高中一年级数学函数经典题目和答案解析
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用3.关于函数,有以下命题:①函数的图像关于轴对称;②当时是增函数,当时,是减函数;③函数的最小值为;④当或时,是增函数;⑤无最大值,也无最小值。
其中正确的命题是:__________.【答案】①③④【解析】函数的定义域为,且,∴该函数为偶函数,故①正确;当时,,在上单调递减,在单调递增,故函数在单调递减,在单调递增,故②错误;因为在单调递减,在单调递增,∴在时,函数取最小值,故③正确;∵在单调递减,故在内单调递增,故④正确;有最小值,故⑤错误.【考点】1.命题的真假判断;2.函数的性质.4.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.5.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.6.函数.满足,则的值为()A.B.C.D.【答案】B【解析】因为,函数.满足,所以,解得,,故选B。
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.3.函数的一个零点是,则另一个零点是_________.【答案】【解析】本题要注意零点的概念,零点是指函数的解,并非点的坐标.依题意可知,所以,令或,所以另一个零点是1.【考点】函数的零点.4.已知是定义在上的奇函数,当时,.(1)求;(2)求的解析式;(3)若,求区间.【答案】(1)6;(2);(3).【解析】(1)利用奇函数的性质进行转化计算即可;(2)因为当时,,利用奇函数的性质先求出时的解析式,最后写出函数的解析式即可;(3)根据函数的单调性,求解不等式即分别求解不等式组与,最后取并集即可.试题解析:(1)∵是奇函数∴ 3分(2)设,则,∴∵为奇函数,∴ 5分∴ 6分(3)根据函数图像可得在上单调递增 7分当时,解得 9分当时,解得 11分∴区间为 12分.【考点】1.函数的奇偶性;2.函数的解析式;3.指数函数的性质.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.7.已知定义在R上的奇函数满足=(x≥0),若,则实数的取值范围是________.【答案】(-3,1)【解析】∵函数f(x)=x2+2x(x≥0),是增函数,且f(0)=0,f(x)是奇函数,f(x)是R上的增函数.由f(3-a2)>f(2a),,于是3-a2>2a,因此,解得-3<a<1.【考点】奇函数;函数单调性的性质.点评:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力.8.关于函数,有下面四个结论:(1)是奇函数;(2)恒成立;(3)的最大值是; (4) 的最小值是.其中正确结论的是_______________________________________.【答案】(2)(4)【解析】根据题意,由于函数,,那么利用奇偶性定义可知,函数为偶函数因此(1)错误。
高一数学函数经典题目及答案
1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例2. 求函数22x 1x x 1y +++=的值域。
例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。
例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。
(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。
例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).2.已知函数,(1)讨论的奇偶性与单调性;(2)若不等式的解集为的值;(3)求的反函数;(4)若,解关于的不等式R).【答案】(1)①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)或;(3);(4)①当时,不等式解集为R;②当时,得,不等式的解集为;③当【解析】主要考查函数的奇偶性、单调性、指数函数与对数函数互为反函数关系、对数函数的图象和性质。
解:(1)定义域为为奇函数;,求导得,①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)①当时,∵在定义域内为增函数且为奇函数,;②当在定义域内为减函数且为奇函数,;(3)R);(4),;①当时,不等式解集为R;②当时,得,不等式的解集为;③当3.定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.【答案】(1)见解析;(2)【解析】主要考查函数奇偶性、单调性、指数函数与对数函数的图象和性质。
解:(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.(2)解:f(3)=log3>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.f(k·3)<-f(3-9-2)=f(-3+9+2), k·3<-3+9+2,3-(1+k)·3+2>0对任意x∈R成立.令t=3>0,问题等价于t-(1+k)t+2>0对任意t>0恒成立.R恒成立.4.函数的图象与直线的公共点数目是()A.B.C.或D.或【答案】C【解析】有可能是没有交点的,如果有交点,那么对于仅有一个函数值;5.求函数的定义域【答案】【解析】解:∵,∴定义域为6.求函数的值域【答案】【解析】解:∵∴,∴值域为7.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.已知函数在处取得最大值,则可能是( )A.B.C.D.【答案】【解析】根据函数解析式的特点,设,则根据正弦和角公式,可知函数,则其最值在处取得,所以.【考点】正余弦特殊值,正弦和角公式,正弦函数最值.2.下列函数在区间是增函数的是A.B.C.D.【答案】D【解析】(A)函数是上的减函数;(B)函数是R上的减函数;(C)的对称轴为,所以该函数是上的增函数;(D)是上的增函数,所以在区间是增函数,故D为正确答案.【考点】函数的单调性.3.如图,点从点出发,分别按逆时针方向沿周长均为的正三角形、正方形运动一周,两点连线的距离与点走过的路程的函数关系分别记为,定义函数对于函数,下列结论正确的个数是()①;②函数的图像关于直线对称;③函数值域为;④函数在区间上单调递增.A.1B.2C.3D.4【答案】D【解析】由题意可得由函数与的图像可得函数由图像可知,①②③④都正确.【考点】1.函数的图像;2.分段函数;3.函数的单调性;4.函数的值域.4.已知函数,的部分图象如图所示,则( )A.B.C.D.【答案】B【解析】根据题意,由于函数,的部分图象可知函数的周期为,故可知将代入可知,函数值为零,则可知得到,故可知由于过点(0,1)可知A=1,故可知解析式为,故,故答案为B.【考点】函数的性质点评:主要考查了三角函数图象与性质的运用,属于基础题。
5.方程有唯一解,则实数的取值范围是()A.B.C.或D.或或【答案】D【解析】方程有唯一解,即半圆与直线只有一个公共点。
结合几何图形分析知,实数的取值范围是或或,选D。
【考点】直线与圆的位置关系点评:简单题,利用转化与化归思想,将方程解的个数问题,转化成直线与半圆的公共点个数问题。
6.已知函数,则满足不等式的实数的取值范围是__________________.【答案】【解析】因为,函数是单调增函数,且为奇函数,所以,即,所以,,解得,实数的取值范围是。
完整版)高一数学函数经典习题及答案
完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
高一数学函数经典习题及答案
函 数 练 习 题【1】班级 姓名一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =01(21)111y x x =+-++-2___________;3、若函数(1)f x +(21)f x -的定义域是;函数1(2)f x+的定义域为。
4、 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域 5、求下列函数的值域:⑴223y x x =+-()x R ∈⑵223y x x =+-[1,2]x ∈⑶311x y x -=+⑷311x y x-=+(5)x ≥ ⑸y =225941x x y x +=-+⑺31y x x=-++⑻2y x x =-⑼y =⑽4y =y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x =。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =_____()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间:⑴223y x x =++⑵y =⑶261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是;函数y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
高一数学函数经典练习题(含答案详细)
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
高一数学函数经典练习题(含答案详细)
《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。
答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。
高一数学函数及其表示试题答案及解析
高一数学函数及其表示试题答案及解析1.下列各组函数是同一函数的是()A.B.C.D.【答案】D.【解析】对于A,函数的定义域为,函数的定义域为,两者的定义域不相同,所以不是同一函数,即A不正确;对于B,函数的定义域为,函数的定义域为或,两者的定义域不相同,所以不是同一函数,即B不正确;对于C,函数的定义域为,函数的定义域为,两者的定义域不相同,所以不是同一函数,即C不正确;对于D,函数的定义域和值域均为,函数的定义域和值域也均为,两者的定义域和值域均相同,所以是同一函数,即D正确.【考点】相等函数的概念.2.已知,则(指出范围).【答案】.【解析】令,,即,由已知得方程:,化简整理得,,.所以,.【考点】函数的解析式求法;换元法.3.下列各组函数的图象相同的是()A.B.C.D.【答案】D【解析】函数的图象相同即是同一个函数A、定义域不相同,B、对应关系不同,C、定义域不相同,中,x不能为零;两函数相同条件是定义域相同,对应关系相同,值域相同三者有一不满足就不是同一函数,但函数定义域相同,对应关系相同值域就相同.故判断同一函数,只判断定义域,对应关系即可【考点】两函数相等4.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.5.设则f(2 016)=()A.B.-C.D.-【答案】D【解析】.【考点】求分段函数函数值.6.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与【答案】D【解析】表示同一函数必须具备两个条件:一是定义域相同,二是对应法则相同.对于A,的定义域为,而的定义域为,不符合;对于B,的定义域为,对于的定义域为,不符合;对于C,函数与函数的定义域都为,但当时,与的对应法则不相同,也不符合;对于D,函数与函数的定义域都为,且,两个函数的对应法则也相同,故相同函数的是答案D.【考点】1.函数的概念;2.对数的恒等式.7.下列函数中,与函数相同的是( )A.B.C.D.【答案】D【解析】函数相同的两个条件:定义域相同,对应法则相同.原函数的定义域为,所以,故选D.【考点】函数的概念.8.下列函数中,与函数相同的是()A.B.C.D.【答案】D【解析】根据题意,由函数,那么对于A,由于对应关系不一样,定义域相同不是同一函数,对于B,由于,对应关系式不同,不成立,对于C,由于定义域相同,对应法则不同,不是同一函数,排除法选D.【考点】本题考查同一个函数的概念.9.下列函数中,与函数有相同图象的一个是A.B.C.D.【答案】B【解析】选项A中函数的定义域为,定义域不相同,故选项A错;选项B中函数可化为,故B正确;选项C中函数的定义域为,故选项C错;选项D中函数的定义域为,故选项D 错.所以正确答案为B.【考点】函数相等.10.已知函数的值域是,则的值域是A.B.C.D.【答案】A【解析】由已知可得,令,则,此时,两个函数的定义域相同,且它们的对应关系均为,所以两个函数的值域相同,故正确答案为A.【考点】函数的定义.11.设集合A=B=,从A到B的映射在映射下,B中的元素为(4,2)对应的A中元素为()A.(4,2)B.(1,3)C.(6,2)D.(3,1)【答案】D【解析】集合A=B=,从A到B的映射在映射下,B中的元素为,所以,解得,所以集合中的元素为故选D.【考点】本题主要考查了映射的定义.12.下列四组函数中,表示同一函数的一组是()A.B.C.D.【答案】D【解析】由函数的定义可知,两个函数要为同一函数则其三要素必须相同。
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.已知【答案】512【解析】主要考查对数运算。
2.甲、乙两人解关于的方程:甲写错了常数b,得到根为,乙写错了常数c,得到根为.求方程的真正根。
【答案】4或8【解析】主要考查对数方程解法。
解:原方程可变形为:3.函数的图象与直线的公共点数目是()A.B.C.或D.或【答案】C【解析】有可能是没有交点的,如果有交点,那么对于仅有一个函数值;4.求函数的定义域【答案】【解析】解:∵,∴定义域为5.已知函数,(1)讨论的奇偶性与单调性;(2)若不等式的解集为的值;(3)求的反函数;(4)若,解关于的不等式R).【答案】(1)①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)或;(3);(4)①当时,不等式解集为R;②当时,得,不等式的解集为;③当【解析】主要考查函数的奇偶性、单调性、指数函数与对数函数互为反函数关系、对数函数的图象和性质。
解:(1)定义域为为奇函数;,求导得,①当时,在定义域内为增函数;②当时,在定义域内为减函数;(2)①当时,∵在定义域内为增函数且为奇函数,;②当在定义域内为减函数且为奇函数,;(3)R);(4),;①当时,不等式解集为R;②当时,得,不等式的解集为;③当6.函数在区间上是[ ]A.增函数B.既不是增函数又不是减函数C.减函数D.既是增函数又是减函数【答案】B【解析】主要考查函数单调性的概念及函数单调性判定方法。
解:此函数在随增大,逐渐减小,减小,反而增大,所以函数是增函数;而在,随增大,逐渐增大,增大,反而减小,所以函数是减函数;所以函数在区间上,既不是增函数又不是减函数。
故选B。
7.函数在上的单调性为()A.减函数B.增函数.C.先增后减.D.先减后增【答案】B【解析】主要考查函数单调性的概念及函数单调性判定方法。
由定义法或利用结论x的系数为正,一次函数是增函数,故选B。
8.函数的单调增区间为()A.B.C.D.【答案】A【解析】主要考查函数单调性的概念及二次函数单调性判定方法。
高一数学必修一函数的应用题及答案解析
高一数学必修一函数的应用题及答案解析高一数学函数的应用题及答案解析1.设U=R,A={x|x0},B={x|x1},则A?UB=A{x|01} B.{x|0C.{x|x0}D.{x|x1}【解析】 ?UB={x|x1},A?UB={x|0【答案】 B2.若函数y=fx是函数y=axa0,且a1的反函数,且f2=1,则fx=A.log2xB.12xC.log12xD.2x-2【解析】 fx=logax,∵f2=1,loga2=1,a=2.fx=log2x,故选A.【答案】 A3.下列函数中,与函数y=1x有相同定义域的是A.fx=ln xB.fx=1xC.fx=|x|D.fx=ex【解析】∵y=1x的定义域为0,+.故选A.【答案】 A4.已知函数fx满足:当x4时,fx=12x;当x4时,fx=fx+1.则f3=A.18B.8C.116D.16【解析】 f3=f4=124=116.【答案】 C5.函数y=-x2+8x-16在区间[3,5]上A.没有零点B.有一个零点C.有两个零点D.有无数个零点【解析】∵y=-x2+8x-16=-x-42,函数在[3,5]上只有一个零点4.【答案】 B6.函数y=log12x2+6x+13的值域是A.RB.[8,+C.-,-2]D.[-3,+【解析】设u=x2+6x+13=x+32+44y=log12u在[4,+上是减函数,ylog124=-2,函数值域为-,-2],故选C.【答案】 C7.定义在R上的偶函数fx的部分图象如图所示,则在-2,0上,下列函数中与fx的单调性不同的是A.y=x2+1B.y=|x|+1C.y=2x+1,x0x3+1,x0D.y=ex,x0e-x,x0【解析】∵fx为偶函数,由图象知fx在-2,0上为减函数,而y=x3+1在-,0上为增函数.故选C.【答案】 C8.设函数y=x3与y=12x-2的图象的交点为x0,y0,则x0所在的区间是A.0,1B.1,2C2,3 D.3,4【解析】由函数图象知,故选B.9.函数fx=x2+3a+1x+2a在-,4上为减函数,则实数a的取值范围是A.a-3B.a3C.a5D.a=-3【解析】函数fx的对称轴为x=-3a+12,要使函数在-,4上为减函数,只须使-,4?-,-3a+12即-3a+124,a-3,故选A.【答案】 A10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是A.y=100xB.y=50x2-50x+100C.y=502xD.y=100log2x+100【解析】对C,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选C.【答案】 C11.设log32=a,则log38-2 log36可表示为A.a-2B.3a-1+a2C.5a-2D.1+3a-a2【解析】 log38-2log36=log323-2log323=3log32-2log32+log33=3a-2a+1=a-2.故选A.12.已知fx是偶函数,它在[0,+上是减函数.若flg xf1,则x的取值范围是A.110,1B.0,1101,+C.110,10D.0,110,+【解析】由已知偶函数fx在[0,+上递减,则fx在-,0上递增,flg xf1?01,或lg x0-lg x1?110,或0-1?110,或110x的取值范围是110,10.故选C.【答案】 C感谢您的阅读,祝您生活愉快。
(完整版)高一函数大题训练带答案解析
(完整版)高一函数大题训练带答案解析一、解答题1.已知有穷数列{}n a 、{}n b (1,2,,n k =⋅⋅⋅),函数1122()||||||k k f x a x b a x b a x b =-+-+⋅⋅⋅+-.(1)如果{}n a 是常数列,1n a =,n b n =,3k =,在直角坐标系中在画出函数()f x 的图象,据此写出该函数的单调区间和最小值,无需证明;(2)当n n a n b ==,7k m =(m ∈*N )时,判断函数()f x 在区间[5,51]m m +上的单调性,并说明理由; (3)当n a n =,1n b n=,100=k 时,求该函数的最小值. 2.已知函数21()|1|,R.f x x x =-∈我们定义211312()(()),()(()),,f x f f x f x f f x ==11()(()).n n f x f f x -=其中2,3,.n =(1)判断函数1()f x 的奇偶性,并给出理由; (2)求方程13()()f x f x =的实数根个数;(3)已知实数0x 满足00()(),i j f x f x m ==其中1,0 1.i j n m ≤<≤<<求实数m 的所有可能值构成的集合.3.若定义在R 上的函数()y f x =满足:对于任意实数x 、y ,总有()()()()2f x y f x y f x f y ++-=恒成立.我们称()f x 为“类余弦型”函数.(1)已知()f x 为“类余弦型”函数,且()514f =,求()0f 和()2f 的值.(2)在(1)的条件下,定义数列()()()211,2,3,...n a f n f n n =+-=求20182019122222log log ...log log 3333a a a a+++的值. (3)若()f x 为“类余弦型”函数,且对于任意非零实数t ,总有()1f t >,证明:函数()f x 为偶函数;设有理数1x ,2x 满足12x x <,判断()1f x 和()2f x 的大小关系,并证明你的结论.4.已知函数()()21f x x x a x R =--+∈. (1)当1a =时,求函数()y f x =的零点.(2)当30,2a ⎛⎫∈ ⎪⎝⎭,求函数()y f x =在[]1,2x ∈上的最大值;(3)对于给定的正数a ,有一个最大的正数()T a ,使()0,x T a ∈⎡⎤⎣⎦时,都有()1f x ≤,试求出这个正数()T a 的表达式.5.若函数()f x 对任意的x ∈R ,均有()()()112f x f x f x -++≥,则称函数()f x 具有性质P .(1)判断下面两个函数是否具有性质P ,并说明理由.①()1xy a a =>;②3y x =. (2)若函数()f x 具有性质P ,且()()()*002,N f f n n n >∈==,求证:对任意{}1,2,3,,1i n ∈-有()0f i ≤;(3)在(2)的条件下,是否对任意[]0,x n ∈均有()0f i ≤.若成立给出证明,若不成立给出反例.6.已知函数()2x f x =,2()log g x x =. (1)若0x 是方程3()2f x x =-的根,证明02x 是方程3()2g x x =-的根; (2)设方程5(1)2f x x -=-,5(1)2g x x -=-的根分别是1x ,2x ,求12x x +的值. 7.已知定义在R 上的函数()x ϕ的图像是一条连续不断的曲线,且在任意区间上()x ϕ都不是常值函数.设011i i n a t t t t t b -=<<<<<<=,其中分点121n t t t -、、、将区间[],a b 任意划分成()*n n N ∈个小区间[]1,i i t t -,记{}()()()()()()01121,,n n M a b n t t t t t t ϕϕϕϕϕϕ-=-+-++-,称为()x ϕ关于区间[],a b 的n 阶划分“落差总和”.当{},,M a b n 取得最大值且n 取得最小值0n 时,称()x ϕ存在“最佳划分”{}0,,M a b n . (1)已知()x x ϕ=,求{}1,2,2M -的最大值0M ;(2)已知()()a b ϕϕ<,求证:()x ϕ在[],a b 上存在“最佳划分”{},,1M a b 的充要条件是()x ϕ在[],a b 上单调递增.(3)若()x ϕ是偶函数且存在“最佳划分”{}0,,M a a n -,求证:0n 是偶数,且00110i i n t t t t t -+++++=.8.对于函数()f x ,若存在实数m ,使得()()f x m f m +-为R 上的奇函数,则称()f x 是位差值为m 的“位差奇函数”.(1)判断函数()21f x x =+和2()g x x =是否是位差奇函数,并说明理由; (2)若()sin()f x x ϕ=+是位差值为3π的位差奇函数,求ϕ的值; (3)若对于任意[1,)m ∈+∞,()22x x f x t -=-⋅都不是位差值为m 的位差奇函数,求实数t 的取值范围.9.对于定义域为D 的函数()y f x =,如果存在区间[],m n D ⊆,其中m n <,同时满足: ①()f x 在[],m n 内是单调函数:②当定义域为[],m n 时,()f x 的值域为[],m n ,则称函数()f x 是区间[],m n 上的“保值函数”,区间[],m n 称为“保值区间”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)若函数()2112f x a a x=+-(,0a R a ∈≠)是区间[],m n 上的“保值函数”,求a 的取值范围;(3)对(2)中函数()f x ,若不等式()22a f x x ≤对1≥x 恒成立,求实数a 的取值范围.10.定义:若存在常数k ,使得对定义域D 内的任意两个不同的实数12,x x ,均有:1212()()f x f x k x x -≤-成立,则称()f x 在D 上满足利普希茨(Lipschitz)条件.(1)试举出一个满足利普希茨(Lipschitz)条件的函数及常数k 的值,并加以验证; (2)若函数()1f x x =+在[0,)+∞上满足利普希茨(Lipschitz)条件,求常数k 的最小值; (3)现有函数()sin f x x =,请找出所有的一次函数()g x ,使得下列条件同时成立: ①函数()g x 满足利普希茨(Lipschitz)条件;②方程()0g x =的根也是方程()0f x =的根,且()()()()g f t f g t =; ③方程(())(())f g x g f x =在区间[0,2)π上有且仅有一解.11.定义在D 上的函数()y f x =,如果满足:对任意x D ∈,存在常数0M >,都有|()|f x M ≤成立,则称函数()y f x =是D 上的有界函数,其中M 称为函数的上界.已知函数1112()1,()2412x xx x m f x a g x m -⋅⎛⎫⎛⎫=+⋅+=⎪ ⎪+⋅⎝⎭⎝⎭. (1)当1a =时,求函数()y f x =在(,0)-∞上的值域,并判断函数()y f x =在(,0)-∞上是否为有界函数,请说明理由;(2)若函数()y f x =在[0,)+∞上是以3为上界的有界函数,求实数a 的取值范围; (3)若0m >,函数()y g x =在[]0,1上的上界是()T m ,求()T m 的解析式.12.已知函数()f x ,对任意a ,b R ∈恒有()()()f a b f a f b 1+=+-,且当x 0>时,有()f x 1>.(Ⅰ)求()f 0;(Ⅱ)求证:()f x 在R 上为增函数;(Ⅲ)若关于x 的不等式(()222f[2log x)4f 4t 2log x 2⎤-+-<⎦对于任意11x ,82⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.13.已知平面直角坐标系xOy ,在x 轴的正半轴上,依次取点1A ,2A ,3A ,()*n A n N ⋯∈,并在第一象限内的抛物线232y x =上依次取点1B ,2B ,3B ,⋯,()*n B n N ∈,使得()*1k k k A B A k N -∈都为等边三角形,其中0A 为坐标原点,设第n 个三角形的边长为()f n .⑴求()1f ,()2f ,并猜想()(f n 不要求证明);⑵令()98n a f n =-,记m t 为数列{}n a 中落在区间()29,9m m 内的项的个数,设数列{}m t 的前m 项和为m S ,试问是否存在实数λ,使得2m S λ≤对任意*m N ∈恒成立?若存在,求出λ的取值范围;若不存在,说明理由; ⑶已知数列{}n b满足:11n b b +={}n满足:111,n nc c +==,求证:12n n n b f c +π⎛⎫<< ⎪⎝⎭.14.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在0x 使得()()()0011f x f x f +=+成立.(1)函数()21f x x=+是否属于集合M ?请说明理由; (2)函数()2ln1af x x =∈+M ,求a 的取值范围; (3)设函数()23x f x x =+,证明:函数()f x ∈M .15.记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满 足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数. (1)设函数1()1f x x=-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2xg x t=+,其中常数0t ≠,证明:()g x 是ψ函数; (3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论.【参考答案】一、解答题1.(1)图象见解析;递减区间(],2-∞,递增区间[)2,+∞,最小值()22f =;(2)单调递增;理由见解析;(3)292071. 【解析】(1)根据条件采用零点分段的方法作出函数()f x 的图象,根据图象确定出()f x 的单调区间和最小值;(2)写出()f x 的解析式,根据[]5,51x m m ∈+分析函数()f x 的结构,从而判断出()f x 的单调性;(3)先根据条件证明出()f x 的单调性然后即可求解出()f x 的最小值. 【详解】 (1)如图所示,由图象可知:单调递减区间(],2-∞,单调递增区间[)2,+∞,最小值()22f =; (2)因为()112233...77f x x x x m x m =⋅-+-+-++-且[]5,51x m m ∈+, 所以()()()()()()()()()()12233...555151...77f x x x x m x m m m x m m x =-+-+-++-+++-++-, 所以()()()()()()()()()222222155517212...55152 (72)2m m m m m f x x m x m m m +⋅++⋅=-+++-++++++ , 所以()()()()()()()222222222552425152...712 (52)m m m m f x x m m m m +--=++++++-+++,所以()()()()()()()2222222+35152...712 (52)m m f x x m m m m =++++++-+++且2302m m+>, 所以()f x 在[]5,51m m +上单调递增;(3)因为()12131...1001f x x x x x =-+-+-++-,显然当[)1,x ∈+∞时,()f x 单调递增,当(],0x ∈-∞时,()f x 单调递减, 设存在一个值()1*t N t ∈,使得10,x t ⎛⎫∈ ⎪⎝⎭时()f x 递减,1,1x t ⎛⎫∈ ⎪⎝⎭时()f x 递增,此时最小值即为1f t ⎛⎫⎪⎝⎭,下面证明1t存在:因为若要10,x t ⎛⎫∈ ⎪⎝⎭时()f x 递减,1,1x t ⎛⎫∈ ⎪⎝⎭时()f x 递增,则有12112100......t t t t t t t t t-+++++>+++,解得:71t ≥,且()1221100 (1111111)t t t t t t t t t t -++++<+++≠------,解得:171t -<, 所以7172t ≤<,所以71t =,所以存在1171t =满足条件,故假设成立,综上可知:()f x 在1,71⎛⎫-∞ ⎪⎝⎭上单调递减,在1+71⎛⎫∞ ⎪⎝⎭,上单调递增, ()()()()()()()min 1112170721731100171f x f x x x x x x ⎛⎫==-+-+⋅⋅⋅+-+-+-+⋅⋅⋅+- ⎪⎝⎭292041971x =+=【点睛】本题考查数列与函数的综合应用,其中着重考查了函数单调性方面的内容,对学生的理解与分析能力要求较高,难度较难.2.(1)偶函数;答案见解析;(2)实数根个数为11;(3)⎪⎪⎩⎭.【解析】(1)由函数奇偶性的定义运算即可得解;(2)令1()f x t =,转化条件为0=t 或1,再解方程即可得解;(3)按照m ⎛∈ ⎝⎭、m ⎫∈⎪⎪⎝⎭分类,结合函数的单调性可得()(1,2,,)k f m m k n ≠=,再代入m =.【详解】(1)因为1()f x 的定义域R 关于原点是对称的,又2211()|()1||1|()f x x x f x -=--=-=,故函数1()f x 是偶函数;(2)令1()f x t =,则0t ≥,于是()()2231211()()()|1|1t f x f f x f f t t ====--,于是22|1|1t t -=+或22|1|1.t t -=-又0t ≥,解得0=t 或1,则方程13()()f x f x =的实数根个数即为210x -=或1的根的总个数,解得1x =±或0或 所以方程13()()f x f x =的实数根个数为11; (3)因为01m <<,当(0,1)m ∈时,1()f m 在(0,1)单调递减,且1(0)1f =,1(1)0f =, 则12(),(),,()n f m f m f m 的值域均为(0,1),①当m ⎛∈ ⎝⎭时,21()1f m m ⎫=-∈⎪⎪⎝⎭,于是1()f m m >,因为当m ⎛∈ ⎝⎭时,210m m +-<, 所以()()()()42222211110m m m m m m m m m m m -+-=---=-+-<,所以()()()()2142221112f m f f m m m m m ==--=-+<,即2()f m m <, 注意到1()f x 在(0,1)单调递减,于是()()()3121413112()()(),()()()()f m f f m f m f m f f m f f m f m =>=<=,()()()()514123615134()()()(),()()()(),.f m f f m f f m f m f m f f m f f m f m =>==<=于是6421350()()()()()()1f m f m f m m f m f m f m <<<<<<<<<<,②当m ⎫∈⎪⎪⎝⎭时,类比同理可得5312460()()()()()()1f m f m f m m f m f m f m <<<<<<<<<<,于是当(0,1)m ∈且m ≠()(1,2,,)k f m m k n ≠=,若0()i f x m =,其中(0,1)m ∈,m ≠则().j i f m m -≠,即()00()()j i i i f f x f x -≠,也就是00()()j i f x f x ≠;当m =()i f x 的值域为[)0,+∞,所以存在0x 使得0()i f x =又1f ⎝⎭所以()()()()()01101110()()()j j i f x f f x f f f f x -====,即00()()i j f x f x ==所以实数m的所有可能值构成的集合为⎪⎪⎩⎭.【点睛】本题考查了函数奇偶性、函数与方程及函数单调性的应用,考查了运算求解能力,属于难题.3.(1)()01f =;()1728f =;(2)2037171;(3)证明见解析,()()12f x f x <. 【解析】 【分析】(1)先令1x =,0y =,解出()0f ,然后再令1x y ==解出()2f ;(2)由题意可以推出{}n a 是以3为首项,公比为2的等比数列,然后得出数列{}n a 的通项公式,再利用对数的运算法则求20182019122222log log ...log log 3333a a a a+++的值; (3)先令1x =,0y =得出()01f =,然后令0x =,得()()f y f y =-可证明()f x 为偶函数;由0t ≠时,()1f t >,则()()()()()22f x y f x y f x f y f y ++-=>,即()()()()f x y f y f y f x y +-=--,令y kx =(k 为正整数),有()()()()11f k x f kx f kx f k x +->--⎡⎤⎡⎤⎣⎦⎣⎦,由此可递推得到对于任意k 为正整数,总有()()1f k x f kx +>⎡⎤⎣⎦成立,即有n m <时,()()f nx f mx <成立,可设12112q p x p p =,12212p q x p p =,其中12,q q 是非负整数,12,p p 都是正整数,再由偶函数的结论和前面的结论即可得到大小. 【详解】解:(1)令1x =,0y =,得()()()21210f f f =⋅,∴()01f =; 再令1x y ==,得()()()()21120f f f f =+,∴()25218f =+,∴()1728f =. (2)由题意可知,()()1175221344a f f =-=-= 令1x n =+,1y =,得()()()()2112f n f f n f n +=++, ∴()()()5212f n f n f n +=+- ∴()()()()()()()152212114122n a f n f n f n f n f n f n f n +⎡⎤=+-+=+--+=+-⎢⎥⎣⎦()()()22121n f n f n a n =+-=≥⎡⎤⎣⎦.∴{}n a 是以3为首项,以2为公比的等比数列.因此132n n a -=⋅,故有2log 13na n =- 所以20182019122222log log ...log log 3333a a a a++++ 12...20172018100920192037171=++++=⋅=(3)令1x =,0y =,()()()()20111f f f f =+,又∵()11>f ,∴()01f = 令0x =,()()()()20f f y f y f y =+-,∴()()()()0f f y f y f y =+-, 即()()()2f y f y f y =+-.∴()()f y f y =-对任意的实数y 总成立, ∴()f x 为偶函数. 结论:()()12f x f x <.证明:设0y ≠,∵0y ≠时,()1f y >,∴()()()()()22f x y f x y f x f y f x ++-=>,即()()()()f x y f x f x f x y +->--.∴令()*x ky k N =∈,故*k N ∀∈,总有()()()()11f k y f ky f ky f k y +->--⎡⎤⎡⎤⎣⎦⎣⎦成立.()()()()()()()()1112...00f k y f ky f ky f k y f k y f k y f y f +->-->--->>->⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦∴对于*k N ∈,总有()()1f k y f ky +>⎡⎤⎣⎦成立.∴对于*,m n ∈N ,若n m <,则有()()...f ny f my <<成立. ∵12,x x Q ∈,所以可设111q x p =,222q x p =,其中1q ,2q 是非负整数,1p ,2p 都是正整数, 则12112q p x p p =,12212p q x p p =,令121y p p =,12t q p =,12s p q =,则*,t s N ∈. ∵12x x <,∴t s <,∴()()f ty f sy <,即()()12f x f x <.∵函数()f x 为偶函数,∴()()11f x f x =,()()22f x f x =.∴()()12f x f x <. 【点睛】本题考查新定义函数问题,考查学生获取新知识、应用新知识的能力,考查函数的基本性质在解题中的应用,属于难题.4.(1)零点为11;(2)max12,0,21()1,1,2354,1,2a a f x a a a ⎧<≤⎪⎪⎪=<<⎨⎪⎪-≤<⎪⎩;(3)()a a T a a a ⎧≥⎪=⎨+<<⎪⎩【解析】 【分析】(1)将1a =代入,令()0f x =,去掉绝对值直接求解即可得出零点;(2)依题意,最大值在()()()1,2,2f f f a 中取得,然后分类讨论即可得出答案; (3)问题可转化为在给定区间内()1f x ≥-恒成立,分211a -+≤-及211a -+>-讨论得出答案. 【详解】(1)当1a =时,()2221,22121,2x x x f x x x x x x ⎧-++≥=--+=⎨-+<⎩,令2210-++=x x,解得:1x =1舍); 令2210x x -+=,解得:1x =; ∴函数()y f x =的零点为11;(2)由题意得:()2221,221,2x ax x af x x ax x a ⎧-++≥=⎨-+<⎩,其中()()021f f a ==,30,2a ⎛⎫∈ ⎪⎝⎭,∴最大值在()()()1,2,2f f f a 中取. 当021a <≤,即102a <≤时,()f x 在[]1,2上单调递减,()()max 12f x f a ∴==; 当122a a <<<,即112a <<时,()f x 在[]1,2a 上单调递增,[]2,2a 上单调递减, ()()max 21f x f a ∴==;当122a a ≤<<,即12a ≤<时,()f x 在[]1,a 上单调递减,[],2a 上单调递增,()()(){}max max 1,2f x f f ∴=;()()()()122254230f f a a a -=---=-<,()()max 254f x f a ∴==-;综上所述:()max12,0211,12354,12a a f x a a a ⎧<≤⎪⎪⎪=<<⎨⎪⎪-≤<⎪⎩;(3)()0,x ∈+∞时,0x -<,20x a -≥,()max 1f x ∴=, ∴问题转化为在给定区间内()1f x ≥-恒成立.()21f a a =-+,分两种情况讨论:当211a -+≤-时,()T a 是方程2211xax -+=-的较小根,即a ≥()T a a =当211a -+>-时,()T a 是方程2211x ax -++=-的较大根,即0a <<()T a a =;综上所述:()a a T a a a ⎧⎪=⎨<<⎪⎩ 【点睛】本题考查函数的最值及其几何意义,函数的零点与方程根的关系,属于难题.5.(1)①()1xy a a =>具有性质P ;②3y x =不具有性质P ,见解析;(2)见解析(3)不成立,见解析 【解析】 【分析】(1)①根据已知中函数的解析式,结合指数的运算性质,计算出()()()112f x f x f x -++-的表达式,进而根据基本不等式,判断其符号即可得到结论;②由3y x =,举出当1x =-时,不满足()()()112f x f x f x -++≥,即可得到结论; (2)由于本题是任意性的证明,从下面证明比较困难,故可以采用反证法进行证明,即假设()f i 为()()()1,2,,1f f f n -中第一个大于0的值,由此推理得到矛盾,进而假设不成立,原命题为真;(3)由(2)中的结论,我们可以举出反例,如()()2,,x x n x f x x x ⎧-=⎨⎩为有理数为无理数,证明对任意[]0,x n ∈均有()0f x ≤不成立.【详解】证明:(1)①函数()()1xf x a a =>具有性质P ,()()()11111222x x x x f x f x f x a a a a a a -+⎛⎫-++-=+-=+- ⎪⎝⎭,因为1a >,120x a a a ⎛⎫+-> ⎪⎝⎭,即()()()112f x f x f x -++≥, 此函数为具有性质P ;②函数()3f x x =不具有性质P ,例如,当1x =-时,()()()()11208f x f x f f -++=-+=-,()22f x =-,所以,()()()201f f f -+<-, 此函数不具有性质P . (2)假设()f i 为()()()1,2,,1f f f n -中第一个大于0的值,则()()10f i f i -->, 因为函数()f x 具有性质P ,所以,对于任意*n ∈N ,均有()()()()11f n f n f n f n +-≥--, 所以()()()()()()11210f n f n f n f n f i f i --≥---≥≥-->,所以()()()()()()110f n f n f n f i f i f i =--+++-+>⎡⎤⎡⎤⎣⎦⎣⎦,与()0f n =矛盾, 所以,对任意的{}1,2,3,,1i n ∈-有()0f i ≤.(3)不成立.例如,()()2,,x x n x f x x x ⎧-=⎨⎩为有理数为无理数证明:当x 为有理数时,1x -,1x +均为有理数,()()()112f x f x f x -++-()()()2221121122x x x n x x x =-++---++-=,当x 为无理数时,1x -,1x +均为无理数,()()()()()2221121122f x f x f x x x x -++-=-++-=所以,函数()f x 对任意的x ∈R , 均有()()()112f x f x f x -++≥, 即函数()f x 具有性质P .而当[]()0,2x n n ∈>且当x 为无理数时,()0f x >. 所以,在(2)的条件下,“对任意[]0,x n ∈均有()0f x ≤”不成立. 如()()()01x f x x ⎧⎪=⎨⎪⎩为有理数为无理数,()()()01x f x x ⎧⎪=⎨⎪⎩为整数为非整数,()()()2x f x xx ⎧⎪=⎨⎪⎩为整数为非整数等.【点睛】本题考查了函数的新定义及其应用,涉及指数函数和幂函数的性质,反证法,其中在证明全称命题为假命题时,举出反例是最有效,快捷,准确的方法.6.(1)证明见解析(2)72【解析】(1)因为0x 是方程3()2f x x =-的根,即00322x x =-,将02x 代入()g x 根据对数的运算性质可得.(2)由题意知,方程1522x x -=-,25log (1)2x x -=-的根分别是1x ,2x ,即方程132(1)2x x -=--,23log (1)(1)2x x -=--的根分别为1x ,2x ,令1t x =-,设方程322t t =-,23log 2t t =-的根分别为111t x =-,221t x =-,结合(1)的结论及函数的单调性可求. 【详解】解:(1)证明:因为0x 是方程3()2f x x =-的根, 所以00322xx =-,即00322x x =- ()0002032log 222x x x g x ===- 所以,02x 是方程3()2g x x =-的根. (2)由题意知,方程1522x x -=-,25log (1)2x x -=-的根分别是1x ,2x , 即方程132(1)2x x -=--,23log (1)(1)2x x -=--的根分别为1x ,2x , 令1t x =-设方程322tt =-,23log 2t t =-的根分别为111t x =-,221t x =-, 由(1)知1t 是方程322tt =-的根,则12t 是方程23log 2t t =-的根. 令23()log 2h t t t =+-,则12t 是()h t 的零点, 又因为()h t 是(0,)+∞上的增函数,所以,12t 是()h t 的唯一零点,即12t 是方程23log 2t t =-的唯一根. 所以122tt =,所以1121322tt t t +=+=,即()()123112x x -+-=,所以1237222x x +=+= 【点睛】本题考查函数方程思想,函数的零点问题,属于难题. 7.(1)3;(2)见解析;(3)见解析 【解析】 【分析】(1)直接利用题中给的定义求解即可;(2)利用函数的单调性和数列的信息应用求出充要条件;(3)利用函数的奇偶性和存在的最佳划分,进一步建立函数的单调区间,最后求出函数的关系式.【详解】(1)()()()()010023M ϕϕϕϕ=--+-=; (2)若()x ϕ在[],a b 上单调递增,则{}()()()(){}11,,,,1ni i i M a b n t t b a M a b ϕϕϕϕ-==-=-=⎡⎤⎣⎦∑,故()x ϕ在[],a b 上存在“最佳划分”{},,1M a b若()x ϕ在[],a b 上存在“最佳划分”{},,1M a b ,倘若()x ϕ在[],a b 上不单调递增, 则存在[]()()121212,,,,x x a b x x x x ϕϕ∈<>.由()()()()()()()()1122a b a x x x x b ϕϕϕϕϕϕϕϕ-≤-+-+-(*)等号当且仅当()()()()()()11220,0,0a x x x x b ϕϕϕϕϕϕ-≥->-≥时取得,此时()()()()()()()()()()11220a b a x x x x b a b ϕϕϕϕϕϕϕϕϕϕ-=-+-+-=-<,与题设矛盾,舍去,故(*)式中等号不成立,即:增加分点12,x x 后,“落差总和”会增加,故{},,M a b n 取最大值时n 的最小值大于1,与条件矛盾. 所以()x ϕ在[],a b 上单调递增;(3)由(2)的证明过程可知,在任间区间[],a b 上,若()x ϕ存在最佳划分{},,1a b ,则当()()a b ϕϕ=时,()x ϕ为常值函数(舍);当()()a b ϕϕ<时,()x ϕ单调递增;当()()a b ϕϕ>时,()x ϕ单调递减,若()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ,则此时在每个小区间[]()10,1,2,,i i t t i n -=上均为最佳划分{}1,,1i i M t t -.否则,添加分点后可使()x ϕ在[],a b 上的“落差总和”增大,从而{}0,,M a b n 不是“落差总和”的最大值,与“()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ”矛盾,故()x ϕ在每个小区间[]()10,1,2,,i i t t i n -=上都是单调,若()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ,则()x ϕ在相邻的两个区间[][]11,,i i i i t t t t -+、上具有不同的单调性,否则,()()()()()()11111i i i i i t t t t t t ϕϕϕϕϕϕ-+-+-=-+-,减少分点i t ,“落差总和”的值不变,而n 的值减少1,故n 的最小值不是0n ,与“()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ”矛盾,()x ϕ存在“最佳划分”{}0,,M a a n -,故()x ϕ在每个小区间[]()10,1,2,,i i t t i n -=上都单调,而()x ϕ是偶函数,故()x ϕ在y 轴两侧的单调区间对称,共有偶数个单调区间,且当000,1,,2n i j n i ⎛⎫+== ⎪⎝⎭时,0i j t t +=,从而有00120n t t t t ++++=.【点睛】本题是信息给予题,考查了数学阅读能力,考查了函数和数列的综合应用能力,考查了数学运算能力.8.(1) 对于任意m 有()21f x x =+为位差奇函数, 不存在m 有2()g x x =为位差奇函数.(2),3k k Z πϕπ=-∈;(3) (),4t ∈-∞【解析】 【分析】(1)根据题意计算()()f x m f m +-与()()g x m g m +-,判断为奇函数的条件即可. (2)根据()sin()f x x ϕ=+是位差值为3π的位差奇函数可得()()33f x f ππ+-为R 上的奇函数计算ϕ的值即可.(3)计算()()f x m f m +-为奇函数时满足的关系,再根据对于任意[1,)m ∈+∞()22x x f x t -=-⋅都不是位差值为m 的位差奇函数求解恒不成立问题即可. 【详解】(1)由()21f x x =+,所以()()2()1(21)2f x m f m x m m x +-=++-+=为奇函数. 故对于任意m 有()21f x x =+为位差奇函数.又2()g x x =,设222()()()()2G x g x m g m x m m x mx =+-=+-=+.此时()22()22G x x mx x mx -=--=-,若()G x 为奇函数则22220x mx x mx -++=恒成立.与假设矛盾,故不存在m 有2()g x x =为位差奇函数. (2) 由()sin()f x x ϕ=+是位差值为3π的位差奇函数可得,()()33f x f ππ+-为R 上的奇函数.即()()sin()sin()3333f x f x ππππϕϕ+-=++-+为奇函数.即3k πϕπ+=,,3k k Z πϕπ=-∈.(3)设()()22()()()(222)12122x m mm m m x x x m h t x f t m t f x m ----+-=+-=--⋅-⋅⋅=--- .由题意()()0h x h x +-=对任意的[1,)m ∈+∞均不恒成立.此时()()()()22222222()()11110m x m x xm x m h x t h x t ----+-=--⋅-⋅-+--= 即()()222221112122m x x xx m m m t t -----+-=-+=⋅-⇒⋅对任意的[1,)m ∈+∞不恒成立.故22m t =在[1,)m ∈+∞无解.又22224m ≥=,故4t <. 故(),4t ∈-∞ 【点睛】本题主要考查了函数的新定义问题,需要根据题意求所给的位差函数的表达式分析即可.属于中等题型.9.(1)证明见详解;(2)32a <-或12a >;(3)112a <≤【解析】 【分析】(1)根据“保值函数”的定义分析即可(2)按“保值函数”定义知()f m m =,()f n n =,转化为,m n 是方程2112x a a x+-=的两个不相等的实根,利用判别式求解即可(3)去掉绝对值,转化为不等式组,分离参数,利用函数最值解决恒成立问题. 【详解】(1)函数()22g x x x =-在[]0,1x ∈时的值域为[]1,0-,不满足“保值函数”的定义, 因此函数()22g x x x =-不是定义域[]0,1上的“保值函数”.(2)因为函数()2112f x a a x=+-在[],m n 内是单调增函数, 因此()f m m =,()f n n =, 因此,m n 是方程2112x a a x+-=的两个不相等的实根, 等价于方程()222210a x a a x -++=有两个不相等的实根.由()222240a a a ∆=+->解得32a <-或12a >.(3)()2212a f x a a x=+-,()22a f x x ≤()22a f x x⇔≤⇔21222a a x x+--≤≤, 即为22122,122,a a x x a a x x ⎧+≤+⎪⎪⎨⎪+≥-⎪⎩对1≥x 恒成立.令()12h x x x=+,易证()h x 在[)1,+∞单调递增, 同理()12g x x x=-在[)1,+∞单调递减. 因此,()()min 13h x h ==,()()min 11g x g ==-.所以2223,21,a a a a ⎧+≤⎨+≥-⎩解得312a -≤≤.又32a <-或12a >,所以a 的取值范围是112a <≤. 【点睛】本题主要考查了新概念,函数的单调性,一元二次方程有解,绝对值不等式,恒成立,属于难题.10.(1)()f x x =,2k =,见解析;(2)min 12k =(3)11(),[,0)(0,]22g x kx k =∈-⋃【解析】 【分析】(1)令()f x x =,可以满足题意,一次函数和常值函数都可以满足; (2)根据定义化简1212()()f x f x x x --12<,得出k 的最小值;(3)由于所有一次函数均满足(1)故设()()0g x kx b k t =+≠是()0g x =的根,推得0b =,若k 符合题意,则k -也符合题意,可以只考虑0k >的情形,分①若1k,②若112k <<,分别验证是否满足题意,可得k 的范围. 【详解】(1)例如令()f x x =,由12122x x x x -≤-知可取2k =满足题意(任何一次函数或常值函数等均可). (2)()f x =[0,)+∞为增函数∴对任意12,x x R ∈有1212()()f x f x x x --12==<(当120,0x x =→时取到)所以min 12k =(3)由于所有一次函数均满足(1)故设()()0g x kx b k t =+≠是()0g x =的根()0bg t t k∴=⇒=-, 又(())(())(0)(0)0()f g t g f t f g b g x kx =∴=∴=∴=若k 符合题意,则k -也符合题意,故以下仅考虑0k >的情形. 设()(())(())sin sin h x f g x g f x kx k x =-=- ①若1k,则由sin sin 0h k kk πππ⎛⎫=-<⎪⎝⎭且3333sin sin sin 02222k k h k k ππππ⎛⎫=-=+≥⎪⎝⎭所以,在3,2k ππ⎡⎤⎢⎥⎣⎦中另有一根,矛盾.②若112k <<,则由[]sin sin 0,2h k h k k ππππ⎛⎫=-≥⎪⎝⎭sin 2sin 20k k ππ=-< 所以,在,2kππ⎡⎤⎢⎥⎣⎦中另有一根,矛盾.102k ∴<≤以下证明,对任意1(0,],()2k g x kx ∈=符合题意.当(0,]2x π∈时,由sin y x =图象在连接两点()(0,0),,sin x x 的线段的上方知sin sin kx k x >()0h x ∴>当(,]22x kππ∈时,sin sinsin sin ()022k kx k k x h x ππ>≥≥∴>当,22x k ππ⎛⎫∈⎪⎝⎭时,sin 0,sin 0,()0kx x h x >∴ 综上:()0h x =有且仅有一个解0x =,()g x kx ∴=在1(0,]2k ∈满足题意. 综上所述:11(),[,0)(0,]22g x kx k =∈-⋃, 故得解. 【点睛】本题考查运用所学的函数知识解决新定义等相关问题,关键在于运用所学的函数知识,紧紧抓住定义,构造所需要达到的定义式,此类题目综合性强,属于难度题.11.(1)见解析;(2)51a -≤≤;(3)1,01()12,12m m mT m m m m ⎧-<≤⎪+⎪=⎨-⎪⎪+⎩.【解析】 【分析】(1)通过判断函数()y f x =的单调性,求出()y f x =的值域,进而可判断()y f x =在(,0)-∞上是否为有界函数;(2)利用题中所给定义,列出不等式,换元,转化为恒成立问题,通过分参求构造函数的最值,就可求得实数a 的取值范围;(3)通过分离常数法求()y g x =的值域,利用新定义进而求得()T m 的解析式. 【详解】(1)当1a =时,11()124xxf x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,由于()f x 在(,0)-∞上递减,∴()(0)3,f x f >=∴函数()y f x =在(,0)-∞上的值域为(3,)+∞,故不存在常数0M >,使得|()|f x M ≤成立,∴函数()y f x =在(,0)-∞上不是有界函数 (2)()y f x =在[0,)+∞上是以3为上界的有界函数,即|()|3f x ≤,令12xt ⎛⎫= ⎪⎝⎭,则1131324xxa ⎛⎫⎛⎫-≤+⋅+≤ ⎪ ⎪⎝⎭⎝⎭,即2313,01at t t -≤++≤<<由213at t ++≤得2(01)a t t t≤-<<, 令2()(01)h t t t t=-<<,()h t 在(0,1)上单调递减,所以()(1)1h t h >= 由213at t ++≥-得4(01)a t t t ⎛⎫≥-+<< ⎪⎝⎭,令4()(01)h t t t t ⎛⎫=-+<< ⎪⎝⎭,()h t 在(0,1)上单调递增,所以()(1)5h t h <=-所以51a -≤≤;(3)122()1,0,01,()1221x x xm g x m x g x m m -⋅==->≤≤∴+⋅⋅+在[]0,1上递减, (1)()(0)g g x g ∴≤≤,即121()121m mg x m m--≤≤++, 当1121|2m m m m --≥++时,即当0m <≤1|()|1m g x m -≤+当1121|2m m m m --<++时,即当m >时,12|()|12m g x m -≤+∴1,01()12,12m m mT m m m m ⎧-<≤⎪+⎪=⎨-⎪>⎪+⎩. 【点睛】本题主要考查学生利用所学知识解决创新问题的能力,涉及到函数求值域的有关方法,以及恒成立问题的常见解决思想.12.(Ⅰ)()f 01=; (Ⅱ)见解析; (Ⅲ)t 5<-. 【解析】 【分析】(Ⅰ)根据题意,由特殊值法分析:令a b 0==,则()()f 02f 01=-,变形可得()f 0的值, (Ⅱ)任取1x ,2x R ∈,且设12x x <,则21x x 0->,结合()()()f a b f a f b 1+=+-,分析可得()()21f x f x >,结合函数的单调性分析可得答案;(Ⅲ)根据题意,原不等式可以变形为(()222f[2log x)2log x 4t 4f 0⎤-+-<⎦,结合函数的单调性可得2222(log x)2log x 4t 40-+-<,令2m log x =,则原问题转化为22m 2m 4t 40-+-<在[]m 3,1∈--上恒成立,即24t 2m 2m 4<-++对任意[]m 3,1∈--恒成立,结合二次函数的性质分析可得答案. 【详解】(Ⅰ)根据题意,在()()()f a b f a f b 1+=+-中,令a b 0==,则()()f 02f 01=-,则有()f 01=;(Ⅱ)证明:任取1x ,2x R ∈,且设12x x <,则21x x 0->,()21f x x 1->,又由()()()f a b f a f b 1+=+-,则()()()()()()221121111f x f x x x f x x f x 11f x 1f x ⎡⎤=-+=-+->+-=⎣⎦, 则有()()21f x f x >, 故()f x 在R 上为增函数.(Ⅲ)根据题意,][(222f[2log x)4f 4t 2log x 2⎤-+-<⎦,即][(222f[2log x)4f 4t 2log x 11⎤-+--<⎦,则(222f[2log x)2log x 4t 41⎤-+-<⎦,又由()f 01=,则(()222f[2log x)2log x 4t 4f 0⎤-+-<⎦,又由()f x 在R 上为增函数,则2222(log x)2log x 4t 40-+-<,令2m log x =,11x ,82⎡⎤∈⎢⎥⎣⎦,则3m 1-≤≤-,则原问题转化为22m 2m 4t 40-+-<在[]m 3,1∈--上恒成立, 即24t 2m 2m 4<-++对任意[]m 3,1∈--恒成立, 令2y 2m 2m 4=-++,只需4t y <最小值,而2219y 2m 2m 42(m )22=-++=--+,[]m 3,1∈--,当m 3=-时,y 20=-最小值,则4t 20<-. 故t 的取值范围是t 5<-. 【点睛】本题考查函数的恒成立问题,涉及抽象函数的单调性以及求值,其中解答中合理利用函数的单调性和合理完成恒成立问题的转化是解答的关键,同时注意特殊值法的应用,着重考查了转化思想,以及分析问题和解答问题的能力,属于中档试题. 13.⑴()11f =,()22f =,()f n n =;⑵3λ≤;⑶详见解析 【解析】 【分析】()()111f =,()22f =,进而猜想出()f n . ()298n a n =-.由21218899899999m m m m n n --<-<⇒+<<+,可得191m n -=+,192m -+,⋯,219m -,21199.m m m t --=-利用等比数列的求和公式即可得出m S .根据2mS λ≤对任意*m N ∈恒成立即可得出λ范围.()13sin4b π=,记1sin ,4n n b πθθ==,可得()*11sin sin 22n n n n n N θπθθ++=⇒=∈,1tan 4c π=,记1tan ,4n n c πϕϕ==,可得()*11sec 1tan tan tan 22n n n n n n n N ϕϕπϕϕφ++-==⇒=∈,根据当0,2x π⎛⎫∈ ⎪⎝⎭时,sin tan x x x <<即可得出. 【详解】解:()()111f =,()22f = 猜想()f n n =()298n a n =-,由21218899899999m m m m n n --<-<⇒+<<+, 191m n -∴=+,192m -+,⋯,219m -21199m m m t --∴=-()()()()35221191999999m m m S --∴=-+-+-+⋯+-()()35212199991999m m --=+++⋯+-+++⋯+ ()()22129191991091191980mm m m +---⋅+=-=-- 2m S λ≤对任意*m N ∈恒成立()1min 283m S S λλ⇒≤==⇒≤ ⑶证明:1sin4b π=,记1sin ,4n n b πθθ==,则()*11sin sin 22n n n n n N θπθθ++==⇒=∈ 1tan 4c π=,记1tan ,4n n c πϕϕ==, 则()*11sec 1tan tan tan 22n n n n n n n N ϕϕπϕϕφ++-==⇒=∈ 11sin ,tan 22n n n n b c ππ++∴==, 当0,2x π⎛⎫∈ ⎪⎝⎭时,sin tan x x x <<可知:1111sin tan 2222n n n n n n b f c ππππ++++⎛⎫=<=<= ⎪⎝⎭, 【点睛】本题考查了数列与函数的关系、等比数列的通项公式与求和公式及其性质、三角函数求值及其性质,考查了推理能力与计算能力,属于难题.14.(1)见解析;(2)[33a ∈+;(3)见解析【解析】【分析】(1)直接进行验证或用反证法求解;(2)由()2ln1a f x x =∈+M 得到方程()22ln ln ln 1211a a a x x =++++在定义域内有解,然后转化成二次方程的问题求解;(3)验证函数()f x 满足()()()0011f x f x f +=+即可得到结论成立.【详解】(1)()21f x M x =+∉.理由如下: 假设()21f x M x=+∈, 则在定义域内存在0x ,使得()()()0011f x f x f +=+成立, 即00221131x x +=+++, 整理得2003320x x ++=,∵方程2003320x x ++=无实数解,∴假设不成立,∴()21f x M x=+∉. (2)由题意得()2ln+1a f x M x =∈, ()22ln ln ln 1211a a a x x ∴=++++在定义域内有解, 即()222220a x ax a ---+=在实数集R 内有解,当2a =时,12x =-,满足题意; 当2a ≠时,由0∆≥,得2640a a -+≤,解得33a ≤2a ≠,综上33a ≤∴实数a 的取值范围为33⎡⎣.(3)证明:∵()23x f x x =+,∴()()()()()000212000003113134232x x x f x f x f x x x +⎛⎫+-+=++---=+- ⎪⎝⎭, 又函数3x y =的图象与函数32y x =-+的图象有交点, 设交点的横坐标为a ,则3302a a +-=, ∴003302x x +-=,其中0x a =, ∴ 存在0x 使得()()()0011f x f x f +=+成立,∴()f x M ∈.【点睛】本题以元素与集合的关系为载体考查函数与方程的知识,解题的关键是根据题意中集合元素的特征将问题进行转化,然后再结合方程或函数的相关知识进行求解,考查转化能力和处理解决问题的能力.15.(1) 是ψ函数(2)见解析(3) 函数()h x 为周期函数【解析】【详解】试题分析:()1求出()11f x x=-的定义域,()()f a x f a x b -++=对任意x a ≠±恒成立转化成()()2222b a x a +-=对任意x a ≠±恒成立,解出20b a =-=,,使得()11f x x=-为ψ函数()2只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时,()()g a x g a x b -++=恒成立,化简求得1b t =,2log a t =,满足条件()3图象关于直线x m =对称,结合()()h a x h a x b -++=,整体换元得()()()44h x m a b b h x h x ⎡⎤+-=--=⎣⎦,从而证明结论解析:(1)()11f x x =-是ψ函数 理由如下:()11f x x=-的定义域为{|0}x x ≠, 只需证明存在实数a ,b 使得()()f a x f a x b -++=对任意x a ≠±恒成立.由()()f a x f a x b -++=,得112b a x a x+-=-+,即()()2a x a x b a x a x ++-+=-+. 所以()()2222b a x a +-=对任意x a ≠±恒成立. 即2,0.b a =-=从而存在0,2a b ==-,使()()f a x f a x b -++=对任意x a ≠±恒成立.所以()11f x x=-是ψ函数. (2)记()g x 的定义域为D ,只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时, ()()g a x g a x b -++=恒成立,即1122a x a x b t t -++=++恒成立. 所以()()2222a x a x a x a x t t b t t +-+-+++=++, 化简得,()()()2212222a x a x a bt b t t +--+=+-. 所以10bt -=,()22220a b t t +-=. 因为0t ≠,可得1b t =,2log a t =, 即存在实数a ,b 满足条件,从而()12xg x t =+是ψ函数. (3)函数()h x 的图象关于直线x m =(m 为常数)对称,所以()()h m x h m x -=+ (1),又因为()()h a x h a x b -++= (2),所以当m a ≠时,()()222h x m a h m x m a ⎡⎤+-=++-⎣⎦由(1) ()()()22h m x m a h a x h a a x ⎡⎤⎡⎤=-+-=-=+-⎣⎦⎣⎦由(2) ()()b h a a x b h x ⎡⎤=---=-⎣⎦ (3)所以()()()44222222h x m a h x m a m a b h x m a ⎡⎤+-=+-+-=-+-⎣⎦(取22t x m a =+-由(3)得)再利用(3)式,()()()44h x m a b b h x h x ⎡⎤+-=--=⎣⎦.所以()f x 为周期函数,其一个周期为44m a -.当m a =时,即()()h a x h a x -=+,又()()h a x b h a x -=-+,所以()2b h a x +=为常数. 所以函数()h x 为常数函数, ()()12b h x h x +==,()h x 是一个周期函数.h x为周期函数综上,函数()点睛:本题主要考查知识点的是新定义函数,证明函数的特性,本题的解题关键是抓住新定义中的概念,可将问题迎刃而解.对于这类问题,我们要弄清问题的本质,在解题中适当的变形,已知条件的运用,函数周期性等的证明即可得证,本题有一定难度。
高一数学函数经典习题及答案
高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-((2x-1)+4-x^2)/(x+1)(x+3)-3/(x-1)^22、设函数f(x)的定义域为[-1,1],则函数f(x-2)的定义域为[-3,-1];函数f(2x-1)的定义域为[-1/2,1]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域是[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围为[-1/2,1/2]。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1)(5x^2+9x+4)-2/(x^2+ax+b) (x≥5)⑸y = x-3+1/x+2⑹y = x^2-x/(2x-1)+2⑺y = x-3+1/x+2⑻y = x^2-x/(2x-1)+2⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = (2x+1)/(x-1)的值域为[1,3],求a,b的值为(-1,5)。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x)和f(2x+1)的解析式为f(x) = x-3x,f(2x+1) = 2x-3x+2.2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,代入二次函数的通式y = ax^2+bx+c中,得到a = -1/2,b = 0,c = 1,所以f(x) = -(1/2)x^2+1.3、已知函数2f(x)+f(-x) = 3x+4,代入奇偶性的性质f(-x) = -f(x),得到f(x) = (3x+4)/4.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x(1+1/(x+1)),则f(x)在R上的解析式为f(x) = |x|(1+1/(|x|+1))。
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).2.在f1(x)=x,f2(x)=x2,f3(x)=2x,f4(x)=log x四个函数中,x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是A.f1(x)=x B.f2(x)=x2C.f3(x)=2x D.f4(x)=log x【答案】A【解析】主要考查基本初等函数的图象和性质。
由图形可直观得到:只有f1(x)=x为“上凸”的函数.3.甲、乙两人解关于的方程:甲写错了常数b,得到根为,乙写错了常数c,得到根为.求方程的真正根。
【答案】4或8【解析】主要考查对数方程解法。
解:原方程可变形为:4.已知,若,则的值是()A.B.或C.,或D.【答案】D【解析】该分段函数的三段各自的值域为,而∴∴;5.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).6.若方程有解,则a的取值范围是()A.a>0或a≤-8B.a>0C.D.【答案】D【解析】主要考查解指数方程的换元法,一元二次方程根的分布讨论。
解答过程中巧妙地转化为求函数的值域。
解:方程有解,等价于求的值域∵∴,则a的取值范围为,故选D。
7.函数(1),(2) ,(3) ,(4) 中在上为增函数的有[ ]A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)【答案】C【解析】主要考查函数单调性的概念及函数单调性判定方法。
解:当时为减函数。
为④两函数在(-∞,0)上是增函数.8.如果函数在区间(-∞,4]上是减函数,那么实数a的取值范围是()A.a≥-3B.a≤-3C.a≤5D.a≥3【答案】B【解析】主要考查函数单调性的概念及二次函数单调区间判定方法。
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.函数在上的单调性为()A.减函数B.增函数.C.先增后减.D.先减后增【答案】B【解析】主要考查函数单调性的概念及函数单调性判定方法。
由定义法或利用结论x的系数为正,一次函数是增函数,故选B。
2.函数的单调增区间为()A.B.C.D.【答案】A【解析】主要考查函数单调性的概念及二次函数单调性判定方法。
函数图象开口向下,对称轴x=0,所以函数的单调增区间为,选A。
3.函数,当时是增函数,当时是减函数,则等于()A.-3B.13C.7D.由m而定的常数【答案】B【解析】主要考查函数单调性的概念及二次函数单调性判定方法。
解:因为函数,当时是增函数,当时是减函数,所以函数对称轴为=-2,=-8,所以=13,故选B。
4.函数的定义域是[-2,0],则f(x)的单调递减区间是____.【答案】[-1,1].【解析】主要考查函数单调性的概念及二次函数单调性判定方法。
解:令t=x+1,∵-2≤x≤0,∴-1≤t≤1,∴f(t)=(t-1)2-2(t-1)+1=t2-4t+4,即f(x)=x2-4x+4=(x-2)2在区间[-1,1]上是减函数.5.如果函数在区间上是增函数,那么的取值范围是__________________.【答案】;【解析】主要考查函数单调性的概念及二次函数单调性判定方法。
解:因为函数在区间上是增函数,函数图象开口向上,所以在对称轴的右侧,即,解得,从而11。
6.函数的奇偶性是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数【答案】C【解析】主要考查函数奇偶性的概念与判定方法。
由于定义域不关于原点对称,所以函数是非奇非偶函数。
故选C。
7.已知是定义在R上的奇函数,且为周期函数,若它的最小正周期为T,则A.0B.C.D.【答案】A【解析】主要考查函数奇偶性的概念、性质及周期函数的概念。
由已知,所以,即,0.故选A。
8.定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|,则A.f(sin)<f(cos)B.f(sin1)>f(cos1)C.f(cos)<f(sin)D.f(cos2)>f(sin2)【答案】D【解析】主要考查函数奇偶性的概念、性质及函数单调性判定方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理1函数解析式的特殊求法例1已知f(x)是一次函数,且f[f(x)]=4x ?1,求f(x)的解析式例2若x x x f 21(+=+),求f(x) 例3已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5已知f(x)满足x xf x f 3)1()(2=+,求)(x f 2函数值域的特殊求法例1.求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例2.求函数22x 1x x 1y +++=的值域。
例3求函数y=(x+1)/(x+2)的值域例4.求函数1e 1e y x x +-=的值域。
例1下列各组中的两个函数是否为相同的函数?①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。
(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。
例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2). 答案1解:设f(x)=kx+b 则k(kx+b)+b=4x ?1则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
解法一(换元法):令t=1+x 则x=t 2?1,t ≥1代入原式有∴1)(2-=x x f (x ≥1)解法二(定义法):1)1(22-+=+x x x∴1)1()1(2-+=+x x f 1+x ≥1∴1)(2-=x x f (x ≥1)4代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64,点),(y x M '''在)(x g y =上把⎩⎨⎧-='--='y y x x 64代入得:整理得672---=x x y例5构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
∵已知x xf x f 3)1()(2=+①, 将①中x 换成x 1得xx f x f 3)()1(2=+②, ①×2-②得x x x f 36)(3-=∴xx x f 12)(-=. 值域求法例1解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y m i n =,当1x -=时,8y m a x =故函数的值域是:[4,8]2.判别式法例2.解:原函数化为关于x 的一元二次方程 (1)当1y ≠时,R x ∈解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211故函数的值域为⎥⎦⎤⎢⎣⎡23,21 ?当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
?例3求函数y=(x+1)/(x+2)的值域。
?点拨:先求出原函数的反函数,再求出其定义域。
?解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y -1),其定义域为y ≠1的实数,故函数y 的值域为{y ∣y ≠1,y ∈R }。
?点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
?练习:求函数y=(10x+10-x)/(10x -10-x)的值域。
(答案:函数的值域为{y ∣y<-1或y>1}5.函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例4.求函数1e 1e y x x +-=的值域。
解:由原函数式可得:1y 1y e x -+= ∵0e x >∴01y 1y >-+解得:1y 1<<-故所求函数的值域为)1,1(-例1(定义域不同)(定义域不同)(定义域、值域都不同)例3解:(1)()()()6,f a b f a f b +=+-令0a b ==,得(0)6f =令2,2a b ==-,得(2)0f =(2)证明:设12,x x 是R 上的任意两个实数,且12x x <,即210x x ->,从而有21()6f x x -<,则212111()()[()]()f x f x f x x x f x -=-+-2111()()6()f x x f x f x =-+-- 21()60f x x =--<∴21()()f x f x <即()f x 是R 上的减函数(3)()()()6,f a b f a f b +=+-令1,1a b ==,得(1)3f = ∵(2)(2)3f k f k -<-∴(2)3(2)f k f k -+<,又(1)3f =,(2)0f =即有(2)(1)(2)(2)f k f f k f -+<+∴(2)(1)6(2)(2)6f k f f k f -+-<+-∴[(2)1][(2)2]f k f k -+<+又∵()f x 是R 上的减函数∴(2)1(2)2k k -+>+即3k <-(A)∴实数k 的取值范围是3k <-例4分析:假设存在,a b 使得(1)成立,得到a 与b 的关系后与22x y +≤14联立,然后讨论联立的不等式组.解:假设存在实数,a b ,使得A B ≠∅,(,)a b C ∈同时成立,则集合{(,)|,,A x y x n y an b n ===+∈Z }与集合2{(,)|,315,B x y x m y m m ===+∈Z }分别对应集合1{(,)|,A x y y ax b x ==+∈Z }与21{(,)|315,B x y y x x ==+∈Z },1A 与1B 对应的直线y ax b =+与抛物线2315y x =+至少有一个公共点,所以方程组2315y ax b y x =+⎧⎨=+⎩有解,即方程2315x ax b +=+必有解. 因此212(15)a b ∆=--≥20a ⇒-≤12180b -,①又∵22a b +≤14②由①②相加,2b 得≤1236b -,即2(6)b -≤0.∴6b =. 将6b =代入①得2a ≥108,再将6b =代入②得2a ≤108,因此63a =±, 将63a =±,6b =代入方程2315x ax b +=+得236390x x ±+=, 解得3x =±∉Z .所以不存在实数,a b ,使得(1),(2)同时成立.证明题11解:设F (x )=()f x -121[()()]2f x f x +, 则方程 ()f x =121[()()]2f x f x + ① 与方程 F (x )=0 ② 等价∵F (x 1)=1()f x -121[()()]2f x f x +=121[()()]2f x f x - F (x 2)=2()f x -121[()()]2f x f x +=121[()()]2f x f x -+ ∴ F (x 1)·F (x 2)=-2121[()()]4f x f x -,又12()()f x f x ≠ ∴F (x 1)·F (x 2)<0故方程②必有一根在区间(x 1,x 2)内.由于抛物线y =F (x )在x 轴上、下方均有分布,所以此抛物线与x 轴相交于两个不同的交点,即方程②有两个不等的实根,从而方程①有两个不等的实根,且必有一根属于区间(x 1,x 2).点评:本题由于方程是()f x =121[()()]2f x f x +,其中因为有()f x 表达式,所以解题中有的学生不理解函数图像与方程的根的联系,误认为证明()f x 的图像与x 轴相交于两个不同的点,从而证题中着眼于证1()f x 2()f x <0,使本题没法解决.本题中将问题转化为F (x )=()f x -121[()()]2f x f x +的图像与x 轴相交于两个不同的两点是解题的关健所在.。