中考数学反比例函数复习题附答案

合集下载

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。

初三数学反比例函数试题答案及解析

初三数学反比例函数试题答案及解析

初三数学反比例函数试题答案及解析1.若点P1(﹣1,m),P2(﹣2,n)在反比例函数(k>0)的图象上,则m n(填“>”“<”或“=”号).【答案】<.【解析】∵P1(﹣1,m),P2(﹣2,n)在反比例函数(k>0)的图象上,∴﹣1•m=k,﹣2•n=k.∴m=﹣k,n=.∵k>0,∴m<n.【考点】1.曲线上点的坐标与方程的关系;2.实数的大小比较.2.如图,反比例函数(x>0)的图象交Rt△OAB的斜边OA于点D,交直角边AB于点C,点B在x轴上.若△OAC的面积为5,AD:OD=1:2,则k的值为【答案】20.【解析】如答图,过D点作x轴的垂线交x轴于H点,∵△ODH的面积=△OBC的面积=,△OAC的面积为5,∴△OBA的面积=.∵AD:OD=1:2,∴OD:OA=2:3.∵DH∥AB,∴△ODH∽△OAB. ∴,即.解得:k=20.【考点】1.反比例函数系数k的几何意义;2.相似三角形的判定和性质.3.已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个【答案】B【解析】①根据反比例函数的图象的两个分支分别位于二、四象限,可得m<0,故正确;②在每个分支上y随x的增大而增大,正确;③若点A(﹣1,a)、点B(2,b)在图象上,由图象可知a>b,所以a<b错误;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上,正确,故选B.【考点】1、反比例函数的性质;2、反比例函数图象上点的坐标特征4.如图,A、B、C是反比例函数(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条 B.3条 C.2条 D.1条【答案】A【解析】如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.故满足条件的直线有4条.【考点】反比例函数综合题.5.已知点在双曲线上,若,则(用“>”或“<”或“=”号表示).【答案】>.【解析】∵在双曲线上,∴x1•y1=3,x2•y2=3.∵x1<x2<0,∴y1>y2.【考点】反比例函数图象上点的坐标特征.6.已知正比例函数y=-2x与反比例函数y=的图象的一个交点坐标为(-1,2),则另一个交点的坐标为( )【答案】(1,-2)【解析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.解:根据中心对称的性质可知另一个交点的坐标是:(1,-2).故答案为:(1,-2).7.某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y吨,人口数为x,则y与x之间的函数关系式的大致图象应为()【答案】C【解析】因xy=a,y=,y与x成反比例,所以选C.8.如图,是一辆小汽车沿一条高速公路匀速前进的时间t(小时)与速度x(千米/时)关系的图象,根据图象提供的信息回答下列问题:(1)这条高速公路的全长是多少千米?(2)写出速度与时间之间的函数关系.(3)汽车最大速度可以达到多少?(4)汽车最慢用几个小时可以到达?如果要在3小时以内到达,汽车的速度应不少于多少?【答案】(1)300千米. (2)y=. (3) 300千米/时. (4) 6小时,100千米/时.【解析】(1)以150千米/时行驶了两小时,则路程=150×2=300千米.(2)由速度=,路程为300千米,则有y=.(3)据图象用1小时可以行驶完全程,所以汽车最大速度可以达到300千米/时.(4)据图象,最低速度为50千米/时,需要6小时行驶完全程.9.如图,Rt△ABC中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数(x >0)的图象上运动,那么点B在函数(填函数解析式)的图象上运动.【答案】.【解析】如图分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b),则ab=1.根据两角对应相等的两三角形相似,得出△OAC∽△BOD,由相似三角形的对应边成比例,则BD、OD 都可用含a、b的代数式表示,从而求出BD•OD的积,进而得出结果.试题解析:分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b).∵点A在反比例函数(x>0)的图象上,∴ab=1.在△OAC与△BOD中,∠AOC=90°-∠BOD=∠OBD,∠OCA=∠BDO=90°,∴△OAC∽△BOD,∴OC:BD=AC:OD=OA:OB,在Rt△AOB中,∠AOB=90°,∠B=30°,∴OA:OB=1:,∴b:BD=a:OD=1:,∴BD=b,OD=a,∴BD•OD=3ab=3,又∵点B在第四象限,∴点B在函数的图象上运动.考点: 1.反比例函数综合题;2.待定系数法求反比例函数解析式;3.相似三角形的判定与性质.10.如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),双曲线()经过C点,且OB·AC=160,则的值为___________.【答案】48.【解析】过C作CD垂直于x轴,交x轴于点D,由菱形的面积等于对角线乘积的一半,根据已知OB与AC的乘积求出菱形OABC的面积,而菱形的面积可以由OA乘以CD来求,根据OA 的长求出CD的长,在直角三角形OCD中,利用勾股定理求出OD的长,确定出C的坐标,代入反比例解析式中即可求出k的值.∵四边形OABC是菱形,OB与AC为两条对角线,且OB•AC=160,∴菱形OABC的面积为80,即OA•CD=80,∵OA=AC=10,∴CD=8,在Rt△OCD中,OC=10,CD=8,根据勾股定理得:OD=6,即C(6,8),则k的值为48.【考点】反比例函数综合题.11.如果点A(-1,)、B(1,)、C(2,)是反比例函数图象上的三个点,则下列结论正确的是()A.>>B.>>C.>>D.>>【答案】A.【解析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点B和点C的纵坐标的大小即可.∵反比例函数的比例系数为﹣1,∴图象的两个分支在二、四象限;∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点A在第二象限,点B、C在第四象限,∴y最大,1∵1<2,y随x的增大而增大,∴y2<y3,∴y1>y3>y2.故选A.【考点】反比例函数图象上点的坐标特征.12.如图,已知一次函数(m为常数)的图象与反比例函数(k为常数,)的图象相交于点 A(1,3).(1)求这两个函数的解析式及其图象的另一交点的坐标;(2)观察图象,写出使函数值的自变量的取值范围.【答案】(1)一次函数解析式为:y1=x+2,B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.【解析】(1)利用待定系数法把 A(1,3)代入一次函数y1=x+m与反比例函数中,可解出m、k的值,进而可得解析式,求B点坐标,就是把两函数解析式联立,求出x、y的值;(2)根据函数图象可以直接写出答案.试题解析:(1)∵一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交于点 A(1,3),∴3=1+m,k=1×3,∴m=2,k=3,∴一次函数解析式为:y1=x+2,反比例函数解析式为:y2=,由,解得:x1=﹣3,x2=1,当x1=﹣3时,y1=﹣1,x 2=1时,y1=3,∴两个函数的交点坐标是:A(1,3)和B(﹣3,﹣1)∴B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.考点:反比例函数解析式,一次函数解析式,反比例函数的性质.13.如图,已知点A(-4,2)、B( n,-4)是一次函数的图象与反比例函数图象的两个交点.(1)求此反比例函数的解析式和点B的坐标;(2)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.【答案】(1)反比例函数的解析式为,点B(2,-4);(2) -4<x<0或x>2【解析】(1)将点A(-4,2)的横、纵坐标分别代入反比例函数解析式,可求得m=-8,然后将点B(n,-4)的横、纵坐标分别代入反比例函数解析式,可求出n的值,即点B的坐标,将A、B两点的坐标分别代入一次函数解析式,可求出直线的解析式;(2)一次函数的值小于反比例函数的值从图象上看,就是直线在双曲线的下方.试题解析:(1)反比例函数的解析式为,点B(2,-4)(2)一次函数的值小于反比例函数值的x的取值范围是:-4<x<0或x>2【考点】反比例函数的图象和性质.14.已知图中的曲线是函数 (m为常数)图象的一支.(1)求常数m的取值范围;(2)若该函数的图象与正比例函数图象在第一象限的交点为A(2,n),求点A的坐标及反比例函数的解析式.【答案】(1)m>5;(2)点A的坐标为(2,4);反比例函数的解析式为.【解析】(1)曲线函数(m为常数)图象的一支在第一象限,则比例系数m-5一定大于0,即可求得m的范围;(2)把A的坐标代入正比例函数解析式,即可求得A的坐标,再代入反比例函数解析式即可求得反比例函数解析式.试题解析:(1)∵函数 (m为常数)图象的一支在第一象限,∴m-5>0,解得m>5. (2)∵函数的图象与正比例函数的图象在第一象限的交点为A(2,n),∴,解得.∴点A的坐标为(2,4);反比例函数的解析式为.【考点】1.反比例函数和正比例函数的图象交点问题;2.曲线上点的坐标与方程的关系;3.反比例函数的性质.15.如果反比例函数y=的图象经过点(-1,-2),则k的值是( ).A. 2B.-2C.-3D.3【答案】D.【解析】直接把点(-1,-2)代入反比例函数y=,求出k的值即可.∵反比例函数y=的图象经过点(-1,-2),∴,解得k=3.故选D.考点: 反比例函数.16.如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数图象上,当△ADE和△DCO的面积相等时,k 的值为( )A .B .C .D .【答案】C .【解析】如图,连接AC ,∵点B 的坐标为(4,0),△AOB 为等边三角形,∴AO="OB=4." ∴点A 的坐标为.∵C (4,0),∴AO=OC=4,∴∠OCA=∠OAC. ∵∠AOB=60°,∴∠ACO=30°. 又∵∠B="60°." ∴∠BAC=90°.∵S △ADE =S △DCO ,S △AEC =S △ADE +S △ADC ,S △AOC =S △DCO +S △ADC , ∴S △AEC =S △AOC =,即.∴E 点为AB 的中点. 把E 点代入中得:k=. 故选C .【考点】1. 等边三角形的性质;2. 等腰三角形的判定和性质;3.三角形内角和定理;4.曲线上点的坐标与方程的关系.17. 如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .32【答案】D 。

中考数学《反比例函数》专项复习综合练习题-附含答案

中考数学《反比例函数》专项复习综合练习题-附含答案

中考数学《反比例函数》专项复习综合练习题-附含答案一、单选题1.已知反比例函数y=- 12x,则()A.y随x的增大而增大B.当x>-3且x≠0时,y>4C.图象位于一、三象限D.当y<-3时,0<x<42.甲、乙、丙三位同学分别正确指出了某一个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:每第一个象限内 y值随x值的增大而减小.根据他们的描述这个函数表达式可能是()A.y=2x B.y= 2x C.y=﹣1xD.y=2x23.反比例函数y=kx(k>0)在第一象限内的图象如图,点M是图象上一点 MP垂直x轴于点P 如果△MOP 的面积为1 那么k的值是( )A.1 B.2 C.4 D.√24.如图,反比例函数y=kx(x<0)交边长为10的等边△ OAB的两边于C、D两点,OC=3BD,则k的值()A.−9√3B.9√3C.-10√3D.10√35.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y= a+b+cx在同一坐标系内的图象大致为()A.B.C.D.√3 6.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=√3∠BDC=120°S△BCD=92 (x<0)的图象经过C、D两点,则k的值是()若反比例函数y=kxA.−6√3B.-6 C.−12√3D.-127.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=1(x<0)图象上一点,AO的延长x(x>0 k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x 线交函数y=k2x轴的对称点为C′,交于x轴于点B 连结AB AA′、 A′C′.若△ABC的面积等于6,则由线段AC CC′C′A′ A′A所围成的图形的面积等于()A.8 B.10 C.3√10D.4√68.如图,反比例函数y=kx与一次函数y=kx﹣k+2在同一直角坐标系中的图象相交于A B两点其中A(﹣1 3)直线y=kx﹣k+2与坐标轴分别交于C D两点下列说法:①k<0;②点B的坐标为(3 ﹣1);③当x<﹣1时kx <kx﹣k+2;④tan∠OCD=﹣1k其中正确的是()A.①③B.①②④C.①③④D.①②③④二、填空题9.已知反比例函数y=﹣2x若y≤1,则自变量x的取值范围是.10.在平面直角坐标系中若一条平行于x轴的直线l分别交双曲线y=﹣6x 和y= 2x于A B两点 P是x轴上的任意一点,则△ABP的面积等于11.如图,在平面直角坐标系中正方形ABCD的面积为20 顶点A在y轴上顶点C在x轴上顶点D在双曲线y=kx(x>0)的图象上边CD交y轴于点E 若CE=ED,则k的值为.12.如图,点 P 是反比例函数图象上的一点 过点 P 向 x 轴作垂线 垂足为 M 连结 PO 若阴影部分面积为 6 ,则这个反比例函数的关系式是 .13.如图,已知A ( 12 y 1) B (2 y 2)为反比例函数y = 1x 图象上的两点 动点P (x 0)在x 轴正半轴上运动 当线段AP 与线段BP 之差达到最大时 点P 的坐标是 .三、解答题14.如图,反比例函数y =kx (x >0)的图像分别交正方形OABC 的边AB 、BC 于点D 、E 若A 点坐标为(1,0) 若△ODE 是等边三角形 求k 的值.15.某水果生产基地在气温较低时 用装有恒温系统的大棚栽培一种新品种水果 如图是试验阶段的某天恒温系统从开启到关闭后 大棚内的温度y(℃)与时间x(ℎ)之间的函数关系 其中线段AB 、BC 表示恒温系统开启后阶段 双曲线的一部分CD 表示恒温系统关闭阶段........... 请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y(℃)与时间x(ℎ)之间的函数表达式;(3)若大棚内的温度低于10℃时 蔬菜会受到伤害.问:这天内恒温系统最多可以关闭多少小时 才能避免水果生长受到影响?16.如图,已知点A在反比函数y=kx(k<0)的图象上点B在直线y=x−3的图象上点B的纵坐标为-1 AB⊥x轴且S△OAB=4.(1)求点A的坐标和k的值;(2)若点P在反比例函数y=kx(k<0)的图象上点Q在直线y=x−3的图象上P、Q两点关于y轴对称设点P的坐标为(m,n)求nm +mn的值.17.如图,点A在反比例函数y=kx(x>0)的图象上AB⊥x轴于点B AB的垂直平分线PD交双曲线与点P.(1)若点A的坐标为(1 8),则点P的坐标为.(2)若AP⊥BP点A的横坐标为m.①求k与m之间的关系式;②连接OA OP若△AOP的面积为6 求k的值.18.如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2 m) B(n ﹣2)两点.过点B作BC⊥x轴垂足为C 且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件请直接写出不等式k1x+b>k2x的解集;(3)若P(p y1) Q(﹣2 y2)是函数y=k2x 图象上的两点且y1≥y2求实数p的取值范围.答案1.D 2.B 3.B 4.A 5.D 6.C 7.B 8.C9.x ≤﹣2或x >0 10.4 11.4 12.y =−12x 13.(52, 0)14.解:由题意可得△OAD ≅△OCE 设AD =x ,则:DB =EB =1−x 因为OD 2=x 2+1 且△ODE 是等边三角形所以 x 2+1=(1−x)2+(1−x)2 x 1=2+√3 x 2=2−√3 2+√3>1舍去 所以x =2−√3则K =1∗(2−√3)=2−√315.(1)解:设线段AB 表达式为y =kx +b(k ≠0) ∵线段AB 过点(0,10) (2,14)∴{b =102k +b =14解得{b =10k =2∴线段AB 的表达式为:y =2x +10(0≤x ≤5) 当x =5时 y =2×5+10=20 ∴恒定温度为:20℃; (2)解:由(1)可知:线段AB 的表达式为:y =2x +10(0≤x ≤5) B 坐标为(5,20) ∴根据图象可知线段BC 的表达式为:y =20(5<x ≤10)设双曲线CD 解析式为:y =m x(m ≠0)∵C(10,20)∴可得:m10=20 解得:m =200∴双曲线CD 的解析式为:y =200x(10<x ≤24)∴y 关于x 的函数表达式为:y ={2x +10(0≤x ≤5)20(5<x ≤10)200x (10<x ≤24);(3)解:把y =10代入y =200x中得10=200x解得:x =20∴20−10=10(小时)∴恒温系统最多可以关闭10小时. 16.(1)解:由题意B(2,−1)∵12×2×AB =4 ∴AB =4∵AB//y 轴∴A(2,−5)∵A(2,−5)在y =kx 的图象上 ∴k =−10.(2)解:设P(m ,−10m ),则Q(−m ,−10m ) ∵点Q 在y =x −3上∴−10m=−m −3 整理得:m 2+3m −10=0 解得m =−5或2 当m =−5 n =2时 n m +m n =−2910 当m =2 n =−5时 nm +m n=−2910故n m +m n=−2910.17.(1)(2 4)(2)解:①由题意得 点A 的纵坐标为km 即AB =km ∵PD 垂直平分AB ∴PA =PB ∵AP ⊥BP∴△PAB 是等腰直角三角形 ∴∠PAB =∠PBA =45° ∵PD ⊥AB∴△DAP 和△DBP 是等腰直角三角形 ∴DA =DB =DP =k2m ∴P (m +k2m ,k 2m )将P (m +k2m ,k2m )代入y =kx 可得:(m +k2m )⋅k2m =k 整理得:k =2m 2;②过点P 作PC ⊥x 轴于点C ,则四边形PABC 是梯形∵S △AOB =S △POC =k2 ∴S △AOE =S 四边形PEBC ∴S △AOP =S 梯形PABC =6 ∴(k 2m +k m )⋅k2m2=6 整理得:k 2=16m 2∵k =2m 2 ∴k 2=8k解得:k =8或k =0(舍去) ∴k =8.18.(1)把 A(2,m) B(n ,−2) 代入 y =k 2x得: k 2=2m =−2n即m=−n则A(2,−n)过A作AE⊥x轴于E过B作BF⊥y轴于F延长AE、BF交于D ∵A(2,−n)B(n,−2)∴BD=2−n AD=−n+2BC=|−2|=2∵SΔABC=12·BC·BD∴12×2×(2−n)=5解得:n=−3即A(2,3)B(−3,−2)把A(2,3)代入y=k2x得:k2=6即反比例函数的解析式是y=6x;把A(2,3)B(−3,−2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b解得:k1=1b=1即一次函数的解析式是y=x+1;(2)∵A(2,3)B(−3,−2)∴不等式k1x+b>k2x的解集是−3<x<0或x>2;(3)分为两种情况:当点P在第三象限时要使y1⩾y2实数p的取值范围是p⩽−2当点P在第一象限时要使y1⩾y2实数p的取值范围是p>0即P的取值范围是p⩽−2或p>0。

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

D.当y增大时,BE·DF的值不变。

8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。

中考数学总复习《反比例函数》专项提升训练题(带答案)

中考数学总复习《反比例函数》专项提升训练题(带答案)

中考数学总复习《反比例函数》专项提升训练题(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,4A -是反比例函数()0ky k x=≠图象上一点,则常数k 的值为( ) A .4 B .14-C .4-D .142.函数6y x=的图象位于第( )象限 A .一、二 B .一、三 C .二、三 D .二、四3.已知反比例函数2y x =图象上有三点()14,A y ,()22,B y 和31,2C y ⎛⎫⎪⎝⎭,则1y 、2y 和3y 的大小关系为( ) A .y y y >>₁₂₃B .y y y >>₂₁₃C .y y y >>₃₂₁D .y y y >>₃₁₂4.已知二次函数2y x bx c =++的图象如图所示,则一次函数y bx c =+与反比例函数bcy x=的图象可能..是( )A .B .B .C .D .5.如图,点P ,Q 在反比例函数4y x=的图象上,点M 在x 轴上,点N 在y 轴上,下列说法正确的是( )A .图1、图2中阴影部分的面积分别为2,4B .图1、图2中阴影部分的面积分别为1,2C .图1、图2中阴影部分的面积之和为8D .图1、图2中阴影部分的面积之和为3 6.下列各点中,不在反比例函数6y x=图像上的点是( ) A .()1,6B .()6,1--C .()6,1D .()2,3-7.如图,OAB 是面积为4的等腰三角形,底边OA 在x 轴上,若反比例函数图象过点B ,则它的解析式为( )A .2y x=B .-2y x=C .4y x =D .4y x=-8.已知如图,一次函数14y x =+图象与反比例函数25y x=图象交于()1,A n ,()5,B m -两点,则12y y >时x 的取值范围是( )A .5x 0-<<或1x >B .5x <-或01x <<C .5x 0-<<或01x <<D .51x -<<二、填空题9.在平面直角坐标系中,将点()2,3A 向下平移5个单位长度得到点B ,若点B 恰好在反比例函数的图象上,则此反比例函数的表达式为 .10.已知点()()1221A yB y --,,,和()34C y ,都在反比例函数8y x=的图象上,则123y y y ,,的大小关系为 .(用“<”连接)11.如图,点A 是反比例函数2y x=-的图象上一点,过点A 向y 轴作垂线,垂足为点B ,点C 、D 在x 轴上,且BC AD ∥,则四边形ABCD 的面积为 .12.如图,直线6y x =-+与y 轴交于点A ,与反比例函数ky x=图象交于点C ,过点C 作CB x ⊥轴于点B ,3AO BO =,则k 的值为 .13.如图,已知点(3,3)A 和(3,1)B ,反比例函数(0)ky k x=≠图象的一支与线段AB 有交点,写出一个符合条件的k 的整数值: .三、解答题14.如图,在ABCD 中(1,0)A -,(2,0)B 和(0,2)D ,反比例函数ky x=在第一象限内的图象经过点C .(1)点C 的坐标为 . (2)求反比例函数的解析式.(3)点E 是x 轴上一点,若BCE 是直角三角形,请直接写出点E 的坐标.15.科学课上,同学用自制密度计测量液体的密度.密度计悬浮在不同的液体中时,浸在液体中的高度()cm h 是液体的密度()3g /cm ρ的反比例函数,如图是该反比例函数的图象,且0ρ>.(1)求h 关于ρ的函数表达式;(2)当密度计悬浮在另一种液体中时25cm h =,求该液体的密度ρ.16.通过试验研究发现:一节40分钟的课堂,初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.如图,学生注意力指标y 随时间x (分钟)变化的函数图象,当010x ≤<和1020x ≤<时,图象是线段;当2040x ≤≤时,图象是反比例函数的一部分.(1)求反比例函数解析式和点A 、D 的坐标;(2)陈老师在一节课上讲解一道数学综合题需要16分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于32?请说明理由.17.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x 元与日销售量y 之间满足某种函数关系. x (元)3 4 5 6y (个) 20 15 12 10(1)根据表中的数据请你写出请y 与x 之间的函数关系式;(2)设经营此贺卡的销售利润为w 元,试求出w 与x 之间的函数关系式,若物价局规定此贺卡的销售价每个最高不能超过10元,请你求出当日销售单价x 定为多少元时,才能使日销售获得最大利润?18.如图,一次函数()10y kx b k =+≠的图象与x 轴,y 轴分别交于点A ,B ,与反比例函数()20my x x=>的图象交于点()1,2C 和()2,D n .(1)分别求出两个函数的解析式; (2)当12y y >时,直接写出x 的取值范围. (3)连接OC ,OD ,求COD △的面积;(4)点P 是反比例函数上一点,PQ x ∥轴交直线AB 于Q ,且3PQ =请直接写出点P 的坐标.答案第1页,共1页参考答案:1.C 2.B 3.C 4.B 5.A 6.D 7.D 8.A9.4y x =-10.213y y y << 11.2 12.16-13.4(答案不唯一) 14.(1)()3,2 (2)6y x=(3)(3,0)或(7,0) 15.(1)20h ρ=(2)0.8ρ=16.(1)反比例函数的解析式为800y x=,()0,20A 和()40,20D (2)陈老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于32 17.(1)60y x=(2)1018.(1)一次函数的解析式为13y x =-+,反比例函数的解析式为22y x=; (2)12x <<; (3)32; (4)()37,37P +-或()37,37P -+.。

中考数学备考专题复习反比例函数含解析

中考数学备考专题复习反比例函数含解析

反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是()A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3, y3)是反比例函数y= 上的三点,若x1<x2<x3, y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2-OB2=( )A、-2B、2C、-D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为()A、-B、-C、-3D、-67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m >0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A 、B 、C 、D 、12、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2, y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________.14、(2015•黄石)反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是________ .15、(2016•宁波)如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为________.16、(2016•丽水)如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=________(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是________.17、(2016•绍兴)如图,已知直线l:y=﹣x,双曲线y= ,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为________.三、解答题(共3题;共15分)18、当m 取何值时,函数是反比例函数?19、(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.20、已知与是反比例函数图象上的两个点.(1)求m和k的值(2)若点C(-1,0),连结AC,BC,求△ABC的面积(3)根据图象直接写出一次函数的值大于反比例函数的值的的取值范围.四、综合题(共4题;共45分)21、(2016•曲靖)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y= 图象上的所有“整点”A1, A2, A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.22、(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.23、(2016•枣庄)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?24、(2016•雅安)已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y= 交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.答案解析部分一、单选题【答案】A【考点】反比例函数的性质【解析】【解答】解:在反比例函数y= 中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y= =2;当x=1时,y= =6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.本题考查了反比例函数的性质,解题的关键是找出反比例函数y= 在1<x<3中y的取值范围.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.【答案】C【考点】根据实际问题列反比例函数关系式,三角形的面积【解析】【解答】∵S=xy,∴y=.故选C.【分析】考查列反比例函数关系式,得到三角形高的等量关系是解决本题的关键.三角形的面积= 1 2 底×高,那么高=,把相关数值代入即可求解.【答案】A【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵反比例函数y= 中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3, y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【分析】根据反比例函数y= 和x1<x2<x3, y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.【答案】B【考点】一次函数图象与几何变换,反比例函数与一次函数的交点问题【解析】【解答】∵平移后解析式是y=x+b,代入y=得:x+b=,即x2+bx=,y=x+b与x轴交点B的坐标是(-b,0),设A的坐标是(x,y),∴OA2-OB2=x2+y2+(-b)2=x2+(x+b)2-b2=2x2+2xb=2(x2+xb)=2×=2,故选B.【分析】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的计算能力的能力.【答案】D【考点】反比例函数图象的对称性【解析】【解答】由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP=于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.反比例函数解析式为:y=.故选D.【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.【点评】此题是一道综合题,既要能熟练正确求出圆的面积,又要会用待定系数法求函数的解析式.【答案】C【考点】反比例函数系数k的几何意义,待定系数法求反比例函数解析式,三角形的面积【解析】【解答】如图,连接AC,∵点B的坐标为(4,0),△AO B为等边三角形,∴AO=OB=4.∴点A的坐标为(2,-2).∵C(4,0),∴AO=OC=4,∴∠OCA=∠OAC.∵∠AOB=60°,∴∠ACO=30°.又∵∠B="60°." ∴∠BAC=90°.∵S△ADE=S△DCO, S△AEC=S△ADE+S△ADC, S△AOC=S△DCO+S△ADC,∴∴S△AEC=S△AOC =×AE•AC=•CO•2,即•AE•2=×2×2,∴E点为AB的中点(3,-).把E点(3,-)代入y=中得:k=-3故选C.【分析】连接AC,由B的坐标得到等边三角形AOB的边长,得到AO与CO,得到AO=OC,利用等边对等角得到一对角相等,再由∠AOB=60°,得到∠ACO=30°,可得出∠BAC为直角,可得出A的坐标,由三角形ADE与三角形DCO面积相等,且三角形AEC面积等于三角形AED与三角形ADC面积之和,三角形AOC面积等于三角形DCO面积与三角形ADC面积之和,得到三角形AEC与三角形AOC面积相等,进而确定出AE的长,可得出E为AB中点,得出E的坐标,将E坐标代入反比例解析式中求出k的值,即可确定出反比例解析式。

中考数学反比例函数专题训练(含答案)

中考数学反比例函数专题训练(含答案)

中考数学反比例函数专题训练(含答案)一、反比例函数的图象与性质1.已知反比例函数的解析式为y=( |a|-2 ) / x,则a 的取值范围是( )A. a ≠2B. a ≠-2C. a ≠±2D. a=±22.反比例函数y=-3 / x,下列说法不正确的是( )A. 图象经过点(1,-3)B. 图象位于第二、四象限C. 图象关于直线y=x 对称D. y 随x 的增大而增大3.下列各点中,与点(-3,4) 在同一个反比例函数图象上的点的是( )A. (2,-3)B. (3,4)C. (2,-6)D. (-3,-4)4.点M(a,2a) 在反比例函数y=8 / x 的图象上,那么a 的值是( )A. 4B. -4C. 2D. ±25.如果反比例函数y=(a-2) / x ( a 是常数) 的图象在第一、三象限,那么a 的取值范围是( )A. a<0B. a>0C. a<2D. a>26.若点A(-3,y1),B(-2,y2),C(1,y3) 都在反比例函数y=-12 / x 的图象上,则y1,y2,y3 的大小关系是( )A. y2<y1<y3B. y3<y1<y2C. y1<y2<y3D. y3<y2<y17.反比例函数y=k / x 的图象经过点A(-1,2),则当x>1 时,函数值y 的取值范围是( )A. y>-1B. -1<y<0C. y<-2D. -2<y<08.若点A(a,b) 在反比例函数y=3 / x 的图象上,则代数式ab-1 的值为________.9.反比例函数y=(2m-1)xm2-2,x>0时,y 随着x 的增大而增大,则m 的值是________.10.已知一个反比例函数的图象位于第二、四象限内,点P(x0,y0) 在这个反比例函数的图象上,且x0y0>-4.请你写出这个反比例函数的表达式__________.(写出符合题意的一个即可)11.已知A(x1,y1),B(x2,y2) 都在反比例函数y=-2 / x 的图象上.若x1x2=-4,则y1y2 的值为________.12.已知A(1,m),B(2,n) 是反比例函数y=k/x 图象上的两点,若m-n=4,则k 的值为________.13.已知反比例函数的图象经过三个点A(-4,-3)、B(2m,y1)、C(6m,y2).若y1-y2=4,则m 的值为________.14.已知反比例函数y=m / x 在其所在象限内y 随x 的增大而减小,点P(2-m,m+1) 是该反比例函数图象上一点,则m 的值为________.15.已知A(x1,y1),B(x2,y2) 是反比例函数y=k / x 图象上的两点,且x1+x2=-2,x1·x2=2,y1+y2=-4/3,则k=________.16.已知点A(x1,y1)、B(x2,y2) 是反比例函数y=k/x 图象上的两点,且(x1-x2)(y1-y2)=9,3x1=2x2,则k 的值为________.17.在平面直角坐标系xOy 中,点A(a,b) (a>0,b>0) 在双曲线y=k1/x 上,点A 关于x 轴的对称点B 在双曲线y=k2/x 上,则k1+k2 的值为________.18.反比例函数y=k/x 的图象上有一点P(2,n),将点P 向右平移1 个单位,再向下平移1 个单位得到点Q,若点Q 也在该函数的图象上,则k=________.19.已知A、B 两点分别在反比例函数y=(2m-3) / x ( m ≠3/2 ) 和y=(3m-2) / x ( m ≠2/3) 的图象上,且点A 与点B 关于y 轴对称,则m 的值为________.【参考答案】二、反比例函数与几何图形或一次函数结合1.若一次函数y=ax+6 (a≠0) 的图象与反比例函数y=3/x 的图象只有一个交点,则a 的值为________.2.若直线y=-x+m 与双曲线y=n/x (x>0) 交于A(2,a),B(4,b) 两点,则mn 的值为________.3.一次函数y1=-x+6 与反比例函数y2=8/x (x>0) 的图象如图所示,当y1>y2 时,自变量x 的取值范围是________.4. 如图,在平面直角坐标系中,直线y=-x+2 与反比例函数y=1/x 的图象有唯一公共点.若直线y=-x+b 与反比例函数y=1/x 的图象没有公共点,则b 的取值范围是________.5.如图,过x 轴的正半轴上任意一点P,作y 轴的平行线,分别与反比例函数y=3/x (x>0),y=-6/x (x>0) 的图象相交于点A,B,若C 为y 轴上任意一点,连接AC,BC,则△ABC 的面积为________.6.如图,矩形ABCD 的顶点A,C 在反比例函数y=k/x (k>0,x>0) 的图象上,若点A 的坐标为(3,4),AB=2,AD∥x 轴,则点C 的坐标为________.7.如图,正方形ABCD 的边长为2,点B 与原点O 重合,与反比例函数y=k/x 的图象交于E、F 两点,若△DEF 的面积为9/8,则k 的值为________.8.如图,已知反比例函数y=4/x 的图象经过Rt△OAB 斜边OB 的中点D,与直角边AB 相交于点C,则△OBC 的面积为________.9.如图,反比例函数y=k/x 的图象经过平行四边形ABCD 对角线的交点P,已知点A、C、D 在坐标轴上,BD⊥DC,平行四边形ABCD 的面积为6,则k=________.10.如图,点A,C 分别是正比例函数y=x 的图象与反比例函数y=4/x 的图象的交点,过A 点作AD⊥x 轴于点D,过C 点作CB⊥x 轴于点B,则四边形ABCD 的面积为________.11.如图,点A 是反比例函数y=-8/x 图象上的一点,过点A 的直线与y 轴交于点B,与反比例函数y=k/x (x>0) 的图象交于点C、D.若AB=BC=CD,则k 的值为________.12.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=k/x 在第一象限的图象经过点B,若OA2-AB2=8,则k 的值为________.【参考答案】。

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案一、选择题1.下列函数关系式中,y 是x 的反比例函数的是( )A .y =x +3B .y =x 3C .y =3x 2D .y =3x 2.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A .6B .﹣2C .﹣3D .3 3.已知反比例函数y =−1x ,下列结论不正确...的是( ) A .该函数图象经过点(−1,1)B .该函数图象位于第二、四象限C .y 的值随着x 值的增大而增大D .该函数图象关于原点成中心对称 4.反比例函数(其中),当时,y 随x 的增大而增大,那么m 的取值范围是( ) A . B .C .D . 5.在同一直角坐标系中,函数y =−kx +k 与y =k x (k ≠0)的大致图象可能为( )A .B .C .D .6.反比例函数y =6x 图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)其中y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1 7.如图,A 、B 是第二象限内双曲线y =k x 上的点,A 、B 两点的横坐标分别是a ,3a ,线段AB 的延长线交x轴于点C ,S △AOC =12.则k 的值为( )A .﹣6B .﹣5C .﹣4D .﹣38.如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.32D.−32二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为.三、解答题14.如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.(1)求一次函数与反比例函数的表达式;(2)请直接写出不等式的解集.15.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“嗐转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:请根据表中的信息解决下列问题:(1)求出y与x之间的函数解析式;(2)若某人蒙上眼睛走出的大圆圈的半径为35米,则其两腿迈出的步长之差是多少厘米?(k>0).16.如图,设反比例函数的解析式为y=3kx(1)若反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若反比例函数的图象与过点M (﹣2,0)的直线l :y =kx+b 的图象交于A 、B 两点,如图,当△ABO 的面积为12时,求直线l 的解析式.17.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第10分钟起每分钟每毫升血液中含药量增加0.3微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1) ; (2)分别求出当和时,y 与x 之间的函数关系式; (3)如果每毫升血液中含药量不低于12微克时是有效的,求一次服药后的有效时间是多少分钟?18.如图,一次函数 y ax b =+ 的图象与反比例函数 k y x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 全等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.参考答案1.B2.C3.C4.A5.D6.C7.A8.B9.k=-610.>11.(-m,-n).12.−413.1014.(1)解:点在反比例函数的图象上反比例函数解析式为;OA=OB,点在轴负半轴上点.把点、代入中得解得:一次函数的解析式为;(2) 15.(1)解:设y 与x 之间的函数解析式为y =k x 将(2,7)代入得7=k 2∴k =14∴y 与x 之间的函数解析式为y =14x . (2)解:当y =35时,即14x =35,解得x =0.4∴某人蒙上眼睛走出的大圆圈的半径为35米,其两腿迈出的步长之差是0.4厘米.16.(1)解:∵反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2 把y =2代入y =2x 求得x =1∴反比例函数与正比例函数y =2x 的图象交点的坐标为(1,2)把(1,2)代入y =3k x (k >0),得到3k =2 ∴k =23;(2)解:把M (﹣2,0)代入y =kx+b ,可得b =2k∴y =kx+2k解{y =3k x y =kx +2k 得{x =−3y =−k 或{x =1y =3k∴B (﹣3,﹣k ),A (1,3k )∵△ABO 的面积为12∴12•2•3k+12•2•k =12解得k =3∴直线l 的解析式为y =3x+6.17.(1)27(2)解:当时,设y 与x 之间的函数关系式为∵经过点 ∴解得:,∴解析式为;当时,y 与x 之间的函数关系式为∵经过点∴解得:∴函数的解析式为; (3)解:令解得:令,解得:∴分钟 ∴服药后能持续175分钟.18.(1)∵点C (1,2)在反比例函数 图象上 ∴k=2∴反比例函数解析式为 2y x= ∵点B (2,m )在反比例函数 图象上 ∴m= 22=1. (2)如图,过点C 作⊥OA 于E ,过点D 作DF ⊥OA 于 Fk y x =2y x =∵C (1,2),D (2,1)∴CE=2,DF=1∵C 、D 在一次函数 的图象上∴221a b a b +=⎧⎨+=⎩解得: 13a b =-⎧⎨=⎩∴一次函数解析式为y=-x+3当y=0时,x=3∴A 点坐标为(3,0)∴OA=3∴DOC S =S △AOC -S △AOD = 1122OA CE OA DF ⋅-⋅ = 11323122⨯⨯-⨯⨯ =1.5.(3)设点P 坐标为(n , 2n )∵C (2,1),D (1,2)∴OC=OD∵△POC 和△POD 全等∴PC=PD ∴222222(1)(2)(2)(1)n n n n -+-=-+-解得: 2n =∴P (, )或P ( 2 , ) ∴双曲线上存在一点P ,使得△POC 和△POD 全等,P ( , )或P ( , ). y ax b =+222-2222。

中考数学总复习《反比例函数》练习题(附答案)

中考数学总复习《反比例函数》练习题(附答案)

中考数学总复习《反比例函数》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.一次函数y1=k1x+b(k1≠0)与反比例函数y2=k2x(k2≠0)的图象交于点A(−1,−2),点B(2,1).当y1<y2时,x的取值范围是()A.x<−1B.−1<x<0或x>2 C.0<x<2D.0<x<2或x<−12.关于函数y=−2x,下列说法中正确的是()A.图像位于第一、三象限B.图像与坐标轴没有交点C.图像是一条直线D.y的值随x的值增大而减小3.如图,在直角坐标系中,点A是双曲线y= 3x(x>0)上的一个动点,点B是x轴正半轴上的一个定点,当点A的横坐标逐渐增大时,△OAB的面积将会()A.逐渐减小B.不变C.逐渐增大D.先减小后增大4.在同一平面直角坐标系中,反比例函数y=-8x与一次函数y=-x+2交于A,B两点,O为坐标原点,则△AOB的面积为()A.2B.6C.10D.85.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y= k x在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤166.如图,过反比例函数y= 1x(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()A.S1>S2B.S1=S2C.S l<S2D.大小关系不能确定7.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷8.在同一直角坐标系中,函数y=kx+1与y=−k x(k≠0)的图象大致是()A.B.C.D.9.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y= mx(m≠0)的图象相交于点A(-2,3),B(6,-1),则不等式kx+b>mx的解集为()A.x<−2B.−2<x<0或x>6 C.x<6D.0<x<6或x<−210.已知两个函数y1=k1x+b与y2= k2x的图象如图所示,其中A(-1,2),B(2,-1),则不等式k1x+b>k2x的解集为()A.x<−1或x>2B.x<−1或0<x<2 C.−1<x<2D.−1<x<0或0<x<211.在反比例函数y=−3x图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2 12.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。

中考数学高频考点《反比例函数》专项练习题-带答案

中考数学高频考点《反比例函数》专项练习题-带答案

中考数学高频考点《反比例函数》专项练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题的图象上,下列结论中正确的是()1.已知点(-1,y1),(2,y2),(3,y3)在反比例函数y=−1xA.y1>y2>y3;B.y1>y3>y2;C.y3>y1>y2;D.y2>y3>y1.(k≠0)的图像上,当x>−1时,y的取值范围是()2.已知点A(1,3)在反比例函数的y=kxA.y>−3B.y<3或y>0C.y<−3D.y>−3或y>03.函数y=kx+b与y=kb(k、b为常数,且kb≠0)在同坐标系内的图象大致是()xA.B.C.D.4.如图,反比例函数y1= k1和一次函数y2=k2x+b的图象交于A,B N点.A,B两点的横坐标分别为2,-3.通x过观察图象,若y1>y2,则x的取值范围是()A.0<x<2 B.-3<x<0或x>2C.0<x<2或x<-3 D.-3<x<05.如图,平行四边形ABCD中,点A在反比例函数y= k(k≠0)的图象上,点D在y轴上,点B、点Cx在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10 B.﹣5 C.5 D.106.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.当该村总人口为50人时,人均耕地面积为1公顷C.若该村人均耕地面积为2公顷,则总人口有100人D.该村人均耕地面积y与总人口x成正比例(c 7.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2= cx是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2C.﹣3<x<0或x>2 D.0<x<28.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:25)能喝到不小于70℃的水,则接通电源的时间可以是当天上午的()A.7:00 B.7:10 C.7:25 D.7:35二、填空题9.如图,已知点A,B分别在反比例函数y1=﹣2x 和y2= kx的图象上,若点A是线段OB的中点,则k的值为.10.如图,两个反比例函数y=4x 和y=2x在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为.11.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y= kx(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为.(x<0) 12.如图,在平面直角坐标系中,菱形OABC的顶点B在y轴上,顶点C在反比例函数y=kx的图象上,若对角线AC=6 , OB=8,则k的值为.13.如图,在平面直角坐标系中,△ABC的顶点A和C分别在x轴、y轴的正半轴上,且AB∥y轴,AB=4,△ABC的面积为2,将△ABC以点B为旋转中心,顺时针旋转90°得到△DBE,一反比例函数图象恰好过点D时,则此反比例函数解析式是.三、解答题(k≠0)在第一象限的图象交于A(1,a)和B两14.如图,一次函数y=−x+3的图象与反比例函数y=kx点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标.15.如图,已知点A(1,a)是反比例函数y1= mx 的图象上一点,直线y2=﹣12x+12与反比例函数y1= mx的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.16.如图,已知函数y= kx(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE= 12AC时,求CE的长.17.如图,直线l经过点A(1,0),且与双曲线y=mx(x>0)交于点B(2,1)过点P(p,p﹣1)(p>1且p≠2)作x轴的平行线分别交曲线y=mx (x>0)和y=−mx(x<0)于点M,N.(1)求m的值及直线l的解析式;(2)是否存在实数p,使得△AMN与△AMP的面积相等?若存在,求出所以满足条件的p的值;若不存在,说明理由.18.为进行技术转型,某企业从今年1月开始对车间的生产线进行为期5个月的技术升级改造.改造期间的月利润与时间成反比例函数,到今年5月底开始恢复全面生产后,企业的月利润都会比前一个月增加10万元.设今年1月为第1个月,第x个月的利润为y万元,利润与时间的图像如图所示.(1)分别求出生产线升级改造前后,y与x的函数表达式.(2)已知月利润少于50万元时,为企业的资金紧张期,求资金紧张期共有几个月.答案1.B2.D3.C4.C5.A6.B7.C8.B9.-810.111.(2,7)12.-1213.y=﹣12x.14.(1)解:把点A(1,a)代入y=−x+3解得a=2∴A点坐标为(1,2)把A(1,2)代入反比例函数y=kx∴k=1×2=2∴反比例函数的解析式为y=2x;(2)解:∵一次函数y=−x+3的图象与x轴交于点C∴C点坐标为(3,0)设P点坐标为(x,0)∴PC=|3−x|∴S△APC=12×|3−x|×2=5∴x=−2或x=8∴P的坐标为(−2,0)或(8,0).15.解:(Ⅰ)∵B(3,﹣1)在反比例函数y1=mx的图象上∴-1= m3∴m=-3∴反比例函数的解析式为y=−3x;(Ⅱ){y=−3xy=−12x+12∴−3x = −12x+12x2-x-6=0(x-3)(x+2)=0x1=3,x2=-2当x=-2时,y= 32∴D(-2,32);y1>y2时x的取值范围是-2<x<0或x> 32;(Ⅲ)∵A(1,a)是反比例函数y1=mx的图象上一点∴a=-3∴A(1,-3)设直线AB为y=kx+b{k+b=−33k+b=−1∴{k=1b=−4∴直线AB为y=x-4令y=0,则x=4∴P(4,0)16.(1)解;y= kx(x>0)的图象经过点A(1,2)∴k=2.∵AC∥y轴,AC=1∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上∴点D的坐标为(2,1).∴S△OCD=12×1×1=12.(2)解;∵BE= 12AC ∴BE =12 . ∵BE ⊥CD点B 的纵坐标=2﹣ 12 = 32 由反比例函数y= 2x 点B 的横坐标x=2÷ 32 = 43∴点B 的横坐标是 43 ,纵坐标是 32 . ∴CE= 43−1=13 .17.(1)解:把B (2,1)代入y= mx 中得:m=2×1=2 设直线l 的解析式为:y=kx+b把A (1,0)、B (2,1)代入y=kx+b 中得: {k +b =02k +b =1解得: {k =1b =−1∴直线l 的解析式为:y=x ﹣1 (2)解:存在.理由如下: ∵P 点坐标为(p ,p ﹣1) ∴点P 在直线l 上 而MN ∥x 轴∴点M 、N 的纵坐标都为p ﹣1∴M ( 2p−1 ,p ﹣1),N (﹣ 2p−1 ,p ﹣1) ∴MN= 4p−1∴S △AMN = 12 • 4p−1 •(p ﹣1)=2 当p >2时,如图S△APM= 12(p﹣2p−1)(p﹣1)= 12(p2﹣p﹣2)∵S△AMN=S△APM∴12(p2﹣p﹣2)=2整理得,p2﹣p﹣6=0,解得p1=﹣2(不合题意,舍去),p2=3.∴满足条件的p的值为318.(1)解:∵改造期间的月利润与时间成反比例函数设升级改造前y与x的函数表达式为y=kx(k≠0)当x=1时,y=100∴k1=100,即k=100∴升级改造前y与x的函数表达式为y=100x(0<x≤5,x且为整数);当x=5时,y=1005=20∵到今年5月底开始恢复全面生产后,企业的月利润都会比前一个月增加10万元∴y=10(x−5)+20=10x−30∴升级改造后y与x的函数表达式为y=10x−30(x>5x且为整数)∴升级改造前y=100x(0<x≤5,x且为整数);升级改造后y=10x−30(x>5且x为整数);(2)解:在y=100x中当y=50时x=2∵100>0∴在该象限中,y随x的增大而减小∴y<50时,x>2在y=10x−30中当y<50时10x−30<50∴x<8∴2<x<8且x为整数.∴x可取3、4、5、6、7共5个月.∴资金紧张期共有5个月。

中考数学压轴题专题复习—反比例函数的综合含答案解析

中考数学压轴题专题复习—反比例函数的综合含答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2.(1)求双曲线的解析式;(2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________;(3)点(6,n)为G1与G2的交点坐标,求a的值.(4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围.【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得,所以双曲线的解析式为y= ;(2)2(3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2),抛物线G2的解析式为y=﹣(x﹣a)2+9,把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± ,即a的值为6± ;(4)抛物线G2的解析式为y=﹣(x﹣a)2+9,把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ;把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2;∵G1与G2有两个交点,∴3+ ≤a≤12﹣2 ,设直线DE的解析式为y=px+q,把D(3,4),E(12,1)代入得,解得,∴直线DE的解析式为y=﹣ x+5,∵G2的对称轴分别交线段DE和G1于M、N两点,∴M(a,﹣ a+5),N(a,),∵MN<,∴﹣ a+5﹣<,整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0,∴a<4或a>9,∴a的取值范围为9<a≤12﹣2 .【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4),所以BE= =2 .故答案为2 ;【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围.2.如图,已知直线y=x+k和双曲线y= (k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为S n,若S1+S2+…+S n= ,求n的值.【答案】(1)解:当k=1时,直线y=x+k和双曲线y= 化为:y=x+1和y= ,解得,,∴A(1,2),B(﹣2,﹣1)(2)解:当k=2时,直线y=x+k和双曲线y= 化为:y=x+2和y= ,解得,,∴A(1,3),B(﹣3,﹣1)设直线AB的解析式为:y=mx+n,∴∴,∴直线AB的解析式为:y=x+2∴直线AB与y轴的交点(0,2),∴S△AOB= ×2×1+ ×2×3=4;(3)解:当k=1时,S1= ×1×(1+2)= ,当k=2时,S2= ×2×(1+3)=4,…当k=n时,S n= n(1+n+1)= n2+n,∵S1+S2+…+S n= ,∴ ×(…+n2)+(1+2+3+…n)= ,整理得:,解得:n=6.【解析】【分析】(1)两图像的交点就是求联立的方程组的解;(2)斜三角形△AOB的面积可转化为两水平(或竖直)三角形(有一条边为水平边或竖直边的三角形称为水平或竖直三角形)的面积和或差;(3)利用n个数的平方和公式和等差数列的和公式可求出.3.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.4.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.5.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。

中考数学复习专题09反比例函数

中考数学复习专题09反比例函数

反比例函数一、单选题1.(2021·山西)已知反比例函数6y x=,则下列描述不正确的是( ) A .图象位于第一,第三象限 B .图象必经过点34,2⎛⎫⎪⎝⎭C .图象不可能与坐标轴相交D .y 随x 的增大而减小【答案】D【分析】根据反比例函数图像的性质判断即可.【详解】解:A 、反比例函数6y x=,0k >,经过一、三象限,此选项正确,不符合题意;B 、将点34,2⎛⎫⎪⎝⎭代入6y x=中,等式成立,故此选项正确,不符合题意;C 、反比例函数不可能坐标轴相交,此选项正确,不符合题意;D 、反比例函数图像分为两部分,不能一起研究增减性,故此选项错误,符合题意;故选:D .【点睛】本题主要考查反比例函数图像的性质,熟知反比例函数的图像的性质是解题关键.2.(2021·四川达州市)在反比例函数21k y x+=(k 为常数)上有三点()11,A x y ,()22,B x y ,()33,C x y ,若1230x x x <<<,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<【答案】C【分析】根据k >0判断出反比例函数的增减性,再根据其坐标特点解答即可.【详解】解:∵210k +>,∴反比例函数图象的两个分支在第一、三象限,且在每个象限内y 随x 的增大而减小,∵B (x 2,y 2),C (x 3,y 3)是双曲线ky x=上的两点,且320x x >>,∴点B 、C 在第一象限,0<y 3<y 2,∵A (x 1,y 1)在第三象限,∵y 1<0,∴132y y y <<.故选:C .【点睛】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,理解基本性质是解题关键.3.(2021·浙江杭州市)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x=-和21y x =-- D .11y x=-和21y x =-+ 【答案】A【分析】根据题中所给定义及一元二次方程根的判别式可直接进行排除选项. 【详解】解:当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=, 对于A 选项则有210m m +-=,由一元二次方程根的判别式可得:241450b ac -=+=>,所以存在实数m ,故符合题意;对于B 选项则有210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;对于C 选项则有110m m---=,化简得:210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;对于D 选项则有110m m--+=,化简得:210m m -+=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;故选A . 【点睛】本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键. 4.(2021·天津)若点()()()1235,,1,,5,A y B y C y -都在反比例函数5y x=-的图象上,则123,,y y y 的大小关系是( )A .123y y y <<B .231y y y <<C .132y y y <<D .312y y y <<【答案】B【分析】将A 、B 、C 三点坐标代入反比例函数解析式,即求出123、、y y y 的值,即可比较得出答案.【详解】分别将A 、B 、C 三点坐标代入反比例函数解析式得:1515y =-=-、2551y =-=-、3515y =-=-.则231y y y <<.故选B . 【点睛】本题考查比较反比例函数值.掌握反比例函数图象上的点的坐标满足其解析式是解答本题的关键.5.(2021·四川乐山市)如图,直线1l 与反比例函数3(0)y x x=>的图象相交于A 、B 两点,线段AB 的中点为点C ,过点C 作x 轴的垂线,垂足为点D .直线2l 过原点O 和点C .若直线2l 上存在点(,)P m n ,满足APB ADB ∠=∠,则m n +的值为( )A.3B .3或32C .3或3D .3【答案】A【分析】根据题意,得()1,3A ,()3,1B ,直线2l :y x =;根据一次函数性质,得m n =;根据勾股定理,得PC =PA ,PB ,FB ,根据等腰三角形三线合一性质,得()2,2C ,OC AB ⊥;根据勾股定理逆定理,得90ABD ∠=︒;结合圆的性质,得点A 、B 、D 、P 共圆,直线2l 和AB 交于点F ,点F 为圆心;根据圆周角、圆心角、等腰三角形的性质,得2FC =;分PC PF FC =+或PC PF FC =-两种情况,根据圆周角、二次根式的性质计算,即可得到答案.【详解】根据题意,得3,33A ⎛⎫ ⎪⎝⎭,33,3B ⎛⎫ ⎪⎝⎭,即()1,3A ,()3,1B ∵直线2l 过原点O 和点C ∴直线2l :y x = ∵(,)P m n 在直线2l 上∴m n = ∴PC =连接PA ,PB ,FB ∴PA PB =,线段AB 的中点为点C ∴()2,2C ,OC AB ⊥ 过点C 作x 轴的垂线,垂足为点D ∴()2,0D∴AD ==,AB ==BD ==∴222AD AB BD =+ ∴90ABD ∠=︒∴点A 、B 、D 、P 共圆,直线2l 和AB 交于点F ,点F为圆心∴cos BD ADB AD ∠== ∵AC BC =,12FB FA AD ==∴12BFC AFB ∠=∠∵APB ADB ∠=∠,且12APB AFB ∠=∠ ∴APB ADB BFC ∠=∠=∠∴cos cos FC APB BFC FB ∠=∠===FC = ∴PC PF FC =+或PC PF FC =- 当PC PF FC =-时,APB ∠和ADB ∠位于直线AB 两侧,即180APB ADB ∠+∠=︒ ∴PC PF FC =-不符合题意∴22PC PF FC =+=+,且2m < ∴)2PC m ==-)2m -=∴32m =∴23m n m +==A .【点睛】本题考查了圆、等腰三角形、反比例函数、一次函数、三角函数、勾股定理、二次根式的知识;解题的关键是熟练掌握圆心角、圆周角、等腰三角形三线合一、三角函数、勾股定理的性质,从而完成求解.6.(2021·重庆)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥X 轴,AO ⊥AD ,AO =A D .过点A 作AE ⊥CD ,垂足为E ,DE =4CE .反比例函数()0ky x x =>的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若118EOFS=,则k 的值为( )A .73B .214C .7D .212【答案】A【分析】延长EA 交x 轴于点G ,过点F 作x 轴的垂线,垂足分别为H ,则可得△DEA ≌△AGO ,从而可得DE =AG ,AE =OG ,若设CE =a ,则DE =AG =4a ,AD =DC =DE +CE =5a ,由勾股定理得AE =OG =3a ,故可得点E 、A 的坐标,由AB 与x 轴平行,从而也可得点F 的坐标,根据EOFEOGFOHEGHF S SS S=+-梯形 ,即可求得a 的值,从而可求得k 的值.【详解】如图,延长EA 交x 轴于点G ,过点F 作x 轴的垂线,垂足分别为H ∵四边形ABCD 是菱形∴CD =AD =AB ,CD ∥AB ∵AB ∥x 轴,AE ⊥CD ∴EG ⊥x 轴,∠D +∠DAE =90゜∵OA ⊥AD ∴∠DAE +∠GAO =90゜∴∠GAO =∠D ∵OA =OD ∴△DEA ≌△AGO (AAS )∴DE =AG ,AE =OG设CE =a ,则DE =AG =4CE =4a ,AD =AB =DC =DE +CE =5a在Rt △AED 中,由勾股定理得:AE =3a ∴OG =AE =3a ,GE =AG +AE =7a ∴A (3a ,4a ),E (3a ,7a )∵AB ∥x 轴,AG ⊥x 轴,FH ⊥x 轴∴四边形AGHF 是矩形 ∴FH =AG =3a ,AF =GH∵E 点在双曲线()0ky x x =>上∴221ka =即221a y x=∵F点在双曲线221a y x=上,且F 点的纵坐标为4a ∴214a x =即214aOH =∴94a GH OH OG =-=∵EOFEOGFOHEGHF SSS S =+-梯形∴1191211137(74)4224248a a a a a a a ⨯⨯++⨯-⨯⨯= 解得:219a = ∴217212193k a ==⨯= 故选:A .【点睛】本题是反比例函数与几何的综合题,考查了菱形的性质,矩形的判定与性质,三角形全等的判定与性质等知识,关键是作辅助线及证明△DEA ≌△AGO ,从而求得E 、A 、F 三点的坐标.7.(2021·江苏扬州市)如图,点P 是函数()110,0k y k x x=>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0k y k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:①//CD AB ;②122OCDk kS-=;③()21212DCPk k Sk -=,其中正确的是( )A .①②B .①③C .②③D .①【答案】B【分析】设P (m ,1k m),分别求出A ,B ,C ,D 的坐标,得到PD ,PC ,PB ,P A 的长,判断PD PB和PCPA 的关系,可判断①;利用三角形面积公式计算,可得△PDC的面积,可判断③;再利用OCD OAPB OBD OCA DPC S S S S S =---△△△△计算△OCD 的面积,可判断②.【详解】解:∵PB ⊥y 轴,P A ⊥x 轴,点P 在1k y x =上,点C ,D 在2ky x=上,设P (m ,1k m), 则C (m ,2k m ),A (m ,0),B (0,1k m ),令12k k m x =,则21k m x k =,即D (21k m k ,1k m), ∴PC =12k k m m -=12k k m -,PD =21k m m k -=()121m k k k -, ∵()121121m k k k k k PD PB m k --==,121211k k k k PC m k PA k m--==,即PD PCPB PA =,又∠DPC =∠BP A ,∴△PDC ∽△PBA ,∴∠PDC =∠PBC ,∴CD ∥AB ,故①正确; △PDC的面积=12PD PC ⨯⨯=()1212112m k k k k k m--⨯⨯=()21212k k k -,故③正确;OCDOAPB OBD OCA DPC S S S S S =---△△△△=()112221222112k k k k k k ----=()2121122k k k k k ---=()()21121112222k k k k k k k ---=()22112211222k k k k k k ---=221212k k k -,故②错误;故选B .【点睛】此题主要考查了反比例函数的图象和性质,k 的几何意义,相似三角形的判定和性质,解题关键是表示出各点坐标,得到相应线段的长度. 8.(2021·浙江宁波市)如图,正比例函数()1110y k x k =<的图象与反比例函数()2220k y k x=<的图象相交于A ,B 两点,点B 的横坐标为2,当12y y >时,x 的取值范围是( )A .2x <-或2x > B .20x -<<或2x > C .2x <-或02x << D .20x -<<或02x << 【答案】C【分析】根据轴对称的性质得到点A 的横坐标为-2,利用函数图象即可确定答案. 【详解】解:∵正比例函数与反比例函数都关于原点对称,∴点A 与点B 关于原点对称,∵点B 的横坐标为2,∴点A 的横坐标为-2,由图象可知,当2x <-或02x <<时,正比例函数()1110y k x k =<的图象在反比例函数()2220k y k x=<的图象的上方,∴当2x <-或02x <<时,12y y >,故选:C . 【点睛】此题考查正比例函数与反比例函数的性质及相交问题,函数值的大小比较,正确理解图象是解题的关键.9.(2021·浙江金华市)已知点()()1122,,,A x y B x y 在反比例函数12y x=-的图象上.若120x x <<,则( )A .120y y <<B .210y y <<C .120y y <<D .210y y <<【答案】B【分析】根据反比例函数的图象与性质解题. 【详解】解:反比例函数12y x=-图象分布在第二、四象限, 当0x <时,0y > 当0x >时,0y <120x x <<120y y ∴>>故选:B .【点睛】本题考查反比例函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.10.(2021·江苏连云港市)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(1,1)-;乙:函数图像经过第四象限;丙:当0x >时,y 随x 的增大而增大.则这个函数表达式可能是( ) A .y x =- B .1y x =C .2y xD .1y x=-【答案】D【分析】根据所给函数的性质逐一判断即可.【详解】解:A .对于y x =-,当x =-1时,y =1,故函数图像经过点(1,1)-;函数图象经过二、四象限;当0x >时,y 随x 的增大而减小.故选项A 不符合题意; B .对于1y x =,当x =-1时,y =-1,故函数图像不经过点(1,1)-;函数图象分布在一、三象限;当0x >时,y 随x 的增大而减小.故选项B 不符合题意;C .对于2y x ,当x =-1时,y =1,故函数图像经过点(1,1)-;函数图象分布在一、二象限;当0x >时,y 随x 的增大而增大.故选项C 不符合题意;D .对于1y x=-,当x =-1时,y =1,故函数图像经过点(1,1)-;函数图象经过二、四象限;当0x >时,y 随x 的增大而增大.故选项D 符合题意;故选:D【点睛】本题考查的是一次函数、二次函数以及反比例函数性质,熟知相关函数的性质是解答此题的关键.11.(2021·浙江温州市)如图,点A ,B 在反比例函数k y x=(0k >,0x >)的图象上,AC x ⊥轴于点C ,BD x ⊥轴于点D ,BE y ⊥轴于点E ,连结AE .若1OE =,23OC OD =,AC AE =,则k 的值为( )A .2B .2C .94D .【答案】B【分析】设OD =m ,则OC =23m ,设AC =n ,根据213m n m =⨯求得32n =,在Rt △AEF中,运用勾股定理可求出m =2,故可得到结论. 【详解】解:如图,设OD =m ,∵23OC OD =∴OC =23m∵BD x ⊥轴于点D ,BE y ⊥轴于点E ,∴四边形BEOD 是矩形∴BD =OE =1∴B (m ,1)设反比例函数解析式为ky x=,∴k =m ×1=m 设AC =n ∵AC x ⊥轴∴A (23m ,n )∴23m n k m ==,解得,n =32,即AC =32 ∵AC =AE ∴AE =32在Rt △AEF 中,23EF OC m ==,31122AF AC FC =-=-=由勾股定理得,222321()()()232m =+ 解得,2m =2k = 故选:B 【点睛】此题考查了反比例函数的性质、待定系数法求函数的解析式.此题难度较大,注意掌握数形结合思想与方程思想的应用.12.(2021·浙江嘉兴市)已知三个点()11,x y ,()22,x y ,()33,x y 在反比例函数2y x=的图象上,其中1230x x x <<<,下列结论中正确的是( ) A .2130y y y <<< B .1230y y y <<< C .3210y y y <<< D .3120y y y <<< 【答案】A【分析】根据反比例函数图像的增减性分析解答.【详解】解:反比例函数2y x=经过第一,三象限,在每一象限内,y 随x 的增大而减小,∴当1230x x x <<<时,2130y y y <<<故选:A .【点睛】本题考查反比例函数的图像性质,掌握反比例函数的图像性质,利用数形结合思想解题是关键.13.(2021·重庆)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数(0,0)ky k x x=>>的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,AEF 的面积为1,则k 的值为( )A .125B .32C .2D .3【答案】D【分析】设D 点坐标为()k a a,,表示出E 、F 、B 点坐标,求出ABF 的面积,列方程即可求解.【详解】解:设D 点坐标为()ka a ,,∵四边形ABCD 是矩形,则A 点坐标为(0)a ,,C 点纵坐标为k a,∵点E 为AC 的中点,则E 点纵坐标为022kk a a+=,∵点E 在反比例函数图象上,代入解析式得2k ka x=,解得,2x a =,∴E 点坐标为(2)2k a a ,,同理可得C 点坐标为(3)ka a,,∵点F 在反比例函数图象上,同理可得F 点坐标为(3)3ka a,,∵点E 为AC 的中点,AEF 的面积为1, ∴2ACFS=,即122CF AB ⋅=,可得,1()(3)223k ka a a a--=,解得3k =,故选:D .【点睛】本题考查了反比例函数的性质和矩形的性质,解题关键是设出点的坐标,依据面积列出方程.14.(2021·四川自贡市)已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A .函数解析式为13I R=B .蓄电池的电压是18VC .当10A I ≤时, 3.6R ≥ΩD .当6R =Ω时,4A I =【答案】C【分析】将将()4,9代入UI R=求出U 的值,即可判断A ,B ,D ,利用反比例函数的增减性可判断C . 【详解】解:设U I R=,将()4,9代入可得36I R =,故A 错误; ∴蓄电池的电压是36V ,故B 错误;当10A I ≤时, 3.6R ≥Ω,该项正确; 当当6R =Ω时,6A I =,故D 错误,故选:C .【点睛】本题考查反比例函数的实际应用,掌握反比例函数的图象与性质是解题的关键.15.(2021·浙江丽水市)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力 F F F F 丁乙甲丙、、、,将相同重量的水桶吊起同样的高度,若F F F F <<<甲丁丙乙,则这四位同学对杆的压力的作用点到支点的距离最远的是( )A .甲同学B .乙同学C .丙同学D .丁同学【答案】B【分析】根据物理知识中的杠杆原理:动力×动力臂=阻力×阻力臂,力臂越大,用力越小,即可求解.【详解】解:由物理知识得,力臂越大,用力越小,根据题意,∵ F F F F <<<甲丁丙乙,且将相同重量的水桶吊起同样的高度, ∴乙同学对杆的压力的作用点到支点的距离最远,故选:B .【点睛】本题考查反比例函数的应用,属于数学与物理学科的结合题型,立意新颖,掌握物理中的杠杆原理是解答的关键. 二、填空题1.(2021·浙江绍兴市)如图,在平面直角坐标系中,正方形ABCD 的顶点A 在x 轴正半轴上,顶点B ,C 在第一象限,顶点D 的坐标5(,2)2. 反比例函数k y x=(常数0k >,0x >)的图象恰好经过正方形ABCD 的两个顶点,则k 的值是_______.【答案】5或22.5【分析】先设一个未知数用来表示出B 、C 两点的坐标,再利用反比例函数图像恰好经过B 、C 、D 的其中两个点进行分类讨论,建立方程求出未知数的值,符合题意时进一步求出k 的值即可.【详解】解:如图所示,分别过B 、D 两点向x 轴作垂线,垂足分别为F 、E 点,并过C 点向BF 作垂线,垂足为点G ;∵正方形ABCD ,∴∠DAB =90°,AB =BC =CD =DA ,∴∠DAE +∠BAF =90°, 又∵∠DAE +∠ADE =90°,∠BAF +∠ABF =90°, ∴∠DAE =∠ABF ,∠ADE =∠BAF ,∴ADE ≌BAF ,同理可证△ADE ≌△BAF ≌△CBG ;∴DE =AF =BG ,AE =BF =CG ;设AE =m , ∵点D 的坐标 (52,2) ,∴OE=52,DE =AF =BG =2,∴B (92m +,m ),C (92,2m +), ∵5252⨯=,当()9252m +=时,809m =-<,不符题意,舍去;当952m m ⎛⎫+= ⎪⎝⎭时,由0m ≥解得m =,符合题意;故该情况成立,此时 5k =; 当()99222m m m ⎛⎫+=+ ⎪⎝⎭时,由 0m ≥解得3m =,符合题意,故该情况成立,此时()93222.52k =⨯+=; 故答案为:5或22.5.【点睛】本题综合考查了全等三角形的判定与性质、正方形的性质、反比例函数的图像与性质、解一元二次方程等内容,解题的关键是牢记相关概念与性质,能根据题意建立相等关系列出方程等,本题涉及到了分类讨论和数形结合的思想方法等.2.(2021·湖南)在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则m 的取值范围是________.【答案】m <3【分析】根据反比例函数的增减性,列出关于m 的不等式,进而即可求解. 【详解】解:∵在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,∴m -3<0,即:m <3.故答案是:m <3.【点睛】本题主要考查反比例函数的性质,掌握反比例函数ky x=,在反比例函数的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则k <0,是解题的关键.3.(2021·湖北武汉市)已知点()1,A a y ,()21,B a y +在反比例函数21m y x+=(m是常数)的图象上,且12y y <,则a 的取值范围是__________. 【答案】10a -<<【分析】根据反比例函数的增减性解答.【详解】解:∵210m +>,∴图象经过第一、三象限,在每个象限内,y 随着x 的增大而减小,∵点()1,A a y ,()21,B a y +在反比例函数21m y x+=(m是常数)的图象上,且12y y <,1a a <+ ,∴010a a <⎧⎨+>⎩,∴10a -<<,故答案为:10a -<<.【点睛】此题考查反比例函数的性质:当0k >时,在每个象限内y 随着x 的增大而增大;当0k <时,在每个象限内y 随x 的增大而减小.4.(2021·湖南株洲市)点()11,A x y 、()121,B x y +是反比例函数ky x=图像上的两点,满足:当1>0x 时,均有12y y <,则k 的取值范围是__________. 【答案】k <0【分析】先分析该两点所在的图像的象限和增减性,最后确定k 的取值范围即可. 【详解】解:因为当10x >时,110x +>,说明A 、B 两点同时位于第一或第四象限, ∵当10x >时,均有12y y <,∴在该图像上,y 随x 的增大而增大, ∴A 、B 两点同时位于第四象限,所以k <0,故答案为:k <0.【点睛】本题考查了反比例函数的图像和性质,解决本题的关键是理解并牢记反比例函数的图像和性质,能根据点的坐标情况分析其图像特点等,涉及了数形结合的思想方法.5.(2021·陕西)若()11,A y ,()23,B y 是反比例函数2112m y m x -⎛⎫=< ⎪⎝⎭图象上的两点,则1y 、2y 的大小关系是1y ______2y (填“>”、“=”或“<”) 【答案】<【分析】先根据不等式的性质判断2-10m <,再根据反比例函数的增减性判断即可. 【详解】解:∵12m <∴1222m <⨯即2-10m <∴反比例函数图像每一个象限内,y 随x 的增大而增大∵1<3∴1y <2y 故答案为:<. 【点睛】本题考查反比例函数的增减性、不等式的性质、熟练掌握反比例函数的性质是关键.6.(2021·浙江宁波市)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC 的面积为_________.【答案】14或32【分析】根据题意,点B 不可能在坐标轴上,可对点B 进行讨论分析:①当点B 在边DE 上时;②当点B 在边CD 上时;分别求出点B 的坐标,然后求出OBC 的面积即可.【详解】解:根据题意,∵点11,B x y⎛⎫⎪⎝⎭称为点(),A x y 的“倒数点”,∴0x ≠,0y ≠,∴点B 不可能在坐标轴上;∵点A 在函数()20=>y x x的图像上,设点A 为2(,)x x,则点B 为1(,)2x x ,∵点C 为()3,0,∴3OC =,①当点B 在边DE 上时;点A 与点B 都在边DE 上, ∴点A 与点B 的纵坐标相同,即22x x =,解得:2x =,经检验,2x =是原分式方程的解;∴点B 为1(,1)2,∴OBC 的面积为:133122S =⨯⨯=; ②当点B 在边CD 上时;点B 与点C 的横坐标相同,∴13x =,解得:13x =,经检验,13x =是原分式方程的解;∴点B 为1(3,)6, ∴OBC 的面积为:1113264S =⨯⨯=;故答案为:14或32. 【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.7.(2021·云南)若反比例函数的图象经过点()1,2-,则该反比例函数的解析式(解析式也称表达式)为_________.【答案】2y x=- 【分析】先设ky x=,再把已知点的坐标代入可求出k 值,即得到反比例函数的解析式.【详解】解:设反比例函数的解析式为ky x=(k ≠0), ∵函数经过点(1,-2),∴21k -=,得k =-2,∴反比例函数解析式为2y x=-,故答案为:2y x=-.【点睛】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点. 三、解答题1.(2021·湖北随州市)如图,一次函数1y kx b =+的图象与x 轴、y 轴分别交于点A ,B ,与反比例函数2my x=(0m >)的图象交于点()1,2C ,()2,D n .(1)分别求出两个函数的解析式;(2)连接OD ,求BOD 的面积. 【答案】(1)22y x=,13y x =-+;(2)3 【分析】(1)将点C 、D 的横、纵坐标代入反比例函数的解析式,求得m 、n 的值,从而点D 纵坐标已知,将点C 、D 的横、纵坐标代入一次函数的解析式,求得k 、b 的值,从而两个函数解析式可求;(2)求出点B 的坐标,可知OB 的长,利用三角形的面积公式可求三角形BOD的面积.【详解】解:(1)∵双曲线2my x=(m >0)过点C (1,2)和D (2,n ), ∴212mm n ⎧=⎪⎪⎨⎪=⎪⎩,解得,21m n =⎧⎨=⎩.∴反比例函数的解析式为22y x =. ∵直线1y kx b =+过点C (1,2)和D (2,1),∴221k b k b +=⎧⎨+=⎩,解得,13k b =-⎧⎨=⎩.∴一次函数的解析式为13y x =-+.(2)当x =0时,y 1=3,即B (0,3).∴3OB =.如图所示,过点D 作DE ⊥y 轴于点E .∵D (2,1),∴DE =2.∴1132322BOD S OB DE ==⨯⨯=△.【点睛】本题考查了待定系数法求函数解析式、二元一次方程组、三角形的面积等知识点,熟知解析式、点坐标、线段长三者的相互转化是解题的关键. 2.(2021·湖北恩施州)如图,在平面直角坐标系中,Rt ABC 的斜边BC 在x 轴上,坐标原点是BC 的中点,30ABC ∠=︒,4BC =,双曲线ky x=经过点A .(1)求k ;(2)直线AC 与双曲线y =D .求ABD △的面积.【答案】(1)k =(2)ABD △的面积【分析】(1)过点A 作AE ⊥x 轴于点E ,由题意易得2,60AC ACB =∠=︒,进而可得1,==CE AE (A ,最后问题可求解;(2)由(1)可先求出直线AC 的解析式为y =+,然后联立直线AC 的解析式与反比例函数y =D 的坐标,最后利用割补法求解三角形的面积即可.【详解】解:(1)过点A 作AE ⊥x 轴于点E ,如图所示:∵30ABC ∠=︒,4BC =,90BAC ∠=︒, ∴122AC BC ==,60ACB ∠=︒,∴30EAC ∠=︒,∴112EC AC ==,∴在Rt △AEC 中,AE ==∵点O 是BC 的中点,∴OC =2,∴OE =1,∴(A,∴1k ==; (2)由(1)可得:(A ,()2,0C ,∴设直线AC 的解析式为y kx b =+,则把点A 、C代入得:20k b k b ⎧+=⎪⎨+=⎪⎩解得:k b ⎧=⎪⎨=⎪⎩,∴直线AC的解析式为y =+,联立y =+y =+=,解得:123,1x x ==-(不符合题意,舍去),∴点(3,D ,∴142ABDABCBCDSSS=+=⨯⨯=【点睛】本题主要考查反比例函数与几何的综合及含30°直角三角形的性质、勾股定理,熟练掌握反比例函数与几何的综合及含30°直角三角形的性质、勾股定理是解题的关键.3.(2021·四川广安市)如图,一次函数()1y kx b k 0=+≠的图象与反比例函数()2my m 0x=≠的图象交于()1,A n -,()3,2B -两点.(1)求一次函数和反比例函数的解析式;(2)点P 在x 轴上,且满足ABP △的面积等于4,请直接写出点P 的坐标.【答案】(1)124y x =-+,26y x=-;(2)(1,0)或(3,0)【分析】(1)根据点B 坐标求出m ,得到反比例函数解析式,据此求出点A 坐标,再将A ,B 代入一次函数解析式;(2)设点P 的坐标为(a ,0),求出直线AB 与x 轴交点,再结合△ABP 的面积为4得到关于a 的方程,解之即可.【详解】解:(1)由题意可得:点B (3,-2)在反比例函数2my x=图像上, ∴23m-=,则m =-6,∴反比例函数的解析式为26y x=-,将A (-1,n )代入26y x=-,得:661n =-=-,即A (-1,6),将A ,B 代入一次函数解析式中,得236k b k b -=+⎧⎨=-+⎩,解得:24k b =-⎧⎨=⎩,∴一次函数解析式为124y x =-+;(2)∵点P 在x 轴上,设点P 的坐标为(a ,0),∵一次函数解析式为124y x =-+,令y =0,则x =2,∴直线AB 与x 轴交于点(2,0),由△ABP 的面积为4,可得:()1242A B y y a ⨯-⨯-=,即18242a ⨯⨯-=,解得:a =1或a =3,∴点P 的坐标为(1,0)或(3,0).【点睛】本题考查一次函数和反比例函数相交的有关问题;通常先求得反比例函数解析式;较复杂三角形的面积可被x 轴或y 轴分割为2个三角形的面积和. 4.(2021·浙江杭州市)在直角坐标系中,设函数11ky x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-,①求1k ,2k 的值.②当12y y <时,直接写出x 的取值范围.(2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值. 【答案】(1)①12k =,22k =;②1x >;(2)0【分析】(1)①根据点A 关于y 轴的对称点为点B ,可求得点A 的坐标是()1,2,再将点A 的坐标分别代入反比例函数、正比例函数的解析式中,即可求得12k =,22k =;②观察图象可解题;(2)将点B 代入33k y x=,解得3k 的值即可解题. 【详解】解(1)①由题意得,点A 的坐标是()1,2, 因为函数11k y x=的图象过点A ,所以12k =,同理22k =. ②由图象可知,当12y y <时,反比例函数的图象位于正比例函数图象的下方,即当12y y <时,1x >.(2)设点A 的坐标是()00,x y ,则点B 的坐标是()00,x y -,所以100k x y =,300k x y =-,所以310k k +=.【点睛】本题考查关于y 轴对称的点的特征、待定系数法求反比例函数、正比例函数的解析式等知识,是重要考点,难度较易,掌握相关知识是解题关键.5.(2021·山东临沂市)已知函数()()()31 31131x x y x x x x⎧≤-⎪⎪=-⎨⎪⎪≥⎩<< (1)画出函数图象;列表:描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由; (3)设1122(,),(,)x y x y 是函数图象上的点,若120x x +=,证明:120y y +=. 【答案】(1)见解析;(2)有,当1x =时,最大值为3;当1x =-时,函数有最小值3-;(3)见解析【分析】(1)选取特殊值,代入函数解析式,求出y 值,列表,在图像中描点,画出图像即可;(2)观察图像可得函数的最大值;(3)根据120x x +=,得到1x 和2x 互为相反数,再分111x -<<,11x ≤-,11x ≥,分别验证120y y +=. 【详解】解:(1)列表如下:函数图像如图所示:(2)根据图像可知:当x =1时,函数有最大值3;当1x =-时,函数有最小值3-; (3)∵1122(,),(,)x y x y 是函数图象上的点,120x x +=,∴1x 和2x 互为相反数, 当111x -<<时,211x -<<,∴113y x =,223y x =,∴()1212123330y y x x x x +=+=+=; 当11x ≤-时,21x ≥,则()121212123330x x y y xx x x ++=+==;同理:当11x ≥时,21x ≤-,()121212123330x x y y xx x x ++=+==,综上:120y y +=.【点睛】本题主要考查正比例函数,反比例函数的图像和性质,描点法画函数图像,准确画出图像,理解120x x +=是解题的关键.6.(2021·安徽)已知正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (m ,2).(1)求k ,m 的值;(2)在图中画出正比例函数y kx =的图象,并根据图象,写出正比例函数值大于反比例函数值时x 的取值范围.【答案】(1),k m 的值分别是23和3;(2)30x -<<或3x >【分析】(1)把点A (m ,2)代入6y x=求得m 的值,从而得点A 的坐标,再代入(0)y kx k =≠求得k 值即可;(2)在坐标系中画出y kx =的图象,根据正比例函数(0)y kx k =≠的图象与反比例函数6y x=图象的两个交点坐标关于原点对称,求得另一个交点的坐标,观察图象即可解答.【详解】(1)将(,2)A m 代入6y x=得62m =, 3m ∴=, (3,2)A ∴, 将(3,2)A 代入y kx =得23k =, 23k ∴=, ,k m ∴的值分别是23和3.(2)正比例函数23y x =的图象如图所示,∵正比例函数(0)y kx k =≠与反比例函数6y x =的图象都经过点A (3,2),∴正比例函数(0)y kx k =≠与反比例函数6y x=的图象的另一个交点坐标为(-3,-2),由图可知:正比例函数值大于反比例函数值时x 的取值范围为30x -<<或3x >. 【点睛】本题是正比例函数与反比例函数的综合题,利用数形结合思想是解决问题的关键.7.(2021·浙江)已知在平面直角坐标系xOy 中,点A 是反比例函数1(0)y x x=>图象上的一个动点,连结,AO AO 的延长线交反比例函数(0,0)ky k x x=><的图象于点B ,过点A 作AE y ⊥轴于点E .(1)如图1,过点B 作BF x ⊥轴于点F ,连结EF .①若1k =,求证:四边形AEFO 是平行四边形;②连结BE ,若4k =,求BOE △的面积.(2)如图2,过点E 作//EP AB ,交反比例函数(0,0)ky k x x=><的图象于点P ,连结OP .试探究:对于确定的实数k ,动点A 在运动过程中,POE △的面积是否会发生变化?请说明理由. 【答案】(1)①证明见解析,②1;(2)不改变,见解析【分析】(1)①计算得出AE OF a ==,利用平行四边形的判定方法即可证明结论;②证明AEO BDO ∽,利用反比例函数k 的几何意义求得212()2AO BO=,即可求解;(2)点A 的坐标为1()a a ,,点P 的坐标为()k b b,,可知四边形AEGO是平行四边形,由AEO GHP ∽,利用相似三角形的性质得到关于b a的一元二次方程,利用三角形的面积公式即可求解.【详解】(1)①证明:设点A 的坐标为1()a a,, 则当1k =时,点B 的坐标为1()a a--,,AE OF a ∴==, AE y ⊥轴,//AE OF ∴,∴四边形AEFO 是平行四边形;②解:过点B 作BD y ⊥轴于点D ,AE y ⊥轴,//AE BD ∴,AEO BDO ∴∽, 2()AEO BDOSAO SBO∴=, ∴当4k =时,则212()2AO BO=,即12AO BO =.21BOEAOES S∴==;(2)解 不改变. 理由如下:过点P 作PH x ⊥轴于点H PE ,与x 轴交于点G ,设点A 的坐标为1()a a,,点P 的坐标为()k b b,, 则1kAE a OE PH a b===-,,,OH =b ,由题意,可知四边形AEGO 是平行四边形,∴OG =AE =a ,∠HPG =∠OEG =∠EOA ,且∠PHG =∠OEA =90°,∴AEO GHP ∽, AE EOGH a b GH PH=--=,,即1a a k ab b=---, ∴1b a k ab+=,2()0b b k aa∴+-=,解得ba=。

中考数学反比例函数(大题培优 易错 难题)含答案解析

中考数学反比例函数(大题培优 易错 难题)含答案解析

中考数学反比例函数(大题培优易错难题)含答案解析一、反比例函数1.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y= 得3= ,解得:k=6(2)解:OD=2+2=4,在y= 中令x=4,解得y= .则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•BD= (3+ )×2= .则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.2.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b 时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,理由如下:y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,∴﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”(2)解:y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),∴顶点坐标为:(1,a﹣1),又∵抛物线y=x2﹣2x+a的开口向上,∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴0≤a≤1(3)解:y1﹣y2= ﹣(﹣2x+4)= +2x﹣4,构造函数y= +2x﹣4,∵y= +2x﹣4∴当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,即a﹣2≤y≤ ,∵函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴1≤a≤2;∴a的最大值是2,a的最小值1【解析】【分析】(1)y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”;(2)y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣2x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y1﹣y2≤1,即0≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y1﹣y2≤1,即1≤a≤2,所以a的最大值是2,a 的最小值1.3.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.4.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.5.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.6.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.7.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= (m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y= (m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.【答案】(1)解:∵双曲线y= (m≠0)经过点A(2,﹣3),∴m=﹣6.∴双曲线的表达式为y=﹣.∵点B(n,2)在双曲线y=﹣上,∴点B的坐标为(﹣3,2).∵直线y=kx+b经过点A(2,﹣3)和点B(﹣3,2),∴解得,∴直线的表达式为y=﹣x﹣1(2)解:符合条件的点P的坐标是(1,﹣6)或(6,﹣1).【解析】【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)根据图象和函数解析式得出即可.8.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB= =5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形(2)解:∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,∴4= ,∴k=20,∴反比例函数的解析式为:y=(3)解:∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y= ,得y= ,∴M点的纵坐标为:﹣4= ,∴M点的坐标为:(0,)【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.9.如图,已知二次函数的图象与y轴交于点A(0,4),与x 轴交于点B,C,点C坐标为(8,0),连接AB,AC.(1)请直接写出二次函数的解析式.(2)判断△ABC的形状,并说明理由.(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.【答案】(1)解:∵二次函数的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标(8,0),∴解得∴抛物线表达式:(2)解:△ABC是直角三角形.令y=0,则解得x1=8,x2=-2,∴点B的坐标为(-2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∴BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形(3)解:∵A(0,4),C(8,0),AC= =4 ,①以A为圆心,以AC长为半径作圆,交轴于N,此时N的坐标为(-8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为( ,0)或( ,0)③作AC的垂直平分线,交g轴于N,此时N的坐标为(3,0),综上,若点N在轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(-8,0)、( ,0)、(3,0)、 ,0)【解析】【分析】(1)根据待定系数法即可求得;(2)根据拋物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC=10然后根据勾股定理的逆定理即可证得△ABC是直角三角形(3)分别以A.C两点为圆心,AC长为半径画弧,与m轴交于三个点,由AC的垂直平分线与c轴交于一个点,即可求得点N的坐标10.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.11.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D 在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.(1)【探究发现】如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;(2)【数学思考】如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;(3)【拓展引申】如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.【答案】(1)解:∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DB=DP(2)解:∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,且DC=DG,∠DCP=∠DGB=135°,∴△CDP≌△GDB(ASA)∴DB=DP(3)解:如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,∵MH⊥MN,∴∠AMH+∠NMB=90°∵CD∥AB,∠CDB=90°∴∠DBM=90°∴∠NMB+∠MNB=90°∴∠HMA=∠MNB,且AM=BN,∠CAB=∠CBN=45°∴△AMH≌△BNQ(ASA)∴AH=BQ∵∠ACB=90°,AC=BC=4,∴AB=4 ,AC-AH=BC-BQ∴CH=CQ∴∠CHQ=∠CQH=45°=∠CAB∴HQ∥AB∴∠HQM=∠QMB∵∠ACB=∠HMQ=90°∴点H,点M,点Q,点C四点共圆,∴∠HCM=∠HQM∴∠HCM=∠QMB,且∠A=∠CBA=45°∴△ACM∽△BMQ∴∴∴BQ= +2∴AM=2 时,BQ有最大值为2.【解析】【分析】(1)DB=DP,理由如下:根据等腰直角三角形的性质得出∠CAB=∠CBA=45°,根据二直线平行,内错角相等得出∠CBA=∠DCB=45°,根据三角形的内角和得出∠DCB=∠DBC=45°,最后根据等角对等边得出 DB=DC ,即DB=DP;(2)利用ASA判断出△CDP≌△GDB ,再根据全等三角形的对应边相等得出DB=DP;(3)如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,利用ASA判断出△AMH≌△BNQ 根据全等三角形的对应边相等得出AH=BQ,进而判断出点H,点M,点Q,点C四点共圆,根据圆周角定理得出∠HCM=∠HQM ,然后判断出△ACM∽△BMQ ,根据相似三角形的对应边成比例得出,根据比例式及偶数次幂的非负性即可得出求出答案.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。

中考数学-反比例函数专题练习(含答案)

中考数学-反比例函数专题练习(含答案)

中考数学-反比例函数专题练习(含答案)一、单选题1.已知ab<0,点P(a、b)在反比例函数的图象上,则直线y=ax+b不经过(不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象与函数 的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A. ﹣1<x0<0B. 0<x0<1C. 1<x0<2D. 2<x0<33.小兰画了一个函数y= 的图象如图,那么关于x的分式方程的分式方程 =2的解是()A. x=1B. x=2C. x=3D. x=44.反比例函数y= 的图象,在每个象限内,y的值随x值的增大而增大,则k可以为()A. 0B. 1C. 2D. 35.若y=(5+m)x 2+n是反比例函数,则m、n的取值是(的取值是()A. m=﹣5,n=﹣3B. B. m≠m≠﹣5,n=﹣3 C. C. m≠m≠﹣5,n=3 D. D. m≠m≠﹣5,n=﹣4 6.若是反比例函数,则a的取值为的取值为A. 1B. ﹣1C. ±1D. 任意实数任意实数 7.如图,如图,已知点已知点A是函数y=x与y=的图象在第一象限内的交点,点B在x轴负半轴上,轴负半轴上,且且OA=OB,则△AOB的面积为()A. 2B.C. 2D. 48.直线y=﹣ x﹣1与反比例函数与反比例函数 (x<0)的图象交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为()A. ﹣2B. ﹣4C. ﹣6D. ﹣89.如图,直线y=-x与双曲线y=相交于A(-2,1)、B两点,则点B坐标为( )A. (2,-1)B. (1,-2)C. (1,-)D. (,-1)10.已知(x1 , y1),(x2 , y2),(x3 , y3)是反比例函数的图象上的三个点,是反比例函数且x1<x2<0,x3>0,则y1 , y2 , y3的大小关系是()A. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y111.下列关于y与x的表达式中,表示y是x的反比例函数的是(的反比例函数的是( )A. y=4xB. =﹣2C. xy=4D. y=4x﹣312.已知函数y=的图象如图,当x≥﹣1时,y的取值范围是(的取值范围是( )A. y<﹣1B. B. y≤y≤﹣1C. C. y≤y≤﹣1或y>0D. y<﹣1或y≥013.已知反比例函数y= 的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( )A. (﹣6,1)B. (1,6)C. (2,﹣3)D. (3,﹣2)14.某反比例函数(k≠0)的图象经过(-2, 1 ),则它也经过的点是 ( )A. (1,-2)B. (1,2)C. (2,1)D. (4,-2)15.在反比例函数y=图象的每条曲线上,y 都随x 的增大而增大,则k 的取值范围是( )A. k >1B. k >0C. C. k≥1k≥1k≥1D. ﹣l≤k <116.计划修建铁路lkm ,铺轨天数为t (d ),每日铺轨量s (km/d ),则在下列三个结论中,正确的是(确的是( )①当l 一定时,t 是s 的反比例函数;的反比例函数;②当l 一定时,l 是s 的反比例函数;的反比例函数;③当s 一定时,l 是t 的反比例函数.的反比例函数.A. 仅①B. 仅②C. 仅③D. D. ①①,②,③17.根据下表中,反比例函数的自变量x 与函数y 的对应值,可得p 的值为(的值为( )x -2 1y 3 pA. 3B. 1C. -2D. -618.对于函数y= (k >0),下列说法正确的是( )A. y 随x 的增大而减小B. y 随x 的增大而增大的增大而增大C. 当x <0时,y 随x 的增大而减小D. 图象在第二、四象限内图象在第二、四象限内二、填空题19.图象经过点(﹣1,2)的反比例函数的表达式是________.20.如图,△ABC 三个顶点分别在反比例函数三个顶点分别在反比例函数 , 的图像上,若∠C =90°,AC ∥y轴,BC ∥x 轴,S △ABC =8,则k 的值为________.21.一批零件600个,一个工人每小时做15个,用关系式表示人数x 与完成任务所需的时间y 之间的函数关系式为之间的函数关系式为 ________ .22.反比例函数y=﹣ ,当y 的值小于﹣3时,x 的取值范围是________.三、解答题23.当m 为何值时,函数y=(m ﹣3)x 2﹣|m|是反比例函数?当m 为何值时,此函数是正比例函数?函数?24.如图,在平面直角坐标系中,正比例函数y =kx (k >0)与反比例函数y =的图象分别交于A 、C 两点,已知点B 与点D 关于坐标原点O 成中心对称,且点B 的坐标为(m , 0).其中m >0.(1)四边形ABCD 的是________.(填写四边形ABCD 的形状)(2)当点A 的坐标为(n ,3)时,四边形ABCD 是矩形,求mn 的值.的值.(3)试探究:随着k 与m 的变化,四边形ABCD 能不能成为菱形?若能,请直接写出k 的值;若不能,请说明理由.值;若不能,请说明理由.25.如图,已知A (﹣4,2)、B (n ,﹣4)是一次函数y=kx+b 的图象与反比例函数y=的图象的两个交点.象的两个交点.(1)求此反比例函数和一次函数的解析式;)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.的取值范围.26.已知函数已知函数 y=(5m ﹣3)x 2﹣n +(n+m ), (1)当m ,n 为何值时是一次函数?为何值时是一次函数?(2)当m,n为何值时,为正比例函数?为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?为何值时,为反比例函数?27.已知一个长方体的体积是100cm3 , 它的长是ycm,宽是10cm,高是xcm. (1)写出y与x之间的函数关系式;之间的函数关系式;(2)当x=2cm时,求y的值.的值.答案解析部分一、单选题 1.已知ab<0,点P (a 、b )在反比例函数的图象上,则直线y=ax+b 不经过(不经过() A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C【考点】一次函数与系数的关系,反比例函数图象上点的坐标特征【考点】一次函数与系数的关系,反比例函数图象上点的坐标特征【解析】【分析】点P (a 、b)在反比例函数的图象上,b=1,可知a <0,继而即可判断.断.【解答】∵点P (a 、b)在反比例函数的图象上,的图象上, 代入求得:b=1,又ab <0,∴a <0,y=ax+b=ax+1经过一、二和四象限,不经过第三象限.经过一、二和四象限,不经过第三象限.故选C .【点评】本题考查了一次函数图象与系数的关系及反比例函数图象上点的坐标特征,本题考查了一次函数图象与系数的关系及反比例函数图象上点的坐标特征,难度不难度不大,同时注意数形结合思想的应用.大,同时注意数形结合思想的应用.2.方程x 2+3x ﹣1=0的根可视为函数y=x+3的图象与函数的图象与函数 的图象交点的横坐标,那么用此方法可推断出方程x 2+2x ﹣1=0的实数根x 0所在的范围是( )A. ﹣1<x 0<0B. 0<x 0<1C. 1<x 0<2D. 2<x 0<3【答案】B【考点】反比例函数与一次函数的交点问题【考点】反比例函数与一次函数的交点问题【解析】【解答】解:方程x 2+2x-1=0的实数根可以看作函数y=x+2和y=的交点坐标,的交点坐标,函数大体图象如图所示:函数大体图象如图所示:A 、由图可得,第三象限内图象交点的横坐标小于-2,故-1<x 0<0,不符合题意;,不符合题意;B 、当x=1时,y 1=1+2=3,y 2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故,0<x 0<1,符合题意;,符合题意; C 、当x=1时,y 1=1+2=3,y 2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故,1<x 0<2,不符合题意;,不符合题意;D 、当x=2时,y 1=2+2=4,y 2=, 而4>, 根据函数的增减性可知,第一象限内的交点的横坐标小于2,故,2<x 0<3,不符合题意;故答案为:B【分析】【分析】方程x2+2x ﹣1=0,可变为x+2=,根据函数的观点来看它的根可视为y=x+2和y=的交点的横坐标;函数大体图象如图所示:由图像可知第三象限内图象交点的横坐标小于-2,当x=1时,y 1=1+2=3,y 2= =1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,从而即可得出答案。

中考数学《反比例函数》专项练习及答案

中考数学《反比例函数》专项练习及答案

中考数学《反比例函数》专项练习及答案一、单选题1.函数y=﹣6x的图象经过点A(x1,y1)、B(x2,y2),若x1<x2<0,则y1、y2、0三者的大小关系是()A.y1<y2<0B.y2<y1<0C.y1>y2>0D.y2>y1>02.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数y=1x的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0B.0<x0<1C.1<x0<2D.2<x0<33.如图正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y= 4x(x>0)的图象上,则点E的坐标是()A.(√5+1,√5−1)B.(3+√5,3−√5)C.(√5−1,√5+1)D.(3−√5,3+√5) 4.函数y=kx﹣1与y=﹣k x在同一坐标系中的大致图象可能是下图中的()A.B.C.D.5.已知反比例函数y= 6x在第一象限的图象如图,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=()A.3B.6C.12D.96.如图,过反比例函数y= k x(x>0)的图像上一点A作AB△x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.57.若点P1(x1,y1),P2(x2,y2)在反比例函数y=k x(k>0)的图象上,且x1=﹣x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y28.甲乙两地相距s,汽车从甲地以v(千米/时)的速度开往乙地,所需时间是t(小时),则正确的是为()A.当t为定值时,s与v成反比例B.当v为定值时,s与t成反比例C.当s为定值时,v与t成反比例D.以上三个均不正确9.已知反比例函数y=1x,当x=m时,y=n,则化简(m−1m)(n+1n)的结果是()A.2m2B.2n2C.n2−m2D.m2−n210.已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A.y=24x B.y=3x C.y=12x D.y=6x11.如图,平面直角坐标系中,直线CD分别与x轴、y轴分别交于点D、C,点A、B为线段CD的三等分点,且A、B在反比例函数y=kx(x>0,k>0)的图象上,若△AOD的面积为12,则k的值为()A.2B.4C.6D.812.如图,过点P(2,3)分别作PC△x轴于点C,PD△y轴于点D,PC、PD分别交反比例函数y= 2x(x>0)的图象于点A、B,则四边形BOAP的面积为()A.3B.3.5C.4D.5二、填空题13.在滑草过程中,小明发现滑道两边形如两条双曲线.如图,点A1,A2,A3…在反比例函数y=1x(x>0)的图象上,点B1,B2,B3…在反比例函数y=k x(k>1,x>0)的图象上,A1B1∥A2B2∥⋅⋅⋅∥y轴,已知点A1,A2…的横坐标分别为1,2…,令四边形A1B1B2A2、A2B2 B3A3、…的面积分别为S1、S2、…,(1)用含k的代数式表示S1=;(2)若S19=39,则k=.14.已知点A为双曲线y= k x图象上的点,点O为坐标原点,过点A作AB△x轴于点B,连接OA.若△AOB的面积为5,则k的值为.15.若反比例函数y=1−kx,当x>0时,y随着x的增大而增大,则k的取值范围是. 16.如图,在平面直角坐标系中,四边形AOBD的边OB与x轴的正半轴重合,AD∥OB,DB⊥x轴,对角线AB,OD交于点M.已知AD:OB=2:3,△AMD的面积为4.若反比例函数y=kx的图象恰好经过点M,则k的值为.17.已知反比例函数的表达式为y=1+2mx,A(x1,y1)和B(x2,y2)是反比例函数图象上两点,若x1<0<x2时,y1<y2,则m的取值范围是.18.已知点D是反比例函数上一点,矩形ABCD的周长是16,正方形ABOF和正方形ADGH的面积之和为50,则反比例函数的解析式是.三、综合题19.如图,反比例函数y=mx的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求n的值;(2)结合图象,直接写出不等式mx<kx+b的解集;(3)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.x﹣√3与x,y轴分别交于点A,B,与反比例函数y= k x(k>0)图象交于20.如图,直线y= √33点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标.(2)若AE=AC.①求k的值.②试判断点E与点D是否关于原点O成中心对称?并说明理由.21.某种型号的温控水箱的工作过程是:接通电源后,在初始温度20△下加热水箱中的水;当水温达到设定温度80△时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20△时,再次自动加热水箱中的水至80△时,加热停止:当水箱中的水温下降到20△时,再次自动加热,…,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究,发现水温y是时间x的函数,其中y(单位:△)表示水箱中水的温度,x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了16 min内9个时间点的温控水箱中水的温度y随时间x的变化情况:接通电源后的时间x(单位:min)01234581016…水箱中水的温度y(单位:°C)2035m658064403220…的值为.(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式▲ ;当4<x≤16时,写出一符合表中数据的函数解析式_ ▲ .②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤16时,温度y随时间x变化的函数图象;(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40△时,距离接通电源min.22.已知反比例函数y=k x的图像经过点(23,92).(1)求k的值,并判断点A(−2,16)是否在该反比例函数的图象上;(2)该反比例函数图象在第象限,在每个象限内,y随x的增大而;(3)当−4<x<−1时,求y的取值范围.23.如图,反比例函数y=k x的图象与一次函数y=mx+b的图象交于A(1,3),B(n,−1)两点.求:(1)反比例函数关系式;(2)n的值;(3)一次函数关系式;(4)根据图像回答,当反比例函数的值大于一次函数的值时,x的取值范围.24.如图,反比例函数y=kx(k≠0)的图象与正比例函数y=2x相交于A(1,a),B两点,点C在第四象限,CA△y轴,AB△BC.(1)求反比例函数解析式及点B坐标;(2)求△ABC的面积.参考答案1.【答案】D2.【答案】B 3.【答案】A 4.【答案】D 5.【答案】B 6.【答案】C 7.【答案】D 8.【答案】C 9.【答案】D 10.【答案】C 11.【答案】D 12.【答案】C13.【答案】34(k −1);76114.【答案】10或-10 15.【答案】k>1 16.【答案】54517.【答案】m >−1218.【答案】y =8x或 56x19.【答案】(1)解:把点 A(2,6) 代入 y =m x ,得 m =12 ,则 y =12x把点 B(n,1) 代入 y =12x,得 n =12则 n =12 .(2)2<x <12 或 x <0(3)解:设过点 A(2,6) ,点 B(12,1) 的直线为: y =kx +b 根据题意,得: {6=2k +b 1=12k +b.∴k =−12,b =7则直线 AB 解析式为 y =−12x +7 .如图,设直线 AB 与y 轴的交点为P ,设点E 的坐标为 (0,m) ,连接 AE,BE ,则点P 的坐标为 (0,7) .∴PE=|m−7|.∵S△AEB=S△PEB−S△PEA=5.∴12|m−7|×12−12×|m−7|×2=5.∴12|m−7|×(12−2)=5∴|m−7|=1.∴m1=6,m2=8∴点E的坐标为(0,6)或(0,8)20.【答案】(1)解:当y=0时,得0= √33x﹣√3,解得:x=3.∴点A的坐标为(3,0).(2)解:①过点C作CF△x轴于点F,如图所示.设AE=AC=t,点E的坐标是(3,t)在Rt△AOB中,tan△OAB= OBOA=√33∴△OAB=30°.在Rt△ACF中,△CAF=30°∴CF= 12t,AF=AC•cos30°=√32t∴点C的坐标是(3+ √32t,12t).∴(3+ √32t)× 12t=3t解得:t1=0(舍去),t2=2 √3.∴k=3t=6 √3.②点E与点D关于原点O成中心对称,理由如下:设点D 的坐标是(x , √33x ﹣ √3 )∴x ( √33x ﹣ √3 )=6 √3 ,解得:x 1=6,x 2=﹣3∴点D 的坐标是(﹣3,﹣2 √3 ). 又∵点E 的坐标为(3,2 √3 ) ∴点E 与点D 关于原点O 成中心对称.21.【答案】(1)50(2)解:①y=15x+20| y =320x;②画出的函数图象如解图所示.(3)5622.【答案】(1)解:将 (23,92) 代入函数解析式,得k=3反比例函数解析式为 y =3x当x=-2时, y =−32≠16∴点 A(−2,16) 不在该反比例函数的图象上(2)一、三;增大(3)解:当x=-4时, y =−34,当x=-1时, y =−3在每个象限内, y 随 x 的增大而增大得 −3<y <−3423.【答案】(1)解:∵点A (1,3)在反比例函数 y =kx的图象上∴k=3∴反比例函数的解析式为 y =3x(2)解:∵点B (n ,-1)在反比例函数 y =3x的图象上∴3n=-1 ∴n=-3∴点B 的坐标为(-3,-1)(3)解:点A 、B 在一次函数 y =mx +b 的图象上 ∴{m +b =3−3m +b =−1 ∴{m =1b =2∴一次函数的解析式为 y =x +2(4)解:根据图象可知 ,当x<-3或0<x<1时,反比例函数的值大于一次函数的值24.【答案】(1)解:∵点A(1,a)在y =2x 上∴a =2 ∴A(1,2)把A(1,2)代入y =kx 得k =2∴反比例函数的解析式为y =2x∵A 、B 两点关于原点成中心对称 ∴B(﹣1,﹣2);(2)解:如图所示,作BH△AC 于H ,设AC 交x 轴于点D∵AB△BC .∴△ABC =90°,△BHC =90° ∴△C =△ABH ∵BH△x 轴 ∴△AOD =△ABH ∴△AOD =△C∴tanC =tan∠AOD =ADOD=2 ∵A(1,2),B(﹣1,﹣2)∴AH =4,BH =2,OD=1,AD=2第 11 页 共 11 ∴AB =√AH 2+BH 2=√42+22=2√5,S △AOD =12OD ⋅AD =1 ∵△AOD =△C ,△ADO =△ABC =90° ∴△ADO ~△ABC∴有S △ADO S △ABC =(AD AB )2,即1S △ABC =(22√5)2 解得S △ABC =5.。

中考数学《反比例函数》专项练习(附答案解析)

中考数学《反比例函数》专项练习(附答案解析)

中考数学《反比例函数》专项练习(附答案解析)一、综合题1.已知:如图1,函数y1=kx 和y2=xk(k>1)的图象相交于点A和点B .(1)求点A和点B的坐标(用含k的式子表示);(2)如图2,点C的坐标为(1,k),点D是第一象限内函数y1的图象上的动点,且在点A的右侧,直线AC、BC、AD、BD分别与x轴相交于点E、F、G、H .①判定△CEF的形状,并说明理由;②点D在运动的过程中,∠CAD和∠CBD的度数和是否变化?如果变化,说明理由;如果不变,求出∠CAD和∠CBD的度数和.2.在平面直角坐标系中,我们把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(√2,√2),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=nx(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由.3.如图,点A是坐标原点,点D是反比例函数y=6x(x>0)图象上一点,点B在x轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=6x(x>0)图象于点E.(1)平行四边形BCD 的面积等于 ;(2)设D 点横坐标为m ,试用m 表示点E 的坐标;(要有推理和计算过程) (3)求 CE:EB 的值; (4)求 EB 的最小值.4.如图,一次函数y=kx+b 的图象与反比例函数y= mx 的图象交于点A (﹣3,m+8),B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.5.已知双曲线y=1x (x >0),直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y=﹣x+√2. (1)若k=﹣1,求△OAB 的面积S ; (2)若AB=52√2,求k 的值;(3)设N (0,2√2),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM+PN 最小值,并求PM+PN 取得最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB=√(x 1−x 2)2+(y 1−y 2)2)6.已知反比例函数y=1−2mx( m为常数)的图象在一、三象限.(1)求m的取值范围.(2)如图,若该反比例函数的图象经过▱ ABCD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出反比例函数表达式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为▲ .若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为▲ .7.绘制函数y=x+1x的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0;列表﹣﹣描点﹣﹣连线,得到该函数的图象如图所示.x …-4 -3 -2 -1 −12−13−141413121 2 3 4 …y …−414−313−212−2−212−313−4144143132122 212313414…观察函数图象,回答下列问题:(1)函数图象在第象限;(2)函数图象的对称性是A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形(3)在x>0时,当x=时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x=时,函数y有最(大,小)值,且这个最值等于;=−2x+1是否有实数解?说明理由.(4)方程x+1x8.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(k≠0)的图象经过点H,则k= ;(2)若反比例函数y= kx(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;的图象与函数y1的图象相交于点A,且点A的纵坐标为2.(2)若反比例函数y2=kx①求k的值;②结合图象,当y1>y2时,写出x的取值范围.10.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?11.(如图,四边形ABCD在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数y1=nx 与y2=4nx的图象上,对角线AC⊥BD于点P,AC⊥x轴于点N(2,0)(1)若CN=12,试求n的值;(2)当n=2,点P是线段AC的中点时,试判断四边形ABCD的形状,并说明理由;(3)直线AB与y轴相交于E点.当四边形ABCD为正方形时,请求出OE的长度.12.如图点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= √5,反比例函数y= kx(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.13.如图所示,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且与反比例函数y=m的图象在第二象限交于点C,CD⊥x轴,垂足为点D.若OB=2OA=3OD= x12 .(1)求一次函数与反比例函数的解析式;(2)若两函数图象的另一个交点为E,连结DE,求△CDE的面积;(3)直接写出不等式kx+b≤m的解集.x与y2= 14.某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=k1xk2(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:x操作猜想:(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C .当OA=1时,AB=,BC=,BC AB =;当OA=3时,AB=,BC=,BCAB=;当OA=a时,猜想BCAB=(2)在y轴的正方向上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示BCAB的值,并利用图②加以证明.(3)如图③,若k2=12,BCAB =12,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.15.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P 点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.16.如图,双曲线y1=k1x与直线y2=xk2的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=k1x上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=k1x上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.参考答案与解析1.【答案】(1)解:由题意,联立{y=kxy=xk,解得{x=ky=1或{x=−ky=−1,∵点A在第一象限,点B在第二象限,且k>1,∴A(k,1),B(−k,−1)(2)解:①△CEF是等腰直角三角形,理由如下:设直线BC的解析式为y=k0x+b0,将点B(−k,−1),C(1,k)代入得:{−kk0+b0=−1k0+b0=k,解得{k0=1b0=k−1,则直线BC的解析式为y=x+k−1,当y=0时,x+k−1=0,解得x=1−k,即F(1−k,0),同理可得:点E的坐标为E(1+k,0),∴CF=√(1−k−1)2+(0−k)2=√2k,CE=√(1+k−1)2+(0−k)2=√2k,EF=1+k−(1−k)=2k,∴CE=CF,CE2+CF2=4k2=EF2,∴△CEF是等腰直角三角形;②由题意,设点D的坐标为D(m,km),则m>k>1,∵△CEF是等腰直角三角形,∴∠CFE=∠CEF=45°,∴∠BFH=∠AEG=135°,设直线BD的解析式为y=k1x+b1,将点B(−k,−1),D(m,km )代入得:{−kk1+b1=−1mk1+b1=km,解得{k1=1mb1=k−mm,则直线BD的解析式为y=1m x+k−mm,当y=0时,1m x+k−mm=0,解得x=m−k,即H(m−k,0),同理可得:点G的坐标为G(k+m,0),∴DH=√(m−k−m)2+(0−km )2=km√1+m2,DG=√(k+m−m)2+(0−km )2=km√1+m2,∴DH=DG,∴∠DHG=∠DGH,∵∠DHG=∠BHF,∴∠DGH=∠BHF,∴∠CAD+∠CBD=∠AEG+∠DGH+∠CBD,=∠BFH+∠BHF+∠CBD,=180°,即∠CAD与∠CBD的度数和不变,度数和为180°2.【答案】(1)解:根据题意,“梦之点”就是有关函数图象与直线y=x的交点,其坐标就是对应的方程组的解.由题意可得:m=2由点P(2, 2)在反比例函数y=nx图象上,可得n=2×2=4故所求的反比例函数的解析式为y=4x(2)解:由题意可得:(Ⅰ)当k=0时,y=s−1,此时“梦之点”的坐标为(s−1, s−1 ) . (Ⅱ)当k≠0 时, (3k−1)x=1−s显然,此方程的解的情况决定函数y=3kx+s−1的图象上“梦之点”的存在情况,当k=13, s≠1时,方程无解,不存在“梦之点”;当k=13, s=1时,方程有无数个解,此时存在无数个“梦之点”,“梦之点”的坐标可表示为(ℎ,ℎ)(ℎ为任意实数);当k≠13时,得{x=1−s3k−1y=1−s3k−1,即“梦之点”的坐标为(1−s3k−1, 1−s3k−1)3.【答案】(1)12(2)解:由题意D(m,6m),由(1)可知AB=2m,∵四边形ABCD是平行四边形,∴CD=AB=2m,∴C(3m,6m) .∵B(2m,0),C(3m,6m),∴直线BC的解析式为y=6m2x−12m,由{y=6xy=6m2x−12m,解得{x=(√2+1)my=6√2−6m或{x=(1−√2)my=6(1+√2)m(舍弃),∴E((√2+1)m,6√2−6m);(3)解:作EF⊥x轴于F,CG⊥x轴于G . ∵EF//CG,∴CE BE=FG BF=√2+1)m (√2+1)m−2m =√2√2−1=√2 ;(4)解:∵CEBE =√2 ∴BE =√2+1 ,要使得 BE 最小,只要 AD 最小, ∵AD =√m 2+36m 2=√(m −6m )2+12 ,∴AD 的最小值为 2√3 , ∴BE 的最小值为√3√2+1=2√6−2√3 .4.【答案】(1)解:将A (﹣3,m+8)代入反比例函数y= mx 得,m −3=m+8,解得m=﹣6, m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2), 反比例函数解析式为y=﹣ 6x ,将点B (n ,﹣6)代入y=﹣ 6x 得,﹣ 6n =﹣6, 解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得, {−3k +b =2k +b =−6 , 解得 {k =−2b =−4,所以,一次函数解析式为y=﹣2x ﹣4; (2)解:设AB 与x 轴相交于点C , 令﹣2x ﹣4=0解得x=﹣2, 所以,点C 的坐标为(﹣2,0), 所以,OC=2, S △AOB =S △AOC +S △BOC , = 12 ×2×3+ 12 ×2×1,=3+1, =4.5.【答案】(1)解:当k=-1时,l 1:y=﹣x+2√2, 联立得,{y =−x +2√2y =1x ,化简得x 2﹣2√2x+1=0, 解得:x 1=√2﹣1,x 2=√2+1,设直线l 1与y 轴交于点C ,则C (0,2√2). S △OAB =S △AOC ﹣S △BOC =12•2√2•(x 2﹣x 1)=2√2;(2)解:根据题意得:{y −√2=k(x −√2)y =1x 整理得:kx 2+√2(1﹣k )x ﹣1=0(k <0), ∵△=[√2(1﹣k )]2﹣4×k ×(﹣1)=2(1+k 2)>0, ∴x 1、x 2 是方程的两根, ∴{x 1+x 2=√2(k−1)k x 1·x 2=−1k①, ∴AB=√(x 1−x 2)2+(y 1−y 2)2=√(x 1−x 2)2+(1x 1−1x 2)2=√(x 1−x 2)2(1+1x 12·x 22)=√[(x 1+x 2)2−4x 1x 2](1+1x 12·x 22),将①代入得,AB=√2(k 2+1)2k 2=√2(k 2+1)−k (k <0),∴√2(k 2+1)−k =5√22,整理得:2k2+5k+2=0,解得:k=﹣2,或 k=12;(3)解:∵直线l1:y﹣√2=k(x﹣√2)(k<0)过定点F, ∴ F(√2,√2).如图:设P(x,1x ),则M(﹣1x+√2,1x),则PM=x+1x ﹣√2=√(x+1x−√2)2=√x2+1x2−2√2(x+1x)+4,∵PF=√(x−√2)2+(1x −√2)2=√x2+1x2−2√2(x+1x)+4,∴PM=PF.∴PM+PN=PF+PN≥NF=2,当点P在NF上时等号成立,此时NF的方程为y=﹣x+2√2,由(1)知P(√2﹣1,√2+1),∴当P(√2﹣1,√2+1)时,PM+PN最小值是2.6.【答案】(1)解:根据题意,得1−2m>0,解得m<12,∴m的取值范围是m<12.(2)解:①∵四边形ABCD是平行四边形,A(0,3),B(−2,0),∴D(2,3) .把D(2,3)代入y=1−2mx ,得3=1−2m2,∴1−2m=6 .∴反比例函数表达式为y=6x;②(3,2)或(-2,-3)或(-3,-2);4 7.【答案】(1)一、三(2)C(3)1;小;2;−1;大;−2(4)解:方程x + 1x =﹣2x +1没有实数解,理由为:y =x + 1x 与y =﹣2x +1在同一直角坐标系中无交点.8.【答案】(1)解:x 2﹣9x+18=0, (x ﹣3)(x ﹣6)=0, x=3或6, ∵CD >DE , ∴CD=6,DE=3, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AE=EC= √62−32 =3 √3 , ∴∠DCA=30°,∠EDC=60°, Rt △DEM 中,∠DEM=30°, ∴DM= 12 DE= 32 , ∵OM ⊥AB ,∴S 菱形ABCD = 12 AC •BD=CD •OM , ∴12×6√3×6 =6OM ,OM=3 √3 , ∴D (﹣ 32 ,3 √3 ) (2)解:(3)解:如图1,①∵DC=BC ,∠DCB=60°, ∴△DCB 是等边三角形, ∵H 是BC 的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2 √3 =CP,,√3);∴P(92②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6 √3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6 √3,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣92,6 √3),由①知:F(32,2 √3),由F到C的平移规律可得P到Q的平移规律,则P(﹣92﹣3,6 √3﹣√3),即P(﹣152,5 √3);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣92,6 √3),F(32,2 √3),C(92,3 √3),∴P(212,﹣√3);综上所述,点P的坐标为:(92,√3)或(﹣152,5 √3)或(212,﹣√3).9.【答案】(1)解:由题意y1=|x|.函数图象如图所示:(2)解:①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同法当点A在第二象限时,k=−4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<−2时,y1>y2或x>0时,y1>y2.10.【答案】(1)解:由题意得,设前5个月中y= kx,把x=1,y=100代入得,k=100,∴y与x之间的函数关系式为y= 100x(0<x<5,且x为整数),把x=5代入,得y=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,解得:b=-30,∴y与x之间的函数关系式为y=10x-30(x>5且x为整数);(2)解:在函数y=10x−30中,令y=100,得10x−30=100解得:x=13答:到第13个月时,该化工厂月利润再次达到100万元.(3)解:在函数y=100x中,当y=50时,x=2,∵100>0,y随x的增大而减小,∴当y<50时,x>2在函数y=10x−30中,当y<50时,得10x−30<50解得:x<8∴2<x<8且x为整数;∴x可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.11.【答案】(1)解:∵点N的坐标为(2,0),CN⊥x轴,且CN=12,∴点C的坐标为(2,12).∵点C在反比例函数y1=nx的图象上,∴n=2×12=1.(2)解:四边形ABCD为菱形,理由如下:当n=2时,y1=nx=2x,y2=4nx=8x.当x=2时,y1=2x=1,y2=8x=4,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P 的坐标为(2, 52 ). 当y = 52 时, 2x = 52 , 8x = 52 , 解得:x = 45 ,x = 165 ,∴点B 的坐标为( 45 , 52 ),点D 的坐标为( 165 , 52 ), ∴BP =2﹣ 45 = 65 ,DP = 165 ﹣2= 65 , ∴BP =DP .又∵AP =CP ,AC ⊥BD , ∴四边形ABCD 为菱形.(3)解:∵四边形ABCD 为正方形, ∴AC =BD ,且点P 为线段AC 及BD 的中点. 当x =2时,y 1= 12 n ,y 2=2n ,∴点A 的坐标为(2,2n ),点C 的坐标为(2, 12 n ),AC = 32 n , ∴点P 的坐标为(2, 54 n ).同理,点B 的坐标为( 45 , 54 n ),点D 的坐标为( 165 , 54 n ),BD = 125 . ∵AC =BD , ∴32 n = 125 , ∴n = 85 ,∴点A 的坐标为(2, 165 ),点B 的坐标为( 45 ,2). 设直线AB 的解析式为y =kx+b (k ≠0),将A (2, 165 ),B ( 45 ,2)代入y =kx+b ,得: {2k +b =16545k +b =2 ,解得: {b =65k =1 ,∴直线AB 的解析式为y =x+ 65 . 当x =0时,y =x+ 65 = 65 , ∴点E 的坐标为(0, 65 ),∴当四边形ABCD为正方形时,OE的长度为6.512.【答案】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,AO=CD,AB=DA∴Rt△AOB≌Rt△DCA(HL)(2)解:在Rt△ACD中,CD=2,AD= √5,∴AC= =1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),k=3×1=3(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y= 的图象上13.【答案】(1)解:∵OB =2OA =3OD =12 ∴OA =6,OD =4 ∴A(6,0),B(0,12)把 A(6,0),B(0,12) 分别代入 y =kx +b 得: {6k +b =0b =12 ,解之得: m =−4×20=−80 ∴一次函数的解析式为 y =−2x +12 令 x =−4 ,则 y =20 ∴C(−4,20)把 C(−4,20) 代入 y =mx 得:m =−4×20=−80∴反比例函数的解析式为 y =−80x ; (2)解:解方程组 {y =−2x +12y =−80x 得: {x 1=−4y 1=20,{x 2=10y 2=−8∴E(10,−8)∴S ΔCDE =S ΔADC +S ΔADE=12AD ⋅(CD +|y E |)=12×(4+6)×(20+8) =140(3)解:如图:当x <-4时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 −4 ≤ x <0 时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 当0<x <10时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 x ≥10时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 综上可得,不等式 kx +b ≤ mx 的解集为 −4 ≤ x <0 或 x ≥10. 14.【答案】(1)2;4;2;23;43;2;2 数学思考: (2)BCAB =k 2−k 1k 1证明:∵AB ·OA =k 1 , AC ·OA =k 2 , ∴AC ·OA −AB ·OA =BC ·OA =k 2−k 1 ,∴BCAB =BC·OAAB·OA=k2−k1k1.推广应用:(3)解:若四边形ADFB是正方形,设点B的坐标为(a,b)(a>0,b>0),则有DF=DA=AB=a,OA=b,OD=a+b,∴点F的坐标为(a,a+b) .∵k2=12,BCAB =k2−k1k1=12,∴12−k1k1=12,解得:k1=8 .∵点B在y=8x 图象上,点F在y=12x图象上,∴ab=8,a (a+b)=12,∴a2=12−8=4,∴a=2,∴b=4,∴OA=4,点B的坐标为(2,4) .15.【答案】(1)解:由y=2x+2可知A(0,2),即OA=2,∵tan∠AHO=2,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)解:①当AM=AP时,∵A(0,2),M(1,4),∴AM=√5,则AP=AM=√5,∴此时点P的坐标为(0,2﹣√5)或(0,2+ √5);②若AM=PM时,设P(0,y),则PM=√(1−0)2+(4−y)2,∴√(1−0)2+(4−y)2=√5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+ √5),或(0,2﹣√5);(3)解:∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有{m+n=44m+n=1,,解得{m=−1n=5,∴直线MN的解析式为y=﹣x+5.∵点C是直线y=﹣x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ =S△MQC﹣S△NQC=12×QC×4﹣12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m﹣5|=2,∴m=7或3,故答案为7或3.16.【答案】(1)解:把点A(4,1)代入双曲线y1=k1x得k1=4,∴双曲线的解析式为y1=4x;把点A(4,1)代入直线y2=x k2得k2=4,∴直线的解析式为y2=14x(2)解:∵点P(a,b)在y1=4x的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴点P的坐标为(1,4),又∵双曲线y1=4x 与直线y2=14x的图象交于A、B两点,且点A的坐标为(4,1),∴点B的坐标为(−4,−1),过点P作PG∥y轴交AB于点G,如图所示,把x=1代入y2=14x,得到y=14,∴点G的坐标为(1,14),∴PG =4−14=154 , ∴S △ABP =12 PG ( x A −x B )=12×154×8=15 (3)解:PE=PF .理由如下:∵点P ( a , b )在 y 1=4x 的图象上,∴b =4a ,∵点B 的坐标为( −4 , −1 ), 设直线PB 的表达式为 y =mx +n , ∴{am +n =4a −4m +n =−1, ∴{m =1a n =4a −1, ∴直线PB 的表达式为 y =1a x +4a −1 , 当 y =0 时, x =a −4 ,∴E 点的坐标为( a −4 ,0), 同理:直线PA 的表达式为 y =−1a x +4a +1 , 当 y =0 时, x =a +4 ,∴F 点的坐标为( a +4 ,0),过点P 作PH ⊥x 轴于H ,如图所示,∵P 点坐标为(,∴H 点的坐标为( a ,0),∴EH =x H −x E =a −(a −4)=4 , FH =x F −x H =a +4−a =4 , ∴EH=FH ,∴PE=PF .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学反比例函数组卷一.选择题(共10小题)1.(2015•温州模拟)在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.2.(2015•本溪模拟)在反比例函数的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.﹣1B.1C.2D.33.(2015•于洪区一模)如果函数y=kx﹣2(k≠0)的图象不经过第一象限,那么函数y=的图象一定在()A.第一,二象限B.第三,四象限C.第一,三象限D.第二,四象限4.(2015•杭州模拟)如图,点A是反比例函数(x<0)的图象上的一点,过点A 作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A.1B.3C.6D.125.(2015•宜宾校级模拟)若点(3,4)是反比例函数图象上一点,则此函数图象必须经过点()A.(2,6)B.(2,﹣6)C.(4,﹣3)D.(3,﹣4)6.(2015春•安岳县期中)下列四个点中,在反比例函数y=﹣的图象上的点是()A.(2,4)B.(﹣2,﹣4)C.(﹣2,4)D.(4,2)7.(2015春•江津区校级月考)若反比例函数经过(﹣2,3),则这个反比例函数一定经过()A.(﹣2,﹣3)B.(3,2)C.(3,﹣2)D.(﹣3,﹣22)8.(2014•常州)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限9.(2014•兰州)若反比例函数的图象位于第二、四象限,则k的取值可以是()A.0B.1C.2D.以上都不是10.(2015•潮南区一模)已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A.B.C.D.二.填空题(共15小题)11.(2015•闸北区模拟)已知:反比例函数的图象经过点A(2,﹣3),那么k=.12.(2015•济南校级一模)如图,等腰Rt△ABC的斜边BC在x轴上,顶点A在反比例函数的图象上,连接OA,则OC2﹣OA2= .13.(2014•瑞安市校级模拟)若反比例函数y=(2k﹣1)的图象在二、四象限,则k= .14.(2014•南开区三模)若反比例函数y=(2k﹣1)的图象位于二、四象限,则k= .15.(2014春•泰兴市校级期末)反比例函数y=(m+2)的图象分布在第二、四象限内,则m的值为.16.(2014春•姜堰市期末)一个函数具有下列性质:①它的图象经过点(﹣2,1);②它的图象在二、四象限内;③在每个象限内,函数值y随自变量x的增大而增大.则这个函数的解析式可以为.17.(2013秋•银川期末)反比例函数的图象在第二、四象限内,那么m的取值范围是.18.(2013•厦门)已知反比例函数的图象的一支位于第一象限,则常数m的取值范围是.19.(2013•宁波)已知一个函数的图象与y=的图象关于y轴成轴对称,则该函数的解析式为.20.(2013•娄底)如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为.21.(2013春•海阳市校级月考)函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.22.(2012•元坝区校级模拟)已知y=(m+1)是反比例函数,则m= .23.反比例函数的图象经过(,﹣4)和(﹣1,a)两点,则函数关系式为,a= .24.(2015•罗平县三模)如图,N为函数y=图象上一点,NH⊥y轴于点H,则△NOH面积为.25.(2015•东河区一模)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(4,﹣2),则k的值为.三.解答题(共5小题)26.(2013•泰安)如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点A、C,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P 点的坐标.27.(2012•泰安)如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b﹣>0的解集.28.(2012•成都模拟)如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣6,2)、B(4,n)两点,直线AB分别交x轴、y轴于D、C两点.(1)求上述反比例函数和一次函数的解析式;(2)若AD=tCD,求t.29.(2011•襄阳)已知直线y=﹣3x与双曲线y=交于点P (﹣1,n).(1)求m的值;(2)若点A (x1,y1),B(x2,y2)在双曲线y=上,且x1<x2<0,试比较y1,y2的大小.30.(2001•黄冈)求一次函数y=x﹣2和反比例函数y=的图象的交点坐标.初中数学反比例函数组卷参考答案与试题解析一.选择题(共10小题)1.(2015•温州模拟)在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:根据一次函数及反比例函数的图象与系数的关系作答.解答:解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,故A选项正确;B、由函数y=的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,故B选项错误;C、由函数y=的图象可知k<0与y=kx+3的图象k<0矛盾,故C选项错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,故D选项错误.故选:A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.2.(2015•本溪模拟)在反比例函数的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.﹣1B.1C.2D.3考点:反比例函数的性质.分析:利用反比例函数的增减性,y随x的增大而减小,则求解不等式1﹣k>0即可.解答:解:∵反比例函数图象的每一条曲线上,y随x的增大而减小,∴1﹣k>0,解得k<1.故选A.点评:本题主要考查反比例函数的性质的知识点,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.3.(2015•于洪区一模)如果函数y=kx﹣2(k≠0)的图象不经过第一象限,那么函数y=的图象一定在()A.第一,二象限B.第三,四象限C.第一,三象限D.第二,四象限考点:反比例函数的性质;一次函数的性质.分析:根据一次函数和反比例函数的性质,由一次函数不经第一象限,则k<0,由此反比例函数位于二、四象限.解答:解:∵函数y=kx﹣2(k≠0)的图象不经过第一象限,∴k<0,根据反比例函数的性质,函数y=的图象一定在第二、四象限.故选:D.点评:本题考查了一次函数和反比例函数的性质,应注意y=kx+b和y=中k的取值.4.(2015•杭州模拟)如图,点A是反比例函数(x<0)的图象上的一点,过点A 作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A.1B.3C.6D.12考点:反比例函数系数k的几何意义.专题:计算题.分析:作AH⊥OB于H,根据平行四边形的性质得AD∥OB,则S=S矩形AHOD,再根据平行四边形ABCD反比例函数y=(k≠0)系数k的几何意义得到S矩形AHOD=6,所以有S平行四边形ABCD=6.解答:解:作AH⊥OB于H,如图,∵四边形ABCD是平行四边形ABCD,∴AD∥OB,∴S平行四边形ABCD=S矩形AHOD,∵点A是反比例函数(x<0)的图象上的一点,∴S矩形AHOD=|﹣6|=6,∴S平行四边形ABCD=6.故选:C.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.5.(2015•宜宾校级模拟)若点(3,4)是反比例函数图象上一点,则此函数图象必须经过点()A.(2,6)B.(2,﹣6)C.(4,﹣3)D.(3,﹣4)考点:反比例函数图象上点的坐标特征.专题:数形结合;函数思想.分析:根据反比例函数图象上点的坐标特征,将点(3,4)代入反比例函数,求得m2+2m﹣1值,然后再求函数图象所必须经过的点.解答:解:∵点(3,4)是反比例函数图象上一点,∴点(3,4)满足反比例函数,∴4=,即m2+2m﹣1=12,∴点(3,4)是反比例函数为y=上的一点,∴xy=12;A、∵x=2,y=6,∴2×6=12,故本选项正确;B、∵x=2,y=﹣6,∴2×(﹣6)=﹣12,故本选项错误;C、∵x=4,y=﹣3,∴4×(﹣3)=﹣12,故本选项错误;D、∵x=3,y=﹣4,∴3×(﹣4)=﹣12,故本选项错误;故选:A.点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.6.(2015春•安岳县期中)下列四个点中,在反比例函数y=﹣的图象上的点是()A.(2,4)B.(﹣2,﹣4)C.(﹣2,4)D.(4,2)考点:反比例函数图象上点的坐标特征.分析:根据反比例函数的性质对各选项进行逐一判断即可.解答:解:A、∵2×4=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误;B、∵(﹣2)×(﹣4)=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误;C、∵﹣2×4=﹣8,∴此点在反比例函数的图象上,故本选项正确;D、∵4×2=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误.故选C.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy的特点是解答此题的关键.7.(2015春•江津区校级月考)若反比例函数经过(﹣2,3),则这个反比例函数一定经过()A.(﹣2,﹣3)B.(3,2)C.(3,﹣2)D.(﹣3,﹣22)考点:反比例函数图象上点的坐标特征.专题:函数思想.分析:先利用待定系数法求得反比例函数的解析式,然后将A、B、C、D的坐标分别代入函数解析式,符合该解析式的坐标即为所求.解答:解:∵反比例函数经过(﹣2,3),∴3=,解得,k=﹣6;∴该反比例函数的解析式是:y=﹣;A、将点(﹣2,﹣3)代入反比例函数解析式.左边=﹣3,右边=3,左边≠右边,即该反比例函数的图象不经过点(﹣2,﹣3);故本选项错误;B、将点(3,2)代入反比例函数解析式.左边=2,右边=﹣2,左边≠右边,即该反比例函数的图象不经过点(3,2);故本选项错误;C、将点(3,﹣2)代入反比例函数解析式.左边=﹣2,右边=﹣2,左边=右边,即该反比例函数的图象经过点(3,2);故本选项正确;D、将点(﹣3,﹣22)代入反比例函数解析式.左边=﹣22,右边=2,左边≠右边,即该反比例函数的图象不经过点(3,2);故本选项错误;故选C.点评:本题考查了反比例函数图象上点的坐标特征.反比例函数图象上的点的坐标,都满足该反比例函数的解析式.8.(2014•常州)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限考点:反比例函数的性质;待定系数法求反比例函数解析式.专题:待定系数法.分析:先把点代入函数解析式,求出k值,再根据反比例函数的性质求解即可.解答:解:由题意得,k=﹣1×2=﹣2<0,∴函数的图象位于第二,四象限.故选:D.点评:本题考查了反比例函数的图象的性质:k>0时,图象在第一、三象限,k<0时,图象在第二、四象限.9.(2014•兰州)若反比例函数的图象位于第二、四象限,则k的取值可以是()A.0B.1C.2D.以上都不是考点:反比例函数的性质.专题:计算题.分析:反比例函数的图象位于第二、四象限,比例系数k﹣1<0,即k<1,根据k 的取值范围进行选择.解答:解:∵反比例函数的图象位于第二、四象限,∴k﹣1<0,即k<1.故选:A.点评:本题考查了反比例函数的性质.对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.10.(2015•潮南区一模)已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:因为k的符号不确定,所以应根据k的符号及一次函数与反比例函数图象的性质解答.解答:解:当k<0时,﹣k>0,反比例函数y=的图象在二,四象限,一次函数y=kx+k﹣1的图象过一、二、四象限,选项C符合;当k>0时,﹣k<0,反比例函数y=的图象在一、三象限,一次函数y=kx+k﹣1的图象过一、三、四象限,无符合选项.故选C.点评:本题主要考查了反比例函数和一次函数的图象性质,正确掌握它们的性质才能灵活解题.二.填空题(共15小题)11.(2015•闸北区模拟)已知:反比例函数的图象经过点A(2,﹣3),那么k= ﹣6 .考点:待定系数法求反比例函数解析式.专题:函数思想.分析:根据反比例函数图象上点的坐标特征,将点A(2,﹣3)代入反比例函数,然后解关于k的方程即可.解答:解:根据题意,得﹣3=,解得,k=﹣6.故答案是:﹣6.点评:本题主要考查了待定系数法求反比例函数解析式.解题时,借用了反比例函数图象上点的坐标特征(经过函数的某点一定在函数的图象上)这一知识点.12.(2015•济南校级一模)如图,等腰Rt△ABC的斜边BC在x轴上,顶点A在反比例函数的图象上,连接OA,则OC2﹣OA2= 6 .考点:反比例函数综合题.分析:首先根据等腰直角三角形的性质得出AD=CD=BD,进而求出OC2﹣OA2=2DO•AD,利用顶点A在反比例函数 y=(x>0)的图象上,得出xy=3,即可得出答案.解答:解:过点A作AD⊥OC于点D,∵△ABC是等腰Rt△ABC,AD⊥BC,∴AD=CD=BD,∵在Rt△AOD中,AD2+OD2=OA2,∴OD2=OA2﹣AD2,∵OC2﹣OA2=(OD+DC)2﹣OA2=OD2﹣OA2+DC2+2DO•CD=OA2﹣AD2﹣OA2+DC2+2DO•CD=2DO•CD=2DO•AD,∵顶点A在反比例函数 y=(x>0)的图象上,∴xy=3,∴OC2﹣OA2=2DO•AD=2×3=6.故答案为:6.点评:此题主要考查了反比例函数的综合应用以及等腰直角三角形的性质,根据已知得出OC2﹣OA2=2DO•AD是解题关键.13.(2014•瑞安市校级模拟)若反比例函数y=(2k﹣1)的图象在二、四象限,则k= 0 .考点:反比例函数的性质;反比例函数的定义.专题:计算题.分析:根据反比例函数的定义,次数为﹣1次,再根据图象在二、四象限,2k﹣1<0,求解即可.解答:解:根据题意,3k2﹣2k﹣1=﹣1,2k﹣1<0,解得k=0或k=且k<,∴k=0.故答案为:0.点评:本题利用反比例函数的定义和反比例函数图象的性质求解,需要熟练掌握并灵活运用.14.(2014•南开区三模)若反比例函数y=(2k﹣1)的图象位于二、四象限,则k= 0 .考点:反比例函数的定义;解一元二次方程-因式分解法.分析:首先根据反比例函数定义可得3k2﹣2k﹣1=﹣1,解出k的值,再根据反比例函数所在象限可得2k﹣1<0,求出k的取值范围,然后再确定k的值即可.解答:解:∵函数y=(2k﹣1)是反比例函数,∴3k2﹣2k﹣1=﹣1,解得:k=0或,∵图象位于二、四象限,∴2k﹣1<0,解得:k<,∴k=0,故答案为:0.点评:此题主要考查了反比例函数的定义与性质,关键是掌握反比例函数的定义,一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.15.(2014春•泰兴市校级期末)反比例函数y=(m+2)的图象分布在第二、四象限内,则m的值为﹣3 .考点:反比例函数的性质;反比例函数的定义.专题:应用题.分析:根据反比例函数的定义可得m2﹣10=﹣1,根据函数图象分布在第二、四象限内,可得m+2<0,然后求解即可.解答:解:根据题意得,m2﹣10=﹣1且m+2<0,解得m1=3,m2=﹣3且m<﹣2,所以m=﹣3.故答案为:﹣3.点评:本题考查了反比例函数的定义,反比例函数的性质,对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.16.(2014春•姜堰市期末)一个函数具有下列性质:①它的图象经过点(﹣2,1);②它的图象在二、四象限内;③在每个象限内,函数值y随自变量x的增大而增大.则这个函数的解析式可以为.考点:反比例函数的性质.专题:开放型.分析:首先根据题意可得此函数可以是反比例函数,设函数解析式为y=,再把(﹣2,1)点代入函数解析式,即可算出k的值,进而得到函数解析式.解答:解:由题意得,此函数可以是反比例函数,设函数解析式为y=,∵图象经过点(﹣2,1),∴k=﹣2×1=﹣2,故函数解析式为y=﹣,故答案为:y=﹣.点评:此题主要考查了反比例函数的性质,以及待定系数法求反比例函数解析式,关键是掌握反比例函数的性质.17.(2013秋•银川期末)反比例函数的图象在第二、四象限内,那么m的取值范围是m<3 .考点:反比例函数图象上点的坐标特征;反比例函数的性质.分析:根据反比例函数所在的象限,判定m﹣3的符号,即m﹣3<0,然后通过解不等式即可求得m的取值范围.解答:解:∵反比例函数的图象在第二、四象限内,∴m﹣3<0,解得,m<3;故答案是:m<3.点评:本题主要考查反比例函数图象上点的坐标特征、反比例函数的图象.此题难度适中,解题的关键是根据图象确定反比例函数系数的取值范围.18.(2013•厦门)已知反比例函数的图象的一支位于第一象限,则常数m的取值范围是m>1 .考点:反比例函数的性质.分析:根据反比例函数的图象关于原点对称可得到图象的另一分支所在的象限及m的取值范围.解答:解:∵反比例函数的图象关于原点对称,图象一支位于第一象限,∴图象的另一分支位于第三象限;∴m﹣1>0,∴m>1;故答案为:m>1.点评:本题考查的是反比例函数的图象和反比例函数的性质,即①反比例函数y=(k≠0)的图象是双曲线;②当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.19.(2013•宁波)已知一个函数的图象与y=的图象关于y轴成轴对称,则该函数的解析式为y=﹣.考点:反比例函数的性质.分析:根据图象关于y轴对称,可得出所求的函数解析式.解答:解:关于y轴对称,横坐标互为相反数,纵坐标相等,即y=,∴y=﹣故答案为:y=﹣.点评:本题考查了反比例函数图象的对称性,是识记的内容.20.(2013•娄底)如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为 6 .考点:反比例函数系数k的几何意义.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解答:解:根据题意可知:S△ABO=|k|=3,由于反比例函数的图象位于第一象限,k>0,则k=6.故答案为:6.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.21.(2013春•海阳市校级月考)函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是 2 ,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.考点:反比例函数的定义;反比例函数的性质.分析:根据反比例函数的定义可得m2﹣3m+1=﹣1,且m2﹣m≠0,解得m的值,然后再计算出m2﹣m的值,再根据反比例函数的性质可得答案.解答:解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.点评:此题主要考查了反比例函数的定义和性质,关键是掌握反比例函数y=kx﹣1(k≠0)的形式.22.(2012•元坝区校级模拟)已知y=(m+1)是反比例函数,则m= 1 .考点:反比例函数的定义.分析:根据反比例函数的定义.即y=(k≠0),只需令m2﹣2=﹣1、m+1≠0即可.解答:解:∵y=(m+1)是反比例函数,∴,解之得m=1.故答案为:1.点评:本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.23.反比例函数的图象经过(,﹣4)和(﹣1,a)两点,则函数关系式为y=,a= ﹣2 .考点:反比例函数图象上点的坐标特征.分析:先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的设解析式;把(﹣1,a)代入反比例函数解析式,即可解答.解答:解:设解析式为y=,则将点(1,2)代入解析式y=可得:k=2,所以y=;把(﹣1,a)代入反比例函数解析式y=得:a=﹣2;故答案为:,﹣2.点评:本题考查的是用待定系数法求反比例函数的解析式,解决本题的关键是求反比例函数的解析式.24.(2015•罗平县三模)如图,N为函数y=图象上一点,NH⊥y轴于点H,则△NOH面积为.考点:反比例函数系数k的几何意义.分析:设出点N的坐标,根据OH=﹣y,NH=﹣x,以及点N在函数y=的图象上,结合面积公式求出面积.解答:解:设N点坐标为(x,y),∵NH⊥y轴,∴OH=﹣y,NH=﹣x,∴S△AOB=×OB×AB=xy,∵y=,∴xy=3,∴S△AOB=×3=.故答案为:.点评:本题考查的是反比例函数中比例系数k的几何意义,从反比例函数y=图象上任意找一点向某一坐标轴引垂线,加上它与原点的连线所构成的直角三角形面积等于|k|的一半.25.(2015•东河区一模)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(4,﹣2),则k的值为﹣8 .考点:反比例函数图象上点的坐标特征.分析:根据矩形的性质和已知点A的坐标,求出点C的坐标,代入反比例函数y=,求出k,得到答案.解答:解:点A的坐标为(4,﹣2),根据矩形的性质,点C的坐标为(﹣4,2),把(﹣4,2)代入y=,得k=﹣8.故答案为:﹣8.点评:本题考查的是反比例函数图象上的点的坐标特征,根据矩形的性质,求出点C的坐标是解题的关键,注意:函数图象上的点的坐标满足函数解析式.三.解答题(共5小题)26.(2013•泰安)如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点A、C,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P 点的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)先根据正方形的性质求出点C的坐标为(5,﹣3),再将C点坐标代入反比例函数y=中,运用待定系数法求出反比例函数的解析式;同理,将点A,C的坐标代入一次函数y=ax+b中,运用待定系数法求出一次函数函数的解析式;(2)设P点的坐标为(x,y),先由△OAP的面积恰好等于正方形ABCD的面积,列出关于x的方程,解方程求出x的值,再将x的值代入y=﹣,即可求出P点的坐标.解答:解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣3),∴AB=5,∵四边形ABCD为正方形,∴点C的坐标为(5,﹣3).∵反比例函数y=的图象经过点C,∴﹣3=,解得k=﹣15,∴反比例函数的解析式为y=﹣;∵一次函数y=ax+b的图象经过点A,C,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设P点的坐标为(x,y).∵△OAP的面积恰好等于正方形ABCD的面积,∴×OA•|x|=52,∴×2•|x|=25,解得x=±25.当x=25时,y=﹣=﹣;当x=﹣25时,y=﹣=.∴P点的坐标为(25,﹣)或(﹣25,).点评:本题考查了正方形的性质,反比例函数与一次函数的交点问题,运用待定系数法求反比例函数与一次函数的解析式,三角形的面积,难度适中.运用方程思想是解题的关键.27.(2012•泰安)如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b﹣>0的解集.考点:反比例函数与一次函数的交点问题.分析:(1)根据点A和点B的坐标求出一次函数的解析式.再求出C的坐标是(﹣4,1),利用待定系数法求解即可求反比例函数的解析式;(2)根据一次函数y=kx+b的图象与反比例函数y=的图象在第二象限的交点为C即可求出当x<0时,kx+b﹣>0的解集.解答:解:(1)∵OB=2,△AOB的面积为1∴B(﹣2,0),OA=1,∴A(0,﹣1)∴∴∴y=﹣x﹣1又∵OD=4,CD⊥x轴,∴C(﹣4,y),将x=﹣4代入y=﹣x﹣1得y=1,∴C(﹣4,1)∴1=,∴m=﹣4,∴y=﹣,∴反比例函数的解析式为:y=﹣;(2)当x<0时,kx+b﹣>0的解集是x<﹣4.点评:本题主要考查了反比例函数与一次函数的交点问题,用到的知识点是待定系数法求反比例函数与一次函数的解析式,这里体现了数形结合的思想,关键是根据反比例函数与一次函数的交点求出不等式的解集.28.(2012•成都模拟)如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣6,2)、B(4,n)两点,直线AB分别交x轴、y轴于D、C两点.(1)求上述反比例函数和一次函数的解析式;(2)若AD=tCD,求t.考点:反比例函数综合题.分析:(1)利用把x=﹣6,y=2代入,得出m的值,进而求出n的值,由待定系数法求出一次函数的解析式;(2)首先证明Rt△COD∽Rt△AED,由A,C两点坐标得出AE,CO的长,进而得出t 的值.解答:解(1)把x=﹣6,y=2代入,得:m=﹣12,∴反比例函数的解析式为,把x=4,y=n代入,得n=﹣3,把x=﹣6,y=2,x=4,y=﹣3,分别代入y=kx+b,得,解得:,∴一次函数的解析式为;(2)过A作AE⊥x轴,E点为垂足,∵A点的纵坐标为2,∴AE=2,由一次函数的解析式为得C点的坐标为(0,﹣1),∴OC=1,在Rt△COD和Rt△AED中,∠COD=∠AED=90°,∠CDO=∠ADE,∴Rt△COD∽Rt△AED,∴,∴t=2.点评:此题主要考查了一次函数与反比例函数的综合应用,熟练利用待定系数得出一次函数的解析式进而利用相似得出是解题关键.29.(2011•襄阳)已知直线y=﹣3x与双曲线y=交于点P (﹣1,n).(1)求m的值;(2)若点A (x1,y1),B(x2,y2)在双曲线y=上,且x1<x2<0,试比较y1,y2的大小.考点:反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征.分析:(1)根据点P(﹣1,n)在直线y=﹣3x上求出n的值,然后根据P点在双曲线上求出m的值;(2)首先判断出m﹣5正负,然后根据反比例函数的性质,当x1<x2<0,判断出y1,y2的大小.解答:解:(1)∵点P(﹣1,n)在直线y=﹣3x上,∴n=﹣3×(﹣1)=3,∵点P(﹣1,3)在双曲线y=上,∴m﹣5=﹣3,解得:m=2;(2)∵m﹣5=﹣3<0,∴当x<0时,图象在第二象限,y随x的增大而增大,∵点A(x1,y1),B(x2,y2)在函数y=上,且x1<x2<0,∴y1<y2.点评:本题主要考查反比例函数与一次函数的交点问题的知识点,解答本题的关键是熟练掌握反比例函数的性质,本题难度不大.30.(2001•黄冈)求一次函数y=x﹣2和反比例函数y=的图象的交点坐标.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:根据反比例函数与一次函数的交点坐标同时满足两函数的解析式得到方程组,然后解方程组即可得到交点坐标.解答:解:依题意有,解得或.所以一次函数y=x﹣2和反比例函数y=的图象的交点坐标坐标为(3,1)和(﹣1,﹣3).点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两函数的解析式.。

相关文档
最新文档