;
5,如图2,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )
A.30deg;
B.60deg;
C.90deg;
D.120deg;
八年级数学平移与旋转单元测试题及参考答案完整版下载.doc。

难点解析北师大版八年级数学下册第三章图形的平移与旋转综合测试试题(含答案解析)

难点解析北师大版八年级数学下册第三章图形的平移与旋转综合测试试题(含答案解析)

八年级数学下册第三章图形的平移与旋转综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将△OAB绕点O逆时针旋转70°到△OCD的位置,若∠AOB=40°,则∠AOD的度数等于()A.29°B.30°C.31°D.32°2、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D 绕着点A旋转90°得到点D的坐标为()A.(﹣2,1)或(2,﹣1)B.(﹣2,5)或(2,3)C.(2,5)或(﹣2,3)D.(2,5)或(﹣2,5)△.使点B'恰好落在BC边上,∠BAC=3、如图,将ABC绕点A按逆时针方向旋转得到AB C''120°,AB'=CB',则∠C的度数为()A.18°B.20°C.24°D.28°4、下列图形中,是中心对称图形的是()A.B.C.D.5、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C (5,x),D(y,0),则x+y的值是()A.﹣1 B.0 C.1 D.2△,若点B'刚好6、如图,在ABC中,∠BAC=108°,将ABC绕点A按逆时针方向旋转得到AB C''落在BC边上,且AB'=CB',则∠C的度数为()A.22°B.24°C.26°D.28°7、如图,△ABC中,∠C=84°,∠CBA=56°,将△ABC挠点B旋转到△DBE,使得DE//AB,则∠EBC的度数为( )A .28°B .40°C .42°D .50°8、如图,在ABC 中,5AB =,8BC =,60B ︒∠=,将ABC 绕点A 顺时针旋转得到ADE ,当点B 的对应点D 恰好落在BC 边上时,CD 的长为( )A .3B .4C .5D .69、在平面直角坐标系中,若点(),P m m n -与点()2,3Q 关于原点对称,则点(),M m n 在( )A .第一象限B .第二象限C .第三象限D .第四象限10、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A .先向左平移4个单位长度,再向上平移4个单位长度B .先向左平移4个单位长度,再向上平移8个单位长度C .先向右平移4个单位长度,再向下平移4个单位长度D .先向右平移4个单位长度,再向下平移8个单位长度第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点P(﹣2,5)关于原点对称点P′的坐标为__________.2、已知点P(a﹣3,7)关于原点对称的点在第四象限,则a的取值范围是 _____.3、如图,将AOB绕点O按逆时针方向旋转60°后得到COD,若∠AOB=15°,则∠AOD的度数为________°.4、如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.5、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 ___.三、解答题(5小题,每小题10分,共计50分)1、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点A的坐标为(1,-4).(1)△A 1B 1C 1是△ABC 关于y 轴的对称图形,则点A 的对称点A 1的坐标是_______,并在图中画出△A 1B 1C 1.(2)将△ABC 绕原点O 逆时针旋转90°得到△A 2B 2C 2,则A 点的对应点A 2的坐标是______,并在图中画出△A 2B 2C 2 .2、图1、图2均为7×6的正方形网格,点A 、B 、C 在格点上.(1)在图1中确定格点D ,并画出以A 、B 、C 、D 为顶点的四边形,使其为轴对称图形.(试画出2个符合要求的点,分别记为D 1、D 2)(2)在图2中确定格点E ,并画出以A 、B 、C 、E 为顶点的四边形,使其为中心对称图形.(试画出2个符合要求的点,分别记为E 1、E 2)3、如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()3,5A -、()2,1B -、()1,3C -.(1)画出将ABC 关于点O 对称的图形111A B C △;(2)写出点1A 、1B 、1C 的坐标.4、如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连接AC 和BD ,相交于点E ,连接BC .(1)求证DOB ≌AOC ;(2)求∠CEB 的大小;(3)如图2,OAB 固定不动,保持△OCD 的形状和大小不变,将OCD 绕点O 旋转(OAB 和OCD 不能重叠),求∠CEB 的大小.5、如图,在ABC 中,,40BA BC ABC =∠=︒,将ABC 绕点B 按逆时针方向旋转100︒,得到DBE ,连接,AD CE 交于点F .≌;(1)求证:ABD CBE(2)求AFC的度数.-参考答案-一、单选题1、B【分析】由旋转的性质可得∠DOB=70°,即可求解.【详解】解:∵将△OAB绕点O逆时针旋转70°到△OCD,∴∠DOB=70°,∵∠AOB=40°,∴∠AOD=∠BOD-∠AOB=30°,故选:B.【点睛】本题考查了旋转的性质,熟练掌握旋转的性质是本题的关键.2、C【分析】分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解.【详解】解:设点D绕着点A逆时针旋转90°得到点D1,分别过点D,D1作y轴的垂线,分别交y轴于点C、E,如图:根据旋转的性质得∠DAD1=90°,AD1=AD,∴∠AED1=∠ACD=90°,∴∠D1+∠EAD1=90°,∠EAD1+∠DAC=90°,∴∠D1=∠DAC,∴△AD1E≌△DAC,∴CD=AE,ED1=AC,∵A(0,4),B(2,0),点D为AB的中点,∴点D的坐标为(1,2),∴CD=AE=1,ED1=AC=AO-OC=2,∴点D1的坐标为(2,5);设点D绕着点A顺时针旋转90°得到点D2,同理,点D2的坐标为(-2,3),综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),故选:C.【点睛】本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键.3、B【分析】由AB'=CB',根据等边对等角可得∠C=∠CAB',个三角形的外角的性质可得,∠AB'B=∠C+∠CAB'=2∠C,由旋转的性质可得AB=AB',进而可得∠B=∠AB'B=2∠C,根据三角形的内角和定理可得∠B+∠C+∠CAB=180°,进而求得∠C=20°.【详解】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵旋转得AB=AB',∴∠B=∠AB'B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°-120°,∴∠C=20°.故选B【点睛】本题考查旋转的性质以及等腰三角形的性质,灵活运用这些的性质解决问题是解答本题的关键.4、A【详解】解:A、是中心对称图形,故本选项符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意;【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.5、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.【详解】∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),∴平移方法为向右平移2个单位,∴x=﹣2,y=3,∴x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.6、B【分析】根据图形的旋转性质,得AB=AB′,已知AB′=CB′,结合等腰三角形的性质及三角形的外角性质,得∠B、∠C的关系即可解决问题.【详解】解:∵AB′=CB′,∴∠C=CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴∠C=24°,故选:B.【点睛】本题主要考查了等腰三角形的性质及图形的旋转性质,得∠B、∠C的关系为解决问题的关键.7、B【分析】先求出∠A=40°,再根据旋转和平行得出∠DBA=40°,进而可求∠EBC的度数.【详解】解:∵△ABC中,∠C=84°,∠CBA=56°,∴∠A=180°-∠C -∠CBA=40°,由旋转可知,∠D=∠A=40°,∠EBC=∠DBA,∵DE//AB,∴∠D=∠DBA=40°,∴∠EBC =∠DBA =40°,故选:B【点睛】本题考查了旋转的性质和平行线的性质,解题关键是熟记旋转的性质,准确识图,正确进行推导计算.8、A【分析】先根据旋转的性质可得AB AD =,再根据等边三角形的判定与性质可得5BD AB ==,然后根据线段的和差即可得.【详解】由旋转的性质得:5AB AD ==,60B ∠=︒,ABD ∴是等边三角形,5BD AB ∴==,8BC =,853CD BC BD ∴=-=-=.故选:A .【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.9、B【分析】根据点(x ,y )关于原点对称的点的坐标为(﹣x ,﹣y )可求得m 、n 值,再根据象限内点的坐标的符号特征即可解答.【详解】解:∵点(),P m m n -与(2,3)Q 关于原点对称,∴m =-2,m -n =﹣3,∴n =1,∴点M (-2,1)在第二象限,故选:B .【点睛】本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键.10、B【分析】利用平移中点的变化规律求解即可.【详解】解:∵在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),∴点的横坐标减少4,纵坐标增加8,∴先向左平移4个单位长度,再向上平移8个单位长度.故选:B .【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.二、填空题1、(2,﹣5)【分析】根据关于原点对称的两个点的坐标符号相反即可求解.【详解】解:点P (﹣2,5)关于原点的对称点P ′的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了关于原点对称的点的坐标的特点,注意掌握两个点关于原点对称时,它们的坐标符号相反是解题关键.2、a <3【分析】直接利用关于原点对称点的性质以及第四象限内点的坐标特点得出关于a 的不等式组进而得出答案.【详解】解:∵点P (a ﹣3,7)关于原点对称的点(﹣a +3,-7)在第四象限,∴30a +>-,解得a <3,故答案为:a <3.【点睛】此题主要考查了关于原点对称点的性质以及解一元一次不等式组,关键是掌握各象限内点的坐标符号.3、45【分析】根据旋转的性质得出∠AOC =60°,∠AOB =∠COD =15°,从而可得答案.【详解】解:根据旋转的性质可知∠AOC =60°,∠AOB =∠COD =15°,∴∠AOD =∠AOC −∠COD =45°,故答案为:45.【点睛】本题主要考查旋转的性质,掌握①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.4、25【分析】先根据三角形内角和定理求出∠A =25°,然后根据平移的性质得到A B AB ''∥,则=25AB A A ''=∠∠.【详解】解:∵∠B =55°,∠C =100°,∴∠A =180°-∠B -∠C =25°,由平移的性质可得A B AB ''∥,∴=25AB A A ''=∠∠,故答案为:25.【点睛】本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质.5、(1,﹣1)【分析】先利用勾股定理以及正方形、旋转的性质求出对应边长,再通过边长找出对应的前几个坐标,会发现:关于B 的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B 2022坐标.【详解】∵点A 的坐标为(1,0),∴OA=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OA=1,∴B(1,1),连接OB,如图:由勾股定理得:OB由旋转的性质得:OB=OB1=OB2=OB3∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,B2(﹣1,1),B30),B4(﹣1,﹣1),B5(0,B6(1,﹣1),…,发现是8次一循环,则2022÷8=252…6,∴点B2022的坐标为(1,﹣1),故答案为:(1,﹣1).【点睛】本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键.三、解答题1、(1)图见解析,A1(-1,-4);(2)图见解析,A2(4,1).【分析】(1)根据网格结构,找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构,找出点A、B、C绕点O逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1(-1,-4);(2)如图所示,△A2B2C2即为所求作的三角形,点A2(4,1).故答案为:(4,1).【点睛】本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴.2、(1)见解析;(2)见解析【分析】(1)根据轴对称图形的定义进行画图;(2)根据中心对称的图形的定义画图.【详解】(1)如图:(2)如图:【点睛】本题主要考查了利用轴对称、中心对称设计图案,解题的关键是掌握寻找中心对称的中心、轴对称的对称轴与画图的综合能力.3、(1)见解析;(2)()13,5A -,()12,1B -,()11,3C -.【分析】(1)直接利用关于点O 对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2)()13,5A -,()12,1B -,()11,3C -.【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.4、(1)见详解;(2)120°;(2)120°.【分析】(1)如图1,根据等边三角形的性质得到OD =OC =OA =OB ,∠COD =∠AOB =60°,则利用根据“SAS ”判断△AOC ≌△BOD ;(2)利用△AOC ≌△BOD 得到∠CAO =∠DBO ,然后根据三角形内角和可得到∠AEB =∠AOB =60°,即可求出答案;(3)如图2,与(1)的方法一样可证明△AOC ≌△BOD ;则∠CAO =∠DBO ,然后根据三角形内角和可求出∠AEB =∠AOB =60°,即可得到答案.【详解】(1)证明:如图1,∵△ODC 和△OAB 都是等边三角形, ∴OD =OC =OA =OB ,∠COD =∠AOB =60°, ∴∠BOD =∠AOC =120°,在△AOC 和△BOD 中OC OD AOC BOD OA OB =⎧⎪∠=∠⎨⎪=⎩∴△AOC ≌△BOD ;(2)解:∵△AOC ≌△BOD , ∴∠CAO =∠DBO ,∵∠1=∠2,∴∠AEB =∠AOB =60°,∴120CEB ∠=︒;(3)解:如图2,∵△ODC 和△OAB 都是等边三角形,∴OD =OC =OA =OB ,∠COD =∠AOB =60°,∴∠AOB +∠BOC =∠COD +∠BOC ,即∠AOC =∠BOD ,在△AOC 和△BOD 中OC OD AOC BOD OA OB =⎧⎪∠=∠⎨⎪=⎩∴△AOC ≌△BOD ;∴∠CAO =∠DBO ,∵∠1=∠2,∴∠AEB =∠AOB =60°,∴120CEB ∠=︒;即∠CEB 的大小不变.【点睛】本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题.5、(1)证明见解析;(2)40︒【分析】(1)根据旋转角求出∠ABD =∠CBE ,然后利用“边角边”证明△ABD 和△BCE 全等.(2)先求解70,BAC BCA ∠=∠=︒ 再求解40,BAD BDA BCE ∠=∠=∠=︒ 可得,,DAC ACE ∠∠ 再利用三角形的内角和定理可得答案.【详解】(1)证明:∵△ABC 绕点B 按逆时针方向旋转100°,∴∠ABD =∠CBE =100°, ,,BA BD BC BE ==(),ABD CBE SAS ∴≌(2) ,40BA BC ABC =∠=︒,1804070,2BAC BCA ︒-︒∴∠=∠==︒ ,100,BA BD ABD =∠=︒18010040,2BAD BDA ︒-︒∴∠=∠==︒ 704030,DAC ∴∠=︒-︒=︒,ABD CBE ≌40,BCE BAD ∴∠=∠=︒7040110,ACE ∴∠=︒+︒=︒1803011040.AFC ∴∠=︒-︒-︒=︒【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质、旋转的性质,熟练掌握全等三角形的判定与性质是解本题的关键.。

精编北师大版八年级下册数学第三章 图形的平移与旋转含答案

精编北师大版八年级下册数学第三章 图形的平移与旋转含答案

北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形2、下列命题:①圆周角等于圆心角的一半;②是方程的解;③平行四边形既是中心对称图形又是轴对称图形;④的算术平方根是4。

其中真命题的个数有()A.1B.2C.3D.43、下列几何图形中,既是中心对称图形又是轴对称图形的是( )A.正三角形B.等腰直角三角形C.等腰梯形D.正方形4、已知四边形ABCD与四边形A′B′C′D′关于点O成中心对称,则AB与A′B′的关系是()A.相等B.垂直C.相等并且平行D.相等并且平行或相等并且在同一直线上5、下列运动属于平移的是()A.风车的转动B.石头从山顶滚到山脚的运动C.急刹车是汽车在地面上滑行D.足球被踢飞后的运动6、下列图形中,是中心对称图形的是()A. B. C. D.7、下列图形中,不是中心对称图形的是()A.矩形B.平行四边形C.等边三角形D.菱形8、下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.9、下列图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.10、下列交通标志是中心对称图形的为( )A. B. C. D.11、如图所示的图案分别是三菱、大众、奥迪、奔驰汽车的车标,其中可以看着是由“基本图案”经过平移得到的是()A. 奥迪B. 本田C. 大众D. 铃木12、下列图形中,是旋转对称图形,但不是中心对称图形的是()A.等腰梯形B.等边三角形C.平行四边形D.直角梯形.13、下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.14、下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.15、将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x 2+3x+6B.y=x 2+3xC.y=x 2﹣5x+10D.y=x 2﹣5x+4二、填空题(共10题,共计30分)16、时针6点到9点,时针转动了________度.17、如图所示,在△ABC中,∠C=90°,AC=BC=4cm.若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在B′处,则BB′=________cm.18、如图,中,,,点在边上,,把线段绕着点逆时针旋转度后,如果点恰好落在的边上,那么________.19、如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是________.20、如图,在中,,D,E是斜边上BC上两点,且,将绕点A顺时针旋转后,得到,连接EF,下列结论:① ;② ;③ ;④,其中正确的有________(填序号)21、如图,正方形中,将线段绕点顺时针旋转得到线段,的延长线交正方形的对角线于点,则的度数为________;22、如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为________度.23、如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=6cm,BC=4cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为________.24、一个图形无论经过平移变换还是旋转变换,下列结论一定正确的是________(把所有你认为正确的序号都写上)①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都不变.25、如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是________.三、解答题(共5题,共计25分)26、如图所示,△ABC平移后得到了△DEF,D在AB上,若∠A=26°,∠E=74°,求∠1,∠2,∠F,∠C的度数.27、如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数28、已知:如图,四边形ABCD及一点P.求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转150°得到的.29、如图,正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,求FM的长.30、已知点P(2,﹣3)在第四象限,求:(1)点P分别关于x轴、y轴、原点的对称点M1、M2、M3的坐标;(2)P点分别到x轴、y轴、原点的距离.参考答案一、单选题(共15题,共计45分)1、C2、A3、D4、D5、C6、B7、C8、B10、C11、A12、B13、A14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平移与旋转全章复习与测试体系自主构建:答案:①对折②垂直平分③平行④平行⑤相等⑥平行⑦相等 •⑧旋转⑨旋转中心⑩旋转中心 11 180 12对称中心 13对称中心 •14•平行 •15相等 16位置 17形状和大小 18对应边 19对应角 20边 21角思维方法点拨1.运动和变化的思想学习本章时要注意结合现实生活实例认真观察,仔细分析平移或旋转前后的变量和不变量,分析其构成元素,在数量关系和位置关系上的变化,注意从“动”的角度去思考问题,明白“动中不动”的含义是:①对应线段相等,②对应角相等,③形状、大小不变.在变化过程中把握住平移方向、平移距离、旋转中心、旋转角度及旋转方向.2.运用类比的学习方法可从以下几个方面类比学习:(1)平移由平移方向及距离决定,而旋转由旋转中心和旋转角度决定.(2)平移和旋转的特征:图形的大小和形状未改变,只是位置发生变化,•因此运动前后对应线段相等,对应角相等,平移时,对应点连成的线段平行且相等,旋转时,对应点到旋转中心的距离相等.(3)中心对称是旋转对称的一个特例,旋转对称的角度大于0°小于360°,•而中心对称旋转角度是定值180°.3.亲自动手操作轴对称与平移,旋转及中心对称的联系,可通过运手画图操作得出,其规律分别是:①当对称轴平行时,两次轴对称得到的图形可通过一次平移得到;②当对称轴相交时,两次轴对称可通过旋转得到,旋转中心是对称轴交点,旋转角度是对称轴夹角的2倍;③当对称轴互相垂直时,•两次轴对称得到的图形与原图形成中心对称.经典案例剖析1.图形的变换作图例1如图所示,将△ABC向下平移4•个单位后得△A′B′C′,将△A′B′C′绕点O逆时针旋转180°后得△A″B″C″,•请你画出△A′B′C′和△A″B″C″.分析把A、B、C三个点分别向下平移4个格,得到点A′、B′、C′的位置,然后顺次连接A′、B′、C′即得△A′B′C′;要画△A′B•′C•′绕点O•逆时针旋转180°后的图形,即画△A′B′C′关于点O成中心对称的图形,只需把A′、B′、C′三点分别与点O连接并延长,在其延长线上分别截取A″O=A′O,B″O=B′O,C″O=C′O,然后顺次连接A″、B″、C″即得△A″B″C″.答案:如图.方法提炼:画图时,先画出图形中几个特殊点的对应点,•在方格图中要充分利用方格的作用.2.判断图形的对称性例2下列图形中,如图是中心对称图形的是()分析 A、B、D是旋转对称图形,旋转角度分别为120°、72°、72°,只有C中图形旋转180°能与自身重合.答案:C易错点悟:注意中心对称图形的旋转角度必须是180°.3.利用图形变换特征求阴影部分面积例3如图,在两个同心圆中,三条直径大圆分成相等的六部分.若大圆的半径为2,则图中阴影部分的面积为_______.分析同心圆是指圆心相同的两个圆,•三条直径同样把小圆也分成了面积相等的六部分,小圆绕圆心旋转60°后,小圆中的阴影部分如图所示,•故阴影部分面积为大圆面积的12,即12×π×22=2π.答案:2π方法提炼:运用旋转观点将不规则图形面积转化为规则图形的面积.4.图形的变换方法及设计图案案例4(1)如图中图甲,在方格纸中如何通过平移或旋转这两种变换由图形A得到图形B,再由图形B得到图形C(平移变换要求回答出平移的方向和平移的距离;旋转变换要求回答出旋转中心、旋转方向和旋转角度);(2)图乙是某设计师设计图案的一部分,请你运用旋转变换的方法,•在方格纸中将图形绕点O顺时针依次旋转90°、180°、270°,依次画出旋转后得到的图形,•你将会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,•你来试试吧!分析观察图形,显然P、P1、P2是对应点,由图A得到图B,只需要平移变换;•而由图B得到图C,需要平移和旋转两种变换;画旋转图形时,要充分利用方格纸的作用,画出图形中几个特殊点的对应点,然后顺次连接.答案:(1)将图A向上平移4个单位长度,得到图B;将图B 以点P1为旋转中心顺时针旋转90°,再向右平移4个单位长度得图C或将图B向左平移4个单位长度,最后以P2为旋转中心,顺时针旋转90°得到图C;(2)如图所示.综合评注:此题主要考查图形的变换及运用操作能力,此类题应仔细分析能否通过一种变换得到,如果不能通过一种变换得到,应考虑使用变换的组合.平移与旋转全章素质能力测试(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列运动属于平移的是()A.急刹车时汽车在地面上的滑动; B.随手抛出的彩球的运动C.冷水加热中,小汽泡上升为大气泡; D.随风飘动的风筝在空中的运动2.(下列图形如图所示,既是轴对称图形又是中心对称图形的是()3.在图中,将在左边方格纸中的图形绕O点顺时针旋转90°得到的图形是(• )4.下列说法中不正确的是()A.图形的平移由移动的方向和距离决定B.中心对称图形对称点的连线都经过同一点,这一点即是对称中心C.中心对称是指一个图形,中心对称图形是指两个图形D.在旋转变换中,一对对应点与旋转中心连线的夹角即为旋转角5.下图是我国古代数学家赵爽所著的《勾股圆方图标》中所画的图形,它是由四个相同的直角三角形拼成的,下面关于此图形的说法正确的是()A.它是轴对称图形,但不是中心对称图形;B.它是中心对称图形,但不是轴对称图形;C.它既是轴对称图形,又是中心对称图形;D.它既不是轴对称图形,又不是中心对称图形6.如图,∠DOE为直角,如果△ABC关于OD的对称图形是△A′B′C′,△A′B′C′关于OE的对称图形是△A″B″C″,则△ABC 与△A″B″C″的关系是()A.以∠DOE的平分线成轴对称; B.关于点O成中心对称C.平移关系; D.不具备任何关系7.如图,甲树通过以下变换,不能得到乙树的是()A.先轴对称,后平移,再旋转; B.先平移,后旋转,再轴对称C.先旋转,后平移,再旋转; D.先旋转,后轴对称8.如图中,AF⊥BD于O,△ABC与△DEF都是等腰三角形,AB=AC,DF=•DE;•BC=EF,AB=ED,则下列判断正确的是()A.△DEF由△ABC绕O点顺时针旋转90°得到;B.△DEF由△ABC绕O点逆时针旋转90°得到;C.△DEF同△AB C绕O点顺时针旋转60°得到;D.△DEF由△ABC绕O点顺时针旋转120°得到9.下列图形中,如图,既是轴对称图形,又是中心对称图形的是()10.如图,面积为12c m2的△ABC沿BC方向平移至△DEF的位置,平移距离是边BC长的两倍,则图中四边形ACED的面积为()A.24cm2 B.36c m2 C.48c m2 D.无法确定二、填空题(每小题3分,共21分)11.图形在平移、旋转过程中,图形的______和_______不变.12.国旗上的五角星是旋转对称图形,它的旋转角度是______(填最小的度数),请你再举一个旋转角度与五角星相同的正多边形是_______.13.在26个大写英文字母中,写出既是轴对称,•也是中心对称的字母______•、•_____、_____.(写3个)14.小明把如图所示的扑克牌放在一张桌子上,•请一位同学避开他任意将其中一张牌倒过来,•然后小明很快辨认为被倒过来的那张扑克牌是________.颠倒前颠倒后15.如下左图,等边△ABC经过平移后成为△BDE,则其平移的方向是_____;平移的距离是_____;△ABC•经过旋转后成为△BDE,•则其旋转中心是_____;•旋转角度是_____.16.如上右图,△ABC中,∠BAC=90°,AB=AC=5cm,△ABC•按逆时针方向旋转一个角度后,成为△ACD,则图中的_____是旋转中心,旋转角是_____.17.分析图中①,②,④中阴影部分的分布规律,•按此规律在图③中画出其中的阴影部分.三、解答题(共49分)18.(12分)按下列要求作图:(1)把图中的△ABC沿PQ方向平移PQ长度,画出平移后的△DEF;(2)把图中的长方形绕点A逆时针旋转90°,画出旋转后的图形A′B′C•′D′.19.(10分)如图,在正方形网格上有一个△ABC.(1)作出△ABC关于点O的中心对称图形△A′B′C′(不写作法,但要标出字母);(2)若网格上的最小正方形边长为1,求出△ABC的面积.20.(9分)如图所示,两个图形是全等图形,试根据所给的条件,求出每个图形中标出的a,b,c,α,β的值.21.(9分)观察图中所给的图案,它可以看成是由哪个图形经过怎样的变换产生的?它是不是轴对称图形?旋转对称图形?中心对称图形?22.(9分)如图所示,有两个正方形的花坛,•准备把每个花坛都分成形状相同的四块,种不同花草,下面上边的两个图案是设计示例,•请你在下边的两个正方形中再设计两个不同的图案.答案:1.A 点拨:B、D在运动过程中有旋转,C中汽泡的大小发生了变化.2.D 点拨:此题的图案都是由圆和四边形组合而成的,•只有正方形和圆既是轴对称图形又是中心对称图形.3.B 点拨:找出图形中特殊点的对应点.4.C 点拨:通常情况下,中心对称图形是指1个图形,•而中心对称是指两个图形关于某点成中心对称.5.B 点拨;对称中心是内部小正方形对角线的交点.6.B 点拨:当对称轴垂直时,•一个图形经过两次轴对称变换得到的图形与原图形成中心对称.7.C 点拨:仔细观察图形,由甲得到乙、必须经过轴对称和旋转变换.8.A 点拨:BD、AF分别是EF、BC的垂直平分线.9.B 点拨:A、C是旋转角度为120°的旋转对称图形,D不是轴对称图形.10.B 点拨:四边形ABED是平行四边形且S四边形ABED=S四边形ACFD,而S四边形ACED=S四边形ABED-S△ABC.11.形状,大小点拨:变换前后的图形能完全重合.12.72°,正五边形或正十边形(答案不唯一).点拨:旋转角度求法:360°÷相同单位个数.13.H,I,O,X.14.方块5 点拨:只有方块5颠倒前后是一样的.15.AB方向,AB的长度,B,120°16.A,90°点拨:图中不变的点的旋转中心.17.如图所示点拨:把②顺时针旋转90°.18.图略点拨:平移时注意平移方向、平移距离;旋转时注意旋转中心、旋转方向及旋转角度.19.(1)图略.(2)解:S△ABC=6×1-12(1×2+1×3+1×2)=6-72=52.点拨:△ABC的面积等于△ABC外部最小的矩形减去三个直角三角形的面积.20.a=3,b=42,c=4,α=105°,β=45°.点拨:根据四边形内角和为360°,所以β=360°-90°-120°-105°=45°.21.解:一个小正方形沿对角线方向平移一条对角线长、两条对角线长、三条对角线长后得到三个正方形,然后在平移的轴线上找一点作旋转中心,旋转三个90°产生的,它是轴对称图形,旋转对称图形,中心对称图形.点拨:对这类题应仔细分析能否经过一种变换得到,如果不能够经过一种变换得到,就应考虑使用变换的组合,把图形经过轴对称、平移、旋转得到.22.解:设计图案示例如图.点拨:示例中的第一个图既是轴对称图形也是中心对称图形,第二个图是轴对称图形,因此在设计时应以此为依据来画图,图案可以有多种形式.- 11 -。

相关文档
最新文档