人教版高一数学必修5--第二章数列总结
高中数学必修5课件:第2章2-1-2数列的性质和递推关系
n 3n+1
为递
增数列.
数学 必修5
第二章 数列
方法二:∵n∈N*,∴an>0,
n+1
∵
an+1 an
=
3n+4 n
=
n+13n+1 3n+4n
=
3n2+4n+1 3n2+4n
=1+
1 3n2+4n
3n+1
>1,∴an+1>an,∴数列3nn+1为递增数列.
数学 必修5
第二章 数列
方法三:令f(x)=3x+x 1(x≥1),则 f(x)=133x3+x+1-1 1=131-3x+1 1, ∴函数f(x)在[1,+∞)上是增函数, ∴数列3nn+1是递增数列.
数学 必修5
第二章 数列
(2)∵bn=aan+n 1,且a1=1,a2=2,a3=3,a4=5,a5=8, ∴b1=aa12=12,b2=aa23=23,b3=aa34=35,b4=aa45=58. 故b1=12,b2=23,b3=35,b4=58.
数学 必修5
第二章 数列
数列的单调性问题
已知数列{an}的通项公式为an=
(1)写出此数列的前5项;
(2)通过公式bn=
an an+1
构造一个新的数列{bn},写出数列{bn}
的前4项.
数学 必修5
第二章 数列
解析: (1)∵an=an-1+an-2(n≥3),且a1=1,a2=2, ∴a3=a2+a1=3,a4=a3+a2=3+2=5, a5=a4+a3=5+3=8. 故数列{an}的前5项依次为 a1=1,a2=2,a3=3,a4=5,a5=8.
4分 6分 8分
10分
12分
数学 必修5
第二章 数列
高中数学必修五第二章《数列》知识点归纳
、等差数列与等比数列、求数列通项公式的方法1、通项公式法: 等差数列、等比数列2、涉及前n 项和 S 求通项公式,利用 a n 与S n 的基本关系式来求。
即a n例1、在数列{ a n }中,S n 表示其前n 项和,且 S n n :求通项a .. 例2、在数列{ a n }中,S n 表示其前n 项和,且 S n 3、已知递推公式,求通项公式。
(1)叠加法:递推关系式形如a n 1 a n f n 型数列知识点总结S i a i ( n 1) S n S n i (n 2)2 3a n ,求通项a n例3、已知数列{ a n }中,a-i 1, a n 1 a n n ,求通项a n练习1、在数列 { a n }中,a 1 3 , a n 1 a n 2r 1,求通项a n (2)叠乘法: 递推关系式形如a n1fna n型例4、在数列{ a n }中,a 1n1, a n 1a n,求通项a nn1练习2、在数列 {a n}中,a 13, a n 1a n ?2n ,求通项a n(3)构造等比数列: 递推关系式形如a n 1 Aa nB (A ,B 均为常数,A M 1,B 丰0)例5、已知数列{ a n }满足印 4 , a n 3a n 1 2,求通项a n 练习3、已知数列{ a n }满足a 1 3 , a n 1 2a n3,求通项a n(4)倒数法例6、在数列{a n }中,已知a 11, a n 1四、求数列的前n 项和的方法1、利用常用求和公式求和:等差数列求和公式: S nn(a 1 a n ) “ n(nna 1 1)d 2 2(q 1)等比数列求和公式:S na 1(1 q n ) a 1 a .q(q 1)1 q1 q•[例1]求数列2二,2,,甲, 前n 项的和•2 2 2 2[例 2]求和:S n 1 3x 5x 2 7x 3 (2n 1)x n 13、倒序相加法:数列{ a n }的第m 项与倒数第m 项的和相等。
高中数学必修5等差数列知识点总结和题型归纳
等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示知识点2、等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列③等差中项:对于数列,若,则数列是等差数列知识点3、等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为该公式整理后是关于n的一次函数知识点4、等差数列的前n项和:⑤⑥对于公式2整理后是关于n的没有常数项的二次函数知识点5、等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有⑧对于等差数列,若,则也就是:⑨若数列是等差数列,是其前n项的和,,那么,,成等差数列如下图所示:10、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、。
等差数列{a n}的前三项依次为a-6,2a -5, -3a +2,则a 等于()A . -1B . 1C 。
—2 D. 22.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为( )A.49 B.50 C.51 D.523.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.454、已知等差数列中,的值是()()A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是()A.d>B.d<3 C。
≤d<3 D.<d≤36、。
在数列中,,且对任意大于1的正整数,点在直上,则=_____________。
人教高中数学 必修五 2.1 第二课时 数列的递推公式(共17张PPT)
(1)a 1 =0, a n 1 = a n +(2n-1) (n∈N);
(2)
a1
=1,
a n1=
2 an
an
2
(n∈N);
(3) a 1 =3,a n 1 =3a n -2 (n∈N,).
解:(1) a 1=0, a 2 =1,a 3 =4,a 4 =9,a 5=16, ∴ a n =(n-1)2 ;
1,1, 2, 3, 5, 8, 13, 21,… 斐波那契数列
an2an1an,
例5:已知数列 an 满足:a1=5,an=an-1+3(n≥2)
(1)写出这个数列an 的前五项为
。
(2)这个数列 an 的通项公式是 an 3n2
。
累差叠加法 ( n 2 ) a n a n 1 f( n ) 或 a n 1 a 者 n f( n )
(1)a1=0,an+1=an+(2n-1),n∈N+;
(2)a1=1,a n 1
2an an 2
,
n∈N+;
解:(1)因为a1=0,an+1=an+(2n-1),n∈N+; 所以, a2=1 , a3=4, a4=9, a5=16 ,
归纳出它的通项公式是an=(n-1)2 。
(2)a1=1,a n 1
又 a1a2a3 9
解得 a 3
9 4
同理可得 a 4
16 9
,
a5
25 16
a3
a5
92561 4 16 16
(2) 2 5 6 是此数列中的项吗?
225
解:(2)令
256 225
n2 (n 1)2
高中数学必修五--等比数列
这些数列 有什么共同点
概念形成
一、等比数列的定义
一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等
比数列.这个常数叫做等比数列的公比,公比通常用字母 q 表示 q 0 ,即 an q (q 0) . an1
概念形成
二、等比数列的通项公式
概念形成
四、等比数列的性质
(1)在一个等比数列中,从第 2 项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项,
即 an2 an1 an1 (n 2) .
(2)在有穷等比数列中,与首末两项等距离的两项之积等于首末两项之积,即
a1 an a2 an1 a3 an2 L .
(3)在等比数列中,若 m n p q ,则 am an ap aq .
(4)若 {an } , {bn } 均为等比数列,则 {an
bn} ,{k
an}
(k
0)
,{ 1 an
} 仍为等比数列,公比分别为
q1
q2
,
q1 ,
1 q1
.Байду номын сангаас
(5)等比数列依次每 n 项的和仍为等比数列,公比为 qn
n
(6) a1 a2 L an (a1 an )2 . (正项数列中)
课堂小结
四、等比数列的性质
一个思想 类比思想
两个方法 不完全归纳法
叠乘法
三个公式
谢谢大家
人教版高中数学必修五
不完全归纳法
叠乘法
概念形成
二、等比数列的通项公式
【问题3】怎样用函数观点来分析等比数列的通项公式呢?
类比思想
概念形成
高一数学必修5:数列(知识点梳理)
第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
人教版高中数学必修五 2.2 等差数列
知识2:等差中项 问题导思:
如果三个数 a,A,b 成等差数列,那么它们之间有怎样的 数量关系? 答:因为 A-a=b-A,所以 a+b=2A.
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差中项.它 们之间的关系式是 a+b=2A .
4.已知等差数列{an}:-1,2,5,8,…,求公差 d 和 a10. 解:∵a1=-1, ∴d=a2-a1=2-(-1)=3, ∴a10=a1+(10-1)×d=-1+9×3=26.
变式训练 3:《九章算术》“竹九节”问题:现有一根 9 节的竹
子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,
下面 3 节的容积共 4 升,则第 5 节的容积为( )
A.1 升
B.6676升
C.4474升
D.3373升
【解析】设所构成数列为{an},且其首项为 a1,公差为 d, 依题意得aa17++aa28++aa39+=a44,=3, 即43aa11++62d1=d=3,4,
2.等差数列的通项公式可以解决以下三类问题: (1)已知 an,a1,n,d 中的任意三个量,可求出第四个量; (2)已知数列{an}的通项公式,可以求出等差数列{an}中的 任一项,也可以判断某一个数是否是该数列中的项; (3)若已知{an}的通项公式是关于 n 的一次函数或常数函 数,则可判断{an}是等差数列.
∴an=a1+(n-1)×5=5n-4, ∴a80=5×80-4=396.
(2)a1=a2-d=12+2=14, ∴an=14+(n-1)×(-2)=-20, ∴n=18.
类型3:等差数列的实际应用问题 例 3:梯子的最高一级宽 33 cm,最低一级宽 110 cm,中间还有 10 级,各级宽度依次成等差数列,计算中间各级的宽度.
最新人教版高一数学知识点总结汇总详细版(建议收藏)
人教版高一数学知识点总结汇总(详细完整版)高一数学知识点总结(一)1、概念:(1)回归直线方程(2)回归系数2.最小二乘法3.直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。
(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。
如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。
4.应用直线回归的注意事项(1)做回归分析要有实际意义;(2)回归分析前,先作出散点图;(3)回归直线不要外延。
高一数学必修二重要知识点1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的.端点字母,如五棱柱ABCDE?A'B'C'D'E'几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P?ABCDE几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
数列知识点总结及例题讲解
人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。
是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。
与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。
高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐
数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。
前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。
3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。
最新人教版高中数学必修5第二章《数列》本章小结
知识建构一、知识网络二、基本知识、方法归纳整理 1.数列的概念及表示法(1)定义:按照一定顺序排列着的一列数.(2)表示法:列表法、图象法、解析法(通项公式法和递推公式法).(3)分类:按项数分为有穷数列和无穷数列;按项与项之间的关系可分为递增数列、递减数列、摆动数列、常数列. 判断数列单调性的方法:①判断当n ∈N *时都有a n+1>a n ,则数列{a n }为递增数列; ②判断当n ∈N *时都有a n+1<a n ,则数列{a n }为递减数列. (4)S n 与a n 的关系. a n =⎩⎨⎧≥-=-,2,,1,11n S S n S n n 若n=1时,a 1符合a n =S n -S n-1(n ≥2),则数列的通项公式可以写成一个函数的形式:a n =f(n),n ∈N *;若n=1时,a 1不符合a n =S n -S n-1(n ≥2),则数列的通项公式只能写成分段函数的形式a n =⎩⎨⎧≥=.2),(,1,1n n f n S2.等差数列(1)定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列; (2)递推公式:等差数列中a 1=a,a n+1-a n =d ; (3)通项公式:a n =a 1+(n-1)d,a n =a m +(n-m)d. (4)前n 项和公式:S n =2)(1n a a n +①或S n =na 1+2)1(dn n -②,对于公式①常结合等差数列的性质变形运用. 如:S n =2)(1n a a n +=2)(12-+n a a n = (2)(1+-+m n m a a n ,若a 1、a n 有等差中项21+n a ,则S n =2)(1n a a n +=n ·21+n a ,这一公式体现了等差数列前n 项和公式与某一项的关系. 对于公式②常写成二次函数的形式S n =2d n 2+(a 1-2d)n,用于研究等差数列前n 项和的最值问题.(5)等差中项:若a 、A 、b 成等差数列,则A 叫做a 和b 的等差中项,且有A=2ba +. (6)性质:①当d>0时为递增数列;当d<0时为递减数列;当d=0时为常数列. ②若m+n=p+q(m,n,p,q ∈N *),则a m +a n =a p +a q .③在等差数列{a n }中,若k 1,k 2,…,k n ,…成等差数列,则a k1,a k2,…,a kn ,…也成等差数列. ④S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列.⑤若{a n }是等差数列,{b n }是等差数列,则{a n ±b n }、{ka n +b n }也是等差数列. (7)判断一个数列是否是等差数列的方法:①递推式法:即证a n+1-a n =d(d 是常数)对n ∈N *都成立,或证:2a n+1=a n +a n+2对n ∈N *都成立. ②{a n }成等差数列⇔a n =a 1+(n-1)d.③{a n }成等差数列⇔S n =an 2+bn(a 、b 是常数). 3.等比数列(1)定义:从第2项起每一项与它前一项的商等于同一常数的数列叫等比数列. (2)递推公式:a 1=a 1,nn a a 1+=q(q 是不等于零的常数). (3)通项公式:a n =a 1q n-1,a n =a m q n-m .(4)前n 项和公式:S n =⎪⎩⎪⎨⎧≠--=--=.1,11)1(,1,111q q qa a q q a q na n n(5)等比中项:若a 、G 、b 成等比数列,则G 叫做a 、b 的等比中项,且有G 2=a ·b 或G=±ab .(6)等比数列的性质:①当⎩⎨⎧>>1,01q a 或⎩⎨⎧<<<10,01q a 时为递增数列;当⎩⎨⎧<<>10,01q a 或⎩⎨⎧><1,01q a 时为递减数列;当q<0时为摆动数列;当q=1时为常数列.②若m+n=p+q(m,n,p,q ∈N *),则a m ·a n =a p ·a q .③在等比数列{a n }中,若k 1,k 2,…,k n ,…成等差数列,则a k1,a k2,…,a kn ,…成等比数列. ④S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列.⑤若{a n }是等比数列,则{λa n }(λ为不等于零的常数)仍是公比为q 的等比数列;{na 1}是公比为q1的等比数列;{|a n |}是公比为|q|的等比数列;若{b n }是公比为q ′的等比数列,则{a n ·b n }是公比为q ·q ′的等比数列.(7)判断一个数列是否是等比数列的方法: ①递推法(定义法):即证nn a a 1+=q(q 是不为零的常数)对n ∈N *都成立,或a n+12=a n ·a n+2对n ∈N *都成立.②通项公式法:{a n }成等比数列⇔a n =a 1q n-1.③{a n }成等比数列⇔S n =A-Aq n (其中A 是不为零的常数). 4.思想方法(1)数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.(2)等差(等比)数列中,a 1,a n ,n,d(q),S n “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法.(3)求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想.(4)数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化法. 三、专题总结 (一)求通项公式1.观察归纳法求通项公式【例1】 根据数列的前几项,写出下列各数列的一个通项公式. (1)-1,7,-13,19,…; (2)7,77,777,7 777,…; (3)32,154,356,638,9910,…; (4)5,0,-5,0,5,0,-5,0,…;(5)53,21,115,73,…; (6)41,83,165,327,…; (7)1,0,31,0,51,0,71,0,…;(8)11,102,1 003,10 004,….思路分析:本题给出了数列的前几项,要求写出数列的一个通项公式.通项公式就是寻找一列数的排列规则,也即找每一个数与它的序号间的对应法则.解:(1)应解决两个问题,一是符号问题,可考虑用(-1)n 或(-1)n+1表示;二是各项绝对值的排列规律,不难发现后面的数的绝对值总比它前面数的绝对值大 6.故通项公式a n =(-1)n (6n-5).(2)先联想数列1,11,111,1 111,…的通项,它又与数列9,99,999,9 999,…的通项有关,而9999个n ⋅⋅⋅⋅=10n-1,于是a n =97(10n -1). (3)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积.经过组合,则所求数列的通项公式a n =)12)(12(2+-n n n.(4)数列的各项具有周期性,联想基本数列1,0,-1,0,…,则a n =5sin 2πn . (5)数列可以写成53,84,115,146,…,于是分子依次为3,4,5,6,…,其规律是后项等于前项加1,又首项为3=1+2,故分子的通项公式为n+2;分母依次为5,8,11,14,其规律是后项等于前项加3,又首项为5=3×1+2,故分母的通项公式为3n+2. ∴数列的通项公式为a n =232++n n . (6)分子为1,3,5,7,…,其通项公式为2n-1;分母为4,8,16,32,即22,23,24,25,…,其通项公式为2n+1.∴数列的通项公式为a n =1212+-n n . (7)所给数列可等价变形为11,20,31,40,51,60,71,8,…,分子是1,0重复变化,且奇数项为1,偶数项为0,其通项公式为2)1(11+-+n ,分母的通项公式为n ,所以数列的通项公式为nn 2)1(11+-+.(8)所给数列可等价变形为10+1,102+2,103+3,104+4,…,所以其通项公式为a n =10n +n.思维启示:已知数列的前几项,写出数列的通项公式,主要从以下几个方面来考虑: (1)符号用(-1)n 或(-1)n+1或(-1)n-1来调解,这是因为n 和n+1奇偶交错.(2)分式形式的数列,分子找通项,分母找通项,要充分借助分子、分母的关系. (3)对于比较复杂的通项公式,要借助于等差数列、等比数列和其他方法来解决.(4)此类问题虽无固定模式,但也有规律可循,主要靠观察(观察规律)、比较(比较已知的数列)、归纳、转化(转化为等差或等比数列)等方法.(5)应注意:①并非所有的数列都能写出通项公式;②同一数列的通项公式未必唯一;③数列是一个特殊的函数,其通项公式可用分段函数来表示. 2.由前n 项和S n 求通项公式a n【例2】 已知数列{a n }的前n 项和S n 的公式,求{a n }的通项公式. (1)S n =2n 2-3n; (2)S n =(-1)n+1·n; (3)S n =n 2-1. 思路分析:直接根据公式a n =⎩⎨⎧≥-=-2,,1,11n S S n S n n解:(1)a 1=S 1=-1, 当n ≥2时,a n =S n -S n-1=(2n 2-3n)-[2(n-1)2-3(n-1)]=4n-5,由于a 1也适合此等式,因此a n =4n-5(n ∈N *).(2)当n=1时,a 1=S 1=(-1)2·1=1.当n ≥2时,a n =S n -S n-1=(-1)n+1·n-(-1)n ·(n-1)=(-1)n+1(2n-1),由于a 1也适合此等式,∴a n =(-1)n+1·(2n-1)(n ∈N *).(3)当n=1时,a 1=S 1=0;当n ≥2时,a n =S n -S n-1=(n 2-1)-[(n-1)2-1]=2n-1.由于a 1不适合此等式,∴a n =⎩⎨⎧≥-=.2,12,1,0n n n 思维启示:(1)给出S n 求a n 时,一定要分n ≥2和n=1两种情况分别求解;(2)如果当n=1时,a 1的表达式符合当n ≥2时的表达式,那么可将这两个式子合并.否则,就只能用分段函数形式表示.【例3】 已知数列{a n }中,a 1=1,且S n =1211+--n n S S (n ≥2),求a n .思路分析:已知条件是一个关于S n 的递推式,可以先求出S n ,然后求a n . 解:由S n =1211+--n n S S 两边取倒数,得n S 1=2+11-n S ,即n S 1-11-n S =2.∴{n S 1}是首项为11S =11a =1,公差为2的等差数列.∴nS 1=1+(n-1)×2=2n-1. 从而由a n =⎩⎨⎧≥-=-,2,,1,11n S S n n n 得a n =⎪⎩⎪⎨⎧≥---=.2,)32)(12(2,1,1n n n n3.给出数列的递推式求通项公式a n (1)累差法【例4】 已知a 1=1,a n+1-a n =2n -n,求a n .思路分析:本题给出数列{a n }连续两项的差,故可用累加法得a n 的表达式. 解:∵a n+1-a n =2n -n, ∴a 2-a 1=21-1, a 3-a 2=22-2, a 4-a 3=23-3, ……n ≥2时,a n -a n-1=2n-1-(n-1).∴n ≥2时,有a n -a 1=(2+22+…+2n-1)-[1+2+3+…+(n-1)]. ∴a n =(1+2+22+…+2n-1)-2)1(-n n =2n -2)1(-n n -1.而a 1=1也适合上式. ∴{a n }的通项公式a n =2n -2)1(-n n -1. 思维启示:运用“累加法”求通项公式,此法是将递推式变形为a n -a n-1=f(n),令n=2,3,4,…,n,再将这n-1个式子相加得,a n -a 1=f(2)+f(3)+…+f(n),∴a n =a 1+f(2)+f(3)+…+f(n)({f(n)}是可求和数列). (2)累积法【例5】 设{a n }是首项为1的正项数列,且(n+1)a n+12-na n 2+a n+1a n =0(n=1,2,3,…),求{a n }的通项公式.思路分析:将已知的递推关系适当变形,可得递推式nn a a 1+=1+n n.用累积法可求通项公式.解:∵数列{a n }是首项为1的正项数列,∴a n ·a n+1≠0.∴n n a a n 1)1(++-1+n na na +1=0.令nn a a 1+=t,∴(n+1)t 2+t-n=0. 分解因式得[(n+1)t-n ](t+1)=0,∴t=1+n n ,t=-1(舍去),即n n a a 1+=1+n n. ∴12a a ·23a a ·34a a ·45a a ·…·1-n n a a =21·32·43·54·…·n n 1-.∴a n =n 1.思维启示:运用“累积法”求通项公式,此法是将递推式变为1-n na a =f(n),令n=2,3,4,…,n,再将这n-1个式子相乘得1a a n=f(2)·f(3)·f(4)·…·f(n),∴a n =a 1·f(2)·f(3)·f(4)·…·f(n). (3)特殊数列法【例6】 已知a 1=2,a n+1=2a n +3,求数列{a n }的通项公式.思路分析:将已知递推公式适当变形,可得到如下递推式:a n+1+3=2(a n +3),于是数列{a n +3}构成公比为2,首项为a 1+3的等比数列,问题可解. 解:∵a n+1=2a n +3,即a n+1+3=2(a n +3),∴331+++n n a a =2.于是{a n +3}是首项为5,公比为2的等比数列. ∴a n +3=(a 1+3)·2n-1=5×2n-1.∴a n =5×2n-1-3.思维启示:一般地,数列{a n }满足a n =ca n-1+d(c 、d 为常数,c ≠0),a 1=b,求a n 时,常将其转化为等比数列求解.【例7】 已知数列{a n }的首项a 1=3,通项a n 与前n 项和S n 之间满足2a n =S n ·S n-1(n ≥2),求数列{a n }的通项公式.思路分析:利用a n 和S n 之间的关系,首先将a n 换成S n -S n-1,这样便得到2(S n -S n-1)=S n ·S n-1,经变形可得11-n S -n S 1=21,即n S 1-11-n S =-21.这样{nS 1}构成等差数列,通过求出S n ,可求出a n .解:由于a n =S n -S n-1(n ≥2),∴2(S n -S n-1)=S n ·S n-1(n ≥2).∴n S 1-11-n S =-21.∴数列{n S 1}是以11a 为首项,以-21为公差的等差数列.于是n S 1=31-21(n-1)=635n -,∴S n =n 356-.当n ≥2时,a n =S n -S n-1=)83)(53(18--n n .当n=1时,a 1=3不适合上式.∴a n =⎪⎩⎪⎨⎧≥--=.2,)83)(53(18,1,3n n n n思维启示:本题解题的关键是将原数列转化为等差数列{nS 1}作为突破口,使问题获解. 【例8】 已知数列{a n }中,S n 是它的前n 项和,并且S n+1=4a n +2(n=1,2,…),a 1=1. (1)设b n =a n+1-2a n ,求证:数列{b n }是等比数列; (2)设c n =nna 2,求证:数列{c n }是等差数列. 证明:(1)由已知,得S n+1=4a n +2,S n+2=4a n+1+2. 两式相减,得S n+2-S n+1=4(a n+1-a n ), 即a n+2=4a n+1-4a n ,a n+2-2a n+1=2(a n+1-2a n ), 即b n+1=2b n .∴数列{b n }是公比为2的等比数列.(2)在S n+1=4a n +2中,令n=1,得S 2=4a 1+2=6.而S 2=a 1+a 2,∴a 2=5.∴b n =b 1·2n-1=(a 2-2a 1)·2n-1=3·2n-1,即a n+1-2a n =3·2n-1.∴112++n n a -nn a 2=43,即c n+1-c n =43. ∴数列{c n }是公差为43的等差数列.思维启示:着眼于数列间的联系,着手于公式的转换,将非等差数列、非等比数列转化为等差数列或等比数列,以求得问题的解决. (二)数列求和数列求和可分为特殊数列与一般数列求和,所谓特殊数列就是指等差或等比数列,非等差或非等比数列称之为一般数列.对于特殊数列的求和,要恰当地选择、准确地应用求和公式,采用直接求和的方法. 对于一般数列的求和,可采用下面介绍的几种化归策略. 1.并项求和法在数列求和过程中,如果将某些项分组合并后转化为特殊数列再求和,这种方法称为并项求 和法.【例9】 求数列-1,4,-7,10,…,(-1)n (3n-2),…的前n 项和.思路分析:(1){(-1)n-1(3n-2)}不是等差数列,但数列{3n-2}却是等差数列,因此数列{(-1)n-1(3n-2)}的奇数项与偶数项分别是等差数列,可将问题转化为等差数列求和问题. (2)根据等差数列的定义,数列{(-1)n-1(3n-2)}从第一项(或第二项)起,每两项的差是一个常数,因此在求和时,可以将数列{(-1)n-1(3n-2)}的相邻两项合并.解法一:当n 为偶数时,S n = 32)2353()107()41(个共nn n -++-+⋅⋅⋅++-++-=2n×3=23n;当n 为奇数时,S n =321)107()41(个共-⋅⋅⋅++-++-n +[-(3n-2)]=21-n ×3-(3n-2)=213+-n .综上,S n =⎪⎪⎩⎪⎪⎨⎧-.,231,,23为奇数为偶数n n n n解法二:当n 是偶数时,奇数项与偶数项各有2n 项,S 奇=2n ×(-1)+2)12(2-nn ×(-6)=-43n 2+n,S 偶=2n ×4+2)12(2-n n ×6=43n 2+2n ,∴S n =S 偶+S 奇=23n.当n 是奇数时,奇数项共有21+n 项,偶数项共有21-n 项.S 奇=21+n ×(-1)+2)121(21-++n n ×(-6)=-43(n+1)2+(n+1), S 偶=21-n ×4+2)121(21---n n ×6=43(n-1)2+2)1(-n , ∴S n =S 奇+S 偶=213+-n .思维启示:应用并项转化法要注意对项数的奇偶进行讨论,若为偶数项,按两项合并后总项数为2n项;若为奇数项,按两项合并,则剩余一项. 2.分组求和法将数列的每一项拆成多项,然后重新分组,将一般数列求和问题转化为特殊数列的求和问题,我们将这种方法称之为分组化归法.【例10】 求数列241,481,6161,2n+121+n ,…的前n 项和S n . 思路分析:此数列的通项公式是a n =2n+121+n ,而数列{2n}是一个等差数列,数列{121+n }是一个等比数列,故采用分组求和法求和.解:S n =241+481+6161+…+(2n+121+n ) =(2+4+6+…+2n)+(221+321+421+…+121+n )=2)22(+n n +21])21(1[212--n=n(n+1)+21-121+n .思维启示:在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别构成等差数列或等比数列,那么我们可用分组求和法求出它的前n 项和. 3.裂项相消法裂项相消法求和就是将数列的每一项拆成两项或多项,使数列中的项出现有规律的抵消项,从而达到求和的目的.【例11】 求1212-+1312-+1412-+…+112-n (n ≥2)的和. 思路分析:认真观察,可以发现数列的每一项112-n 均可分解成两项的差,于是可以用裂项相消法求和. 解:∵a n-1=112-n =)1)(1(1+-n n =21(11-n -11+n ), ∴1212-+1312-+1412-+…+112-n =21[(1-31)+(21-41)+(31-51)+…+(11-n -11+n )] =21(1+21-n 1-11+n )=43-)1(212++n n n (n ≥2).思维启示:裂项相消法的关键是将数列的通项分解成两项的差,这两项一定要是数列的相邻(相间)两项,即这两项的结构应一致. 4.错位相减法【例12】 求和S n =x+2x 2+3x 3+…+nx n .思路分析:由于{n}是等差数列,而当x ≠0时,{x n }是等比数列,故可采用错位相减法. 解:当x=0,S n =0;当x=1时,S 1=2)1(+n n ; 当x ≠1且x ≠0时,∵S n =x+2x 2+3x 3+…+nx n , ① ∴xS n =x 2+2x 3+3x 4+…+(n-1)x n +nx n+1. ②①-②,得(1-x)S n =x+x 2+x 3+…+x n-nx n+1=x xx n --1)1(-nx n+1.∴S n =2)1(x x-·[nx n+1-(n+1)x n +1]. ∴S n =⎪⎪⎩⎪⎪⎨⎧≠++--=+-.1],1)1([)1(,1,2)1(12x x n nx x x x n n nn思维启示:(1)一般地,对于数列{c n },如果c n =a n b n ,且{a n }是等差数列,{b n }是等比数列,那么可以用错位相减法求数列{c n }的前n 项和.(2)错位相减法的步骤是:①在等式两边同时乘以等比数列{b n }的公比;②将两个等式相减;③利用等比数列的前n 项和公式求和. 5.分类讨论法有些数列的求和需要经过分类讨论处理后才能进行求和,如等比数列的公比含参变数,则需在1点展开讨论,又如每一项均取绝对值的数列,则需在0点展开讨论. 【例13】 数列{a n }的前n 项和为S n =10n-n 2,求数列{|a n |}的前n 项和. 思路分析:首先通过S n 求出a n ,然后求和.解:当n ≥2时,a n =S n -S n-1=(10n-n 2)-[10(n-1)-(n-1)2]=-2n+11. 当n=1时,a 1=S 1=9,适合上式. ∴a n =-2n+11(n ∈N *).又a n -a n-1=(-2n+11)-[-2(n-1)+11]=-2,∴数列{a n }是以9为首项,-2为公差的等差数列. 由-2n+11≥0,得n ≤211,a 5>0,a 6<0. ∴数列{|a n |}的前n 项和T n =|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|+…+|a n |=a 1+a 2+a 3+a 4+a 5-a 6-a 7-…-a n . 当n ≤5时,T n =9n+2)1(-n n (-2)=-n 2+10n. 当n ≥6时,T n =2S 5-S n =50+n 2-10n=n 2-10n+50.综上,T n =⎪⎩⎪⎨⎧≥+-≤+-.6,5010,5,1022n n n n n n实践探究1.数列{a n }中,a 1=1,前n 项的乘积T n =n2.问225256是{a n }中的项吗?若是,是第几项? 解:由已知a 1·a 2·a 3·…·a n =n 2,得a n =12121-∙⋅⋅⋅∙∙∙⋅⋅⋅∙∙n n a a a a a a =22)1(-n n (n ≥2).令22)1(-n n =225256,解方程得n=16.∵n=16∈N *,∴225256是数列{a n }的第16项.2.李明每月节省出100元,想以零存整取的方式存入银行,攒足2 625元购买冰箱.如果月利率为P=0.007 5,问存几个月能攒够购买冰箱的钱?解:设存x 个月能攒够购买冰箱的钱.当A=100,P=0.007 5时,第一个月月初存入的100元到第x 月月末可得到本利和为B 1=100+100×0.007 5x,第n 个月月初存入的100元到第x 月月末可得本利和为B n =100+100×0.007 5(x-n+1). 依题意得B 1+B 2+…+B n +…+B x =2 625. 因∑=xn 1=1(x-n+1)=1+2+3+…+x,故100[x+0.007 5(1+2+3+…+x)]=2 625,100[x+0.007 5×2)1(+x x ]=2 625. 整理得0.007 5x 2+(2+0.007 5)x-52.5=0. 解方程得x 1=015.0375.4-(舍去).x 2=015.035.0=370>23.3.因x ∈N *,所以x=24,即存够24个月便可攒足2 625元.3.(2004年全国高考题)数列{a n }的前n 项和记为S n ,已知a 1=1,a n+1=n n 2+S n (n=1,2,3,…), 求证:(1)数列{nS n }是等比数列;(2)S n+1=4a n . 思路分析:解答本题的关键在于利用公式a n =⎩⎨⎧≥-=-.2,,1,11n S S n S n n证明:(1)∵a n+1=S n+1-S n ,a n+1=nn 2+S n ,∴(n+2)S n =n(S n+1-S n ). 整理得nS n+1=2(n+1)S n . 所以11++n S n =2nS n . 故{nS n }是以2为公比的等比数列. (2)由(1)知11++n S n =4·11--n S n (n ≥2),于是S n+1=4(n+1)·11--n S n =4a n (n ≥2). 又a 2=3S 1=3,故S 2=a 1+a 2=4.因此对于任意正整数n ≥1,都有S n+1=4a n .。
数学必修五单元知识点总结归纳
数学必修五单元知识点总结归纳数学必修五单元知识点总结归纳(一)解三角形:1、正弦定理:在中,分别为角的对边,则有(为的外接圆的半径)2、正弦定理的变形公式:①②③3、三角形面积公式:.4、余弦定理:在中,有,推论:(二)数列:1.数列的有关概念:(1)数列:按照一定次序排列的一列数。
数列是有序的。
数列是定义在自然数N_或它的有限子集{1,2,3,…,n}上的函数。
(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。
如:。
(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
如:。
2.数列的表示方法:(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。
(3)解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:4.数列{an}及前n项和之间的关系:5.等差数列与等比数列对比小结:等差数列等比数列一、定义二、公式1.2.1.2.三、性质1.,称为与的等差中项2.若(、、、),则3.,,成等差数列1.,称为与的等比中项2.若(、、、),则3.,,成等比数列(三)不等式1、;;.2、不等式的性质:①;②;③;④,;⑤;⑥;⑦;⑧.小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。
在字母比较的选择或填空题中,常采用特值法验证。
3、一元二次不等式解法:(1)化成标准式:;(2)求出对应的一元二次方程的根;(3)画出对应的二次函数的图象;(4)根据不等号方向取出相应的解集。
线性规划问题:1.了解线性约束条件、目标函数、可行域、可行解、解2.线性规划问题:求线性目标函数在线性约束条件下的值或最小值问题.3.解线性规划实际问题的步骤:(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;(4)验证。
高一数学必修五知识点总结归纳
必修五知识点总结归纳(一)解三角形1、正弦定理:在 C 中,a、 b 、c分别为角、、C的对边, R为 C 的外接圆的半径,则有a b c2R .sin sin sin C正弦定理的变形公式:①a2R sin, b2R sin, c2Rsin C ;② sin a, sin b, sin C c;2R2R2R③a : b : c sin: sin: sin C ;④a b c a b c.sin sin sin C sin sin sin C2、三角形面积公式:S C 1bc sin1ab sin C1ac sin.2223C中,有a b c2bc cos b a c2ac cos,、余弦定理:在222,222 c2a2b22ab cosC .4、余弦定理的推论:cos b2c2a2,cosa2c2b2a2b2c2 2bc2ac,cosC2ab.5、射影定理:a b cosC c cos B,b a cosC c cos A, c a cosB b cos A6、设a、b、c是 C 的角、、 C 的对边,则:①若a2b2c2,则 C90;②若 a2b2c2,则 C90 ;③若 a2b2c2,则 C 90 .(二 )数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第 2 项起,每一项都不小于它的前一项的数列.a n 1a n06、递减数列:从第 2 项起,每一项都不大于它的前一项的数列.a n 1a n07、常数列:各项相等的数列.8、摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列.9、数列的通项公式:表示数列a n的第 n 项与序号 n 之间的关系的公式.10、数列的递推公式:表示任一项a n与它的前一项a n 1(或前几项)间的关系的公式.11、如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.12、由三个数a,, b 组成的等差数列可以看成最简单的等差数列,则称为 a 与b的等差中项.若 b a c,则称 b 为a与c的等差中项.213、若等差数列a n的首项是 a1,公差是d,则 a n a1n 1 d .14、通项公式的变形:①a n a m n m d ;② a1a n n 1 d ;③d a n a1 ;a n a1a n am .n1④ n1;⑤ dd n m15、若a n是等差数列,且 m n p q(m、n、 p 、q*),则 a m a n a p a q;若 a n是等差数列,且2n p q (n、 p 、q*),则 2a n a p a q.16、等差数列的前n 项和的公式:①S n n a1a n;② S n na1n n 1d .2217、等差数列的前n 项和的性质:①若项数为*,则 S2 n n a n a n 12n n,且S偶S奇nd ,S奇a n.S偶a n1②若项数为2n 1 n*,则 S2 n 12n 1 a n,且 S奇S偶 a n,S奇nS偶n1(其中 S奇na n, S偶n 1 a n).18、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.19、在a与b中间插入一个数G ,使a, G , b 成等比数列,则G 称为a与 b 的等比项.若 G2ab ,则称 G 为a与 b 的等比中项.注意: a 与b的等比中项可能是G 20、若等比数列a n的首项是a1,公比是q,则a n a1q n 1.21、通项公式的变形:①a n a m q n m;② a1 a n q n 1;③ q n 1an ;④q n man.a1a m22、若a n m n p q (m、n、 p 、q *a n a p a q;是等比数列,且),则 a m 若 a n是等比数列,且2n p q (n、 p 、q*),则 a n2a p a q.23、等比数列a n的前 n 项和的公式:S n24、等比数列的前n 项和的性质:①若项数为na1q1a11q n a a q.1n q 11q1q2n n*,则S偶q .S奇② S n m S n q n S m.③ S n, S2 n S n, S3n S2n成等比数列(S n0 ).(三)不等式1、a b 0 a b ; a b 0a b ; a b 0 a b .2① a b b a ;②a b,b c a c;③ a b a c b c ;、不等式的性质:④ a b,c 0ac bc , a b, c0ac bc ;⑤ a b, c d a c b d ;⑥ a b 0, c d 0ac bd ;⑦a b0a n b n n, n 1 ;⑧ a b 0n a n b n, n 1 .3、一元二次不等式:只含有一个未知数,并且未知数的最高次数是 2 的不等式.4、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式b24ac000二次函数y ax2bx ca0 的图象一元二次方程 ax 2bx 有两个相异实数根有两个相等实数根x b x1x2b没有实数根12c 0a0 的根1,22a x x2aax2bx c0x x x1或 x x2x x bR一元二次a02a 不等式的解集ax2bx c0x x1x x2a0若二次项系数为负,先变为正5、设a、b是两个正数,则ab称为正数 a 、b的算术平均数,ab 称为正数 a 、b的2几何平均数.6若 a0, b0,则a b2ab,即abab.、均值不等式定理:27、常用的基本不等式:①a2b22ab a, b R;② ab a2b2a, b R ;220;④ a2b22③ ab a b a0,b a b a,b R .2228x、y 都为正数,则有、极值定理:设⑴若 x y s (和为定值),则当 x y 时,积 xy 取得最大值s2.4⑵若 xy p (积为定值),则当 x y 时,和 x y 取得最小值2p .。
高一数学必修五知识点总结归纳
高一数学必修五知识点总结归纳对于数学的学习,新课很重要!接触知识的第一印象,很大程度上决定了你对整个板块知识的逻辑关系的认识。
下面是为大家整理的有关高一数学必修五知识点归纳,希望对你们有帮助!高一数学必修五知识点归纳1高中数学共有五本必修和选修1-1,1-2(文科),2-1,2-2,2-3(理科),主要为代数(高考占比约为50%)和几何(高考占比25-30%),其他(算法,概率统计等)。
高一上期将会学习必修1整本书(集合和函数,初等函数,方程的根等),必修四(三角函数)等。
主要为函数内容的学习,主要考察学生的抽象思维。
而且函数的基本概念和性质,为整个高中的代数奠定了基础。
在这一阶段的学习,学生应该尽量培养自己的抽象思维,多思考。
可以适当少做题,多花时间在知识概念等的复习和理解上面,弄清楚所学内容之间的逻辑联系。
高一下期将会学习必修四(向量,三角函数和差公式等),必修五(解三角形,数列,解不等式)等。
这一阶段的内容,主要考察学生的推演和计算能力。
可以适当多做题,多训练,提高自己计算的速度和准确性。
高二将会进入几何部分的学习。
高二上期学习必修二(立体几何,直线和圆),必修三(算法,概率统计)等。
这一阶段的内容对学生的空间想象力(立体几何)和逻辑思维能力要求较高,同时也要求学生具备较高的计算水平(经过高一下的训练)。
同时,这也是对学生学习数学相对比较轻松的一个学期。
所以,可以在学好本学期内容的基础上,对上学期的内容多做复习,温故而知新。
高二下期主要学习选修部分(圆锥曲线,导数等)。
这一学期的内容是整个高考的压轴,也是最难的内容。
它对学生各方面能力的要求都很高,是学生拿高分必须要学好的部分。
对于这一阶段的学习,一定要形成自己的思想,在多思考的基础上,一定要动笔!总之,对于数学的学习,新课很重要!接触知识的第一印象,很大程度上决定了你对整个板块知识的逻辑关系的认识。
只有理清楚了数学各个知识之间的逻辑联系,形成自己的一套体系,才能更快更好地学好数学。
高中数学必修5课件:第2章2-2-1等差数列
第二章 数列
解析: (1)证明:bn+1-bn=an+11-2-an-1 2 =4-a41n-2-an-1 2=2aan-n 2-an-1 2 =2aann--22=12. 又b1=a1-1 2=12, ∴数列{bn}是首项为12,公差为12的等差数列.
数学 必修5
第二章 数列
(2)由(1)知bn=12+(n-1)×12=12n. ∵bn=an-1 2,∴an=b1n+2=2n+2. ∴数列{an}的通项公式为an=2n+2.
数学 必修5
第二章 数列
[规范解答] 方法一:设等差数列{an}的前三项分别为
a1,a2,a3.依题意得aa11·+a2a·a23+=a63=6,18,
∴a31a·1+a1+3dd=·1a81,+2d=66,
2分
解得ad1==-115 或ad1==51.,
6分
数学 必修5
第二章 数列
∵数列{an}是递减等差数列,∴d<0. 故取a1=11,d=-5, ∴an=11+(n-1)·(-5)=-5n+16. 即等差数列{an}的通项公式为an=-5n+16. 令an=-34,即-5n+16=-34,得n=10. ∴-34是数列{an}的项,且为第10项.
由aa190<>11,, 得221155++98dd><11,,
解得785<d<235.
故选 C. 【错因】 在解决本题时,必须深刻理解“从第10项起开
始比1大”的含义.尤其是“开始”这个词,它不仅表明 “a10>1”,而且还隐含了“a9≤1”这一条件,所对上述两个错 解都未从题干中彻底地挖掘出隐含条件.
第二章 数列
4.已知三个数成等差数列,它们的和为18,它们的平方 和为116,求这三个数.
最新人教版高中数学必修5第二章《等差数列》
数学人教B必修5第二章2.2.1 等差数列1.理解等差数列的概念.2.掌握等差数列的通项公式和等差中项的概念,深化认识并能运用.3.理解等差数列的性质,并掌握等差数列的性质及其应用.1.等差数列的概念一般地,如果一个数列从______起,每一项与它的前一项的差都等于__________,那么这个数列就叫做等差数列,这个常数叫做等差数列的______,通常用字母______表示.定义法判断或证明数列{a n}是等差数列的步骤:(1)作差a n+1-a n,将差变形;(2)当a n+1-a n是一个与n无关的常数时,数列{a n}是等差数列;当a n+1-a n不是常数,而是与n有关的代数式时,数列{a n}不是等差数列.【做一做1】如果一个数列的前3项分别为1,2,3,下列结论中正确的是().A.它一定是等差数列B.它一定是递增数列C.它一定是有穷数列D.以上结论都不一定正确2.等差数列的通项公式如果一个等差数列{a n}的首项为a1,公差为d,则通项公式为____________.(1)等差数列通项公式的其他形式.①a n=a m+(n-m)d;②a n=an+b(a,b是常数).(2)等差数列的判断方法.①定义法:a n-a n-1=d(n≥2)或a n+1-a n=d⇔数列{a n}是等差数列;②等差中项法:2a n=a n-1+a n+1(n≥2)⇔数列{a n}为等差数列;③通项公式法:a n=an+b⇔数列{a n}是以a1=a+b为首项,以a为公差的等差数列.【做一做2-1】已知数列{a n}的通项公式为a n=2(n+1)+3,则此数列().A.是公差为2的等差数列B.是公差为3的等差数列C.是公差为5的等差数列D.不是等差数列【做一做2-2】等差数列1,-1,-3,…,-89的项数是().A.92 B.47 C.46 D.453.等差中项如果三个数x,A,y组成等差数列,那么A叫做x和y的________.x,A,y是等差数列的充要条件是________.(1)a,A,b成等差数列的充要条件是:2A=a+b.当三个数成等差数列时,一般设为a-d ,a ,a +d ;四个数成等差数列时,一般设为a -3d ,a -d ,a +d ,a +3d .(2)在等差数列{a n }中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项,表示为a n +1=a n +a n +22,等价于a n +a n +2=2a n +1,a n +1-a n =a n +2-a n +1.【做一做3】在△ABC 中,三内角A ,B ,C 成等差数列,则∠B 等于( ).A .30°B .60°C .90°D .120°一、解读等差数列的概念剖析:(1)在等差数列的定义中,要注意两点,“从第2项起”及“同一个常数”.因为数列的第1项没有前一项,因此强调从第2项起,如果一个数列,不从第2项起,而是从第3项或从第4项起,每一项与它的前一项的差都等于同一个常数,那么此数列不是等差数列,但可以说从第2项或第3项起是一个等差数列.(2)一个数列,从第2项起,每一项与它的前一项的差,尽管等于常数,这个数列可不一定是等差数列,因为这个常数可以不同,要注意“差是常数”和“差是同一个常数”的含义的不同,如数列2,4,5,9,从第2项起,每一项与它前一项的差都是常数,但常数是不相同的,当常数不同时,就不是等差数列,因此定义中“同一个常数”,这个“同一个”十分重要,切记不可丢掉.二、等差数列的性质剖析:若数列{a n }是公差为d 的等差数列,(1)d =0时,数列为常数列;d >0时,数列为递增数列;d <0时,数列为递减数列.(2)d =a n -a 1n -1=a m -a k m -k(m ,n ,k ∈N +). (3)a n =a m +(n -m )d (n ,m ∈N +).(4)若m +n =p +q (m ,n ,p ,q ∈N +),则a m +a n =a p +a q .(5)若m +n 2=k ,则a m +a n =2a k . (6)若数列{a n }是有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首末两项之和,即a 1+a n =a 2+a n -1=…=a i +1+a n -i =….(7)数列{λa n +b }(λ,b 是常数)是公差为λd 的等差数列.(8)下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…(k ,m ∈N +)组成公差为md 的等差数列.(9)若数列{b n }也为等差数列,则{a n ±b n },{ka n +b }(k ,b 为非零常数)也成等差数列.(10)若{a n }是等差数列,则a 1,a 3,a 5,…仍成等差数列.(11)若{a n }是等差数列,则a 1+a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9,…仍成等差数列.用性质(4)时要注意,序号的和相等,但项数不同,此结论不一定正确,如a 8=a 2+a 6,a 1+a 3+a 4=a 2+a 6,就不一定正确.三、教材中的“?”(1)通项公式为a n =an -b (a ,b 是常数)的数列都是等差数列吗?剖析:通项公式为a n =an -b (a ,b 为常数)的数列都是等差数列,其公差为a .(2)怎么证明A =x +y 2? 剖析:∵x ,A ,y 成等差数列,∴A -x =y -A ,即2A =x +y .∴A =x +y 2. (3)要确定一个等差数列的通项公式,需要知道几个独立的条件?剖析:因为等差数列的通项公式中涉及首项a 1与公差d ,所以要确定一个等差数列的通项公式,需要知道两个独立的条件.题型一 等差数列定义的应用【例1】判断下列数列是否为等差数列.(1)a n =3n +2;(2)a n =n 2+n .分析:利用等差数列的定义,即判断a n +1-a n (n ∈N +)是否为同一个常数.反思:利用定义法判断等差数列时,关键是看a n +1-a n 得到的结果是否是一个与n 无关的常数,若是,即为等差数列,若不是,则不是等差数列.题型二 等差数列的通项公式【例2】(1)求等差数列10,7,4,…的第20项.(2)-201是不是等差数列-5,-9,-13,…的项?若是,应是第几项?分析:通过题目中给出的数列,可以确定数列的首项和公差,便可求解.反思:求等差数列的通项公式、项、项数的问题是等差数列最基本的问题,利用已知条件求等差数列的首项和公差是常用方法,应牢记等差数列的通项公式.题型三 等差数列性质的应用【例3】数列{a n }为等差数列,已知a 2+a 5+a 8=9,a 3a 5a 7=-21,求数列{a n }的通项公式.分析:已知数列中某些项与项之间的关系,求其通项,可利用a 1,d 建立方程组来求解.但是,注意到a 2,a 5,a 8及a 3,a 5,a 7的各项序号之间的关系,也可考虑利用等差数列的性质来求解,此法运算量较小.反思:在有关等差数列的问题中,若已知的项的序号成等差数列,则解决问题的过程中,均可考虑利用等差数列的性质.题型四 构造等差数列求通项公式【例4】(1)数列{a n }的各项均为正数,且满足a n +1=a n +2a n +1,a 1=1,求a n ;(2)在数列{a n }中,a 1=1,且满足a n +1=2a n a n +2,求a n . 分析:利用题中所给关系的结构特征,构造等差数列,利用所构造的等差数列求a n . 反思:应熟记几种辅助数列构造方法及其对应数列的结构形式.构造等差数列的方法一般有:平方法、开平方法、倒数法等.题型五 易错辨析【例5】已知b 是a ,c 的等差中项,且lg(a +1),lg(b -1),lg(c -1)成等差数列,同时a +b +c =15,求a ,b ,c 的值.错解:因为b 是a ,c 的等差中项,所以2b =a +c .又因为a +b +c =15,所以3b =15,所以b =5.设a ,b ,c 的公差为d ,则a=5-d,c=5+d.由题可知2lg(b-1)=lg(a+1)+lg(c-1),所以2lg 4=lg(5-d+1)+lg(5+d-1).所以16=25-(d-1)2.所以(d-1)2=9,即d-1=3.所以d=4,所以a,b,c分别为1,5,9.错因分析:解方程(d-1)2=9时,d-1应取±3两个.而错解只取d-1=3,漏掉了d -1=-3的情况.【例6】已知两个数列{a n}:5,8,11,…与{b n}:3,7,11,…,它们的项数均为100,则它们有多少个彼此具有相同数值的项?错解:由已知两等差数列的前3项,容易求得它们的通项公式分别为a n=3n+2,b n=4n-1(1≤n≤100).令a n=b n,得3n+2=4n-1,即n=3.所以两数列只有1个数值相同的项,即第3项.错因分析:本题中所说的数值相同的项,它们的项的序号并不一定相同.例如23在数列{a n}中是第7项,而在数列{b n}中是第6项,我们也说它是两个数列中数值相同的项,也就是说,在这里我们只看这个数在两个数列中有没有出现过,而并不关心它是这两个数列中的第几项.1已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是().A.2 B.3 C.6 D.92在等差数列{a n}中,a3+3a8+a13=120,则a3+a13-a8=().A.24 B.22 C.20 D.-83若数列{a n}的通项公式为a n=6n+7,则这个数列________(填“是”或“不是”)等差数列.4在等差数列{a n}中,a3=7,a5=a2+6,则a6=________.答案:基础知识·梳理1.第2项同一个常数公差d【做一做1】D2.a n=a1+(n-1)d【做一做2-1】A已知a1=7,a n-a n-1=2(n≥2),故这是一个以2为公差的等差数列.【做一做2-2】C由已知,得a1=1,d=(-1)-1=-2,∴a n=1+(n-1)×(-2)=-2n+3.令-2n+3=-89,得n=46.3.等差中项2A=x+y【做一做3】B典型例题·领悟【例1】解:(1)a n+1-a n=3(n+1)+2-(3n+2)=3(n∈N+).由n的任意性知,这个数列为等差数列.(2)a n+1-a n=(n+1)2+(n+1)-(n2+n)=2n+2,不是常数,所以这个数列不是等差数列.【例2】解:(1)由a1=10,d=7-10=-3,n=20,得a20=10+(20-1)×(-3)=-47.(2)由a1=-5,d=-9-(-5)=-4,得数列的通项公式为a n=-5+(n-1)×(-4)=-4n-1.设-4n-1=-201成立,解得n=50.所以-201是这个等差数列的第50项.【例3】解:∵a2+a8=2a5,∴a2+a5+a8=3a5=9.∴a5=3.∴a 2+a 8=a 3+a 7=6.①又a 3a 5a 7=-21,∴a 3a 7=-7.②由①②解得a 3=-1,a 7=7或a 3=7,a 7=-1.∴a 3=-1,d =2或a 3=7,d =-2.由通项公式的变形公式a n =a 3+(n -3)d ,得a n =2n -7或a n =-2n +13.【例4】解:(1)由a n +1=a n +2a n +1,可得a n +1=(a n +1)2.∵a n >0,∴a n +1=a n +1,即a n +1-a n =1.∴{a n }是首项为a 1=1,公差为1的等差数列.∴a n =1+(n -1)=n .∴a n =n 2.(2)由a n +1=2a n a n +2,可得1a n +1=1a n +12, ∴{1a n }是首项为1a 1=1,公差为12的等差数列. ∴1a n =1+12(n -1)=n +12.∴a n =2n +1. 【例5】正解:因为b 是a ,c 的等差中项,所以2b =a +c . 又因为a +b +c =15,所以3b =15.所以b =5.设a ,b ,c 的公差为d ,则a =5-d ,c =5+d .由题可知2lg(b -1)=lg(a +1)+lg(c -1),所以2lg 4=lg(5-d +1)+lg(5+d -1).所以16=25-(d -1)2,即(d -1)2=9.所以d -1=±3,即d =4或d =-2.所以a ,b ,c 三个数分别为1,5,9或7,5,3.【例6】正解:∵a n =3n +2(n ∈N +),b k =4k -1(k ∈N +),两数列的共同项可由3n +2=4k -1求得.∴n =43k -1,而n ∈N +,k ∈N +, ∴设k =3r (r ∈N +),得n =4r -1.由已知131********r r ≤≤⎧⎨≤-≤⎩,,且r ∈N +,可得1≤r ≤25.∴共有25个相同数值的项.随堂练习·巩固1.B 由题意,得⎩⎪⎨⎪⎧ m +2n =8,2m +n =10, ∴⎩⎪⎨⎪⎧m =4,n =2. ∴m 和n 的等差中项是3.2.A3.是 判断数列是否是等差数列的方法是:a n -a n -1=d (n ≥2).根据定义有:a n -a n -1=(6n +7)-[6(n -1)+7]=6(常数),所以{a n }是等差数列.4.13 等差数列{a n }中,a 3=7,a 5-a 2=6,∴3d =6.∴a 6=a 3+3d =7+6=13.。
人教版高一数学必修5--第二章数列总结
人教版高一数学必修 5 第二章数列总结1、数列的基本观点(1)定义:依据必定的序次摆列的一列数叫做数列.(2)通项公式:假如数列 { a n} 的第n项a n与n之间的函数关系能够用一个公式表示,这个公式就叫做这个数列的通项公式.(3)递推公式:假如已知数列 { a n} 的第一项 ( 或前几项 ) ,且任何一项a n与它前一项a n-1( 或前几项 ) 间的关系可用一个公式来表示,那么这个公式就叫做这个数列的递推公式.通项公式与递推公式,是给出一个数列的两种主要方法.2、主要公式(1)通项公式 a n与前 n 项和公式 S n间的关系:S1n=1a n=.S n- S n-1n≥2(2)等差数列a n=a1+( n-1) d= a m+( n- m) d.11S n=2n( a1+ a n), S n= na1+2n( n-1) d.a+ bA=2( 等差中项 ).(3)等比数列a n=a1q n-1, a n=a m· q n-m.1q = 1S n=naa1- n1-n.a q a 1 q≠1=1-q1-q q=±(等比中项 ).G ab3.主要性质(1)若 m+ n= p+ q( m、 n、 p、q∈N*),在等差数列 { a n} 中有:a m+a n=a p+a q;在等比数列 { a n} 中有:a m·a n=a p·a q.(2)等差 ( 比) 数列挨次k之和仍旧成等差 ( 比 ) .一数列的通公式的求法1.察法依据下边数列的前几,写出数列的一个通公式.5 79(1)1,1,7,15,31,⋯;2.定法等差数列 {n是增数列,前和n1, 3, 9 成等比数列,2.求数列 {na n S,且=aa a a S a的通公式.3.前n和法(1) 已知数列 {n}的前n 和n=n2+ 3 + 1,求通an;a S n(2) 已知数列 { a n} 的前n和S n=2n+ 2,求通a n.4.累加法已知 { a n} 中,a1= 1,且a n+1-a n= 3n( n∈ N* ) ,求通a n.5.累乘法1已知数列 { a n} ,a1=3,前n和S n与a n的关系是S n= n(2 n-1) a n,求通 a n. 6.助数列法已知数列 {a} 足a= 1,a= 3+ 2(n*a} 的通公式.∈N ) .求数列 {n1n+1n n7.倒数法已知数列 { a } 中,a= 1,a a n* a .=a+1( n∈N ) .求通n1n+ 1n二数列的前n 和的求法1.分化乞降法假如一个数列的每一是由几个独立的合而成,而且各独立也可成等差或等比数列,数列的前1乞降: S n=1+22n和可考拆后利用公式求解.1+ 31+⋯+ ( +1n) .48n 22.裂乞降法于裂后明有能相消的的一数列,在乞降常用“裂法”,分式的乞降多利用此法.可用待定系数法 通 公式 行拆 ,相消 注意消去 的 律,即消去哪些 ,保存哪些 ,常 的拆 公式有:11 1 1(1) n n +k = k ·(n - n + k ) ; (2) 若 { a n } 等差数列,公差d ,1=1(1- 1);a n ·a n + 1 d a n a n + 11(3)= n + 1- n 等.n + 1+ n3. 位相减法若数列 { a n } 等差数列,数列{ b n } 是等比数列,由 两个数列的 乘 成的新数列{ a n b n } ,当求 数列的前n 的和 ,经常采纳将 { a n b n } 的各 乘以等比数列 { b n } 的公比 q ,而后 位一 与{ a n b n } 的同次 相减,即可 化 特别数列的乞降,因此 种数列乞降的方法称 位相减法.已知数列 { a n } 中, a 1= 3,点 ( a n , a n +1) 在直 y = x +2 上.(1) 求数列 { a n } 的通 公式;n(2) 若 b n = a n ·3,求数列 { b n } 的前 n 和 T n . 4.分段乞降法假如一个数列是由各自拥有不一样特色的两段组成, 可考 利用分段乞降. 已知数列 { a n } 的前 n 和 S n ,且 a n + S n = 1( n ∈ N * ) .(1) 求数列 { a n } 的通 公式;(2) 若数列 { b n } 足 b n = 3+ log 4a n , T n = | b 1| + | b 2| +⋯+ | b n | ,求 T n .附注:常用1) 1+2+3+...+n =2) 1+3+5+...+(2n-1) =3)三、等差、等比数列的对照(1)判断数列的常用方法看数列是否是等差数列有以下三种方法:①②2()③(为常数 ).看数列是否是等比数列有以下四种方法:①②(,)③(为非零常数 ).④正数列 {} 成等比的充要条件是数列{} ()成等比数列 .( 2)等差数列与等比数列对照小结:等差数列等比数列定义1.1.公式2.2.1.,1.,性质称为与的等差中项称为与的等比中项2.若(、、、2.若(、、、),则),则3.,,成等差数3.,,成等比数列列4.,4.(3)在等差数列{}中 , 相关 Sn 的最值问题:1),时,有最大值;,时,有最小值;2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最值时的值()可以下确立或。
人教版高中数学必修五-等比数列课件 (2)
为公比的等比数列,
4
an 1,
其通项公式为a
a n 1
4
3
1
4
4
3 ( 1 )n1 3( 1 )n .
44
4
第二章 数 列
【典例】(12分)等比数列{an}的前三项的和为168,a2-a5 =42,求a5,a7的等比中项.
【审题指导】题目中给出了等比数列前三项的和以及a2a =42,由此列出方程组解得公比 和首项a1,利用定义求a ,
第二章 数 列
4.若{an}为等比数列,且a1·a9=64,a3+a7=20,求a11. 解析: ∵{an}为等比数列, ∴a1·a9=a3·a7=64,又∵a3+a7=20, ∴aa73==146, 或aa73==41.6, 当a3=4,a7=16时,a3+a7=a3+a3q4=20, ∴1+q4=5,∴q4=4, 当a3=16,a7=4时,a3+a7=a3+a3q4=20, ∴1+q4=54,∴q4=14, ∴a11=a1q10=a3q8=64或1.
正确说法的个数为( )
(A)0
(B)1
(C)2
(D)3
第二章 数 列
【解析】选C.其中正确的为③,④;①,②中不能保 证各项及公比不为0,所以错误.
第二章 数 列
2.等比数列{an}中,2a4=a6-a5,则公比是( )
(A)0
(B)1或2
(C)-1或2
(D)-1或-2
【解析】选C.由已知得2= 2 ,所以 =-1或2.
第二章 数 列
【误区警示】对解答本题时易犯的错误具体分析如下:
第二章 数 列
1.下面有四个结论:
①由第一项起乘相同常数得后一项,这样所得到的数列一定
(推荐)人教版高一数学必修5-第二章数列总结
人教版高一数学必修5第二章数列总结1、数列的基本概念(1)定义:按照一定的次序排列的一列数叫做数列.(2)通项公式:如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个公式表示,这个公式就叫做这个数列的通项公式.(3)递推公式:如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它前一项a n -1(或前几项)间的关系可用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 通项公式与递推公式,是给出一个数列的两种主要方法.2、主要公式(1)通项公式a n 与前n 项和公式S n 间的关系:a n =⎩⎪⎨⎪⎧S 1 n =1S n -S n -1 n ≥2. (2)等差数列 a n =a 1+(n -1)d =a m +(n -m )d . S n =12n (a 1+a n ),S n =na 1+12n (n -1)d .A =a +b 2(等差中项). (3)等比数列a n =a 1q n -1,a n =a m ·q n -m . S n =⎩⎪⎨⎪⎧ na 1 q =1a 1-a n q 1-q=a 11-q n 1-q q ≠1.G =±ab (等比中项).3.主要性质(1)若m +n =p +q (m 、n 、p 、q ∈N *),在等差数列{a n }中有:a m +a n =a p +a q ;在等比数列{a n }中有:a m ·a n =a p ·a q .(2)等差(比)数列依次k 项之和仍然成等差(比).专题一 数列的通项公式的求法1.观察法 根据下面数列的前几项,写出数列的一个通项公式.(1)1,1,57,715,931,…; 2.定义法等差数列{a n }是递增数列,前n 项和为S n ,且 a 1,a 3,a 9成等比数列,S 5=a 25.求数列{a n }的通项公式.3.前n 项和法(1)已知数列{a n }的前n 项和S n =n 2+3n +1,求通项 a n ;(2)已知数列{a n}的前n项和S n=2n+2,求通项a n. 4.累加法已知{a n}中,a1=1,且a n+1-a n=3n(n∈N*),求通项a n. 5.累乘法已知数列{a n },a 1=13,前n 项和S n 与a n 的关系是S n =n (2n -1)a n ,求通项a n . 6.辅助数列法已知数列{a n }满足a 1=1,a n +1=3a n +2(n ∈N *).求数列{a n }的通项公式.7.倒数法已知数列{a n }中,a 1=1,a n +1=a n a n +1(n ∈N *).求通项a n . 专题二 数列的前n 项和的求法1.分组转化求和法如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可组成等差或等比数列,则该数列的前n 项和可考虑拆项后利用公式求解.求和:S n =112+214+318+…+(n +12n ). 2.裂项求和法对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法.可用待定系数法对通项公式进行拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项,常见的拆项公式有:(1)1n n +k =1k ·(1n -1n +k); (2)若{a n }为等差数列,公差为d ,则1a n ·a n +1=1d (1a n -1a n +1); (3)1n +1+n =n +1-n 等.3.错位相减法若数列{a n }为等差数列,数列{b n }是等比数列,由这两个数列的对应项乘积组成的新数列为{a n b n },当求该数列的前n 项的和时,常常采用将{a n b n }的各项乘以等比数列{b n }的公比q ,然后错位一项与{a n b n }的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法.已知数列{a n }中,a 1=3,点(a n ,a n +1)在直线y =x +2上.(1)求数列{a n }的通项公式;(2)若b n =a n ·3n ,求数列{b n }的前n 项和T n .4.分段求和法如果一个数列是由各自具有不同特点的两段构成,则可考虑利用分段求和.已知数列{a n }的前n 项和为S n ,且a n +S n =1(n ∈N *).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =3+log 4a n ,设T n =|b 1|+|b 2|+…+|b n |,求T n .附注:常用结论1)1+2+3+...+n =2) 1+3+5+...+(2n-1) =3)三、等差、等比数列的对比(1)判断数列的常用方法看数列是不是等差数列有以下三种方法:①②2()③(为常数).看数列是不是等比数列有以下四种方法:①②(,)③(为非零常数).④正数列{}成等比的充要条件是数列{}()成等比数列.(2)等差数列与等比数列对比小结:等差数列等比数列定义公式1.2.1.2.性质1.,称为与的等差中项2.若(、、、1.,称为与的等比中项2.若(、、、),则),则3.,,成等差数列4. 3.,,成等比数列4. ,(3)在等差数列{}中,有关Sn 的最值问题:1),时,有最大值;,时,有最小值;2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最值时的值()可如下确定或。
人教版高中数学必修5第二章 数列 2.2 等差数列
得到数列: 6000,6500,7000,7500, 8000,8500,9000.
情境2: 匡威运动鞋(女)的尺码(鞋底长,单位是cm)
得到数列:
22 1 , 23, 23 1 , 24,
每一项与它的 前一项的差必 须是同一个常 数(因为同一 个常数体现了 等差数列的基 本特征)
探究性问题1
公差d是每一 项(第2项起) 与它的前一项 的差,防止把 被减数与减数 弄颠倒
公差可以是正数,负数, 也可以是0
一般地,如果一个数列从第2项起,每一项与它的前 一项的差等于同一个常数,那么这个数列就叫做等差数 列,这个常数叫做等差数列的公差,公差通常用字母d表 示.
2
2
24 1 , 25, 25 1 , 26.
2
2
数列1 数列2
6000,6500,7000,7500, 8000,8500,9000.
22 1 , 23, 23 1 , 24, 24 1 , 25, 25 1 , 26.
2
2
2
2
学生活动1:
观察,分析 交流讨论
问题1:请你说出这两个数列的 后面一项是多少?你的依据是 什么?
4d 11d
解之得a1=-2, d=3.
在等差数列{an}中, 1)已知a1=2,d=3,n=10,求an.
解:a10=a1+(10-1)d=2+9×3=29.
2)已知a1=3,an=21,d=2,求n. 解:21=3+(n-1)×2, ∴n=10.
3)已知a1=12,a6=27,求d.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高一数学必修5第二章数列总结
1、数列的基本概念
(1)定义:按照一定的次序排列的一列数叫做数列.
(2)通项公式:如果数列{an}的第n 项an 与n之间的函数关系可以用一个公式表示,这个公式就叫做这个数列的通项公式.
(3)递推公式:如果已知数列{an}的第一项(或前几项),且任何一项an 与它前一项a n -1(或前几项)间的关系可用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 通项公式与递推公式,是给出一个数列的两种主要方法.
2、主要公式
(1)通项公式a n 与前n 项和公式S n 间的关系: a n =错误!.
(2)等差数列
a n =a 1+(n-1)d =a m +(n -m )d .
S n =\f(1,2)n (a1+an ),S n =na 1+1
2n(n -1)d .
A =错误!(等差中项). (3)等比数列
a n =a 1qn-
1,an =am ·q n -m . S n =错误!.
G =±错误!(等比中项).
3.主要性质
(1)若m+n =p +q (m、n 、p 、q ∈N*),
在等差数列{an}中有:am +a n=ap+a q; 在等比数列{a n }中有:a m ·a n =a p·a q .
(2)等差(比)数列依次k 项之和仍然成等差(比).
专题一 数列的通项公式的求法
1.观察法根据下面数列的前几项,写出数列的一个通项公式. (1)1,1,错误!,错误!,错误!,…; 2.定义法
等差数列{a n }是递增数列,前n 项和为S n ,且a 1,a 3,a 9成等比数列,S 5=a错误!.求数列{a n}的通项公式. 3.前n项和法
(1)已知数列{a n }的前n 项和S n =n 2+3n +1,求通项a n ; (2)已知数列{a n }的前n 项和S n =2n +2,求通项a n . 4.累加法
已知{a n}中,a 1=1,且a n +1-a n=3n
(n∈N*),求通项a n . 5.累乘法
已知数列{a n },a 1=错误!,前n项和S n 与an 的关系是Sn =n (2n -1)a n ,求通项an . 6.辅助数列法
已知数列{a n }满足a 1=1,an +1=3a n+2(n ∈N*
).求数列{a n}的通项公式.
7.倒数法
已知数列{a n}中,a1=1,an+1=\f(an,a n+1)(n∈N*).求通项an.
专题二数列的前n项和的求法
1.分组转化求和法
如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可组成等差或等比数列,则该数列的前n项和可考虑拆项后利用公式求解.
求和:Sn=1错误!+2错误!+3错误!+…+(n+错误!).
2.裂项求和法
对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法.可用待定系数法对通项公式进行拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项,常见的拆项公式有:
(1)错误!=错误!·(错误!-错误!);
(2)若{an}为等差数列,公差为d,
则错误!=错误!(错误!-错误!);
(3)错误!=错误!-错误!等.
3.错位相减法
若数列{a n}为等差数列,数列{b n}是等比数列,由这两个数列的对应项乘积组成的新数列为{a n bn},当求该数列的前n项的和时,常常采用将{a n bn}的各项乘以等比数列{b n}的公比q,然后错位一项与{a n b n}的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法.
已知数列{an}中,a1=3,点(a n,an+1)在直线y=x+2上.
(1)求数列{a n}的通项公式;
(2)若bn=an·3n,求数列{bn}的前n项和T n.
4.分段求和法
如果一个数列是由各自具有不同特点的两段构成,则可考虑利用分段求和.
已知数列{an}的前n项和为S n,且a n+S n=1(n∈N*).
(1)求数列{a n}的通项公式;
(2)若数列{bn}满足bn=3+log4a n,设T n=|b1|+|b2|+…+|b n|,求Tn.
附注:常用结论
1)1+2+3+...+n =
2) 1+3+5+...+(2n-1)=
3)
三、等差、等比数列的对比
(1)判断数列的常用方法
看数列是不是等差数列有以下三种方法:
①
②2()
③(为常数).
看数列是不是等比数列有以下四种方法:
①
②(,)
③(为非零常数).
④正数列{}成等比的充要条件是数列{}()成等比数列.
等差数列等比数列
定义
公式
1.
2.
1.
2.
性质
1.,
称为与的等差中项
2.若(、、、
),则
3.,,成等差数列
4.
1.,
称为与的等比中项
2.若(、、、),
则
3.,,成等比数列
4. ,
(3)在等差数列{}中,有关Sn 的最值问题:
1),时,有最大值;,时,有最小值;
2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最
值时的值()可如下确定或。