高数心得体会

合集下载

高数学习感想(共五则范文)

高数学习感想(共五则范文)

高数学习感想(共五则范文)第一篇:高数学习感想高数学习感想经过将近一年的学习,我们对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。

我个人认为高数同以前学习的数学的主要差别在于对积分的难易掌握。

通过这学期的学习和上学习的积累我也充分体会到了高数的难点。

平时的学习积累加上老师对高数的重点说明,我对我个人学习积分部分进行了一段总结如下:微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。

它是数学的一个基础学科。

内容主要包括极限、微分学、积分学及其应用。

微分学包括求导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。

积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

(⒈)极限:运用微积分法求极限中利用等价量代换求极限--等价量代换是我们求解极限问题常用的方法注意无穷小量的代换,熟悉常用的无穷小量代换,能便捷的求出极限注意几个几个常用的无穷小量的代换X~cosx~sinx~tanx~arcsinx~arctanx~arccosxX~ln(1+x)例题1:求极限limx→01+tanx-1-tanx.xe-1解limx→01+tanx-1-tanxex-1=limx→02tanx(e-1)(1+tanx+1-tanx)2x+ο(x)x=limx→0(x+ο(x))(1+tanx+1-tanx)2xx(1+tanx+1-tanx)=limx→0=1.--利用两个重要极限求极限两个重要极限是:sinx1=1(2)lim(1+)x=e.x→0x→∞xxsinxsin◊=1可理解为lim=1,而第二种极限其中第一种重要极限limx→0◊→0x◊(1)lim11lim(1+)x=e可以理解为lim(1+)◊=e或者lim(1+◊)◊=e.x→∞◊→∞◊→0x◊112例题2:求lim(cos)n.n→∞n解211lim[1+(cos-1)]n=lim[1+(cos-1)]n→∞n→∞nn11⋅n2(cos-1)1 ncos-1n1=lim[1+(cos-1)]n→∞n1111⋅n2⋅[-⋅2+ο(2)]12nncos-1n -12=e=1e--利用定积分求极限球极限--利用微分中值定理求极限等等多种方法(⒉)微分学:微分运算法则同积分法则基本相同。

高等数学学习心得体会(通用4篇)

高等数学学习心得体会(通用4篇)

高等数学学习心得体会(通用4篇)高等数学学习篇1在我的意识里,但凡数学成绩好的同学,一定都是天资聪颖;而对数学一往情深的同学,都绝非等闲之辈。

自从上了高中,数学对我来说就成了软肋,硬伤,成了让我神伤的科目,突然间变得对数学一窍不通,才猛然间发觉自己的思维不知道被什么所禁锢,变得呆板而僵硬,做题犹如啃砖头。

大一的时候,意外地发现我们必须学习高数课,我虽然很敬佩我们的高数老师,他和蔼可亲,对我们关爱有加,把高数讲得清楚易懂,还告诉我们如何学好高数以便更好地发展中医。

尽管如此,结局还是悲凉的,我终日以泪洗面,甚至产生了轻生的念头,大一对我来说是不堪重负,不忍回首的一年,期末了,还一道题都不会做,考完了,才发现自己是班上的垫底。

高数,让我开始怀疑自己的智商,怀疑我以后能否自食其力。

每一次上课,我都像个呆子,钻进耳朵的那些专业术语不知道该怎么去消化,而周围的同学也都还是能回答问题,自信满满,这种强烈的对比让我受挫,我开始重新审视自己。

高数,带给我改变的动力,我感谢高数,但仅仅因为它是高“树”,而我被挂在了上面。

在后来的学习中,我再也不敢对专业课掉以轻心,我开始觉得期末考试的内容其实也没有那么难,那么高数呢?究竟是它太难还是我从心里对它产生畏惧,以至我没有勇气相信自己可以认识它?我怕,怕有朝一日终会再次遇到它,因为陌生,所以恐惧。

经历了一年多的成长,我发现其实很多事情都没有想象中那么难,也没有想象中那么简单,关键在于你如何对待它。

我想起我可以为了自己做一个笔袋而一动不动坐一下午,并且为了解决出现的不足而把数据计算一遍又一遍,一遍遍拆,一遍遍改,在探索中前进,乐此不疲。

而学习高数呢,一开始我怕,遇到不懂了,我更怕,最后呢,我只能逃课,不去听,不去想,以为这样就能躲过一切,我才发现,我是个彻彻底底的懦夫,我只会做逃兵,我并没有尽最大的努力。

在选课的时候,我发现还能选修高数,这次,我不想再错过。

我想起了《追风筝的人》的一句话:“那里,有再一次成为好人的路。

高数学习心得体会文章

高数学习心得体会文章

高数学习心得体会文章篇一:学习高数的体会学习高数的体会大家都说学高数是个很难的事情,很多人望“高数”生畏.经过一个学期的学习也的确是这样,但是凭借它的高度,一定能够看到更远的风景。

学习是不太轻松。

但是如果认真专注在高数上面,还是会把很多难题迎刃而解.在对高数进行了系统性的学习,我感觉我不仅在知识方面获得了充实,在逻辑思维方面我感觉我也有一定的进步,人们常说学数学能让人聪明,我想也的确如此。

曾经的我也以为,数学很枯燥无味,然而在学习了高数之后,我发现数学应用于各行各业,与我们的生活息息相关。

数学是一门非常重要的基础科学。

与人们的生活息息相关,人们的各项活动基本上都离不开数学。

钱学森曾经说过:数学应该与自然科学、人文科学并列。

一百多年前,恩格斯曾经指出:数学是研究现实世界中的数量关系与空间形式的科学。

当代数学的发展使得其研究对象已经超出了”数”与”形”的范畴,所以,一般来说,数学的研究对象可以包括现实中的任何形式和关系。

培根曾说数学是”通向科学大门的钥匙”;伽利略说”自然界的伟大的书是用数学语言写成的”。

物理大师爱因斯坦认为,”理论物理学家越来越不得不服从于纯数学的形式的支配”;他还认定理论物理的”创造性原则寓于数学之中”。

Hardy是英国著名的数学家,他推崇数学的”纯粹”和”美”,认为数学是一种永久性的艺术品.而学习高数则是不仅学到了一种解题的方法,更多的是学习了它的一种思考问题的逻辑思维方法。

早在魏晋时期,就有数学家刘徽的极限思维的割圆术,他首先从圆的内接正6边形开始割圆,依次得正12边形、正24边形??,割得越细,正多边形的面积与圆面积之差越小,”割之又割,以至于不可割,则与圆周合体而无所失矣.”这个思想既是极限理论的思想,又是用定积分计算曲边梯形面积的基础。

如下图而在讲到导数或定积分的定义时,具体的引例有著名的“七桥问题”,即东普鲁士的首府哥尼斯堡,在河的中央有一座美丽的小岛,河上有七座桥把岛和河岸连接起来。

高等数学学习感想

高等数学学习感想

高等数学学习感想一高等数学在工科院校的教学计划中是一门重要的基础理论课程,是大一新生必修的课程,是大学许多种类工科课程的基础,特别是与以后的许多专业课都有着密切的联系,它对于各专业后续课程的学习,以及大学毕业后这类工程技术人员的工作,高等数学课程都起着奠基的作用。

大学生在大学的学习中只有掌握高等数学的知识以后,才能比较顺利地学习其他专业基础课程,如物理、工程力学、电工电子学等,也才能学好自己的专业课程。

当大学生毕业走向工作岗位后,要很好地解决工程技术上的问题,势必要经常应用到高等数学知识。

因为在科学技术不断发展的今天,数学方法已广泛渗透到科学技术的各个领域之中。

因此,工科类的大一新生在学习上一个很明确的任务就是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。

因此,学好高等数学对于一名工科学生来说,至关重要。

然而,高等数学这门课程本质上决定了它的枯燥无味,对于许多同学来说,高等数学是一门头疼的学科。

如何学好高等数学呢?在学习高等数学过程中,需要不断探索方法、总结经验。

下面是我个人在学习过程中的一些感想。

首先,我觉得高等数学与以前我们高中所学的数学有一点不同。

高等数学注重的是一种数学的思想,比如说微积分思想,极限的思想。

强调的数学的逻辑性与分析性。

不像高中数学那样注重技巧性。

因此,在学习的过程中,课本的知识至关重要。

对于课本上面每一个概念、定理、公式、例题,都要理解清楚。

特别是对于定理、公式的推导过程,不仅要弄懂每一步的推导过程如何来,而且还要学会自己推导。

因为学会自己推导,更有助于我们的记忆和应用。

我的经验是,在理解的基础上去记忆公式,而不是一味的死记硬背。

第二,学习数学是不能缺少训练的。

一定量的课后习题训练,不但可以让我们巩固我们学到的知识点,学会如何在实际中应用我们学到的公式定理,还有助于我们熟悉考试的各种题型。

还有,题目并不是越多越好,题海战术不仅浪费大量的时间与精力,而且效果也不好。

高数学习心得优秀3篇写范文网

高数学习心得优秀3篇写范文网

高数学习心得优秀3篇高数学习心得优秀3篇高数学习心得要怎么写,才更标准规范?根据多年的文秘写作经验,参考优秀的高数学习心得样本能让你事半功倍,下面分享【高数学习心得优秀3篇】,供你选择借鉴。

高数学习心得篇1数学学习方法●全面复习,把书读薄从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,在某一年可以在大题中出现,如98年数学一中,不但第三题是一道纯粹的解析几何题,而且还有两道题是与线性代数结合考了解析几何的内容,可见,猜题的复习方法是靠不住的,而应当参照考试大纲,全面息,不留遗漏.全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容,各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义.●突出重点,精益求精在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多. 猜题的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,猜题便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带资,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.如微分中值定理,有罗尔定理,拉格朗日定理,柯西定理和泰勒公式.由于罗尔定理是拉格朗日定理的特殊情况,而柯西定理和泰勒公式又是拉格朗日定理的推广.比较这些关系,便自然得到拉格朗日定理是核心,这这个定理搞深搞透,并从联系中掌握好其它几个定理,而在考试大纲中,罗尔定理与拉格朗日定理都是要求理解的内容,都是考试重点,我们更突出拉氏定理,可谓是精益求精.●基本训练反复进行学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张题海战术,而是提倡精练,即反复做一些典型的题,做致电一题多解,一题多变.要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下盲棋一样,只需用脑子默想,即能得到下确答案.这就是我们在前言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,熟能生巧,基本功扎实的人,遇到难题办法也多,不易被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会粗心地出错.高等数学是高等工科院校的重要基础课程。

高数心得体会

高数心得体会

篇一:高数心得学习高数的心得体会有人戏称高数是一棵高树,很多人就挂在了上面。

但是,只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。

很多人害怕高数,高数学习起来确实是不太轻松。

其实,只要有心,高数并不像想象中的那么难。

经过将近一年的学习,我们对高数进行了系统性的学习,不仅在知识方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显着特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。

在大学之前的学习时,都是老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。

然后像背单词一样,把一堆公式与结论死记硬背下来。

哪种类型的题目用哪个公式、哪条结论,老师都已一一总结出来,我只需要将其对号入座,便可将问题解答出来。

而现在,我不再有那么多需要识记的结论。

唯一需要记住的只是数目不多的一些定义、定理和推论。

老师也不会给出固定的解题套路。

因为高等数学与中学数学不同,它更要求理解。

只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。

所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。

每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。

首先,不能有畏难情绪。

一进大学,就听到很多师兄师姐甚至是老师说高数非常难学,有很多人挂科了,这基本上是事实,但是或多或少有些夸张了吧。

让我们知道高数难,虽然会让我们对它更加重视,但是这无疑也增加了大家对它的畏惧感,觉得自己很可能学不好它,从而失去了信心,有些人甚至把难学当做自己不去学好它的借口。

事实上,当我们抛掉那些畏难的情绪,心无旁骛地去学习高数时,它并不是那么难,至少不是那种难到学不下去的。

所以,我觉得要学好高数,一定不能有畏难的情绪。

当我们有信心去学好它时,就走好了第一步。

2024年大学高数学习心得体会(2篇)

2024年大学高数学习心得体会(2篇)

2024年大学高数学习心得体会对于许多文科学生来说,数学也许是一个令人有些畏惧的名词,有些同学也许就是因为数学学不好或者不太喜欢数学,而选择了学文科的,高等数学学习方法与经验。

但是,对于任何一个文科生来说,数学都是非常重要的,有人把数学比做是文科生的生命线,有人说数学和英语在很大程度上决定了一名文科生的层次,这都是有一定道理的。

因此,一定要尽自己最大的努力来学好数学.在我看来,数学其实是一门非常奇妙而有趣的学问。

只要你有一双善于发现、敢于发现的眼睛,你就能够找到数学的魅力所在,就会对它产生兴趣。

而兴趣是最好的老师,如果你既对数学感兴趣,又下定决心努力学好数学,那又怎么会学不好呢?课本对于数学来说,是很重要的。

我们做的试题,有很多都是课本例题或其“变种”只要花上一点点时间把课本好好看看,要拿下这些题便易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题更不可能做得好。

数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求思维清晰明了,因而基础知识十分重要,尤其是对于数学不是特别好的同学来说。

以下是我个人觉得在数学学习过程中非常必要的几点:1、按部就班。

数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。

所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

2、强调理解。

概念、定理、公式要在理解的基础上记忆。

我的经验是,每新学一个定理,便尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

3、基本训练。

学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。

4、标出重点。

平常看题看课本的时候,碰到有好的解题方法或重点内容,可以用鲜艳的彩笔划出来,以便以后复习时能一目了然.最后想谈谈数学这一科目的应试技巧。

概括说来,就是"先易后难"。

三好学生的高数学习心得分享

三好学生的高数学习心得分享

三好学生的高数学习心得分享当面对高数这座高山时,我作为一名“三好学生”逐步领悟到其中的奥秘。

每一道高数题目,就像是与一位严厉的老师对话,要求不仅有扎实的理论基础,更需要细致的思考和持之以恒的耐心。

最初,面对复杂的公式和抽象的概念,我感到如同在迷雾中摸索,然而,逐渐地,我发现了一些助力我攀登这座高山的策略。

首先,基础知识的扎实是成功的关键。

高数中的每一个概念和公式都是前进的基石,因此,我从不敢忽视任何一个基础知识点。

在学习的过程中,我始终保持对每一个定理和公式的深入理解,并通过大量的例题进行实践,这让我在解题时更加游刃有余。

其次,系统的学习方法至关重要。

我意识到仅仅靠一味的刷题是不够的。

制定合理的学习计划,分阶段掌握各个知识点,是提升效率的有效方法。

我将高数的学习分为不同的模块,每个模块都设定具体的学习目标,并定期进行复习,以确保知识点的牢固掌握。

此外,主动思考和探索也是不可或缺的。

我发现,面对难题时,单纯的求助于答案并不能解决根本问题。

相反,我需要主动探索问题的本质,尝试从不同角度解题,这样才能真正掌握高数的精髓。

在遇到困惑时,我常常会通过查阅相关资料、与同学讨论,甚至向老师请教,来解决我的疑问。

高数的学习不仅仅是一个技巧的积累过程,更是思维能力的培养。

通过不断地挑战自我,我发现自己的逻辑思维能力得到了显著的提升。

我学会了如何从复杂的问题中提炼出核心的解决思路,如何在纷繁的数据中找到关键的信息,这些能力不仅对高数的学习有帮助,也在其他学科和日常生活中显得尤为重要。

总结来说,面对高数这门课程,我通过扎实的基础知识、系统的学习方法、主动的思考与探索,最终在这条学习道路上取得了令人满意的进展。

高数不仅让我掌握了更多的数学知识,更让我在学习过程中体会到了坚持与努力的真正意义。

[高等数学学习心得体会三篇]

[高等数学学习心得体会三篇]

《[高等数学学习心得体会三篇]》摘要:”很多学不爱学习数学认己学不但是数学对我们日常生活很重要涉及面也十分广泛我感觉只要掌握数学学习方法学起应该还是比较容易下面给分享下高数学习方法,所以想学数学首当其冲是培养对它兴趣把学数学当成种快乐事学们可以试着从简单题目开始学习每出道问题心里就会有种成就感提高对数学兴趣然逐步向难题目使学数学成种习惯,就高等数学课程而言是培养我们学生观察判断能力、逻辑思维能力、学能力以及动手题能力而这几种能力结合起就可以构成独立分析问题能力和问题能力高等数学学习心得体会我识里但凡数学成绩学定都是天聪颖;而对数学往情深学都绝非等闲辈从上了高数学对我说就成了软肋硬伤成了让我神伤科目突然变得对数学窍不通才猛然发觉己思维不知道被什么所禁锢变得呆板而僵硬做题犹如啃砖头候外地发现我们必须学习高数课我虽然很敬佩我们高数老师他和蔼可亲对我们关爱有加把高数讲得清楚易懂还告诉我们如何学高数以便更地发展医尽管如结局还是悲凉我终日以泪洗面甚至产生了轻生念头对我说是不堪重不忍回首年期末了还道题都不会做考完了才发现己是班上垫底高数让我开始怀疑己智商怀疑我以能否食其力每次上课我都像呆子钻进耳朵那些专业术语不知道该怎么消化而周围学也都还是能回答问题信满满这种强烈对比让我受挫我开始重新审视己高数带给我改变动力我感谢高数但仅仅因它是高“树”而我被挂了上面学习我再也不敢对专业课以轻心我开始觉得期末考试容其实也没有那么难那么高数呢?究竟是它太难还是我从心里对它产生畏惧以至我没有勇气相信己可以认识它?我怕怕有朝日终会再次遇到它因陌生所以恐惧历了年多成长我发现其实很多事情都没有想象那么难也没有想象那么简单关键你如何对待它我想起我可以了己做笔袋而动不动坐下午并且了出现不足而把数据计算遍又遍遍遍拆遍遍改探前进乐不疲而学习高数呢开始我怕遇到不懂了我更怕呢我只能逃课不听不想以这样就能躲切我才发现我是彻彻底底懦夫我只会做逃兵我并没有尽努力选课候我发现还能选修高数这次我不想再错我想起了《追风筝人》句话“那里有再次成人路”是我选择重新认识高数我要己罪行赎罪再次接触高数捧着年前让我头疼课我发现其实真可以懂老师讲比较简单思路也很清晰重新认识了牛顿莱布尼兹微积分惊叹他们天才般才智运用无限模糊理论可以许多医学上问题我才觉得高数真是充满了魅力和魔力它能让我们把简单问题先给复杂化再简单化培养我们思维更智慧巧妙地生活问题学了高数就像给你增添了双隐形翅膀你拥有了更开阔缜密思维许多问题突然变得迎刃而了当然学高数并非那么简单但探其奥确实非常有价值我想如能把己学到高数知识运用到己生活学习工作上才算是真正学了高数感谢高数这次不仅仅因它是高“树”而是我明白攀登上这棵高树我看见了前所有迷人风景高等数学学习心得体会二光阴似箭日月如梭眼学期便悄然结束了回首这学期学习情况给我记忆深莫上二位刘老师《高等数学》这门课程了课程即将结束但二位老师严谨认真责和富有人性化教学仍然我脑海不浮现《高等数学》是数学科学重要分支学这门学科不仅使人能了相关基础知识和重要容从而增强己问题实际能力更重要是它有助改进我们观察问题、思考问题和处理问题能力从而使我们逻辑思维和思辨能力进步提高这些无疑对工科研究生还是科研究生说都是至关重要所以上刘老师节课我就识到这门课程重要性每次都认真聆听老师上课遇到问题及请教二位老师虽然较年轻但由她们素质较高数学功底较深加她们富有情和体贴教学故学期这门课程上学到了许多原不知道知识和许多相关高等数学理论使我终生难忘终生受益例如我原根不知道什么是导数与微分更不用说它们实际生活具体应用了但通学习高等数学我不但知道了它们概念而且还懂得日常生活具体运用例如飞机平稳降落、天气乍寒乍冷、股市迅猛上扬、产值增幅下降、山路越越陡这些形容变化体情况我们竟然可以利用高等数学导数概念准确刻画这些变量某瞬变化快慢也就是确定其变化率这些都是我原先根不知道相关容当然跟二位老师学到知识又何止这呢这里我就不列举了跟老师学习知识固然重要但更重要是要学会老师人和待人处事品质及其风格然而二位老师这方面恰恰是我们楷模和效仿由我们是科学生出身原数学学习方面就没有很训练就更不用谈学高等数学了尤其像我这位年龄较、思维定势受限而且较愚钝人学习起肯定不如年轻人但二位老师学习方面从不歧视我对我所问每问题不论简单还是复杂她们都乐地回答使我程上满另外二位老师教学期从不缺课上课除了认真教课没有别任何私心杂念也从不计较人得失默默无闻地耕耘着春蚕到死丝方尽蜡炬成灰泪始干这正是二位老师深刻写照学生回报师恩方式是把学问做“天地立心生民立命”超出了我能力但“吾师继其学”是我能够做到我将以工作和学习生活当把高等数学和其他相关知识学已回报我们敬爱老师…高等数学学习心得体会三数学是门让很多学都头疼学科到了学除了法学等别社会科学专业学生都摆脱不了对它学习但因它相对复杂性使得数学成了门挂科率很高学科正像学校里常调侃“学里面都有颗树叫做“高数”很多人都挂上面”很多学不爱学习数学认己学不但是数学对我们日常生活很重要涉及面也十分广泛我感觉只要掌握数学学习方法学起应该还是比较容易下面给分享下高数学习方法每人学习习惯和理问题能力也有所不但般方法还是有规律想要学数学必不可少有以下几环节、培养兴趣都知道想要把件事做首先要对其有兴趣学习也是样很多学看见数学复杂多变和公式头就变了开始便对其产生了厌恶不爱学习导致成绩下滑成绩不就对其更加厌烦久而久成了循环怪圈所以想学数学首当其冲是培养对它兴趣把学数学当成种快乐事学们可以试着从简单题目开始学习每出道问题心里就会有种成就感提高对数学兴趣然逐步向难题目使学数学成种习惯二、课前预习这程很重要因只有课前预习才会听课做到心有数即老师所讲容哪些是属难以理什么是重等预习程也不要花太多般地次课容花三、四十分钟左右就可以了预习不必要把所有问题弄懂只要带着这些不懂问题听课就行三、认真听讲记笔记对上课要用心听讲都明白但要记课堂笔记重要性有学就不以然了认教材上都有可不必记其实这种认识是错误也是学里带种不良学习习惯老师对高等数学课程讲授绝对不是教材上容简单重复而是翻了量类参考而结合己教学验与体会所以毫不夸张地说教师授课教案既有以往成功验体会也有教训借鉴因学听课必须记课堂笔记这种学习习惯即勤动笔对己学习及工作能力培养也是有处四、跟随老师积极动上面说了上课要认真听讲记笔记与上课积极发言、踊跃与老师做动也非常重要上课积极回答老师提出问题老师讲课状态就会越从而可以多讲些有用知识这样课堂气氛也活跃了有了更学习氛围老师通学生反应与动更清楚了学生接受程以调整己讲课方式和速等以便学们更理学习是动程所以师生交流必不可少五、课复习整理笔记多做题课习不少人是赶快做作业这也是种不习惯其实下课应该进步认真钻研教材或教学参考完全弄懂次课容整理充实课堂笔记有些要理地方添上己心得与体会把上知识真正变成己掌握知识然再完成作业这要比下课就赶作业效要得多而且完成作业速也要快得多理科类东西重要还是多加练习多做习题才能更地运用和理公式培养出良题思路和逻辑思维六、善归纳人记忆力是有限要全面记住所有有用东西而不遗忘是很难办到怎么办呢?这就要对己学知识加以归纳总结出它们系和共质东西然使系统化条理化从而记住有代表性知识而其余部分只要基础上推理便可以了每学完己要作总结总结包括基概念核心容;了什么问题是怎样;依靠哪些重要理论和结论问题思路是什么?理出条理归纳出要与核心容以及己对问题理和体会是全课程总结考试前要作总结这总结将全容加以整理概括分析所学容掌握各系这总结很重要是对全课程核心容、重要理论与方法综合整理总结基础上己对全容要有更深层了要对些稍有难题加以分析以检验己对全部容掌握总学学习是人生系统学习程它不仅要传授给我们比较完整专业知识还要培养学生即将走向社会工作能力和社会知识就高等数学课程而言是培养我们学生观察判断能力、逻辑思维能力、学能力以及动手题能力而这几种能力结合起就可以构成独立分析问题能力和问题能力期望高重视高等数学学习到适合己学习方法相信会获得更收获。

2024年高等数学学习心得体会范本(2篇)

2024年高等数学学习心得体会范本(2篇)

2024年高等数学学习心得体会范本光阴似箭,日月如梭,一转眼,本学期便悄然结束了。

回首这一学期的学习情况,给我记忆最深的莫过于上二位刘老师的《高等数学》这门课程了,课程即将结束,但二位老师严谨认真负责和富有人性化的教学,仍然在我的脑海中不时的浮现。

《高等数学》是数学科学的一个重要分支。

学好这门学科,不仅使人能了解相关的基础知识和重要内容,从而增强自己解决问题的实际能力,更重要的是它有助于改进我们观察问题、思考问题和处理问题的能力,从而使我们的逻辑思维和思辨能力进一步大大提高,这些,无疑对工科研究生还是文科研究生来说,都是至关重要的,所以自上刘老师的第一节课,我就意识到这门课程的重要性,每次都认真聆听老师的上课,遇到问题及时请教。

二位老师虽然较年轻,但由于她们素质较高,数学功底较深,加之她们富有同情和体贴的教学,故在本学期的这门课程上,学到了许多原来不知道的知识和许多相关的高等数学理论,使我终生难忘,终生受益。

2024年高等数学学习心得体会范本(2)高等数学,作为理工科学生的一门基础课程,有着重要的作用。

在我学习高等数学的过程中,我不仅掌握了基本的数学思维和方法,还培养了一种深入思考和解决问题的能力。

下面是我对高等数学学习的心得体会。

第一节:抽象思维的培养高等数学是一门抽象的学科,它涉及到许多抽象的概念和理论。

在学习高等数学的过程中,我逐渐培养起了抽象思维的能力。

通过学习数学的定义、定理和证明,我学会了将现实世界中的问题抽象化,找出其中的规律和本质。

这种抽象思维的培养不仅对数学问题有帮助,也对其他科学领域的研究有重要意义。

第二节:逻辑思维的训练高等数学是一门严谨的学科,它强调逻辑推理和演绎推理。

在学习高等数学的过程中,我不仅学会了运用逻辑规则进行推理和证明,还学会了运用逆否命题、逆命题等方法进行论证和推理。

通过不断练习解题,我的逻辑思维能力得到了很大的提高。

第三节:问题解决能力的提高高等数学是一门解决实际问题的学科,通过学习高等数学,我不仅学会了应用数学知识解决具体问题,还培养了一种解决问题的能力。

学高等数学的心得体会(模板15篇)

学高等数学的心得体会(模板15篇)

学高等数学的心得体会(模板15篇)心得体会是在经历一段时间的学习、工作或生活后,对所获得的经验、教训、感悟等进行总结和反思的一种文字表达方式。

它可以让我们更深入地了解自己的成长和进步,也能指导我们做得更好。

如果你正在苦恼如何写一篇优秀的心得体会,那么不妨先来看看下面这些范文,或许能给你一些启示。

高等数学的心得体会高等数学是理工科专业必修的一门重要课程,对于提升数学思维,培养分析和解决实际问题的能力有着重要的作用。

在高等数学下册学习的过程中,我深感受益匪浅。

下面就是我对高等数学下册的心得体会。

首先,高等数学下册强调的是更深入的数学理论和应用。

在上册我们学习了微积分的基础知识,在下册我们进一步学习了微分方程、多元函数、空间解析几何等内容。

这些内容对于学习者来说都是比较新颖和抽象的,要求我们更深入地理解和掌握数学的概念和方法。

通过学习下册高等数学,我逐渐明白了数学是一门探索自然规律和解决实际问题的学科,数学理论与实际应用是密不可分的。

其次,高等数学下册的学习注重于培养学生的逻辑思维和问题解决能力。

数学是一门以逻辑为基础的学科,通过学习高等数学下册,我更加深刻地理解了逻辑思维和问题解决能力的重要性。

在解题过程中,我们需要根据所学的数学理论与知识,运用逻辑推理,灵活运用解题方法,从而解决各种复杂的数学问题。

通过不断练习和思考,我逐渐提升了我的逻辑思维和问题解决能力,并且在其他学科中也能够得到运用和提升。

第三,高等数学下册的学习培养了我的数学抽象和建模能力。

数学作为一门抽象的学科,需要我们学会抽象问题、建立数学模型,并在模型的基础上进行分析和解决问题。

在学习下册高等数学的过程中,我有了更多的机会进行数学建模,并且通过实例分析和计算来验证和应用模型。

这种训练不仅提高了我的数学抽象思维能力,还培养了我应对实际问题的能力。

数学建模能力是未来工作和研究中必不可少的能力,通过学习下册高等数学,我在这方面的能力得到了提升。

高数高数学习心得(优秀6篇)

高数高数学习心得(优秀6篇)

高数高数学习心得(优秀6篇)高等数学在考研数学中占有举足轻重的地位,数一、数三有82分,数二有116分,需要用心复习。

一些学生反映,教材看了好几遍,习题做了好几本,做题依然无从下手。

类似情况的原因是重点把握不到位,做题的方法和技巧掌握不牢固。

问渠那得清如许,为有源头活水来,以下是编辑给大家整理的6篇高数学习心得,希望能够帮助到大家。

高数学习心得篇一回顾大一的高数学习历程,感慨颇多。

高数在整个大学的学习课程中占据这着非常重要的地位。

其一,高数的学分是所有科目中较高的。

一学期5学分,第二学期6学分。

其二,高数在考研数学中将近80%的比例。

而考研数学的成绩会很大程度上决定考研的较终成绩。

其三,高数是学习其他的课程的基础。

比如我们大二上学期学的大学物理,还有其他学院的线性代数等等。

对于大一同学来说,高数就是一道须迈过坎。

作为一个过来人,今天我就说说关于高数的点滴想法。

谨以此与大家分享。

学习任何东西都需要工具,学习数学更是要多种工具并进。

首先,你要有足够的课外参考书来供自己参考。

没有参考书,只有课本是根本不行的。

你可以去学校的图书馆借阅相应的书籍。

网络是所谓的公开式大学,有电脑的同学可以从网上查阅相关的资料,不会就找“度娘”。

既可以提高自己搜索信息的能力,又节省了时间。

概念定理永远是数学的灵魂。

我在学习高数过程中非常重视概念的理解,定理的推导,知识点间的联系。

例如:极限的概念及其证明,导数与极限的关系,连续与可微的`关系函数极限连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、无穷级数、常微分方程。

很多同学会说“我也知道概念很重要,可我就是理解不了啊!”类似这种情况的同学不在少数。

我给的建议是:逐字逐句阅读。

不会不懂就要借助以上所说的工具来学习。

概念理解了,很多东西就迎刃而解了。

当时我对概念理解很是郁闷,没得办法,只能一字一句的解析,一点一点的抠。

慢工出细活嘛,时间长了就理解了。

相信:功到自然成。

高数心得体会

高数心得体会

高数心得体会篇一:高数心得学习高数的心得体会有人戏称高数是一棵高树,很多人就挂在了上面。

但是,只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。

很多人害怕高数,高数学习起来确实是不太轻松。

其实,只要有心,高数并不像想象中的那么难。

经过将近一年的学习,我们对高数进行了系统性的学习,不仅在知识方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。

在大学之前的学习时,都是老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。

然后像背单词一样,把一堆公式与结论死记硬背下来。

哪种类型的题目用哪个公式、哪条结论,老师都已一一总结出来,我只需要将其对号入座,便可将问题解答出来。

而现在,我不再有那么多需要识记的结论。

唯一需要记住的只是数目不多的一些定义、定理和推论。

老师也不会给出固定的解题套路。

因为高等数学与中学数学不同,它更要求理解。

只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。

所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。

每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。

首先,不能有畏难情绪。

一进大学,就听到很多师兄师姐甚至是老师说高数非常难学,有很多人挂科了,这基本上是事实,但是或多或少有些夸张了吧。

让我们知道高数难,虽然会让我们对它更加重视,但是这无疑也增加了大家对它的畏惧感,觉得自己很可能学不好它,从而失去了信心,有些人甚至把难学当做自己不去学好它的借口。

事实上,当我们抛掉那些畏难的情绪,心无旁骛地去学习高数时,它并不是那么难,至少不是那种难到学不下去的。

所以,我觉得要学好高数,一定不能有畏难的情绪。

当我们有信心去学好它时,就走好了第一步。

高数选修课学习心得(5篇)

高数选修课学习心得(5篇)

高数选修课学习心得(5篇)第一篇:高数选修课学习心得高数选修课学习心得我们从小学就开始学习数学,一直学到高中。

上了大学,还要学习高等数学。

高数作为一门重要的基础课程,是所有大一新生的必修课,也是考研的科目。

高等数学与高中数学相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是无限分割逐步逼近,极限等。

从形式上讲,学习方式也很不一样,一般都是大班授课,进度快,老师很难做到个别辅导,所以对自学能力的要求很高。

我一直很重视高数的学习,上课认真听讲,记好笔记,课后做练习题。

这学期还报了高数选修课,不仅是因为学分多,更可以多学一点知识。

老师把前面学的知识,按章节总结题型,讲解解题技巧,并配有难一点的考研题或是竞赛题。

刚开始时,高数选修课很火爆,很多没报名的同学也来听课,导致我们只能坐在后面几排,他们上课听讲很是认真,笔记记得也很详细,老师的提问总是很快地就回答出来。

为了不输给他们,我们中午就去占前排的座位,上课认真记笔记,目不转睛地看着老师。

这学期的高数明显难与上学期的内容,但为了通过考试,为了考研,必须打起12分的精神努力学习。

高数有别于其他科目,这就要求我们有很高的思维性和理解力,与此同时,也要不停地做题和总结。

我们学习高数有一个共通的地方,就是我们在高中时期学习数学养成了一种固定的模式,就是按照老师给定的格式,给定的思维去思考问题。

但是在大学,我们面对的是高数,有时证明某种定理就需要很长时间,在做题中还会遇到各种各样的问题,很多事情都需要我们自己去完成。

正是由于这段时间的高数学习,培养了我们自学和总结的能力。

高数当中我们会经常遇到很细的知识点,具体说就是惯例中的特例,那些先人总结出的各种定理,我们都喜欢用,甚至遇到类似的情况就生搬硬套,而忽略了很多条件,不但不利于我们对知识的掌握,还会起到负面作用,就是错误理解,导致相关知识都会变得相当混乱。

只有深刻理解知识,了解它所能应用的条件和环境,之后才去实战中应用。

高等数学学习心得(精选7篇)

高等数学学习心得(精选7篇)

高等数学学习心得(精选7篇)从某件事情上得到收获以后,就十分有必须要写一篇心得体会,这样可以丰富我们自身,那我们该如何去编写心得呢?以下是给大家收集的高等数学学习心得,希望能够帮到您。

高等数学学习心得篇1通过一年的高数学习,我学到了很多知识,也交到了很多新同学,对于这门学也有一些心得和体会。

很多人学数学没什么用,特别是高等数学,学那么多稀奇古怪的东西也用不上,只要会用基本的加减乘除就好了。

其实不然,高等数学在一些领域内的作用十分重要,作为一名计算机类专业学生,更是深以为然。

比如语音识别和目前大热的机器学习、人工智能就用到了相当多的高数知识。

同样的也用到了线性代数、组合数学和数论的重要知识。

其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦。

可能之前会听到家长或者老师会说,到了大学就可以好好玩了。

不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。

而且,大学其实并不比高中轻松在学习方面,我有几点建议:第一是课前预习和课后复习,在大学学习过程中,老师讲课十分的快,而且不像中学学习过程会给你翻来覆去的讲解一个知识点,也没有大量的练习给你去训练,所以就得依靠自己认真做好学习工作。

第二,要好好利用课堂时间,对于预习中不明白的问题一定不要积压,要及时向老师或同学请教解决,而且题目是老师出的,多问问就有可能得到老师的提醒,容易得到好的成绩。

第三,做题,对于学校的期末考试而言,只要我们把课本上的习题和老师上课讲的题目都弄会,那么考试就不是什么大问题。

其他的题目就没有必要去刷了,用不着像高中那刷大量的题,如果是想拿奖学金的同学可能就要多付出写努力,比别人多写些题目和练习册了。

第四,希望大家要把学习时间给足了,期末考试可不止高等数学一门学科,临阵磨枪是没办法面面俱到,复习好那么多的学科的。

强烈建议大家多去自习室,很多人说大学气氛不够,没有学习动力,那么自习室就是氛围,给你动力的好地方,也要遵守自习室规则,不要影响到他人的学习。

高中数学学习心得体会范文(精选11篇)

高中数学学习心得体会范文(精选11篇)

高中数学学习心得体会高中数学学习心得体会范文(精选11篇)高中数学学习心得体会篇1数学并没有想像的那么难,也不像想像的那样需要投入更多的时间。

我觉得到高中为止,要学习的数学一点儿不比熟悉电脑游戏难。

不过,还有很多学生觉得数学吃力,这是由于他们对数学这门最具逻辑的学科采用了最无逻辑性、最不科学的方法去学习的缘故。

“只要你多做题就好了!”还有这么无知、这么难的方法吗?还不如干脆说:“不知有什么方法”呢,至少还算个坦率的人。

我觉得说出“数学学习无捷径可走”这种不负责任的话的人,应该好好反省一下,因为自己没有做到,就告诉别人无路可走,这是多么危险的思维方式啊!希望通过做大量的习题来提高成绩,但终又尝到失败滋味,我意识到数学学习中盲目地搞题海战术绝对不是什么好方法。

为什么这么多的学生在数学上面投入大量的时间和精力,结果终于告败呢?我还先谈一谈学生越学越糟糕的5个原因,只有清楚地知道这些原因,数学才能真正简单起来。

一、根基不实我遇到的大部分学生都感叹:“数学太难了!”在他们看来,就算自己尽力了,随着年级的升高,数学还是会越来越难。

“到底谁觉得数学简单!”不妨先思考一个问题。

如果问初中生“5+7等于多少?5×8等于多少?”的话,谁都可以轻易地回答,但对小学一二年级的学生简单吗?不是。

还有大家可能上了高中后曾给初中生解过一次方程,“喂!这个这样做不就可以了!你是木头脑袋啊?”成了青蛙,就忘了做蝌蚪的时候了,就知道一味地斥责别人。

作为高中生,连一次函数都不知道,就算学了二次函数、三次函数也不可能真正理解,要做这类的题目等于是在挑战绝对不可能的事。

只有地基夯实了,上面的建筑才会牢固,如果没有一个坚实的基础,那建筑不成了豆腐渣式工程。

所以大家认识到基础不足后就将学过的东西再复习几遍,或者把以前学过的东西再翻出来看看,但仅仅做到这种程度,还是不够的。

现在向大家介绍一种切实可行的方法,大家较容易能照着做,而且能够看到实效。

高数学习心得

高数学习心得

高数学习心得在我学习高等数学的过程中,我深刻体会到了高数的重要性和挑战性。

通过不断的努力和实践,我逐渐掌握了一些学习高数的方法和技巧,下面我将分享一些我个人的高数学习心得。

首先,高数学习需要建立扎实的基础知识。

在开始学习高数之前,我们要先对初等数学的知识进行复习和巩固,包括代数、函数、三角函数等基本概念和运算法则。

只有打牢基础,才能更好地理解和应用高数的知识。

其次,高数学习需要注重理论与实践的结合。

高数是一门理论与实践相结合的学科,理论是基础,实践是检验理论的重要手段。

在学习高数的过程中,我们要注重理论的学习,理解概念和定理的含义,并且要通过大量的练习题和解题实践来加深对知识的理解和应用。

另外,高数学习需要培养良好的数学思维和解题能力。

高数的题目通常需要我们运用逻辑思维和数学方法来解决,因此我们要培养良好的数学思维,学会运用数学的方法和技巧解决问题。

在解题过程中,要注重思路的清晰和逻辑的严谨,善于分析问题、抓住关键,灵活运用所学知识。

此外,高数学习还需要注重归纳总结和思考。

高数的知识点众多,我们要善于归纳总结,将知识点串联起来,形成知识体系。

在学习过程中,我们要不断思考和质疑,深入理解知识的本质和内在联系,培养自己的数学思维和分析问题的能力。

最后,高数学习需要坚持和反复练习。

高数是一门需要反复练习的学科,只有通过大量的练习,才能巩固知识,提高解题能力。

我们要坚持每天进行高数的学习和练习,不断积累经验,逐渐提高自己的水平。

总结起来,高数学习需要建立扎实的基础知识,注重理论与实践的结合,培养良好的数学思维和解题能力,注重归纳总结和思考,坚持和反复练习。

通过不断的努力和实践,我相信每个人都能够掌握高数的知识,取得良好的学习成绩。

希望我的学习心得对你有所帮助,祝你在高数学习中取得好成绩!。

2024年高等数学学习心得体会(2篇)

2024年高等数学学习心得体会(2篇)

2024年高等数学学习心得体会在我的意识里,但凡数学成绩好的同学,一定都是天资聪颖;而对数学一往情深的同学,都绝非等闲之辈。

自从上了高中,数学对我来说就成了软肋,硬伤,成了让我神伤的科目,突然间变得对数学一窍不通,才猛然间发觉自己的思维不知道被什么所禁锢,变得呆板而僵硬,做题犹如啃砖头。

大一的时候,意外地发现我们必须学习高数课,我虽然很敬佩我们的高数老师,他和蔼可亲,对我们关爱有加,把高数讲得清楚易懂,还告诉我们如何学好高数以便更好地发展中医。

尽管如此,结局还是悲凉的,我终日以泪洗面,甚至产生了轻生的念头,大一对我来说是不堪重负,不忍回首的一年,期末了,还一道题都不会做,考完了,才发现自己是班上的垫底。

高数,让我开始怀疑自己的智商,怀疑我以后能否自食其力。

每一次上课,我都像个呆子,钻进耳朵的那些专业术语不知道该怎么去消化,而周围的同学也都还是能回答问题,自信满满,这种强烈的对比让我受挫,我开始重新审视自己。

高数,带给我改变的动力,我感谢高数,但仅仅因为它是高“树”,而我被挂在了上面。

在后来的学习中,我再也不敢对专业课掉以轻心,我开始觉得期末考试的内容其实也没有那么难,那么高数呢?究竟是它太难还是我从心里对它产生畏惧,以至我没有勇气相信自己可以认识它?我怕,怕有朝一日终会再次遇到它,因为陌生,所以恐惧。

经历了一年多的成长,我发现其实很多事情都没有想象中那么难,也没有想象中那么简单,关键在于你如何对待它。

我想起我可以为了自己做一个笔袋而一动不动坐一下午,并且为了解决出现的不足而把数据计算一遍又一遍,一遍遍拆,一遍遍改,在探索中前进,乐此不疲。

而学习高数呢,一开始我怕,遇到不懂了,我更怕,最后呢,我只能逃课,不去听,不去想,以为这样就能躲过一切,我才发现,我是个彻彻底底的懦夫,我只会做逃兵,我并没有尽最大的努力。

在选课的时候,我发现还能选修高数,这次,我不想再错过。

我想起了《追风筝的人》的一句话:“那里,有再一次成为好人的路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数心得体会【篇一:学习高数的心得体会】学习高数的心得体会转眼间,大一将要结束了,记得刚开始接触高数的时候,确实觉得力不从心,不知道该怎么学才能将公式运用自如,渐渐地发现,其实那些公式并不是死记硬背才行,只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路,就能把题目解出来。

所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。

每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。

还记得当时学习曲面积分的时候,怎么也学不会,看过就往,反反复复,搞得我真不知道怎样才好,不过现在还好能大体记住曲面积分的个知识点,各类解法,总结下,曲面积分:对面积的曲面积分:对坐标的曲面积分:????f(x,y,z)ds???dxyf[x,y,z(x,y)]?zx(x,y)?zy(x,y)dxdy22??p(x,y,z)dydzdxy?q(x,y,z)dzdx?r(x,y,z)dxdy,其中:号;号;号。

?qcos??rcos?)ds??r(x,y,z)dxdy?????r[x,y,z(x,y)]dxdy,取曲面的上侧时取正????p[x(y,z),y,z]dydz,取曲面的前侧时取正dyz??p(x,y,z)dydz???q(x,y,z)dzdx?????q[x,y(z,x),z]dzdx,取曲面的右侧时取正dzx两类曲面积分之间的关系:??pdydz?qdzdx?rdxdy????(pcos??????(?p?x??q?y??r?z)dv?pdydz??qdzdx?rdxdy?(pcos???qcos??rcos?)ds高斯公式的物理意义——通量与散度:?div??0,则为消失...??p?q?r散度:div????,即:单位体积内所产生的流体质量,若 ?x?y?z??通量:??a?nds???ands???(pcos??qcos??rcos?)ds, ??因此,高斯公式又可写?成:divadv???????ands在纠结曲面积分的时候我也注意到了,在理解的基础上对知识点进行总结,会让思路变得清晰而准确。

其实我觉得,高等数学的学习目的不是为了应付考试,因此,我们的学习不能停留在以解出答案为目标。

我们必须知道解题过程中每一步的依据。

最初,我以为只要把定理内容记住,能做题就行了。

然而,渐渐地,我发现如果没有真正明白每个定理的来龙去脉,就不能真正掌握它,更谈不上什么运用自如了。

于是,我试着开始认真地学习每一个定理的推导。

尽管这个过程并不轻松,但我却认为非常值得。

因为只有通过自己去探索的知识,才是掌握得最好的。

前几天在网上看到一个日志感觉挺玩的,就摘下来了:拉格朗日,傅立叶旁,我凝视你凹函数般的脸庞。

微分了忧伤,积分了希望,我要和你追逐黎曼最初的梦想。

感情已发散,收敛难挡,没有你的极限,柯西抓狂。

我的心已成自变量,函数因你波起波荡。

低阶的有限阶的,一致的不一致的,我想你的皮亚诺余项。

狄利克雷,勒贝格杨,一同仰望莱布尼茨的肖像,拉贝、泰勒,无穷小量,是长廊里麦克劳林的吟唱。

打破了确界,你来我身旁,温柔抹去我,阿贝尔的伤,我的心已成自变量,函数因你波起波荡。

低阶的有限阶的,一致的不一致的,是我想你的皮亚诺余项。

【篇二:高等数学心得体会】对于许多文科学生来说,数学也许是一个令人有些畏惧的名词,有些同学也许就是因为数学学不好或者不太喜欢数学,而选择了学文科的。

但是,对于任何一个文科生来说,数学都是非常重要的,有人把数学比做是文科生的生命线,有人说数学和英语在很大程度上决定了一名文科生的层次,这都是有一定道理的。

因此,一定要尽自己最大的努力来学好数学.在我看来,数学其实是一门非常奇妙而有趣的学问。

只要你有一双善于发现、敢于发现的眼睛,你就能够找到数学的魅力所在,就会对它产生兴趣。

而兴趣是最好的老师,如果你既对数学感兴趣,又下定决心努力学好数学,那又怎么会学不好呢?课本对于数学来说,是很重要的。

我们做的试题,有很多都是课本例题或其“变种”只要花上一点点时间把课本好好看看,要拿下这些题便易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题更不可能做得好。

数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求思维清晰明了,因而基础知识十分重要,尤其是对于数学不是特别好的同学来说。

以下是我个人觉得在数学学习过程中非常必要的几点:1、按部就班。

数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。

所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

2、强调理解。

概念、定理、公式要在理解的基础上记忆。

我的经验是,每新学一个定理,便尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

3、基本训练。

学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。

4、标出重点。

平常看题看课本的时候,碰到有好的解题方法或重点内容,可以用鲜艳的彩笔划出来,以便以后复习时能一目了然.最后想谈谈数学这一科目的应试技巧。

概括说来,就是先易后难。

我们常常有这样的体会,头脑清醒的时候,本来一些较难的题也会轻易做出来;相反,头脑混沌的时候,一些简单的题也会浪费很多时间。

考试时,遇到拦路虎是不可避免的,停下来有两种可能,一是费了九牛二虎之力终于做出来,但由于耗费了大量时间,接下来或者不够时间做完题目,或者担心时间不够,内心焦急,一时连简单的题也做不出来了;二是还是没有做出来,结果不仅浪费了时间,而且连后面的题也没做完。

而先易后难,则是愈做愈有信心,头脑始终保持清醒的状态,或者最后把难题做出,或者至少保证了会做的题不丢分。

2002年10月自考下来,高数工本只考了75分,我望着一尺高的草稿纸,回想近三个月来的日日夜夜,不禁“有所叹焉!”遂将一些心得,形成文字,没有整理,希望有兴趣一阅的朋友批评、交流。

2002年8月,我决心自考计算机应用专业,老婆不反对、不支持、不打击、只出钱。

当月报考了高数工本和c++。

我选择了难度,选择一个希望。

自考者多数同时还有工作,我是一名警察,不仅要上班,还要加夜班,没有固定的学习时间,也不能听课,也不可能有时间去听课。

自1993年7月高考失利已来,离别校园已九年有余。

重新捧起数学,且为占10学分的高数工本,难度之大、时间之促,与高考不相上下。

经验:做完一切书上习题、不会做也要把答案抄一遍。

要不然,如何用得完那一尺高的草稿纸!我把大量的时间用在做题上,不值班的时候,常常演算至深夜、至次日凌晨。

遇到不会做的题,就把参考答案看懂,再演算一遍。

教训之一:只做习题、未做例题其实,我的第一经验是最重的败笔!临近考试时,我开始作历年试题,做下来才顿悟。

第一是例题、第二是例题、第三还是例题!大家对本次自考最后一题有印象吧?是例题!历年大题,均有例题或其“变种”!事实上我们教材中的“总习题”有一定难度,而且每题花时不少!我们的自考,一般不会考那么难的。

而我平时花时最多的是“习题、自测题、总习题”,为完成之,不得不减少了看书和例题的时间。

完全的事倍功半!(猪啊!)所以建议后来者:重视例题,要自已会做。

习题中,重要章节要做、少部分不做,自测题在完成一章后做,总习题不做。

教训之二:全面出击,没有重点我从头至尾把教材做了一遍,因为内容太多,公式太多,结果做了后面的,忘记前面的。

到最后,脑壳里仍是一团酱糊。

其实,高数是相当严密的科学(还用你说!),从头推到尾!几个重点:极限、导数、不定积分、空解、微分方程,书后都有大量的习题,一个小题就有二十至三十个子题,这就是重点罗。

教训之三:死钻牛角尖,看得太难举个例吧,求微分方程的解,我在“二阶常系数非齐次方程”一节上,花了些时间,先看不懂,做了许多题,看了许多例题,才搞明白是怎么回事!结果一看历年试题,人家根本就不可能出那么繁的题!这样的例子很多,还有各种物理应用,也根本就不会考!而傅立叶级数,只要会公式,三个边界上公式,就可以了,至于如何来的、如何应用,可以不去管他。

于是我得出一结论:看不懂的,根本不会考。

看得懂的、似是而非的,就要多看多练习。

给大学新生——高等数学学习方法目前,每当一年高考结束,数百万高中学生通过自己的奋力拼搏,在同龄人中脱颖而出,升入自己梦寐以求的各类高等院校开始在新的环境进行学习的时候,社会上各大媒体都会不断地重复一个话题:一个高中生怎样尽快地从心理上、生理上等方面溶入新的环境,成为一名合格的大一新生?而且不时的在电视新闻或报刊出现大一的学生在新的环境中沉眠于网络或电子游戏,而跟不上大学的学习进度而退学的例子。

笔者认为:一个高中生升入大学学习后,不仅要从环境上、心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。

我在高等工科院校从事高等数学的教学工作已有三十余年,高等数学在工科院校的教学计划中是一门基础理论课程,是大一新生必修的课程,它对于各专业后继课程的学习,以及大学毕业后这类工程技术人员的工作状况,高等数学课程都起着奠基的作用。

如在校的继续学习中只有掌握高等数学的知识以后,才能比较顺利地学习其他专业基础课程,如物理、工程力学、电工电子学??等等,也才能学好自己的专业课程。

又如当毕业走向工作岗位后,要很好地解决工程技术上的问题,势必要经常应用到数学知识。

因为在科学技术不断发展的今天,数学方法已广泛渗透到科学技术的各个领域之中。

因此,工科类的大一新生在学习上一个很明确的任务就是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。

那么,大一新生怎样才能学好高等数学呢?笔者想就自己多年从事本门课程教学的经验与体会,谈几点肤浅的看法,以供同学们参考。

一、摒弃中学的学习方法从中学升入大学学习以后,在学习方法上将会遇到一个比较大的转折。

他们首先是对大学的教学方式和方法感到很不适应,这在高等数学课程的教学中反应特别明显,因为它是一门对大一新生首当其冲的理论性比较强的基础理论课程,而学生正是习惯于模仿性和单一性的学习方法,这是在从小学到中学的教育中长期养成的,一时还难以改变。

中学的教学方式和方法与大学有质的差别。

突出表现在:中学的学习,学生是在教师的直接指导下进行模仿和单一性的学习,大学则要求学生在教师的指导下进行创造性的学习。

例如:中学的数学课的教学是完全按照教材进行的,在课堂上只要求教师讲、学生听,不要求作笔记,教师教授慢、讲得细、计算方法举例也多,课后只要求学生能模仿课堂上教师讲的内容作些习题就可以了,根本没有必要去钻研教材和其他参考书(为了高考增强考生的解题能力而选择一些其他参考书仅是训练解题能力的需要),而大学的高等数学课程则恰好不一样,教材仅是作为一种主要的参考书。

相关文档
最新文档