数学建模-多目标规划
数学模型与数学建模5.4 多目标规划
![数学模型与数学建模5.4 多目标规划](https://img.taocdn.com/s3/m/966efa54783e0912a2162a72.png)
2 p
(
x1
,
x2
,
nn
xn ) ij xi x j
i1 j 1
n
max Rp (x1, x2 , xn ) Ei Ci xi i 1
s.t.
n i1
xi
n
Ci xi
i 1
m
xi 0 , i 1, 2, , n,
(5.4.4)
( x2
3)2
x1
,
x2
0
7. 已知某指派问题的有关数据(每人完成各项工作的时间 )如下表所示,试对此问题用动态规划方法求解。要求: (1)列出动态规划的基本方程; (2)对该动态规划模型求解。
表3 指派问题中人员完成任务的工作时间
8. 某公司去一所大学招聘一名管理专业应届毕业生。从众 多应聘学生中,初选3名决定依次单独面试。面试规则为: 当对第1人或第2人面试时,如满意(记3分),并决定聘用 ,面试不再继续;如不满意(记1分),决定不聘用,找下 一人继续面试。但对决定不聘用者,不能同在后面面试的人 比较后再回过头来聘用。故在前两名面试者都决定不聘用时 ,第三名面试者不论属何种情况均需聘用。根据以往经验, 面试中满意的占20%,较满意的占50%,不满意者占30%。要 求用动态规划方法帮助该公司确定一个最优策略,使聘用到 的毕业生期望的分值为最高。
标规划问题进行标量化处理,即将其转化为单目标
规划问题来求解。通常对m个目标 f1(x), f2(x), , fm (x)
分别乘以权系数 1, 2 , , m ,然后求和得新的目标
m
函数:U (x) i fi (x)。从而有如下单目标规划问题
数学建模目标规划方法
![数学建模目标规划方法](https://img.taocdn.com/s3/m/17cc4c32a32d7375a41780f7.png)
30
x1
2x1
12x2 x2
d1 d2
d1 d2
2500 140
x1
d
3
d3
60
a x (,)b
ij j
i
j 1
(i 1,2, , m)
绝对约束
x 0 ( j 1,2, , n) j
d , d 0 (l 1,2, , L) ll
非负约束
K
L
min Z
pk
(kl
d
l
kl
dl
)
k 1
l 1
n
c(l) x d d g ( l 1,2, , L)
三 目标规划方法
通过前面的介绍和讨论,我们知道,目标规划方法 是解决多目标规划问题的重要技术之一。
这一方法是美国学者查恩斯(A.Charnes)和库 伯(W.W.Cooper)于1961年在线性规划的基础上提 出来的。后来,查斯基莱恩(U.Jaashelainen)和李 (Sang.Lee)等人,进一步给出了求解目标规划问题 的一般性方法——单纯形方法。
34
4
所以目标规划模型为:
min Z p d p (7d 12d ) p (d d )
11
2
2
3
34
4
70x 120x d d 50000
1
2
1
1
x 1
d d 200
2
2
x d d 250
生产甲、乙两种产品,
数学建模中的多目标优化问题
![数学建模中的多目标优化问题](https://img.taocdn.com/s3/m/7c81db18bf23482fb4daa58da0116c175f0e1eca.png)
数学建模中的多目标优化问题在数学建模中,多目标优化问题是一个重要且具有挑战性的问题。
在实际应用中,我们常常面临的是多个目标之间的矛盾与权衡,因此需要找到一个平衡点来满足各个目标的需求。
本文将介绍多目标优化问题的定义、解决方法以及应用案例。
第一部分:多目标优化问题的定义多目标优化问题是指在给定的约束条件下,寻找多个目标函数的最优解的问题。
常见的形式可以表示为:最小化/最大化 f1(x), f2(x), ..., fn(x)其中,fi(x)表示第i个目标函数,x表示决策变量。
多目标优化问题与单目标优化问题的不同之处在于,单目标问题只需考虑一个目标函数,而多目标问题需要同时考虑多个目标函数。
第二部分:多目标优化问题的解决方法在解决多目标优化问题时,常用的方法有以下几种:1. 加权求和法(Weighted Sum Method):将多个目标函数加权求和,转化为单目标函数进行求解。
具体地,可以通过设置不同的权重系数,使得不同目标函数在求解中的重要性得到体现。
2. Pareto优化法(Pareto Optimization):Pareto优化法基于Pareto最优解的概念,即同时满足所有约束条件下,无法改善任何一个目标函数而不损害其他目标函数的解集。
通过构建Pareto最优解集,可以帮助决策者在多个解中进行选择。
3. 遗传算法(Genetic Algorithm):遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择、交叉和变异等过程来搜索最优解。
在多目标优化问题中,遗传算法通过维护一个种群中的多个个体,以逐步进化出Pareto最优解集。
4. 粒子群优化算法(Particle Swarm Optimization):粒子群优化算法是一种模拟鸟群觅食的行为进行优化的算法。
在多目标优化问题中,粒子群优化算法通过在解空间中搜索多个粒子,通过粒子之间的合作与竞争,逐步逼近Pareto最优解。
第三部分:多目标优化问题的应用案例多目标优化问题在各个领域都有广泛的应用。
数学建模-多目标规划
![数学建模-多目标规划](https://img.taocdn.com/s3/m/d51e72880029bd64783e2cf3.png)
例 选课策略
课号
课名
学分
所属类别
先修课要求
1
微积分
5
数学
2
线性代数
4
数学
3
最优化方法
4
数学;运筹学 微积分;线性代数
4
数据结构
3
数学;计算机
计算机编程
5
应用统计
4
数学;运筹学 微积分;线性代数
6
计算机模拟
3
计算机;运筹学
计算机编程
7
计算机编程
2
计算机
8
预测理论
2
运筹学
应用统计
9
数学实验
3
运筹学;计算机 微积分;线性代数
min h(F (x)) st x R
方法:(1)理想点法
第一步:计算出 个单目标规划问题
f* i
min fi ( x) st x R
第二步:构造评价函数
p
h(F(x))
(
fi (x)
f *)2 i
i 1
3、评价函数法
(2)、线性加权法
p
p
h(F(x)) j f j 其中j 0, j 1
上班时间 加班情况
X1+d3- -d3+=24 X2 +d4- -d4+=30
市场需求
X1 , X2 , di- , di+ 0 di- .di+= 0 (i=1,2,3,4)
多目标线性规划问题的Matlab7.0求解
多目标线性规划标准形式 min f (x) ( f1(x), f2(x), fn(x))T gi (x) 0 i 1, 2 , m hj (x) 0 j 1, 2, , k x0
数学建模-多目标规划
![数学建模-多目标规划](https://img.taocdn.com/s3/m/cf61a12858fb770bf78a553e.png)
将上述问题化为标准后,用单纯形方法求解可得最佳决策
方案为: x1 4, x 2 3, Z 62 (万元)。
但是,在实际决策时,企业领导者必须考虑市场等 一系列其它条件,如: ① 根据市场信息,甲种产品的需求量有下降的趋势,因 此甲种产品的产量不应大于乙种产品的产量。 ②超过计划供应的原材料,需用高价采购,这就会使生产 成本增加。 ③应尽可能地充分利用设备的有效台时,但不希望加班。 ④应尽可能达到并超过计划产值指标56万元。 这样,该企业生产方案的确定,便成为一个多目标决 策问题,这一问题可以运用目标规划方法进行求解。
min Z pl ( lk d k lk d k )
l 1 k 1
L
K
i ( x1 , x2 , , xn ) g i ( i 1,2, , m )
f i d i d i f i ( i 1,2, , K )
式中:
min Z i ( fi fi ) 2
k
i ( x1 , x2 , , xn ) gi ( i 1, 2, , m ) 或写成矩阵形式: min Z ( F F )T A( F F )
( X ) G
i 1
式中, i 是与第i个目标函数相关的权重; A是由 i (i=1,2,…,k )组成的m×m对角矩阵。
目标规划模型 目标规划软件求解
目标规划模型
给定若干目标以及实现这些目标的优先顺 1.基本思想 : 序,在有限的资源条件下,使总的偏离目 标值的偏差最小。
2.目标规划的有关概念
例1:某一个企业利用某种原材料和现有设备可生产甲、 乙两种产品,其中,甲、乙两种产品的单价分别为8万元 和10万元;生产单位甲、乙两种产品需要消耗的原材料 分别为2个单位和1个单位,需要占用的设备分别为1单位 台时和2单位台时;原材料拥有量为11个单位;可利用的 设备总台时为10单位台时。试问:如何确定其生产方案 使得企业获利最大?
数学建模多目标规划函数fgoalattain
![数学建模多目标规划函数fgoalattain](https://img.taocdn.com/s3/m/403c48710242a8956bece49f.png)
MATLAB 中文论坛讲义多目标规划优化问题Matlab 中常用于求解多目标达到问题的函数为fgoalattain.假设多目标函数问题的数学模型为:ubx lb beqx Aeq bx A x ceq x c goalweight x F t s yx ≤≤=≤=≤≤-**0)(0)(*)(..min ,γγ weight 为权值系数向量,用于控制对应的目标函数与用户定义的目标函数值的接近程度; goal 为用户设计的与目标函数相应的目标函数值向量;γ为一个松弛因子标量;F(x)为多目标规划中的目标函数向量。
综上,fgoalattain 的优化过程就是使得F 逼近goal;工程应用中fgoalattain 函数调用格式如下:[x,fval]=fgoalattain (fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)x0表示初值;fun 表示要优化的目标函数;goal 表示函数fun 要逼近的目标值,是一个向量,它的维数大小等于目标函数fun 返回向量F 的维数大小;weight 表示给定的权值向量,用于控制目标逼近过程的步长;例1. 程序(利用fgoalattain 函数求解)23222123222132min )3()2()1(min x x x x x x ++-+-+-0,,6..321321≥=++x x x x x x t s①建立M 文件.function f=myfun(x)f(1)= x(1)-1)^2+(x(2)-2)^2+(x(3)-3)^2;f(2)= x(1)^2+2*x(2)^2+3*x(3)^2;②在命令窗口中输入.goal=[1,1];weight=[1,1];Aeq=[1,1,1];beq=[6];x0=[1;1;1];lb=[0,0,0]; %也可以写lb=zero(3,1);[x,fval]=fgoalattain(‘myfun’,x0,goal,weight,[ ],[ ],Aeq,beq,lb,[ ])③得到结果.x =3.27271.63641.0909fval =8.9422 19.6364例2.某钢铁公司因生产需要欲采购一批钢材,市面上的钢材有两种规格,第1种规格的单价为3500元/t ,第2种规格的单价为4000元/t.要求购买钢材的总费用不超过1000万元,够得钢材总量不少于2000t.问如何确定最好的采购方案,使购买钢材的总费用最小且购买的总量最多.解:设采购第1、2种规格的钢材数量分别为1x 和2x .根据题意建立如下多目标优化问题的数学模型.0,200010000040003500max 40003500)(min212121211≥≥+≤++=x x x x x x x x x f ①建立M 文件. 在Matlab 编辑窗口中输入:function f=myfun(x)f(1)= 3500*x(1)+4000*x(2);f(2)=-x(1)-x(2);②在命令窗口中输入.goal=[10000000,-2000];weight=[10000000,-2000];x0=[1000,1000];A=[3500,4000;-1,-1];b=[10000000;-2000];lb=[0,0]; %也可以写lb=zero(3,1);[x,fval]=fgoalattain(‘myfun ’,x0,goal,weight,A,b,[ ],[ ],lb,[ ])③得到结果.x =1000 1000fval =7500000 -2000。
lingo-多目标规划模型
![lingo-多目标规划模型](https://img.taocdn.com/s3/m/d79047f484254b35eefd34c6.png)
用LINGO求解,得最优解 d1 d1 =0 , d 2 6,最优值为6。 具体LINGO程序及输出信息如下:LINGO程序为(参见图4):
model: min=d2_; 10*x1+15*x2+d1_-d1=40; x1+x2+d2_-d2=10; d1=0; END
图4
LINGO运算后输出为(参见图5):
x4 。
非劣性可以用下图说明。
在图1中,max(f1, f2) .就
方案①和②来说,①的
f2 目标值比②大,但其目 标值 f1 比②小,因此无
法确定这两个方案的优
与劣。 在各个方案之间, 显然:④比①好,⑤比
图 多目标规划的劣解与非劣解
④好, ⑥比②好, ⑦比
③好……。
第二部分 多目标决策的数学模型及其非劣解
多目标决策方法
李小飞
多目标决策的基本概念 多目标决策的数学模型及其非劣解 多目标决策建模的应用实例
用LINGO软件求解目标规划问题
1. 求解方法概述
• LINGO(或LINDO)不能直接求解目标规 划问题,但可以通过逐级求解线性规划的 方法,求得目标规划问题的满意解。
2. 示例
• 例1 用LINGO求解目标规划问题
例
试分析下表所示四个方案的非劣性。
目标函数 方案 X1 X2 X3 X4 F1(x) 10 14 12 8 F2(x) 21 18 16 20 非劣 非劣 劣 劣 方案的性质
解:因 F1 ( x1) 10 8 F1 ( x 4) F ( x1) 21 20 F ( x4) 2 2 故 x1 x 4 。 同理,x2 x3, x1 x2, x1 x3, x2 因此四个方案的优劣性见表。
数学建模股票多目标规划模型
![数学建模股票多目标规划模型](https://img.taocdn.com/s3/m/4002fb1d4a35eefdc8d376eeaeaad1f34793115a.png)
数学建模股票多目标规划模型
数学建模在股票多目标规划模型中可以起到非常重要的作用。
股票投资是一个复杂的决策过程,需要考虑多个目标和约束条件。
数学建模可以帮助我们将问题转化为数学表达式,并使用数学方法进行求解。
在股票多目标规划模型中,我们需要考虑的目标可能包括风险、收益、流动性等。
我们可以根据投资者的偏好和风险承受能力,权衡这些目标,并建立相应的数学模型。
例如,我们可以使用线性规划模型,将投资组合的权重作为决策变量,收益和风险等目标作为目标函数,约束条件可以包括资金限制、投资比例限制、行业限制等。
通过求解这个数学模型,我们可以得到一个最优的投资组合,从而实现多目标优化。
另外,还可以使用非线性规划或者多目标规划等方法进行建模,以更准确地表示实际情况。
同时,还可以考虑引入时间序列分析、模拟等方法,以提高模型的准确性和可靠性。
需要注意的是,股票市场的变化非常复杂,数学建模只是一种工具,不能保证投资的成功。
在进行股票投资时,还需要考虑市场风险、信息不对称等因素,并做出合理的决策。
数学建模多目标规划
![数学建模多目标规划](https://img.taocdn.com/s3/m/7dae21b9f121dd36a32d8294.png)
虑利润,还需要考虑多个方面,因此增加下列因素(目标):
• 力求使利润指标不低于1500元 • 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2 • 设备A为贵重设备,严格禁止超时使用 • 设备C可以适当加班,但要控制;设备B既要求充分利用,又 尽可能不加班,在重要性上,设备B是设备C的3倍 从上述问题可以看出,仅用线性规划方法是不够的,需 要借助于目标规划的方法进行建模求解
4 5 6 7 8 9
∗ ∗ ∗
多目标规划
• 对学分数和课程数加权形成一个目标,如三七开。
Min Y = λ1Z − λ2W = 0.7 Z − 0.3W
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3
u( f (x)) = ∑λi fi (x)
i =1
m
∑λ = 1
i =1 i
m
转化单目标法
3. 极大极小点法
1≤ i ≤ m
min u ( f ( x )) = min max{ f i ( x )}
x∈ X 1≤ i ≤ m
4. 范数理想点法
dp
(
p⎤ ⎡ f ( x ), f ;ω = ⎢ ∑ ω i f i ( x ) − f i ⎥ ⎣ i =1 ⎦ m
0-1规划模型
课号 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 先修课要求
约束条件 先修课程要求 x3=1必有x1 = x2 =1
∗ 1 ∗ 2 ∗ 3 ∗ ∗ ∗
4 5 6 7 8 9
微积分;线性代数 计算机编程 微积分;线性代数 计算机编程 应用统计 微积分;线性代数
数学建模必备LINGO在多目标规划和最大最小化模型中的应用
![数学建模必备LINGO在多目标规划和最大最小化模型中的应用](https://img.taocdn.com/s3/m/b8adea8f33d4b14e85246887.png)
数学建模必备LINGO 在多目标规划和最大最小化模型中的应用一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑ii ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==pi a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(iifx f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
最大最小化模型的目标函数可写成)}(,),(),(max{min 21X f X f X f p X或)}(,),(),(min{max 21X f X f X f p X式中T n x x x X ),,,(21 是决策变量。
大学生数学建模--多目标规划建模
![大学生数学建模--多目标规划建模](https://img.taocdn.com/s3/m/94ac6559e009581b6ad9eb9b.png)
多目标规划问题的求解
一般来说,其基本途径是,把求解多目标问题转化为 求解单目标问题. 然后利用单目标模型的方法,求出 单目标模型的最优解,以此作为多目标问题的解.
下面,我们介绍几种主要的转化方法: • 线性加权和法 • 理想点法 • 极大极小法 • 主要目标法
多目标规划问题的求解
hj(X) 0
X (x1, x2 ,...., xn ) 为决策变量
如对于求极小(min)型,其各种解定义如下: 绝对最优解:若对于任意的X,都有F(X*)≤ F(X) 有效解:若不存在X,使得F(X*)≥F(X)且有一至少一个
fi0 (x) fi0 (x*)
2、多目标优选问题的模型结构
多目标规划模型
基本内容:
1、多目标规划的基本概念 2、多目标规划的问题的特征 3、多目标规划的求解方法 4、目标规划模型 5、应用实例模型.
一、多目标的基本概念
多目标的问题:在现实生活中,决策的目标往往 有多个,例如,对企业产品的生产管理,既希望达到高 利润,又希望优质和低消耗,还希望减少对环境的污 染等.这就是一个多目标决策的问题. 。
二、多目标规划问题的分类
一般来说,多目标规划问题有两类.一类是多 目标规划问题,其对象是在管理决策过程中求解 使多个目标都达到满意结果的最优方案.另一类 是多目标优选问题,其对象是在管理决策过程中 根据多个目标或多个准则衡量和得出各种备选 方案的优先等级与排序.
三、多目标规划问题的求解
多目标决策由于考虑的目标多,各目标之间的矛盾性 和不可公度性,这就使多目标问题成为一个复杂而困 难的问题.所谓矛盾性是指采用某种方案去改进一个 目标的同时,可能会使另一个目标值变劣。而目标 间的不可公度性是指各目标间一般没有统一的度量 标准,因而不能直接进行比较和运算。但由于客观 实际的需要,多目标决策问题越来越受到重视,因而 出现了许多解决此决策问题的方法.
数学建模四大模型归纳
![数学建模四大模型归纳](https://img.taocdn.com/s3/m/66981016d5bbfd0a78567331.png)
四类基本模型1优化模型1.1数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2微分方程组模型阻滞增长模型、SARS传播模型。
1.3图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。
1.5组合优化经典问题多维背包问题(MKP)背包问题:n个物品,对物品i,体积为W i,背包容量为W。
如何将尽可能多的物品装入背包。
多维背包问题:n个物品,对物品i,价值为P i,体积为W i,背包容量为W。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP难问题。
二维指派问题(QAP)工作指派问题:n个工作可以由n个工人分别完成。
工人i完成工作j的时间为d j。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n台机器要布置在n个地方,机器i 与k之间的物流量为f ik,位置j与l之间的距离为d jl,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d ij,找一条经过n个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP问题是VRP问题的特例。
车间作业调度问题(JSP)车间调度问题:存在j个工作和m台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
最新数学建模必备LINGO在多目标规划和最大最小化模型中的应用
![最新数学建模必备LINGO在多目标规划和最大最小化模型中的应用](https://img.taocdn.com/s3/m/b1b21297a8114431b80dd849.png)
精品文档数学建模必备在多目标规划和最大最小化模型中的应用LINGO一、多目标规划的常用解法设法将多目标规划转多目标规划的解法通常是根据问题的实际背景和特征,化为单目标规划,从而获得满意解,常用的解法有:.主要目标法1 确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
.线性加权求和法2?????0?然后把对每个目标按其重要程度赋适当权重,,且)(xf?1iiiiii p?,,2,1f(x),i?作为新的目标函数(其中个目标)。
是原来的p i 3.指数加权乘积法p,2,?x),i?1,f(个目标,令设是原来的p i p?a)]?x[f(Z i i1?i a为指数权重,把其中作为新的目标函数。
Z i 4.理想点法*f先分别求出个单目标规划的最优解,令p i?*2)?(x)f)h(x?f(ii然后把它作为新的目标函数。
5.分层序列法p个目标按其重要程度排序,先求出第一个最重要的目标的最优解,将所有然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用精品文档.精品文档于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
最大最小化模型的目标函数可写成minmax{f(X),f(X),,f(X)} ?p12X或maxmin{f(X),f(X),,f(X)} ?p12XT),xx(,x,X式中??是决策变量。
数学建模优化之多目标规划
![数学建模优化之多目标规划](https://img.taocdn.com/s3/m/830a9acecaaedd3382c4d33d.png)
步骤:
主要目标 f1 x的最优集合为 R1,再在集优
解集合为 R2 ,如此继续进行,直到求出最后一
个目标函数的最优解。
第一步 第二步 第p步
min
xR0
f1
x
f1
x1
min
在处理单目标最优化问题时,其任务是 选择一个或一组变量,使目标函数取极小 (或极大)值。对任意可行解,只要比较它 们对应的目标值,就可以判断哪个优哪个劣。 也就是说,我们总能排出它们的次序来。但 是在多目标情况下,问题就不是那么单纯了。 例如,我们希望两个目标和越大越好.
6 7
第
8
二
3
目
标
f2
1
例子:
橡胶配方问题
一个橡胶由 n 种成分组成,用 x x1, x2,xn T
来表示一个橡胶配方。对于每一个配方往往同
时需要考察多个指标。例如橡胶的强力 f1x ,
硬度 f2 x,伸长 f3 x,变形 f4 x等,假设共有 m
个指标,则对两个不同方案,就要同时比较个 指标,才能获得尽可能好的橡胶配方。
按照这种比法,方案1、2、3、4、5都是 劣解。而余下的6、7、8、9则不然。这几个 方案的特点是,它们中的任何一个和其余的 任何一个相比,总有一个指标优越,但又不 会两个指标都优越。像这样的解,既不会被 舍去,又不是全面优越于其他解,为非劣解 或有效解。
一般思路
•先找出非劣解 •按一定法从它们之中选取一个比较好的作 为“最优”方案
1 xi 0
若对第 i 个项目投资 若对第 i 个项目不投资
约束条件为:
n
ai xi a
i 1
【数学建模】多目标规划
![【数学建模】多目标规划](https://img.taocdn.com/s3/m/c6c6b09ed5bbfd0a79567358.png)
≥
绝对最优解=有效解
有效解= 弱有效解
定义3 像集F(R)={F(x)|x∈R}ÅÆ约束集R在映像F之下的值域 F*是有效点 ÅÆ不存在F∈F(R), 使得F≤F*; F *是弱有效点ÅÆ 不存在F∈F(R), 使得F<F;
f2
f2
f2 *
f1
f1 *
f2
f2 * f1 *
f2 *
f1 *
有效点
f1
fj(X )
j = 1,2,L, p
定义评价函数:
∑ ( ) h(F ( X )) = h( f1,L, f p ) =
p j =1
fj(X)− fj * 2
求解非线性规划问题: min h(F ( X )) X∈D 原理:距理想点最近的点作为最优解!
多目标规划的基本解法
4. 评价函数法——这是一种最常见的方法,就是用一个评价 函数来集中反映各不同目标的重要性等因素,并极小化此评价 函数,得到问题的最优解。常见的以下几种方法:
4.1 理想点法:
{ } V- min X ∈D
f1(X ), f2 (X ),L, f p (X )
⇒
f j*
=
min
X∈D
宽容值ε>0, 即此 目标值再差ε也是 可接受的!
缺点:当前面的问题最优解唯
一时,后面的求解失去意义!
多目标规划的基本解法
3. 功效系数法——对不同类型的目标函数统一量纲,分别得
到一个功效系数函数,然后求所有功效系数乘积的最优解。例
如:
{ } V- min X∈D
f1 (X ), f2 (X ),L, f p (X )
主要目标的最优值。
{ } V- min X ∈D
数学建模中的多目标决策与多准则决策
![数学建模中的多目标决策与多准则决策](https://img.taocdn.com/s3/m/013c3847cd1755270722192e453610661fd95a54.png)
数学建模中的多目标决策与多准则决策在数学建模中,决策问题一直是一个重要而复杂的研究领域。
在实际应用中,我们常常会面临多个目标和多个准则的抉择,这就需要采用多目标决策和多准则决策的方法来解决。
本文将讨论数学建模中的多目标决策与多准则决策的应用和方法。
一、多目标决策多目标决策是指在决策问题中,存在多个相互联系但又有所独立的目标,我们需要在这些目标之间进行权衡和取舍。
多目标决策的核心是建立一个评价指标体系,将多个目标统一地考虑在内,并找到一个最优化的结果。
在多目标决策中,我们可以采用多种方法来求解最优解。
其中比较常用的方法有以下几种:1.加权法:加权法是将每个指标的重要性进行加权后进行综合评价,得到一个加权和最大的方案作为最优解。
这种方法简单直观,但也存在一定的主观性。
2.约束法:约束法是在满足一定约束条件的前提下,使目标函数最小化或最大化。
通过对各个目标进行约束,可以有效避免因为某个目标过分追求而导致其他目标的损失。
3.非支配排序遗传算法:非支配排序遗传算法是一种基于进化计算的多目标优化算法。
通过对候选解进行非支配排序,并根据解的适应度进行遗传操作,最终得到一组非劣解。
二、多准则决策多准则决策是指在决策问题中,存在多个相互独立但又有一定重叠性的准则,我们需要在这些准则之间进行权衡和衡量,找到最优的方案。
多准则决策通常需要考虑到几个关键因素:准则权重、准则的计算方法和准则的分值范围等。
在多准则决策的过程中,我们可以采用以下几种方法:1.正交实验设计法:正交实验设计法是一种常用的多准则决策方法。
通过合理选择实验设计方案,对多个准则进行全面而又系统地评估,得到最终的决策结果。
2.层次分析法:层次分析法是一种定量分析问题的层次结构的方法。
通过构建层次结构模型,并通过对每个层次的准则进行权重赋值,最终得到一个最优方案。
3.模糊综合评判法:模糊综合评判法是一种基于模糊数学的多准则决策方法。
通过将准则的评价结果转化为模糊数,并进行模糊集的运算,最终得到一个最优的决策方案。
2022年数学建模算法与应用第16章 多目标规划和目标规划
![2022年数学建模算法与应用第16章 多目标规划和目标规划](https://img.taocdn.com/s3/m/5ff70bd20408763231126edb6f1aff00bed5700d.png)
0 w j 1, j 1, 2, , m;
m
第二步:写出评价函数 w j f j 。 j 1
m
w j 1.
j 1
第三步:求评价函数最优值
m
min wi fi ( x), i 1
s.t. x .
航空基础学院数学第教15研页室
数学建模算法与应用
第16章 多目标规划和目标规划
该方法应用的关键是要确定每个目标的权重,它反 映不同目标在决策者心中的重要程度,重要程度高的权 重就大,重要程度低的权重就小。权重的确定一般由决 策者给出,因而具有较大的主观性,不同的决策者给的 权重可能不同,从而会使计算的结果不同。
航空基础学院数学第教16研页室
数学建模算法与应用
第16章 多目标规划和目标规划
2.ε约束法
根据决策者的偏好,选择一个主要关注的参考目标,
例如 fk ( x),而将其他m 1个目标函数放到约束条件中。 具体地,
min fk ( x),
s.t
.
fi ( x) x
.
i
,
i 1, 2,
, k 1, k 1,
航空基础学院数学第教25研页室
数学建模算法与应用
第16章 多目标规划和目标规划
第四步:以第一、第二级单目标等于其最优值为约 束,求第三级目标最优。依次递推求解。
优先级解法也称为序贯解法。该方法适用于目标有 明显轻重之分的问题,也就是说,各目标的重要性差距 比较大,首先确保最重要的目标,然后再考虑其他目标。 在同一等级的目标可能会有多个,这些目标的重要性没 有明显的差距,可以用加权方法求解。
航空基础学院数学第教21研页室
数学建模算法与应用
第16章 多目标规划和目标规划
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二 多目标规划求解技术简介
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
效用最优化模型 罚款模型 约束模型 目标达到法 目标规划模型
方法一
效用最优化模型(线性加权法)
思想:规划问题的各个目标函数可以通过一定的方式 进行求和运算。这种方法将一系列的目标函数与效用 函数建立相关关系,各目标之间通过效用函数协调, 使多目标规划问题转化为传统的单目标规划问题: max Z ( X )
min X ,
i ( X ) 0
( i 1, 2,, m )
fi ( X ) i fi* , ( i 1, 2, , k )
方法五 目标规划模型(目标规划法) 需要预先确定各个目标的期望值 fi* ,同时给每一个 目标赋予一个优先因子和权系数,假定有K个目标,L个 优先级( L≤K),目标规划模型的数学形式为:
在图1中,max(f1, f2) .就 方案①和②来说,①的 f2 目标值比②大,但其目 标值 f1 比②小,因此无 法确定这两个方案的优 与劣。 在各个方案之间, 显然:④比①好,⑤比 ④好, ⑥比②好, ⑦比 ③好……。
图1 多目标规划的劣解与非劣解
而对于方案⑤、⑥、 ⑦之间则无法确定优 劣,而且又没有比它们 更好的其他方案,所以 它们就被称为多目标规 划问题的非劣解或有效 解, 其余方案都称为劣解。 所有非劣解构成的集合 称为非劣解集。 当目标函数处于冲突状态时,就不会存在使所有目 标函数同时达到最大或最小值的最优解,于是我们只能 寻求非劣解(又称非支配解或帕累托解)。
f1 ( X ) f ( X ) min F ( x ) min 2 f X ( ) k
1 ( X ) 0 2( X ) 0 ( X ) ( X ) 0 m
2 x1 x2 11 x1 2 x2 10 x ,x 0 1 2
将上述问题化为标准后,用单纯形方法求解可得最佳决策
方案为: x1 4, x 2 3, Z 62 (万元)。
但是,在实际决策时,企业领导者必须考虑市场等 一系列其它条件,如: ① 根据市场信息,甲种产品的需求量有下降的趋势,因 此甲种产品的产量不应大于乙种产品的产量。 ②超过计划供应的原材料,需用高价采购,这就会使生产 成本增加。 ③应尽可能地充分利用设备的有效台时,但不希望加班。 ④应尽可能达到并超过计划产值指标56万元。 这样,该企业生产方案的确定,便成为一个多目标决 策问题,这一问题可以运用目标规划方法进行求解。
K
L
目标函数 目标约束 绝对约束
c
j 1 n
j 1
n
(l ) j
x j dl dl gl
x j ( , ) bi
( l 1,2,, L)
( i 1,2, , m )
a
x
j
ij
0
数学建模——多目标规划
多目标规划解的讨论——非劣解 多目标规划及其求解技术简介
效用最优化模型 约束模型 目标达到法 罚款模型 目标规划模型
目标规划方法
目标规划模型 目标规划的图解法 求解目标规划的单纯形方法
多目标规划应用实例 建模案例
多目标规划是数学规划的一个分支。 研究多于一个的目标函数在给定区域上的最优化。又称多 目标最优化。通常记为 MOP(multi-objective programming)。 在很多实际问题中,例如经济、管理、军事、科学和工程 设计等领域,衡量一个方案的好坏往往难以用一个指标来 判断,而需要用多个目标来比较,而这些目标有时不甚协 调,甚至是矛盾的。因此有许多学者致力于这方面的研究。 1896年法国经济学家 V. 帕雷托最早研究不可比较目标的优 化问题,之后,J.冯·诺伊曼、H.W.库恩、A.W.塔克、A.M. 日夫里翁等数学家做了深入的探讨,但是尚未有一个完全 令人满意的定义。
di+ 和 di-分别表示与 fi 相应的、与fi* 相比的目标
超过值和不足值,即正、负偏差变量;
pl表示第l个优先级;
lk+、lk-表示在同一优先级 pl 中,不同目标的正、
负偏差变量的权系数。
18
三 目标规划方法
通过前面的介绍和讨论,我们知道,目标规划方法 是解决多目标规划问题的重要技术之一。 这一方法是美国学者查恩斯(A.Charnes)和库伯 (W.W.Cooper)于1961年在线性规划的基础上提出来 的。后来,查斯基莱恩(U.Jaashelainen)和李 (Sang.Lee)等人,进一步给出了求解目标规划问题的 一般性方法——单纯形方法。
方法三 约束模型(极大极小法) 理论依据 :若规划问题的某一目标可以给出一个可供选 择的范围,则该目标就可以作为约束条件而被排除出目标 组,进入约束条件组中。 假如,除第一个目标外,其余目标都可以提出一个可供选 择的范围,则该多目标规划问题就可以转化为单目标规划 题: max(min) Z f1 ( x1 , x2 , , xn )
3
一
多目标规划及其非劣解
多目标规划模型 (一)任何多目标规划问题,都由两个基本部分组成: (1)两个以上的目标函数; (2)若干个约束条件。 (二)对于多目标规划问题,可以将其数学模型一般地描 写为如下形式: 1 ( X ) g1 max(min) f ( X ) 1 2( X ) g2 G Z F ( X ) max(min) f 2 ( X ) s.t. ( X ) ( X ) g m m max(min) f ( X ) k
min Z i ( fi fi ) 2
k
i ( x1 , x2 , , xn ) gi ( i 1, 2, , m ) 或写成矩阵形式: min Z ( F F )T A( F F )
( X ) G
i 1
式中, i 是与第i个目标函数相关的权重; A是由 i (i=1,2,…,k )组成的m×m对角矩阵。
求解多目标规划的方法大体上有以下几种: 一种是化多为少的方法 , 即把多目标化为比较容易求解的 单目标或双目标,如主要目标法、线性加权法、理想点法 等; 另一种叫分层序列法,即把目标按其重要性给出一个序 列,每次都在前一目标最优解集内求下一个目标最优解, 直到求出共同的最优解。 对多目标的线性规划除以上方法外还可以适当修正单纯形 法来求解;还有一种称为层次分析法,是由美国运筹学家 沙旦于70年代提出的,这是一种定性与定量相结合的多目 标决策与分析方法,对于目标结构复杂且缺乏必要的数据 的情况更为实用。
i ( x1 , x2 , , xn ) gi ( i 1, 2, , m )
f jmin f j f jmax ( j 2, 3, , k )
方法四 目标达到法 首先将多目标规划模型化为如下标准形式:
f1 ( X ) f ( X ) min F ( x ) min 2 f X ( ) k
s .t . ( X ) G
(1) (2)
是与各目标函数相关的效用函数的和函数。
在用效用函数作为规划目标时,需要确定一组权值 i 来反映原问题中各目标函数在总体目标中的权重,即:
max i i
i 1 k
i ( x1, x2 ,xn ) gi (i 1,2,, m)
目标规划模型 目标规划软件求解
目标规划模型
给定若干目标以及实现这些目标的优先顺 1.基本思想 : 序,在有限的资源条件下,使总的偏离目 标值的偏差最小。
2.目标规划的有关概念
例1:某一个企业利用某种原材料和现有设备可生产甲、 乙两种产品,其中,甲、乙两种产品的单价分别为8万元 和10万元;生产单位甲、乙两种产品需要消耗的原材料 分别为2个单位和1个单位,需要占用的设备分别为1单位 台时和2单位台时;原材料拥有量为11个单位;可利用的 设备总台时为10单位台时。试问:如何确定其生产方案 使得企业获利最大?
式中, i 应满足: 向量形式:
i 1
i 1
k
max T
s .t . (X ) G
方法二 罚款模型(理想点法) 思想: 规划决策者对每一个目标函数都能提出所期望的值 (或称满意值); 通过比较实际值 fi 与期望值 fi* 之间的偏差来选择问题的 解,其数学表达式如下:
对于线性多目标规划问题,可以进一步用矩阵表示:
max(min) Z CX
s.t.
AX b
式中:
X 为n 维决策变量向量; C 为k×n 矩阵,即目标函数系数矩阵; B 为m×n 矩阵,即约束方程系数矩阵; b 为m 维的向量,即约束向量。
多目标规划的非劣解
max(min) Z F ( X )
min Z pl ( lk d k lk d k ) l 1 k 1 L K
i ( x1 , x 2 , , x n ) g i ( i 1,2, , m )
f i d i d i f i ( i 1,2, , K )
17
目标规划模型的一般形式
假定有 L 个目标, K 个优先级 (K≤L) , n 个变量。在同 一优先级 pk 中不同目标的正、负偏差变量的权系数分 别为kl+ 、kl- ,则多目标规划问题可以表示为:
min Z pk ( kl d l kl dl ) k 1 l 1
1 ( X ) 0 2( X ) 0 ( X ) ( X ) 0 m