北师大版八年级上册第一章勾股定理能力提升卷(二)(无答案)

合集下载

2022-2023学年北师大版八年级数学上册《第1章勾股定理》解答题专题提升训练(附答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》解答题专题提升训练(附答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》解答题专题提升训练(附答案)1.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE⊥AB交AB于点E,已知CD=6,AD=10.(1)求线段AE的长;(2)求△ABC的面积.2.定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.(1)若△ABC是近直角三角形,∠B>90°,∠C=50°,则∠A=.(2)在Rt△ABC中,∠BAC=90°,AB=3,AC=4,若CD是∠ACB的平分线.①求证:△BDC为近直角三角形.②求BD的长.3.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,AD=13m,∠B=∠ACD=90°.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?4.如图,△ABC中,∠ACB=90°,AB=10,BC=6,若点P从点A出发,以每秒1个单位长度的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求此时t的值;(2)若点P恰好在∠BAC的平分线上,求t的值.5.如图,Rt△ABC中,∠B=90°,AB=12,BC=16,CD=21,AD=29,点E是AD的中点,求CE的长.6.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点P为CB边上一动点,当动点P沿CB从点C向点B运动时,△APC的面积发生了变化.设CP长为xcm,△APC 的面积为ycm2.(1)求y与x的关系式;(2)当点P运动到BC的中点时,△APC的面积是多少?(3)若△APC的面积为8cm2,则CP的长为多少?7.数学之美,不仅是几何图形经过排列组合后呈现的炫美图案,还包括严谨推理引发的思维律动.已超过400种勾股定理的证明方法呈现的数学之美让我们陶醉,其中一种方法是:将两个全等的Rt△ABE和Rt△DEC如图所示摆放,使点A,E,D在同一条直线上,∠A=∠D=90°中,即可借助图中几何图形的面积关系来证明a2+b2=c2.请写出证明过程.8.如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F,连接CF.(1)判断△BCF的形状,并说明理由;(2)若AF=BC,求证:BF2+EF2=AE2.9.如图,在△ABC中,D是边BC的中点,E是边AC的中点,连接AD,BE.(1)若CD=8,CE=6,AB=20,求证:∠C=90°;(2)若∠C=90°,AD=13,AE=6,求△ABC的面积.10.如图,△ABC在正方形网格中,点A、B、C均在小方格的格点上,若小方格边长为1,请判断△ABC的形状,并说明理由.11.在一条东西走向的河流一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水,决定在河边新建一个取水点D(A、D、B在同一条直线上),并新修一条路CD,测得CB=6.5千米,CD =6千米,BD=2.5千米.(1)求证:CD⊥AB;(2)求原来的路线AC的长;12.已知,△ABC中,BC=8,AC=6,AB=10.(1)如图1,若点D是AB的中点,且∠B=40°,求∠DCA的度数;(2)如图2,若点E是AB边上的动点,求线段CE的最小值.13.在一次“探究性学习”中,老师设计了如下数表:n23456…a22﹣132﹣142﹣152﹣162﹣1…b4681012…C22+132+142+152+162+1…(1)观察上表,用含n(n>1,且n为整数)的代数式表示a,b,c,则a=,b =,c=.(2)在(1)的条件下判断:以a,b,c为边的三角形是否为直角三角形?证明你的结论.14.一棵高12m的大树被折断,折断处A距地面的距离AC=4.5m(点B为大树顶端着地处).在大树倒下的方向停着一辆小轿车,小轿车距大树底部C的距离CD为6.5m,点D 在CB的延长线上,求大树顶端着地处B到小轿车的距离BD.15.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.16.如图是某设计师打造的一款项目的示意图,其BC段和垂直于地面的AB段均由不锈钢管材打造,两段总长度为26m,矩形CDEF是一木质平台的侧面示意图,测得CD=1m,AD=15m,求出AB段的长度.17.如图,旗绳AC自由下垂时,比旗杆AB长2米,如果将旗绳斜拉直,下端在地面上,距旗杆底部的距离BC=6米,求旗杆AB的高度.18.为了测量如图风筝的高度CE,测得如下数据:①BD的长度为8米(注:BD⊥CE);②放出的风筝线BC的长为17米;③牵线放风筝的同学身高为1.60米.(1)求风筝的高度CE.(2)若该同学想风筝沿CD方向下降9米,则他应该往回收线多少米?19.LED感应灯是一种通过感应模块自动控制光源点亮的一种新型智能照明产品.当人(或动物)移至LED灯一定距离时灯亮,人走开灯灭,给人们的生活带来了极大的方便.如图,有一个由传感器A控制的LED灯安装在门的上方,离地面高4.5m的墙壁上,当人移至距离该灯5m及5m以内时,灯就会自动点亮.请问:如果一个身高1.5m的人走到离门多远的地方,该灯刚好点亮?20.自2020年以来,安宁市建起了多个“口袋公园”,它们既美化了城市空间,又拓展了市民的公共活动场所,还体现着城市风貌和文化.如图,在某小区旁有一块四边形空地,其中∠B=90°,AB=20m,BC=15m,AD=24m,CD=7m.(1)如图,连接AC,试求AC的长;(2)安宁市委、市政府计划将其打造为“口袋公园”,经测算,每平方米的费用为2000元,请你计算将这块地打造成“口袋公园”需要多少钱.参考答案1.解:(1)∵∠C=90°,BD平分∠ABC交AC于点D,DE⊥AB交AB于点E,∴DE=CD=6,∴AE=8;(2)设BC=x,则BE=x,AB=8+x,在Rt△ABC中,AC2+BC2=AB2,即162+x2=(8+x)2,解得x=12,即BC=12,∴S=96.2.解:(1)∠B不可能是α或β,当∠A=α时,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,则β=20°,故答案为:20°;(2)①如图1,设∠ACD=∠DCB=β,∠B=α,则α+2β=90°,故△BDC是“近直角三角形”;②如图2,过点D作DM⊥BC于点M,∵CD平分∠ACB,DM⊥BC,DA⊥CA,∴AD=DM.在Rt△ACD和Rt△MCD中,,∴Rt△ACD≌Rt△MCD(HL).∴AC=CM=4.∵AB=3,AC=4,∴BC=5.∴BM=1.设AD=DM=x,∵DM2+BM2=DB2,∴x2+12=(3﹣x)2,∴x=,∴BD=AB﹣AD=3﹣=.3.解:∵∠ACD=90°,∴AC2+DC2=AD2,由勾股定理得AC=5m,∴DC=12m,这块草坪的面积=S Rt△ABC+S Rt△ACD=AB•BC+AC•DC=(3×4+5×12)=36m2.故需要的费用为36×100=3600元.答:铺满这块空地共需花费3600元.4.解:(1)如图1,P A=PB,在Rt△ACB中,AC=8设AP=t,则PC=8﹣t,在Rt△PCB中,依勾股定理得:(8﹣t)2+62=t2,解得,即此时t的值为;(2)分两种情况:①点P在BC上时,如图2所示:过点P作PE⊥AB,则PC=t﹣8,PB=14﹣t,∵AP平分∠BAC且PC⊥AC∴PE=PC在△ACP与△AEP中,,∴△ACP≌△AEP(AAS),∴AE=AC=8,∴BE=2,在Rt△PEB中,依勾股定理得:PE2+EB2=PB2即:(t﹣8)2+22=(14﹣t)2解得:;②点P又回到A点时,∵AC+BC+AB=8+6+10=24,∴t=24;综上所述,点P在∠BAC的平分线上时,t的值为秒或24秒.5.解:在Rt△ABC中,∠B=90°,∵AB=12,BC=16,∴AC=20,∵CD=21,AD=29,∵AC2+CD2=202+212=841,AD2=841,∴AC2+CD2=AD2,∴∠ACD=90°,∴△ACD是直角三角形,∵点E是AD的中点,∴CE==×29=.6.解:(1),所以y与x的关系式为y=2x;(2)当时,y=5,所以点P运动到BC的中点时,△APC的面积为5cm2;(3)当y=8时,2x=8,解得x=4,所以当△APC的面积为8cm2时,CP的长为4cm.7.证明:如图,连接BC,∵Rt△ABE≌Rt△DEC,∴∠AEB=∠DCE,BE=EC=c,∵∠D=90°,∴∠DCE+∠DEC=90°,∴∠AEB+∠DEC=90°,∴∠BEC=90°,∴△BEC是等腰直角三角形,∵S梯形ABCD=S Rt△ABE+S Rt△CDE+S Rt△BEC,∴,即∴,∴a2+b2=c2.8.(1)解:△BCF为等腰直角三角形.理由:∵AB=AC,AD⊥BC,∴BD=CD,∴AD垂直平分BC,∴BF=CF,∴∠BCF=∠CBF=45°,∴∠CFB=180°﹣45°﹣45°=90°,∴△BCF为等腰直角三角形;(2)证明:在BF上取一点H,使BH=EF,连接CH,在△CHB和△AEF中,,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.9.(1)证明:∵D是边BC的中点,E是边AC的中点,CD=8,CE=6,∴AC=2CE=12,BC=2CD=16,∵AB=20,∴AB2=AC2+BC2,∴△ABC是直角三角形,∴∠C=90°;(2)解:∵E是边AC的中点,AE=6,∴AC=2AE=12.在Rt△ACD中,∵∠C=90°,AC=12,AD=13,∴CD=5,∴BC=2CD=10,∴△ABC的面积=AC•BC=×12×10=60.10.解:△ABC是直角三角形,理由:由图可得,∵AB2+AC2=BC2,∴△ABC是直角三角形.11.(1)证明:∵CB=6.5千米,CD=6千米,BD=2.5千米,62+2.52=6.52,∴CD2+BD2=CB2,∴△CDB为直角三角形,∴CD⊥AB;(2)解:设AC=x千米,则AD=(x﹣2.5)千米.∵CD⊥AB,∠ADC=90°,∴CD2+AD2=AC2,即62+(x﹣2.5)2=x2,解得:x=8.45.答:原来的路线AC的长为8.45千米.12.解:(1)在△ABC中,BC=8,AC=6,AB=10,∴AC2+BC2=62+82=100,AB2=102=100,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴∠B=40°,∴∠A=90°﹣∠B=50°,∵点D是AB的中点,∴CD=DA=AB,∴∠A=∠DCA=50°,∴∠DCA的度数为50°;(2)如图:当CE⊥AB时,线段CE最小,∵△ABC的面积=AB•CE=AC•BC,∴AB•CE=AC•BC,∴10CE=6×8,∴CE=4.8,∴线段CE的最小值为4.8.13.解:(1)观察上表,用含n(n>1,且n为整数)的代数式表示a,b,c,则a=n2﹣1,b=2n,c=n2+1,故答案为:n2﹣1,2n,n2+1;(2)以a,b,c为边的三角形是直角三角形,证明:∵a=n2﹣1,b=2n,c=n2+1,∴a2=(n2﹣1)2=n4﹣2n2+1,b2=(2n)2=4n2,c2=(n2+1)2=n4+2n2+1,∴a2+b2=n4﹣2n2+1+4n2=n4+2n2+1,∴a2+b2=c2,∴以a,b,c为边的三角形是直角三角形.14.解:在Rt△ABC中,由勾股定理得,BC=6(m),∴BD=CD﹣BC=0.5(m),∴大树顶端着地处B到小轿车的距离BD为0.5米.15.(1)证明:∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,∴∠CFD=90°,∠CEB=90°(垂线的意义)CE=CF(角平分线的性质)∵BC=CD(已知)∴Rt△BCE≌Rt△DCF(HL)(2)解:由(1)得,Rt△BCE≌Rt△DCF∴DF=EB,设DF=EB=X∵∠CFD=90°,∠CEB=90°,CE=CF,AC=AC∴Rt△AFC≌Rt△AEC(HL)∴AF=AE即:AD+DF=AB﹣BE∵AB=21,AD=9,DF=EB=x∴9+x=21﹣x解得,x=6在Rt△DCF中,∵DF=6,CD=10∴CF=8∴Rt△AFC中,AC2=CF2+AF2=82+(9+6)2=289∴AC=17答:AC的长为17.16.解:延长FC交AB于点G,则CG⊥AB,AG=CD=1米,GC=AD=15米,设BG=x米,则BC=(26﹣1﹣x)米,在Rt△BGC中,∵BG2+CG2=CB2,∴x2+152=(26﹣1﹣x)2,解得x=8,∴BA=BG+GA=8+1=9(米),答:AB的长度长为9米.17.解:设旗杆的高度为x米,根据题意可得:(x+2)2=x2+62,解得:x=8.答:旗杆的高度为8米.18.解:(1)在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=172﹣82=225,所以,CD=15(负值舍去),所以,CE=CD+DE=15+1.6=16.6米,答:风筝的高度CE为16.6米;(2)由题意得,CM=9,∴DM=6,∴BM=10,∴BC﹣BM=7,∴他应该往回收线7米.9.解:AE=AB﹣BE=4.5﹣1.5=3(m),AD=5m.由勾股定理,得DE2=AD2﹣AE2=52﹣32=16,所以DE=4(m).因此,当人走到离门4m的地方,该灯刚好点亮.20.解:(1)∵∠B=90°,AB=20m,BC=15m,∴AC=25(m),答:AC的长为25m;(2)∵AC2=625,CD2=49,AD2=576,∴AC2=CD2+AD2,∴△ACD是直角三角形,∠D=90°,∴“口袋公园”的面积=S△ABC+S△ACD=AB×BC+×AD×CD=+ 24×7=234(m2),234×2000=468000(元),答:将这块地打造成“口袋公园”需要468000元钱.。

北师大版八年级上册数学第一章勾股定理单元测试卷(一)(二)(两套含答案)

北师大版八年级上册数学第一章勾股定理单元测试卷(一)(二)(两套含答案)

北师大版八年级上册数学第一章勾股定理单元测试卷(一)一、选择题1.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()或252.下列各组数中,以a,b,c为边的三角形不是Rt△的是()=7,b=24,c=25 =7,b=24,c=24=6,b=8,c=10 =3,b=4,c=53.%4.若线段a,b,c组成Rt△,则它们的比可以是()∶3∶4 ∶4∶6∶12∶13 ∶6∶75.已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()海里海里海里海里6.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是()A.直角三角形B.锐角三角形【C.钝角三角形D.以上答案都不对7.如果Rt△的两直角边长分别为n2-1,2n(其中n >1),那么它的斜边长是()+1-1 +18.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm29.?10.等腰三角形底边长10 cm,腰长为13,则此三角形的面积为()11.三角形的三边长为(a+b)2=c2+2ab,则这个三角形是( )A.等边三角形;B.钝角三角形;C.直角三角形;D.锐角三角形12.已知,如图,长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()*二、填空题13.在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则S Rt△ABC=________14.在△ABC中,AC=17 cm,BC= 10 cm,AB=9 cm,这是一个_________三角形(按角分)。

第1章勾股定理 同步能力提升训练 2021-2022学年北师大版八年级数学上册

第1章勾股定理 同步能力提升训练 2021-2022学年北师大版八年级数学上册

2021-2022学年北师大版八年级数学上册《第1章勾股定理》同步能力提升训练(附答案)1.以直角三角形的三边为边向外作正方形,其中两个正方形的面积如图所示,则正方形A 的面积为()A.6B.36C.64D.82.传说,古埃及人常用“拉绳”的方法画直角,有一根长为m的绳子,古埃及人用这根绳子拉出了一个斜边长为n的直角三角形,那么这个直角三角形的面积用含m和n的式子可表示为()A.B.C.D.3.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a﹣b)2的值是()A.1B.2C.12D.134.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:55.在△ABC中,AB=12cm,BC=16cm,AC=20cm,则S△ABC为()A.96cm2B.120cm2C.160cm2D.200cm26.两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8cm,另一只朝东面挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.100cm B.50cm C.140cm D.80cm7.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米8.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14B.15C.16D.179.如图,在△ABC中,AB=10,AC=13,AD⊥BC,垂足为D,M为AD上任一点,则MC2﹣MB2等于()A.23B.46C.65D.6910.已知Rt△ABC中,∠C=90°.若a+b=14cm,c=12cm,则Rt△ABC的面积是()A.13cm2B.26cm2C.48cm2D.52cm211.直角三角形两直角边长分别为3和4,则它斜边上的高为.12.直角三角形中,以直角边为边长的两个正方形的面积分别为7cm2,8cm2,则以斜边为边长的正方形的面积为cm2.13.在正方形网格中,A、B、C、D均为格点,则∠BAC﹣∠DAE=.14.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为.15.如图是一个四边形ABCD,若已知AB=4cm,BC=3cm,CD=12cm,AD=13cm,∠ABC=90°,则这个四边形的面积是cm2.16.在△ABC中,AB=20,AC=13,BC边上的高AD=12,则△ABC的周长为.17.在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是.18.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和.19.如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC交AC于点D,过点D作DE⊥AB交AB于点E,过C作CF∥BD交ED于F.(1)若∠A=36°,求∠CFD的度数;(2)若BC=5,AB=13,求AD的长度.20.用四个完全相同的直角三角形(如图1)拼成一大一小两个正方形(如图2),直角三角形的两条直角边分别是a、b(a>b),斜边长为ccm,请解答:(1)图2中间小正方形的周长,大正方形的边长为.(2)用两种方法表示图2正方形的面积.(用含a,b,c)①S=;②S=;(3)利用(2)小题的结果写出a、b、c三者之间的一个等式.(4)根据第(3)小题的结果,解决下面的问题:已知直角三角形的两条直角边长分为是a=8,b=6,求斜边c的值.21.已知:四边形ABCD中,AC⊥BC,AB=17,BC=8,CD=12,DA=9;(1)求AC的长;(2)求四边形ABCD的面积.22.如图,已知等腰△ABC的底边BC=13cm,D是腰AB上一点,且CD=12cm,BD=5cm.(1)求证:△BDC是直角三角形;(2)求△ABC的周长.参考答案1.解:如图,∵∠CBD=90°,CD2=14,BC2=8,∴BD2=CD2﹣BC2=6,∴正方形A的面积为6,故选:A.2.解:设这个直角三角形的两直角边分别为a,b,由题意可得,,∴2ab=(a+b)2﹣(a2+b2)=(m﹣n)2﹣n2=m2﹣2mn,∴这个直角三角形的面积=ab=.故选:A.3.解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12则(a﹣b)2=a2﹣2ab+b2=13﹣12=1.方法二、小正方形的边长就是|a﹣b|,其面积是1,故选:A.4.解:A、根据三角形内角和公式,求得各角分别为30°,60°,90°,所以此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以其是直角三角形;C、32+42=52,符合勾股定理的逆定理,所以是直角三角形;D、根据三角形内角和公式,求得各角分别为45°,60°,75°,所以此三角形不是直角三角形;故选:D.5.解:∵122+162=202,∴由勾股定理的逆定理可知,三角形是直角三角形,两直角边为12和16,∴S△ABC=×12×16=96cm2.故选:A.6.解:两只鼹鼠10分钟所走的路程分别为80cm,60cm,∵正北方向和正东方向构成直角,∴由勾股定理得=100,∴其距离为100cm.故选:A.7.解:如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,∴AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD=1.5(米)故选:B.8.解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C=15cm,故选:B.9.解:在Rt△ABD和Rt△ADC中,BD2=AB2﹣AD2,CD2=AC2﹣AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2﹣AD2+MD2,MC2=CD2+MD2=AC2﹣AD2+MD2,∴MC2﹣MB2=(AC2﹣AD2+MD2)﹣(AB2﹣AD2+MD2)=AC2﹣AB2=132﹣102=69.故选:D.10.解:∵∠C=90°,∴a2+b2=c2=144,∴(a+b)2﹣2ab=144,∴196﹣2ab=144,∴ab=26,∴S△ABC=ab=13cm2.故选:A.11.解:设斜边长为c,高为h.由勾股定理可得:c2=32+42,则c=5,直角三角形面积S=×3×4=×c×h可得h=,故答案为:.12.解:设直角三角形ABC的两直角边是a和b,斜边是c,则由勾股定理得:a2+b2=c2,则分别以ab为边长的两个正方形的面积之和是a2+b2=7cm2+8cm2=15cm2,以斜边c为边长的正方形的面积是S=c2=a2+b2=15cm2,故答案为:15.13.解:如图所示,把△ADE移到△CFG处,连接AG,此时∠DAE=∠FCG,∵CF∥BD,∴∠BAC=∠FCA,∴∠BAC﹣∠DAE=∠FCA﹣∠FCG=∠ACG,设小正方形的边长是1,由勾股定理得:CG2=12+32=10,AC2=AG2=12+22=5,∴AC2+AG2=CG2,AC=AG,∴∠CAG=90°,即△ACG是等腰直角三角形,∴∠ACG=45°,∴∠BAC﹣∠DAE=45°,故答案为:45°.14.解:由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C∵正方形A、C、D的面积依次为4、6、18,∴S正方形B+4=18﹣6,∴S正方形B=8.故答案为:8.15.解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∴AC=5cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD﹣S△ABC=AC×CD﹣AB×BC=×5×12﹣×4×3=30﹣6=24(cm2).故四边形ABCD的面积为24cm2.故答案为:24.16.解:如图1,△ABC中,AB=20,AC=13,BC边上高AD=12,在Rt△ABD中AB=20,AD=12,由勾股定理得,BD=16,在Rt△ADC中AC=13,AD=12,由勾股定理得,DC=5,则BC的长为BD+DC=9+16=21,△ABC的周长为:13+20+21=54,如图2,同(1)的作法相同,BC=11,△ABC的周长为:13+20+11=44,故答案为:44或54.17.解:根据垂线段最短,得到BP⊥AC时,BP最短,过A作AD⊥BC,交BC于点D,∵AB=AC,AD⊥BC,∴D为BC的中点,又BC=6,∴BD=CD=3,在Rt△ADC中,AC=5,CD=3,根据勾股定理得:AD=4,又∵S△ABC=BC•AD=BP•AC,∴BP===4.8.故答案为:4.8.18.解:(1)11,60,61;故答案为:11,60,61.(2)后两个数表示为和,∵n2+()2=n2+=,()2=,∴n2+()2=()2.又∵n≥3,且n为奇数,∴由n,,三个数组成的数是勾股数.故答案为:,.19.证明:(1)∵在Rt△ABC中,∠ACB=90°,BD平分∠ABC交AC于点D,∠A=36°,∴∠ABD=∠DBC=27°,∴∠BDC=63°,∵CF∥BD,∴∠DCF=∠BDC=63°.∵∠CDF=∠ADE=54°,∴∠CFD=180°﹣∠DCF﹣∠CDF=63°.(2)∵在Rt△ABC中,∠ACB=90°,BC=5,AB=13,∴AC=12,∵BD平分∠ABC交AC于点D,∴DC=DE,∵DE⊥AB,∴∠AED=90°,∴∠AED=∠ACB,∵∠A=∠A,∴AD=.20.解:(1)图2中间小正方形的周长4c,大正方形的边长为(a+b),故答案为:4c;a+b;(2)图2正方形的面积S=(a+b)2或S=2ab+c2,故答案为:(a+b)2或2ab+c2;(3)∵(a+b)2=a2+2ab+b2,∴a2+b2=c2.故答案为:a2+b2=c2;(4)∵c2=a2+b2=82+62=100,∴c=10(负值不合题意,舍去).21.解:(1)∵AC⊥BC,AB=17,BC=8,∴AC=15;(2)∵122+92=152,∴CD2+AD2=AC2,∴∠D=90°,∴四边形ABCD的面积为:×8×15+12×9=60+54=114.22.(1)证明:∵BC=13cm,CD=12cm,BD=5cm,∴BC2=BD2+CD2∴△BDC为直角三角形;(2)解:设AB=x,∵△ABC是等腰三角形,∴AB=AC=x,∵AC2=AD2+CD2x2=(x﹣5)2+122,解得:x=,∴△ABC的周长=2AB+BC=2×+13=。

北师大数学八年级上《勾股定理》能力提升练习题 (无答案)

北师大数学八年级上《勾股定理》能力提升练习题 (无答案)

北师大八年级数学上《勾股定理》能力卷一、填空题:1、如图(1),△ABC是等腰直角三角形,BC为斜边,将△ABP绕A点逆时针旋转后能与△ACP′重合,若AP=3,则PP′=__________.2、等腰三角形的两边长为 2 和5,则它的面积为_____.3、有一根7 cm木棒,要放在长,宽,高分别为5 cm,4 cm,3 cm的木箱中,__________(填“能”或“不能”)放进去.4、直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.5、△ABC中,AB=23,AC=2,BC边上的高AD=3,则BC=__________.6、直角三角形两直角边长分别为5 和12,则斜边上的高为__________.7、等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.8、若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.9、等腰三角形的两边长为3和4,则底边上的高为__________.10、如图(2),在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.图(1)图(2)11.若一个三角形的三边长分别为3,4, x,则使此三角形是直角三角形的x的值是__________.二、选择题(3分×10=30分)12.下列各组数中,不能构成直角三角形的一组是()A.1,2,5B.1,2,3C.3,4,5 D.6,8,1213.如图(3),△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()图(3) 图(4)A.6 B.6C.5D.414.已知三角形的三边长之比为1∶1∶2,则此三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形 D.等腰直角三角形15.直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长()A.4 cm B.8 cm C.10 cm D.12 cm16.如图(4),以三角形三边为直径向外作三个半圆,若较小的两个半圆面积之和等于较大的半圆面积,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形B .如果c 2=b 2-a 2,则△ABC 是直角三角形,且∠C=90°C .如果(c+a)( c -a)=b 2, 则△ABC 是直角三角形D .如果∠A ∶∠B ∶∠C=5∶2∶3,则△ABC 是直角三角形18.如图(5),△ABC 中,∠C=90°,AB 垂直平分线交BC 于D 若BC=8,AD=5,则AC 等于( )图(5) 图(6) 图(7)A .3B .4C .5D .1319.如图(6),△ABC 中,AB=AC=10,BD ⊥AC 于D ,CD=2,则BC 等于( )A .210B .6C .8D .520.△ABC 中,∠C=90°,∠A=30°,斜边长为2,斜边上的高为( )A .1B .3C .23D .4321.直角三角形的一条直角边是另一条直角边的31,斜边长为10 ,它的面积为( ) A .10 B .15 C .20 D .3022、在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为( )A .10B .410C .13D .213 23、已知a ,b ,c 为△ABC 三边,且满足a 2c 2-b 2c 2=a 4-b 4,则它的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形24、一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高, 并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据 ( )A .13,10,10B .13,10,12C .13,12,12D .13,10,1125、如图(7),在直角△ABC 中,∠ACB=90°,∠A=15°,CD ⊥AB 于D ,AC 边的垂直平分线交AB 于E ,那么AE ∶ED 等于( )A .1∶1B .1∶2C .3∶2D .2∶3三、解答题26、在某山区需要修建一条高速公路,在施工过程中要沿直线AB 打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD=150°,∠D=60°,BD=32 km ,请根据上述数据,求出隧道BC 的长27、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?28、(8分)如图(10),△ABC 中,CD ⊥AB 于D(1)图中有__________个直角三角形(2)若AD=12,AC=13则CD=__________.(3)若CD 2=AD ·DB , 求证:△ABC 是直角三角形. 图(10)29.一块试验田的形状如图所示,已知:∠CAB=90º,AC=3m ,AB=4m ,BD=12m ,DC=13m 。

北师大版八年级上《第一章勾股定理》综合性提高训练含答案解析

北师大版八年级上《第一章勾股定理》综合性提高训练含答案解析

北师大8上第一章勾股定理综合性提高训练(含答案)=a 2 2ab b 2 = c 2 4S = 4d 2 4S所以 a =2,d 2 • S.所以 a b ^2d 2 S 2d .故选(c )例题2.在厶ABC 中,AB =AC =d ,BC 边上有2006个不同的点RR 川卩20062记 m i =AR +BR ”RC (i =1,2川|2006}则 mi + m 2+川 m 2o°6二解:如图作AD 一 BC 于D ,因为AB =AC 刊,则BD =CD .2 2 2 2 2 2由勾股定理,得AB=AD BD ,AR"DRD.所以AB- AR 2 二 BD 2 -PD 2 h[BD -PD BD PD i=BP PC 所以 AP 2 +BP PC = AB 2 =12.2因此 m i *m ? +川 m 2006 =1 汉 2006 =2006例题3.如图所示,在Rt 也ABC 中f BAC =90: AC = AB 工DAE =45:且BD=3CE =4,求 DE 的长.例题1、直角三角形的面积为 S ,斜边上的中线长为d ,则这个三角形周长为()(A ) ■■- d 2S 2d (B ) ■- d 2一 S —d(C ) 2d 2S 2d(D )2 d 2S d1 , S = —ab解:设两直角边分别为a,,斜边为c ,则c = 2d,22 2 2由勾股定理,得a b =c.2所以a bB7小解:如右图:因为ABC为等腰直角三角形,所以• ABD =• C=45 .所以把AEC 绕点A 旋转到AFB ,则:AFB = :AEC. 所以BF 二EC=4,AF 二AE,. ABF =. C = 45.连结DF .所以DBF 为直角三角形.2 2 2 2 2 2由勾股定理,得DFBF ■ BD4 3 5.所以DF 二5.因为 N DAE =45:所以 N DAF =NDAB+NEAC = 45[ 所以也ADE "ADF (SAS).所以 DE =DF =5例题4、如图,在厶ABC 中,AB=AC=6,P 为BC 上任意一点,请用学过的知识试求PC • PB+PA 2 的值。

第一章 勾股定理 分类提升训练(含答案) 2024--2025学年 北师大版 八年级数学上册

第一章 勾股定理 分类提升训练(含答案) 2024--2025学年 北师大版 八年级数学上册

第一章 勾股定理 分类提升训练 2024--2025学年 北师大版 八年级数学上册一、单选题1.学了“勾股定理”后,甲、乙两位同学的观点如下:甲:如果是直角三角形,那么一定成立;乙:在中,如果,那么不是直角三角形.对于两人的观点,下列说法正确的是( )A .甲对,乙错B .甲错,乙对C .两人都错D .两人都对2.如图,在中,,分别以,为边向外作正方形,面积分别为,,若,,则的长为( )A .4B .2CD .33.为预防新冠疫情,民生大院入口的正上方处装有红外线激光测温仪(如图所示),测温仪离地面的距离米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为米的市民正对门缓慢走到离门米的地方时(即米),测温仪自动显示体温,则人头顶离测温仪的距离等于( )A .米B .米C .米D .米4.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠ABO =60°,若矩形的对角线长为6.则线段AD 的长是( )ABC V 222a b c +=ABC V 222a b c +≠ABC V ABC V 90ACB ∠=︒AC AB 1S 2S 13S =27S =BC A 3AB = 1.8CD 1.6 1.6BC =AD 2.0 2.2 2.25 2.5A .3B .4C .2D .35.如图是一圆柱玻璃杯,从内部测得底面半径为,高为,现有一根长为的吸管任意放入杯中,则吸管露在杯口外的长度最少是( )A .B .C .D .6.如图,已知矩形纸片,,,点在边上,将沿折叠,点落在点处,,分别交于点,,且,则的长为( )A.B .C .D .7. 如图,在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .B .C .D .28.如图,有一个水池,水面是一个边长为尺的正方形,在水池正中央有一根芦苇,它高出水面6cm 16cm 25cm 6cm 5cm 9cm (25cm -ABCD 4AB =3BC =P BC CDP V DP C E PE DE AB O F OP OF =DF 3911451317557173276256101尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面、求这根芦苇的长度是多少尺?设芦苇的长度是尺,根据题意,可列方程为( )A .B .C .D .9.如图,过矩形对角线的交点,作对角线的垂线,交于点,交于点,若,,则的长等于( )A .B .CD .10.在Rt 中,.以为圆心,AM 的长为半径作弧,分别交AC ,AB 于点M ,N.再分别以M ,N 为圆心,适当长度为半径画弧,两弧交于点.连接AP ,并延长AP 交BC 于点.过点作于点,垂足为,则DE 的长度为( )A .B .C .2D .1二、填空题11.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1米,当他把绳子下端拉开5米后,发现下端刚好接触地面,则旗杆高度为 米.12.下图是公园的一角,有人为了抄近道而避开横平竖直的路的拐角 ,而走“捷径 ”,于是在草坪内走出了一条不该有的“路 ”.已知 米, 米,只为少走 米的路. x 222510x +=()2221015x -+=()22215x x -+=()22251x x +=-ABCD O BD AD E BC F 3AE =5BF =EF 48ABC V B ∠=90,8,10AB AC ︒==A P D D DE AC ⊥E E 8345ABC ∠AC AC 40AB =30BC =13.若的三边,,满足,则的面积是 .14.如图,矩形ABCD 中, , ,CB 在数轴上,点C 表示的数是 ,若以点C 为圆心,对角线CA 的长为半径作弧交数轴的正半轴于点P ,则点P 表示的数是 .15.有一根长7cm 的木棒,要放进长、宽、高分别为5cm 、4cm 、3cm 的木箱, (填“能”或“不能”)放进去。

北师大版八年级数学上册第一章《勾股定理》练习题(无答案)

北师大版八年级数学上册第一章《勾股定理》练习题(无答案)

2020年八年级数学上册第一章《勾股定理》练习题一、选择题1.一个直角三角形,有两边长分别为6和8,下列说法正确的是( )A. 第三边一定为10B. 三角形的周长为25C. 三角形的面积为48D. 第三边可能为102.直角三角形的斜边为20cm ,两条直角边之比为3∶4,那么这个直角三角形的周长为( )A . 27cm B. 30cm C. 40cm D. 48cm3.若△ABC 的三边a.b.c 满足(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( )A. 等腰三角形B. 等边三角形C. 等腰直角三角形D. 等腰三角形或直角三角形4.将直角三角形的三边扩大相同的倍数后,得到的三角形是( )A 直角三角形B 锐角三角形C 钝角三角形D 不能 5.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )cm 2A 6B 8C 10D 12 6.如图小方格都是边长为1的正方形,图中四边形的面积为( )A. 25B. 12.5C. 9D. 8.57.直角三角形中,如果有两条边长分别为3,4,且第三条边长为整数,那么第三条边长应该是( ) A. 5 B. 2 C. 6 D. 非上述答案8.已知x.y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x.y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A.5B.25C.7D.159.下列各组线段中,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .4,6,710. 三角形的三边为a.b.c ,由下列条件不能判断它是直角三角形的是( )A .a:b:c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D . a:b:c =13∶5∶1211. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形.12.在△ABC 中,∠A.∠B.∠C 的对应边分别是a.b.c ,若∠A +∠C =90°,则下列等式中成立的是( )A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2D .c 2-a 2=b 213.如图是一张直角三角形的纸片,两直角边AC =6 cm ,BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm14.下列选项中,不能用来证明勾股定理的是( )15.在△ABC 中,AB =12 cm ,AC =9 cm ,BC =15 cm ,则S △ABC 等于( )A .54 cm 2B .108 cm 2C .180 cm 2D .90 cm 216.下列说法错误的是( )A .在△ABC 中,∠C =∠A -∠B ,则△ABC 为直角三角形B .在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则△ABC 为直角三角形C .在△ABC 中,若a =35c ,b =45c ,则△ABC 为直角三角形 D .在△ABC 中,若a ∶b ∶c =3∶2∶4,则△ABC 为直角三角形 A B E F D C 第5题17.在△ABC 中,AB =n 2+1,AC =2n ,BC =n 2-1(n>1),则这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形18.某会会标如图所示,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和为5,则中间小正方形的面积是( )A .1B .2C .4D .619.一条河的宽度处处相等,小强想从河的南岸游到北岸去,由于水流影响,小强上岸地点偏离目标地点200 m ,他在水中实际游了520 m ,那么该河的宽度为( )A .440 mB .460 mC .480 mD .500 m二、填空题1.在Rt △ABC 中,已知两边长为5.12,则第三边的长为2.等腰三角形的两边长为10和12,则周长为________,底边上的高是________,面积是_________。

2022-2023学年北师大版数学八年级上册探索勾股定理提升练习题

2022-2023学年北师大版数学八年级上册探索勾股定理提升练习题

1.1 探索勾股定理(提升题)-北师大版八年级上册一.选择题1.如图,在Rt△BOD中,分别以BD,OD,BO为直径向外作三个半圆,其面积分别为S1,S2,S3,若S1=40,S3=18,则S2=()A.18B.20C.22D.242.勾股定理在《九章算术》中的表述是:“勾股术曰:勾股各自乘,并而开方除之,即弦”.即c=(a为勾,b为股,c为弦),若“勾”为2,“股”为3,则“弦”最接近的整数是()A.1B.2C.3D.43.点A、B、C在格点图中的位置如图所示,格点小正方形的边长为1,则点C到AB的距离是()A.B.C.D.4.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM 的长的最大值是()A.4B.6C.2D.35.已知直角三角形两边的长为5和12,则此三角形的周长为()A.30B.+17C.+17或30D.366.已知3,4,m是一个直角三角形的三条边长,则实数m的相反数为()A.5B.﹣5C.5或D.﹣5或﹣7.如图,这是用面积为18的四个全等的直角三角形拼成的“赵爽弦图”.如果大正方形的边长为9,那么小正方形的边长为()A.1B.2C.3D.48.如图,在Rt△ABC中,∠C=90°,AC=12,BC=18,DE是线段AB的垂直平分线,则BD的长为()A.8B.10C.13D.159.如图所示,在四边形ABCD中,∠B=∠D=90°,∠BAC=30°,∠CAD=45°,BC =4,点P是四边形ABCD边上的一个动点,若点P到AC的距离为2,则点P的位置有()A.1处B.2处C.3处D.4处10.勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(a>b),则下列说法:①a2+b2=25,②a﹣b=1,③ab=12,④a+b=7.正确的是()A.①②B.①②③C.①②④D.①②③④二.填空题11.若直角三角形的两边长分别为3,4,则该直角三角形的斜边长为.12.如图,在Rt△ABC中,∠A=90°,AB=3,BC=5,BC的垂直平分线交AC于点D,垂足为点E,则AD=.13.已知Rt△ABC中,AB=8,BC=10,∠BAC=90°,则图中阴影部分面积为.14.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,若AB=4,则CD=.15.如图是第七届国际数学教育大会的会徽图案,它是由一串有公共顶点O的直角三角形组成的,图中的OA1=A1A2=A2A3=…=A7A8=1,按此规律,在线段OA1,OA2,OA3,…,OA10中,长度为整数的线段有条.三.解答题16.如图,在△ABC中,AD⊥BC,垂足为点D,AB=13,BD=5,CD=9.求△ABC的面积.17.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为ts,当△ABP为等腰三角形时,求t的取值?18.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,AC+BC=,AB=2.(1)求△ABC的面积;(2)求CD的长.19.如图,在△ABC中,AC=5,E为BC边上一点,且CE=1,AE=,BE=4,点F 为AB边上的动点,连接EF.(1)求AB的长;(2)当△BEF为等腰三角形时,求AF的长.20.如图,△ABC中,AB=AC=BC=20厘米,如果点M从点C出发,点N从点B出发,沿着三角形三边以4厘米/秒的速度运动,当点N第一次到达C点时,M,N两点同时停止运动.运动时间为t(秒).(1)当0<t<5且△BMN为直角三角形时,求t的值;(2)当t为何值,△BMN为等边三角形.参考答案与试题解析一.选择题1.【解答】解:∵∠DOB=90°,∴BO2+DO2=DB2,∵S1=•π()2=;S2=π()2=;S3=π()2=;∴S2+S3=(OD2+BO2)=BD2=S3,即S2+S3=S1.∵S1=40,S3=18,∴S2=40﹣18=22,故选:C.2.【解答】解:依题意“弦”为=,而3.5=<<=4,∴“弦”最接近的整数是4.故选:D.3.【解答】解:连接AC,BC,设点C到线段AB所在直线的距离是h,∵S△ABC=2×2﹣1×2﹣﹣=,AB==,∴×h=,∴h=,故点C到AB的距离是,故选:D.4.【解答】解:如图所示:△MNP为等腰直角三角形,∠MPN=45°,此时PM最长,根据勾股定理得:PM===2.故选:C.5.【解答】解:设Rt△ABC的第三边长为x,①当12为直角三角形的直角边时,x为斜边,由勾股定理得,x==13,此时这个三角形的周长=5+12+13=30;②当12为直角三角形的斜边时,x为直角边,由勾股定理得,x==,此时这个三角形的周长=5+12+=+17,综上所述,该三角形的周长为30或+17.故选:C.6.【解答】解:当m为斜边时:32+42=m2,解得:m1=5,m2=﹣5(不符合题意);当m为直角边时:32+m2=42,解得:m1=,m2=﹣(不符合题意).故第三边长m为5或,∴实数m的相反数为﹣5或﹣.故选:D.7.【解答】解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=92﹣4×18=9,∴正方形EFGH的边长=3,故小正方形的边长为3,故选:C.8.【解答】解:连接AD,∵DE是线段AB的垂直平分线,∴DB=DA,设DB=x,则CD=BC﹣DB=18﹣x,∵∠C=90°,AC=12,∴AD2=CD2+AC2,∴x2=(18﹣x)2+122,解得x=13,即BD=13,故选:C.9.【解答】解:过点B作BH⊥AC于点H,过点D作DG⊥AC于点G,如图所示:则∠BHC=90°,∠AGD=90°,∵∠B=∠D=90°,∠BAC=30°,∴∠BCA=60°,∴∠CBH=30°,∵BC=4,∴HC=2,根据勾股定理,得HB=2,∴点P在点B处时,点P到AC的距离为2,∵∠CAD=45°,∴∠ACD=45°,∴△ADC是等腰直角三角形,∴GD=AC∵AC=2BC=8,∴GD=4,∵4>2,∴在AD边和CD边上各有一点P,使得点P到AC的距离为2,综上,满足条件的点P有3处,故选:C.10.【解答】解:由图可得,a2+b2=c2=25,故①正确;∵小正方形面积为1,∴小正方形的边长为1,∴a﹣b=1,故②正确;∵大正方形面积为25,小正方形面积为1,∴ab=(25﹣1)÷4,解得ab=12,故③正确;∵a2+b2=25,ab=12,∴(a+b)2=a2+2ab+b2=49,∴a+b=7,故④正确;故选:D.二.填空题11.【解答】解:分两种情况:①当3和4都为直角边时,由勾股定理得斜边长为:=5;②当4为斜边时,斜边=4;综上所述:该直角三角形的斜边长为5或4.故答案为:5或4.12.【解答】解:∵BC的垂直平分线交AC于点D,∴BD=CD,在Rt△ABC中,由勾股定理得,AC=4,设AD=x,则CD=BD=4﹣x,在Rt△ABD中,由勾股定理得,x2+32=(4﹣x)2,解得x=,∴AD=,故答案为:.13.【解答】解:∵AB=8,BC=10,∠BAC=90°,∴AC===6,分别以△ABC的三条边为直径向外作半圆,其半圆的面积由小到大分别记作S1、S2、S3,由圆的面积计算公式知:S3=πBC2,S2=πAC2,S1=πAB2,则S1+S2=π(AB2+AC2),在Rt△ABC中,∠BAC=90°,∴AB2+AC2=CB2,∴S1+S2=S3.∵阴影部分面积等于:S1+S2+S△ABC﹣S3=S△ABC=×6×8=24,故答案为:24.14.【解答】解:∵AC=BC,∠C=90°,∴AC=AB=2,∵AD是△ABC的角平分线,∴∠DAC=∠DAE,∵∠C=∠AED=90°,∴∠ADC=∠ADE,∴AC=AE,∴BE=AB﹣AE=4﹣2,∵∠B=45°,∠DEB=90°,∴∠EDB=∠B=45°,∴DE=BE,∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=4﹣2,故答案为:4﹣2.15.【解答】解:∵OA1=1,∴由勾股定理可得OA2==,OA3=,…,∴OA n=,∴在线段OA1,OA2,OA3,…,OA10中,完全平方数有1,4,9,故长度为整数的线段有3条.故答案为:3.三.解答题16.【解答】解:∵AD⊥BC,∴∠ADB=90°,∵AB=13,BD=5,∴AD===12,∵CD=9,∴BC=BD+CD=14,∴△ABC的面积=BC•AD=×14×12=84,∴△ABC的面积为84.17.【解答】解:在Rt△ABC中,∠ACB=90°,由勾股定理得:BC==8(cm),当AB=AP时,由△ABC≌△APC可知:PC=BC=8cm,∴BP=16cm,∴t=16,当BA=BP时,BP=10cm,∴t=10,当P A=PB时,设BP=xcm,在Rt△ACP中,由勾股定理得:(8﹣x)2+62=x2,∴x=,∴BP=cm,∴t=,故t的取值为:16或10或.18.【解答】解:(1)在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=,∴(AC+BC)2=AC2+BC2+2AC•BC=8+4,∵AB=2,∴AB2=8,∴AC•BC=2,∴△ABC的面积=AC•BC=;(2)∵△ABC的面积=AC•BC=,CD⊥AB,∴AB•CD=,∴CD==.19.【解答】解:(1)∵AC=5,CE=1,AE=,∴AC2+CE2=26,AE2=26,∴AC2+CE2=AE2,∴∠ACE=90°,∵BC=CE+BE=5,AC=5,∴AB===5;(2)①当BF=BE=4时,AF=AB﹣BF=5﹣4;②如图,当BF=EF时,有∠FEB=∠B=45°,∴∠BFE=90°,BF=EF,设BF=EF=x,∵BF2+EF2=BE2,∴x2+x2=42,∴x=2(负值舍去),∴AF=AB﹣BF=5﹣2=3;③如图,当BE=EF时,有∠EFB=∠B=45°,∴∠BEF=90°,EF=BE=4,∴BF==4,∴AF=AB﹣BF=5.综上所述,AF的长为5﹣4或3或.20.【解答】解:(1)当0<t<5时,点M在BC上,点N在AB上,BN=4t,MB=20﹣4t,△BMN为直角三角形,则∠BNM=90°或∠NMB=90°,①当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°,∴BM=2BN,∴20﹣4t=2×4t,解得:t=;②当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°,∴BN=2BM,∴4t=2(20﹣4t),解得:t=.③点M在AC上,点N在AB上,AN=CM=40﹣4t,(80﹣8t)+(40﹣4t)=20,t=(不合题意舍去),综上,当t=或时,△BMN为直角三角形;(2)点N第一次到达C点时,M,N两点同时停止运动,则0<t≤10,①当0<t≤5时,当MB=BN时,△BMN为等边三角形,此时,4t=20﹣4t,解得:t=;②当5<t≤10时,△BMN为等边三角形,只能点M与点A重合,点N与点C重合,此时,t=10,综上,t=或t=10时,△BMN为等边三角形.。

北师版八年级数学上册 1.1.1 勾股定理 能力提升卷

北师版八年级数学上册    1.1.1 勾股定理    能力提升卷

1/8
7. 如图,在 Rt△ABC 中,AB=4,分别以 AC,BC 为直径作半圆,两个半圆形的面积分别记为 S1, S2,则 S1+S2 的值等于( ) A.2π B.4π C.8π D.16π
8.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载,如图①,以直 角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形 内.若知道图中阴影部分的面积,则一定能求出( ) A.直角三角形的面积 B.最大正方形的面积 C.较小两个正方形重叠部分的面积 D.最大正方形与直角三角形的面积和
20.(6 分) 如图,在△ABC 中,∠C=90°,AC=4,BC=8. (1)用直尺和圆规作 AB 的垂直平分线(保留作图痕迹,不要求写作法); (2)若(1)中所作的垂直平分线交 BC 于点 D,求 BD 的长.
21.(6 分) 如图,在△ABC 中,∠ACB=90°,CD⊥AB 于点 D,若 AB=5 cm,BC=3 cm,求 BD 的长.
4/8
22.(6 分) 用如图①的四个形状、大小完全一样的直角三角形拼一拼,摆一摆,可以摆成如图②的正 方形.请你用这个图形验证勾股定理.
图①
图②
23.(6 分) 在一棵树的 10 m 高处有两只猴子,其中一只爬下树走向离树 20 m 的池塘,而另一只爬向 树顶后直扑池塘(运动路线看作直线),如果两只猴子经过的距离相等,问这棵树有多高?
(2)如图,连接 AD,由作图可知 AD=BD,设 BD=x, 则 AD=x,CD=8-x.因为∠C=90°, 所以由勾股定理可得 AC2+CD2=AD2. 因为 AC=4,所以 42+(8-x)2=x2,解得 x=5. 所以 BD=5. 21. 解:由勾股定理可以得到 AB2=AC2+BC2,∴AC=4, 由 S△ABC=12AC·BC=12AB·CD, 即12×4×3=12×5×CD,∴CD=152, ∴BD2=BC2-CD2=8215, ∴BD=95(cm) 22. 证明:因为图②中大正方形的面积可以表示为 c2+4×12ab,也可以表示为(a+b)2, 所以 c2+4×12ab=(a+b)2. 整理,得 c2+2ab=a2+2ab+b2. 即 a2+b2=c2. 23. 解:如图,点 B 为树顶,D 处有两只猴子,则 AD=10 m,C 为池塘,则 AC=20 m. 设 BD 的长为 x m,则树的高度为(10+x)m. ∵AC+AD=BD+BC,∴BC=20+10-x=30-x. 在△ACB 中,∠A=90°,∴AC2+AB2=BC2, 即 202+(10+x)2=(30-x)2, 解得 x=5. 即树高为 15 m 24. 解:在△ABC 中,作 AD⊥BC 于点 D,设 BD=x,则 CD=14-x. 由勾股定理,得 AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,

北师大版八年级上册数学第一章《勾股定理》课时提升作业

北师大版八年级上册数学第一章《勾股定理》课时提升作业

北师大版八年级上册数学《勾股定理》课时提升作业(30分钟60分)姓名:班级:等级:知识储备:1.【知识归纳】直角三角形的两种判别方法(1)角:只需判断最大的角是否是直角.(2)边:只需判断三边的平方是否满足a2+b2=c2(c为最长边).一.选择题(每小题3分,共15分)1.满足下列条件的△ABC,不是直角三角形的是( )A.b2=c2-a2B.a∶b∶c=3∶4∶5C.∠C=∠A-∠BD.∠A∶∠B∶∠C=12∶13∶152.三角形的三边长分别为6,8,10,它的最短边上的高为( )A.6B.4.5C.2.4D.83.一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,则木板的面积为( )A.60B.30C.24D.124.已知正整数a,b,c为一组勾股数,则下列各组数一定是勾股数的是( )A.a+1,b+1,c+1B.a2,b2,c2C.2a,2b,2cD.a-1,b-1,c-15. 如图,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,不是直角三角形的是( )二.填空题(每小题3分,共15分)1.若△ABC的三边a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC的形状为________.2.已知a,b,c是△ABC的三边长,且满足(c2-a2-b2)2+|a-b|=0.则△ABC的形状为________.3.如图为一个棱长为1的正方体的展开图,A,B,C是展开后小正方形的顶点,则∠ABC的度数为________.4.观察下列勾股数第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第4组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是________;第n组勾股数是________.5. 如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,则三角形为________三角形.三.解答题(共30分)1.(7分)如图,在四边形ABCD中,AB∶BC∶CD∶DA=2∶2∶3∶1,且∠ABC= 90°,求∠DAB的度数.2.(7分)在三角形ABC中,D为BC的中点,AB等于5,AD等于6,AC等于13,试判断AD与AB的位置关系.3(8分)如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36cm,点P 从点A开始沿AB边向B点以每秒1cm的速度移动,点Q从点B开始沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为多少?4.(8分)如图,已知△ABC,AB=8,BC=10,AC=6.(1)判断△ABC是什么三角形?(2)用尺规作图法作出边BC的垂直平分线,交BC于点D,交AB于点E.(3)连接CE,求CE的长.北师大版八年级上册数学《勾股定理》课时提升作业(解析版)(30分钟60分)一.选择题(每小题3分,共15分)1.满足下列条件的△ABC,不是直角三角形的是( )A.b2=c2-a2B.a∶b∶c=3∶4∶5C.∠C=∠A-∠BD.∠A∶∠B∶∠C=12∶13∶15【解析】选D.A选项,由b2=c2-a2得a2+b2=c2,所以三角形是直角三角形;B选项,设a=3x,则b=4x,c=5x,经计算知a2+b2=c2,所以三角形是直角三角形;C选项,由∠C=∠A-∠B,知∠C+∠B=∠A,又∠A+∠B+∠C=180°,所以2∠A=180°,即∠A=90°,所以三角形是直角三角形;D选项,三角形不是直角三角形.2.三角形的三边长分别为6,8,10,它的最短边上的高为( )A.6B.4.5C.2.4D.8【解析】选D.由题意知,62+82=102,所以根据勾股定理的逆定理,三角形为直角三角形.长为6的边是最短边,其高为另一直角边,即长为8.3.一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,则木板的面积为( )A.60B.30C.24D.12【解析】选C.连接AC,由勾股定理得AC=5,因为AC2+DC2=AD2,所以∠ACD=90°,所以这块木板的面积=AC×CD-AB×BC=×5×12-×4×3=24.4.已知正整数a,b,c为一组勾股数,则下列各组数一定是勾股数的是( )A.a+1,b+1,c+1B.a2,b2,c2C.2a,2b,2cD.a-1,b-1,c-1【解析】选C.因为正整数a,b,c为一组勾股数,所以a2+b2=c2(假设c最大),又因为(2a)2+(2b)2=(2c)2,所以2a,2b,2c一定是一组勾股数,故C正确.5. 如图,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,不是直角三角形的是( )【解析】选A.设每个小正方形的边长是1,计算各个选项中三角形三边的平方,得只有A选项三边不满足a2+b2=c2,所以不是直角三角形.二.填空题(每小题3分,共15分)1.若△ABC的三边a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC的形状为________. 【解析】因为(a-b)(a2+b2-c2)=0,所以a=b或a2+b2=c2.当只有a=b成立时,该三角形是等腰三角形.当只有a2+b2=c2成立时,该三角形是直角三角形.当两个条件同时成立时,该三角形是等腰直角三角形.答案:等腰三角形或直角三角形或等腰直角三角形2.已知a,b,c是△ABC的三边长,且满足(c2-a2-b2)2+|a-b|=0.则△ABC的形状为________.【解析】由(c2-a2-b2)2+|a-b|=0可得c2-a2-b2=0,a-b=0,所以c2=a2+b2,a=b.即△ABC为等腰直角三角形.答案:等腰直角三角形3.如图为一个棱长为1的正方体的展开图,A,B,C是展开后小正方形的顶点,则∠ABC的度数为________.【解析】连接AC,则AC2=22+1=5,BC2=22+1=5,AB2=32+1=10.因为AC2+BC2=AB2,所以△ABC为直角三角形.又因为AC2=BC2,所以AC=BC,所以∠CAB=∠ABC=45°.答案:45°4.观察下列勾股数第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第4组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是________;第n组勾股数是________.【解析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数:2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113;第n组勾股数是2n+1,2n(n+1),2n(n+1)+1.答案:15,112,113 2n+1,2n(n+1),2n(n+1)+1当n=10时,这组勾股数分别是2×10+1=21,2×10×11=220,2×10×11+1=221. 答案:21,220,2215. 如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,则三角形为________三角形.【解析】因为a2+b2+c2+50=6a+8b+10c,所以a2+b2+c2-6a-8b-10c+50=0,即a2-6a+9+b2-8b+16+c2-10c+25=0,所以(a-3)2+(b-4)2+(c-5)2=0,所以a=3,b=4,c=5,因为a2+b2=c2,所以三角形为直角三角形.答案:直角三.解答题(共30分)1.(7分)如图,在四边形ABCD中,AB∶BC∶CD∶DA=2∶2∶3∶1,且∠ABC= 90°,求∠DAB的度数.【解析】设AB=2a,BC=2a,CD=3a,DA=a.因为∠ABC=90°,AB=BC,所以∠BAC=∠BCA=45°,在Rt△ABC中,AC2=AB2+BC2=(2a)2+(2a)2=8a2,又AD2=a2,CD2=(3a)2=9a2.所以AC2+AD2=CD2,所以△ACD是以∠CAD为直角的直角三角形,所以∠CAD=90°,所以∠DAB=∠BAC+∠CAD=45°+90°=135°.2.(7分)在三角形ABC中,D为BC的中点,AB等于5,AD等于6,AC等于13,试判断AD与AB的位置关系.【解析】延长AD至点E,使DE=AD,并连接BE,因为D为BC的中点,所以CD=BD,因为∠ADC=∠EDB,所以△ADC≌△EDB,所以EB=AC=13,因为AD=6,所以AE=12,因为52+122=132,即AB2+AE2=EB2,所以∠EAB=90°,所以AD⊥AB.3(8分)如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36cm,点P 从点A开始沿AB边向B点以每秒1cm的速度移动,点Q从点B开始沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为多少?【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9cm,BC=12cm,AC=15cm.因为AB2+BC2=AC2,所以△ABC是直角三角形,过3秒时,BP=9-3×1=6(cm),BQ=2×3=6(cm),所以S△BPQ=BP·BQ=×6×6=18(cm2).4.(8分)如图,已知△ABC,AB=8,BC=10,AC=6.(1)判断△ABC是什么三角形?(2)用尺规作图法作出边BC的垂直平分线,交BC于点D,交AB于点E.(3)连接CE,求CE的长.【解析】(1)因为AB=8,BC=10,AC=6,所以102=82+62,即BC2=AB2+AC2,所以△ABC是直角三角形.(2)作图如图1:(3)连接CE,如图2:设CE为x,因为边BC的垂直平分线交BC于点D,交AB于点E,所以CE=BE=x,在Rt△ACE中,CE2=AE2+AC2,即x2=(8-x)2+62,解得x=6.25,所以CE=6.25.。

北师大版八年级数学上册 第1章 勾股定理 章节测试卷 (含解析)

北师大版八年级数学上册 第1章  勾股定理 章节测试卷 (含解析)

第1章《勾股定理》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.古希腊哲学家柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17…若此类勾股数的勾为2m(m≥3,m为正整数),则其弦(结果用含m的式子表示)是( )A.4m2−1B.4m2+1C.m2−1D.m2+12.如图,五个正方形放在直线MN上,正方形A、C、E的面积依次为3、5、4,则正方形B、D 的面积之和为()A.11B.14C.17D.203.观察下列各方格图中阴影部分所示的图形(每个方格的边长为1),如果将它们沿方格边线或对角线剪开后无缝拼接,不能拼成正方形的是()A.B.C.D.4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A.2.2米B.2.3米C.2.4米D.2.5米5.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()A.2B.52C.5D.2546.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为92,则BD2的值为()A.13B.12C.11D.107.图中不能证明勾股定理的是()A. B.C.D.8.如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点A表示的数是-2,AC=BC=BD=1,若以点A为圆心,AD的长为半径画弧,与数轴交于点E(点E位于点A右侧),则点E表示的数为()A.3B.−2+3C.−1+3D.−39.如图,一个底面周长为24cm,高为5cm的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为()A.12cm B.13cm C.25cm D.26cm10.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用下图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI 的面积为S1,正方形BCGF的面积为S2,矩形AKJD的面积为S3,矩形KJEB的面积为S4,下列结论中:①BI⊥CD;②S1∶S△ACD=2∶1;③S1-S4=S3-S2;④S1S4=S3S2,正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.小明将4个全等的直角三角形拼成如图所示的五边形,添加适当的辅助线后,用等面积法建立等式证明勾股定理.小明在证题中用两种方法表示五边形的面积,分别是S1= ,S2= .12.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离 km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使CD=13,则AD 的长为 km.13.如图,图1是第七届国际数学教育大会(ICME−7)会徽图案、它是由一串有公共顶点O的直角三角形(如图2)演化而成的.如果图2中的OA1=A1A2=A2A3=⋅⋅⋅=A7A8=1,若S1代表△A1OA2的面积,S2代表△A2OA3的面积,以此类推,则S10的值为.14.把由5个小正方形组成的十字形纸板(如图1)剪开,以下剪法中能够将剪成的若干块拼成一个大正方形的有(填写序号).15.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点E是BC的中点,动点P从A 点出发以每秒1cm的速度沿A→C→B运动,设点P运动的时间是t秒,那么当t=,△APE的面积等于12.16.已知△ABC中,AC=8,AB=41,BC边上的高AG=5,D为线段AC上的动点,在BC上截取CE=AD,连接AE,BD,则AE+BD的最小值为.三.解答题(共7小题,满分52分)17.(6分)如图,在△ABC中,AD为BC边上的中线,AB=3,AC=5,AD=2,求证:AD⊥AB.18.(6分)如图,∠AOB=90°,OA=8m,OB=3m,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的路程与机器人行走的路程相等,那么机器人行走的路程BC是多少?19.(8分)以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(5,12,13),(7,24,25)等.(1)根据上述三组勾股数的规律,写出第四组勾股数组;(2)用含n(n为正整数)的数学等式描述上述勾股数组的规律,并证明.20.(8分)现有一个长、宽、高分别为5dm、4dm、3dm的无盖长方体木箱(如图,AB=5dm,BC=4dm,AE=3dm).(1) 求线段BG的长;(2) 现在箱外的点A处有一只蜘蛛,箱内的点C处有一只小虫正在午睡,保持不动.请你为蜘蛛设计一种捕虫方案,使得蜘蛛能以最短的路程捕捉到小虫.(木板的厚度忽略不计)21.(8分)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图(1),把△ABC沿直线DE折叠,使点A与点B重合,求BE的长;(2)如图(2),把△ABC沿直线AF折叠,使点C落在AB边上G点处,请直接写出BF的长.22.(8分)如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形如图2.(1)你能在3×3方格图(图3)中,连接四个格点(网格线的交点)组成面积为5的正方形吗?若能,请用虚线画出.(2)你能把十个小正方形组成的图形纸(图4),剪开并拼成正方形吗?若能,请仿照图2的形式把它重新拼成一个正方形.(3)如图,是由两个边长不等的正方形纸片组成的一个图形,要将其剪拼成一个既不重叠也无空隙的大正方形,则剪出的块数最少为________块.请你在图中画出裁剪线,并说明拼接方法.23.(8分)公元3世纪初,我国学家赵爽证明勾定理的图形称为“弦图”.1876年美国总统Garfeild用图1(点C、点B、点C′三点共线)进行了勾股定理的证明.△ACB与△BC′B′是一样的直角三角板,两直角边长为a,b,斜边是c.请用此图1证明勾股定理.拓展应用l:如图2,以△ABC的边AB和边AC为边长分别向外作正方形ABFH和正方形ACED,过点F、E分别作BC的垂线段FM、EN,则FM、EN、BC的数量关系是怎样?直接写出结论 .拓展应用2:如图3,在两平行线m、n之间有一正方形ABCD,已知点A和点C分别在直线m、n 上,过点D作直线l∥n∥m,已知l、n之间距离为1,l、m之间距离为2.则正方形的面积是 .答案解析一.选择题1.D【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【详解】解:∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2−1,∴弦是a+2=m2−1+2=m2+1,故选:D.2.C【分析】如图:由题意可得∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AAC=CE,再根据全等三角形和勾股定理可得S B=S C+S A=5+3=8,同理可得S D=S C+ S E=5+4=9,最后求正方形B、D的面积之和即可.【详解】解:如图:由题意可得:∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AC=CEA∴∠BAC+∠ACB=90°,∠DCE+∠ACB=90°,∴∠BAC=∠DCE,∴△ABC≅△CDE,∴DE=BC,∵∠ABC=90°,∴AC2=BC2+AB2,∴AC2=DE2+AB2,即S B=S C+S A=5+3=8,同理:S=S C+S E=5+4=9;D∴S+S B=8+9=17.D故选C.3.C【分析】根据网格的特点分别计算阴影部分的面积即可求得拼接后的正方形的边长,根据网格的特点能否找到构成边长的格点即可求解.【详解】解:A. 阴影部分面积为4,则正方形的边长为2,故能拼成正方形,不符合题意;B.阴影部分面积为10,则正方形的边长为10,∵12+32=10,故能拼成正方形,不符合题意;C.阴影部分面积为11,则正方形的边长为11,根据网格的特点不能构造出11的边,故不能拼成正方形,符合题意D. 阴影部分面积为13,则正方形的边长为13,∵22+32=13,故能拼成正方形,不符合题意;故选C.4.A【分析】将梯子斜靠在墙上时,形成的图形看做直角三角形,根据勾股定理,直角边的平方和等于斜边的平方,可以求出梯子的长度,再次利用勾股定理即可求出梯子底端到右墙的距离,从而得出答案.【详解】如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,AB2=AC2+BC2∴AB2=0.72+ 2.42= 6.25在Rt△A‘BD中,∵∠A’BD=90°,A’D=2米,BD2+A'D2=A'B2∴BD2+22= 6.25∴BD2= 2.25∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米即小巷的宽度为2.2米,故答案选A5.B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE中,勾股定理列出方程,解方程即可求解.【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=AC2−A B2=52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.6.A【分析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD即可.【详解】解:由折叠得,AB=AE,∠BAF=∠EAF,在△BAF和△EAF中,{AB=AE∠BAF=∠EAFAF=AF,∴△BAF≌△EAF(SAS),∴BF=EF,∴AF⊥BE,又∵AF=4,AB=5,∴BF=AB2−A F2=3,在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴S△ADE =12AD⋅EF=12DG⋅h+12EG⋅h,即S△ADG +S△AEG=12AD⋅EF,∵S△AEG =12⋅GE⋅h=92,S△ADG=S△AEG,∴S△ADG +S△AEG=92+92=9,∴9=12AD⋅3,∴AD=6,∴FD=AD−AF=6−4=2,在Rt△BDF中,BF=3,FD=2,∴BD2=BF2+FD2=32+22=13,故选:A.7.A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论a2+b2=c2,找出不能证明的那个选项.【详解】解:A选项不能证明勾股定理;B选项,通过大正方形面积的不同表示方法,可以列式(a+b)2=4×12ab+c2,可得a2+b2 =c2;C选项,通过梯形的面积的不同表示方法,可以列式(a+b)22=2×12ab+12c2,可得a2+b2=c2;D选项,通过这个不规则图象的面积的不同表示方法,可以列式c2+2×12ab=a2+b2+2×12ab,可得a2+b2=c2.故选:A.8.B【详解】根据勾股定理得:AB=2,AD=3,∴AE=3,∴OE=2−3,∴点E表示的数为−2+3.故答案为:B.9.B【分析】先将圆柱圆的侧面沿着点A所在的棱线剪开,得到长方形,得到AC=5cm,BC=242=12 cm,由此即可以利用勾股定理求出蚂蚁爬行的最短路线AB的长.【详解】如图,沿着点A所在的棱线剪开,此时AC=5cm,BC=242=12cm,∴蚂蚁爬行的最短路线AB=AC2+BC2=52+122=13cm,故选:B.10.D【分析】利用正方形的性质证明△ABI≌△ADC,得出∠AIB=∠ACD,即可得出∠CNI=∠NAI,即可判断①,利用△ABI≌△ADC,即可求出△ABI的面积,即可判断②,由勾股定理和S3+S4=S▱ABED,即可判断③,由③S1-S4=S3-S2,两边平方,根据勾股定理可得AC2−B C2=AK2−B K2,然后计算S12+S42−(S22+S32)=0,即可判断④.【详解】解:∵四边形ACHI和四边形ABED为正方形,∴AI=AC,AD=AB,∠CAI=∠BAD=90°,∵∠BAI=∠BAC+∠CAI,∠DAC=∠BAC+∠BAD,∴∠BAI=∠DAC,∴△ABI≌△ADC(SAS),∴∠AIB=∠ACD,∵∠CNI=∠CAI=90°,∴BI⊥CD,故①正确;∵S△ACD=S△AIB=12×AI×AC,S正方形ACHI=S1=AI×AC,∴S1:S△ACD=2:1,故②正确;∵S1=AC2,S2=BC2,S3+S4=S正方形ADEB=AB2,AC2+BC2=AB2,∴S1+S2=S3+S4,∴S1-S4=S3-S2,故③正确;∵ S1-S4=S3-S2,∴S12+S42−2S1S4=S22+S32−2S2S3,∵S1=AC2,S2=BC2,S3=AK•KJ= AK•AB,S4=BK•KJ=BK•AB,∴S12+S42=AC4+AB2BK2,S22+S32=BC4+AK2AB2,∵AB2=AC2+ BC2,AC2=AK2+CK2,BC2=BK2+CK2,∴AC2−A K2=BC2−B K2,即AC2−B C2=AK2−B K2,∴S12+S42−(S22+S32)=AC4+AB2BK2−(BC4+AK2AB2)=AC4−B C4+AB2(BK2−A K2)=(AC2+BC2)(AC2−B C2)−A B2(AC2−B C2) =AB2(AC2−B C2)−AB2(AC2−B C2)=0,∴S1•S4=S2•S3,故④正确,二.填空题11.c2+ab a2+b2+ab【详解】解:如图所示:S1=c2+12ab×2=c2+ab,S2=a2+b2+12ab×2=a2+b2+ab.故答案为c2+ab,a2+b2+ab.12. 20 13【分析】(1)根据两点的纵坐标相同即可得出AB的长度;(2)过C作AB的垂线交AB于点E,连接AD,构造方程解出即可.【详解】(1)根据A、B两点的纵坐标相同,得AB=12−(−8)=20故答案为:20(2)如图:设AD=a,根据点A、B的纵坐标相同,则AE=12,CE=1−(−17)=18由ΔADE是直角三角形,得:(CE−CD)2+AE2=a2∴52+122=a2故答案为:13 13.102【分析】利用勾股定理依次计算出OA2=2,OA3=3,OA4=4=2,.. OA n=n,然后依据计算出前几个三角形的面积,然后依据规律解答求得S10即可.【详解】由题意得:OA2=OA12+A1A22=12+12=2,OA3=OA22+A2A32=12+(2)2=3,OA4=OA32+A3A42=12+(3)2=4=2,∴OAn=n,∴OA10=10,∴S10=12OA10⋅A10A11=12×10×1=102,故答案为:102.14.①③【分析】设小正方形的边长为1,则5个小正方形的面积为5,进而可知拼成的大正方形的边长为5,再根据所画虚线逐项进行拼接,看哪种剪法能拼成边长为5的正方形即可.【详解】解:按照①中剪法,在外围四个小正方形上分别剪一刀然后放到相邻的空处,可拼接成边长为5的正方形,符合题意;如下图所示,按照③中剪法,通过拼接也可以得到边长为5的正方形,符合题意;按照②中剪法,无法拼接成边长为5的正方形,不符合题意;故选①③.故答案为:①③.15.3或18或22【分析】分当点P在线段AB上运动时,当点P在线段BC上运动且在点E的右边时和当点P在线段BC上运动且在点E的左边时三种情况讨论,即可求出t的值.【详解】解:∵∠C=90°,BC=16cm,AC=12cm,∴AB=AC2+BC2=162+122=20,∵点E是BC的中点,∴CE=BE=12BC=8cm,S△ACE=S△ABE=12S△ABC=12×12×12×16=48cm2.当点P在线段AC上运动时,∵△APE的面积等于12,即S△APE =14S△ACE,∴AP=14AC=3,∴t=3÷1=3秒;当点P在线段BC运动时上且在点E的右边时,,如图2所示,同理可知BP=14BE=2cm,∴t=(12+8+2)÷1=22秒;当点P在线段BC上运动且在点E的左边时,如图3所示,同理可知CP=12CE=2cm,∴t=(12+8−2)÷1=18秒;故答案为∶3或18或22.16.13【分析】通过过点A 作GC 的平行线AN ,并在AN 上截取AH =AC ,构造全等三角形,得到当B ,D ,H 三点共线时,可求得AE +BD 的最小值;再作垂线构造矩形,利用勾股定理求解即可.【详解】如图,过点A 作GC 的平行线AF ,并在AF 上截取AH =AC ,连接DH ,BH .则∠HAD =∠C .在△ADH 和△CEA 中,{AD =CE ,∠HAD =∠C ,AH =CA ,∴△ADH≌△CEA(SAS),∴DH =AE ,∴AE +BD =DH +BD ,∴当B ,D ,H 三点共线时,DH +BD 的值最小,即AE +BD 的值最小,为BH 的长.∵AG ⊥BG ,AB =41,AG =5,∴在Rt △ABG 中,由勾股定理,得BG =AB 2−A G 2=(41)2−52=4.如图,过点H 作HM ⊥GC ,交GC 的延长线于点M ,则四边形AGMH 为长方形,∴HM =AG =5,GM =AH =AC =8,∴在Rt △BMH 中,由勾股定理,得BH =BM 2+HM 2=(4+8)2+52=13.∴AE+BD的最小值为13.故答案为:13.三.解答题17.证明:如图,延长AD至点E,使得AD=DE,连接CE,∵AD为BC边上的中线,∴BD=DC,又∵AD=DE,∠ADB=∠EDC,∴△ABD≌△ECD,∴AB=EC=3,∠BAD=∠E,又∵AE=2AD=4,AC=5,∴AC2=AE2+CE2,∴∠E=90°∴∠BAD=∠E=90°∴AD⊥AB.18.解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,设BC=AC=x m,则OC=(8-x)m,在Rt△BOC中,∵OB2+OC2=BC2,.∴32+(8-x)2=x2,解得x=7316∴机器人行走的路程BC为73m.1619.(1)解:第一组勾股数的第一个数为3=2×1+1,第二个数为4=2×1×(1+1),第三个数为4=2×(1+1)+1,第二组勾股数的第一个数为5=2×2+1,第二个数为12=2×2×(2+1),第三个数为12=2×2×(2+1)+1,第三组勾股数的第一个数为7=2×3+1,第二个数为24=2×3×(3+1),第三个数为25=2×3×(3+1)+1,所以第四组勾股数组的第一个数为2×4+1=9,第二个数为2×4×(4+1)=40,第三个数为2×4×(4+1)+1=41,∴第四组勾股数组为(9,40,41);(2)解:由(1)可知:第n组勾股数为(2n+1,2n2+2n,2n2+2n+1),证明:∵(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,(2n2+2n+1)2=(2n2+2n+1)(2n2+2n+1)=4n4+4n3+2n2+4n3+4n2+2n+2n2+2n+1=4n4+8n3+8n2+4n+1∴(2n+1)2+(2n2+2n)2=(2n2+2n+1)220.解:(1)如图,连接BG.在直角△BCG中,由勾股定理得到:BG=BC2+GC2=42+32=5(dm),即线段BG的长度为5dm;(2)①把ADEH展开,如图此时总路程为(3+3+5)2+42=137②把ABEF展开,如图此时的总路程为(3+3+4)2+52=125=55③如图所示,把BCFGF展开,此时的总路程为(3+3)2+(5+4)2=117由于117<125<137,所以第三种方案路程更短,最短路程为117.21.(1)解:∵直线DE是对称轴,∴AE=BE,∵AC=6,BC=8,设AE=BE=x,则CE=8−x在Rt△ACE中,∠C=90°,∴AC2+CE2=AE2,∴62+(8−x)2=x2,,解得x=254∴BE=254(2)解:∵直线AF是对称轴,∴AC=AG,CF=CG,∵AC=6,BC=8,设CF=CG=x,则BF=8−x,∴在Rt△ACB中,∠C=90°,AB=AC2+BC2=62+82=10,∴BG=AB−AG=4,在Rt△BGF中,∠BGF=90°,∴GF2+BG2=BF2,∴x2+42=(8−x)2,解得x=3,∴BF=8−3=5.22.解:(1)能,如图所示,正方形ABCD即为所求;(2)能,如图所示,正方形ABCD即为所求;(3)如图所示,在AB上截取AM=BE,连接DM、MF,DM、FM即为裁剪线,将△DAM拼接△DCH处,使DA与DC重合,将△MEF拼接至△HGF处,使ME和HG重合,EF与FG 重合,得到正方形DMFH,∴剪出的块数最少为5块,故答案为:5.23.如图:∵点C、点B、点B′三点共线,∠C=∠C′=90°,∴四边形ACC′B′是直角梯形,∵△ACB与△BC′B′是一样的直角三角板,∴Rt△ACB≌Rt△BC′B′,∴∠CAB=∠C′BB′,AB=BB′,∴∠CBA+∠C′BB’=90°∴△ABB′是等腰直角三角形,,所以S梯形ACC′B′=(AC+B′C′)•CC′÷2=(a+b)22S △ACB =12AC ⋅BC =12ab ,S △BC ′B ′=12ab ,S △ABB ′=12c 2,所以(a +b)22=12ab +12ab +12c 2,a 2+2ab+b 2=ab+ab+c 2,∴a 2+b 2=c 2;拓展1.过A 作AP ⊥BC 于点P ,如图2,则∠BMF =∠APB =90°,∵∠ABF =90°,∴∠BFM+∠MBF =∠MBF+∠ABP ,∴∠BFM =∠ABP ,在△BMF 和△ABP 中,{∠BFM =∠ABP ∠BMF =∠APB =900BF =AB,∴△BMF ≌△ABP (AAS ),∴FM =BP ,同理,EN =CP ,∴FM+EN =BP+CP ,即FM+EN =BC ,故答案为FM+EN =BC ;拓展2.过点D 作PQ ⊥m ,分别交m 于点P ,交n 于点Q ,如图3,则∠APD =∠ADC =∠CQD =90°,∴∠ADP+∠DAP =∠ADP+∠CDQ =90°,∴∠DAP =∠CDQ ,在△APD 和△DQC 中,{∠DAP =∠CDQ ∠APD =∠DQC AD =DC,∴△APD ≌△DQC (AAS ),∴AP =DQ =2,∵PD =1,∴AD 2=22+12=5,∴正方形的面积为 5,故答案为5.。

第1章 勾股定理 北师大版八年级数学上册能力提升(含答案)

第1章 勾股定理 北师大版八年级数学上册能力提升(含答案)

第一章勾股定理单元测试(能力提升)一、单选题1.下列各组数中,不能作直角三角形三边长的是()A.3、4、5B.5、12 、13C.7、24、25D.7、9、13【答案】D【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解:选项A:∵3²+4²=5²,∴能构成直角三角形三边,故选项A不符合题意;选项B:∵5²+12²=13²,∴能构成直角三角形三边,故选项B不符合题意;选项C:∵7²+24²=25²,∴能构成直角三角形三边,故选项C不符合题意;选项D:∵7²+9²=49+81=130≠13²,∴不能构成直角三角形三边,故选项D符合题意;故选:D【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.如图,在中,D,E分别是边BC,AC的中点,已知,,,则AB 的长为().A.B.C.10D.【答案】A设,,在和中,利用勾股定理可证得,在Rt△ABC中,利用即可求解.设,,在中,,①在中,,②①+②,,∴,在Rt△ABC中,,故选A.【点睛】本题考查了勾股定理,借助中点的定义,灵活运用勾股定理是解答的关键.3.如图正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为( )A.B.5C.D.【答案】D把此正方体的点所在的面展开,然后在平面内,利用勾股定理求点和点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于2,另一条直角边长等于3,利用勾股定理可求得.解:如图示,将正方体展开,连接、,根据两点之间线段最短,.答:蚂蚁从点爬行到点的最短距离为.故选:D.【点睛】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.4.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a、b、c 三个正方形的面积之和为()A.11B.15C.10D.22【答案】B【解析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a的面积等于1号的面积加上2号的面积,b的面积等于2号的面积加上3号的面积,c的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.利用勾股定理可得:,,∴故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.5.如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则()A.甲、乙都可以B.甲可以,乙不可以C.甲不可以,乙可以D.甲、乙都不可以【答案】A【解析】直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.解:如图所示:可得甲、乙都可以拼一个面积是5的大正方形.故选:.【点睛】此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.6.下列命题①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是( )A.①②B.①③C.①④D.②④【答案】C【解析】分别利用勾股数的定义、勾股定理以及等腰直角三角形的边的关系分别判断得出即可.解:①如果a,b,c 为一组勾股数,那么4a,4b,4c仍是勾股数,是真命题;②如果三角形的三个内角的度数比是3:4:5,则这三角形的三个内角度数为:45°,60°,75°,因此这个三角形不是直角三角形,原命题是假命题;③如果一个三角形的三边是12、25、21,因为,故此三角形不是直角三角形,故原命题是假命题;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1,是真命题;故选:C.【点睛】此题主要考查了命题与定理,熟练掌握勾股定理以及等腰直角三角形的性质是解题关键.7.如图,在中,是边上的高线,是边上的中线,于点,.若,则的面积是()A.B.C.D.【答案】D【解析】连接DE,证明DE=DC=5,推出AB=10,AD=6,进而求出的面积即可得出结果.如图,连接,作于F点,是边上的高线,在中,根据“斜中半”定理可知,,,,为等腰三角形,且由勾股定理知:,,,是边上的中线,,,得,,,在中,由“三线合一”性质,知G为CE的中点,,故选:D.【点睛】本题考查了直角三角形斜边中线的性质,解直角三角形,三角形的面积等知识点,解决问题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为( )A.10m B.11m C.12m D.13m【答案】B【解析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=xm,AB=(x﹣1)m,BC=5m,在Rt△ABC 中利用勾股定理可求出x.设旗杆高度为xm,可得AC=AD=xm,AB=(x﹣1)m,BC=5m,根据勾股定理得,绳长的平方=x2+22,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11,故选:B.【点睛】此题考查勾股定理,题中有两种拉绳子的方式,故可以构建两个直角三角形,形状不同大小不同但都是直角三角形且绳子的长度是不变的,因此根据绳子建立勾股定理的等式,由此解答问题.9.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为,则BD的长为()A.B.C.D.【答案】A【解析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD 即可.解:由折叠得,,∠BAF=∠EAF,在△BAF和△EAF中,∴△BAF≌△EAF(SAS)∴BF=EF∴AF⊥BE又∵AF=4,AB=5,∴在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴即∵,∴∴∴∴在Rt△BDF中,,,∴故选:A【点睛】本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题.10.如图,在中,点D是边上的中点,连接,将沿着翻折,得到,与交于点F,连接.若,则点C到的距离为()A.B.C.D.【答案】C【解析】连接BE,延长CD交BE于G点,过C作CH⊥AB于H,由折叠的性质及中点性质,可得△AEB是直角三角形,且G点是BE的中点,从而CG⊥BE,由勾股定理可求得BE的长,则根据△ABC的面积相等一方面可表示为,另一方面其面积为△BCD与△ACD面积的和,从而可求得CH的长.连接BE,延长CD 交BE于G点,过C作CH⊥AB于H,如图所示由折叠的性质,得:BD=ED,CB=CE∴CG是线段BE的垂直平分线∴BG=BE∵D点是AB的中点∴BD=AD,∴AD=ED∴∠DAE=∠DEA∵BD=ED∴∠DEB=∠DBE∵∠DAE+∠BEA+∠DBE=180°即∠DAE+∠DEA+∠DEB+∠DBE=180°∴2∠DEA+2∠DEB=180°∴∠DEA+∠DEB=90°即∠AEB=90°在Rt△AEB中,由勾股定理得:∴∵∴∴故选:C.【点睛】本题考查了直角三角形的判定、勾股定理、线段垂直平分线的判定,利用面积相等求线段的长,关键是得出CG⊥BE,从而可求得△BCD的面积也即△ABC的面积.二、填空题11.如图,已知OA=AB,数轴上点C表示的实数是_____________,点E表示的实数是____________.【答案】【解析】利用勾股定理求出OB,即可得到点C表示的实数;利用勾股定理求出OD可得到点E表示的实数.解:由题意得:,∴,即点C表示的实数是,∴,∴,即点E表示的实数是,故答案为:,.【点睛】本题考查了勾股定理与无理数,熟练应用勾股定理是解题关键.12.如图,在△ABC中,∠A=30°,∠B=90°,BC=6, 一个边长为2的正方形DEFH沿边CA方向向下平移,平移开始时点F与点C重合,当正方形DEFH的平移距离为__________时,有DC2=AE2+BC2成立,【答案】【解析】连接CD,设平移的距离为x,则CF=x,根据勾股定理得到CD2=22+(x+2)2,由∠A=30°,∠B=90°,BC=6,得到AC=12,AE=12-2-x=10-x,再根据DC2=AE2+BC2列出方程即可求解.连接CD,设平移的距离为x,则CF=x,根据勾股定理得到CD2=22+(x+2)2,∵∠A=30°,∠B=90°,BC=6,∴AC=12,AE=12-2-x=10-x,∴AE2+BC2=(10-x)2+62,∵DC2=AE2+BC2∴22+(x+2)2=(10-x)2+62,解得x=【点睛】此题主要考查勾股定理的应用,解题的关键是构造直角三角形,利用勾股定理进行求解.13.若直角三角形的三边分别为a、a+b、a+2b,则的值为___【答案】3或-5【解析】若b是正数,则a、a+b、a+2b中a+2b最大,即a+2b是斜边,由勾股定理可得(a+2b) 2=a2+(a+b) 2,化简得a2-2ab-3b2=0 ,所以(a+b)(a-3b)=0 ,又a+b是一条直角边,因此a+b>0,所以a=3b>0,即=3 ;若b是负数,则a、a+b、a+2b中a最大,即a是斜边,由勾股定理可得a2=(a+b) 2+(a+2b) 2,化简得a2+6ab+5b2=0 ,即(a+b)(a+5b)=0 ,同上a+b>0,所以a=-5b,即=-5.所以的值为3或-5.点睛:本题考查了勾股定理的应用,正确分类讨论是解决本题的关键.14.如图,在中于点D,点P是线段AD上一个动点,过点P作于点E,连接PB,则的最小值为________.【解析】根据题意点B与点C关于AD对称,所以过点C作AB的垂线,与AD的交点即点P,求出CE即可得到答案∵∴点B与点C关于AD对称过点C作CE⊥AB于一点即为点P,此时最小∵∴BD=2在Rt△ABC中,∵S△ABC=∴得故此题填【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.【答案】0.5【解析】结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案为0.5.点睛:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.16.如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,则AB=_____.【答案】21【解析】在AB上截取AE=AD,连接CE,过点C作CF⊥AB于点F,先证明△ADC≌△AEC,得出AE=AD=9,CE=CD=BC=10的长度,再设EF=BF=x,在Rt△CFB和Rt△CFA中,由勾股定理求出x,再根据AB=AE+EF+FB求得AB的长度.如图所示,在AB上截取AE=AD,连接CE,过点C作CF⊥AB于点F,∵AC平分∠BAD,∴∠DAC=∠EAC.在△AEC和△ADC中,∴△ADC≌△AEC(SAS),∴AE=AD=9,CE=CD=BC =10,又∵CF⊥AB,∴EF=BF,设EF=BF=x.∵在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=102-x2,∵在Rt△CFA中,∠CFA=90°,∴CF2=AC2-AF2=172-(9+x)2,即102-x2=172-(9+x)2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.17.定义:如图,点、点把线段分割成和,若以为边的三角形是一个直角三角形,则称点、点是线段的勾股分割点.已知点点是线段的勾股分割点,,则_____.【答案】或【解析】①当MN为最长线段时,由勾股定理求出BN;②当BN为最长线段时,由勾股定理求出BN即可.解:当为最长线段时,点是线段的勾股分割点,;当为最长线段时,点是线段的勾股分割点,.综上所述:或.故答案为:或.【点睛】本题考查了勾股定理,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,注意分类思想的应用.18.如图,在一次测绘活动中,在港口A的位置观测停放于B、C两处的小船,测得船B在港口A北偏东75°方向12海里处,船C在港口A南偏东15°方向9海里处,则船B与船C之间的距离为__________海里.【答案】【解析】根据题目中的已知角度,求出,再利用勾股定理列方程计算.由题意知,,在中,,,则,解得:故答案为:15【点睛】本题考查了勾股定理的应用,突破口在于找到直接三角形.19.如图,长方体的底面边长分别为1cm 和4cm,高为6cm.如果用一根细线从点A 开始经过4 个侧面缠绕n 圈到达点B,那么所用细线最短需要_______________cm.(结果用含n 的代数式表示)【答案】2【解析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短结合勾股定理解答.解:将长方体展开,连接A、B.从点A开始经过4个侧面缠绕n圈到达点B,相当于两条直角边分别是10n和6,根据两点之间线段最短,则AB==2cm.故填:2.【点睛】本题主要考查平面展开−最短路径问题,解题的关键是得到两条直角边分别是10n和6,根据两点之间线段最短,运用勾股定理进行解答.20.如图,已知,过作,且;再过作且;又过作且;又过作且;……,按照这种方法依次作下去得到一组直角三角形,,,,……,它们的面积分别为,,,,……,那么______.【答案】.【解析】利用勾股定理解直角三角形,然后利用三角形面积公式计算三角形面积,从而发现规律.解:由题意可得在中,∴同理可得:…∴故答案为:【点睛】本题考查勾股定理解直角三角形及数字的规律探索,准确利用勾股定理及三角形面积公式进行计算是解题关键.21.如图,四边形ABCD中,点E在CD上,交AC于点F,,若,,则__________.【答案】7【解析】证明△ABF≌△DCA可得AD=AF,AC=BF,过点D作DG垂直于AC于点G,可得DG=GC=3,GF=GC-FC=1,在△ADG中利用勾股定理即可求得AD,从而求得AC.解:∵BE∥AD,∴∠AFB=∠CAD,∵,∴△ABF≌△DCA(AAS),∴AD=AF,AC=BF,过点D作DG垂直于AC于点G,∠ACD=45°,,∴DG=GC=3,∴GF=GC-FC=3-2=1,设AD=AF=x,则AG=x-1,由勾股定理得32+(x-1)2=x2,解得x=5,∴AD=5,BF=AC=AF+CF=5+2=7,故答案为:7.【点睛】此题考查勾股定理以及全等三角形的判定和性质,关键是根据全等三角形的判定和性质解答.22.如图,中,,的角平分线,相交于点P,过P作交的延长线于点F,交于点H,则下列结论:①;②;③;④平分;其中正确的结论是___________.(填正确结论的序号)【答案】①②③【解析】由三角形的角平分线的含义结合三角形的内角和定理可判断①,先证明△ABP≌△FBP(ASA)与△APH≌△FPD(ASA),结合可判断②,由△ABP≌△FBP,△APH≌△FPD,可得S△APB=S△FPB,S△APH=S△FPD,再证明HD∥EP,可判断③,若DH平分∠CDE,推导DE∥AB,这个显然与条件矛盾,可判断④;解:在△ABC中,∵∠ACB=90°,∴,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE= ,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴PH=PD,,故②正确,∵△ABP≌△FBP,△APH≌△FPD,∴S△APB=S△FPB,S△APH=S△FPD,PH=PD,∵∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD,∴HD∥EP,∴S△EPH=S△EPD,∴S△APH=S△AED,故③正确,若DH平分∠CDE,则∠CDH=∠EDH,∵DH∥BE,∴∠CDH=∠CBE=∠ABE,∴∠CDE=∠ABC,∴DE∥AB,这个显然与条件矛盾,故④错误;故答案为:①②③.【点睛】本题考查了三角形的角平分线的性质,三角形全等的判定方法,三角形内角和定理,三角形的面积,勾股定理的应用等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题23.如图,已知与有一个公共点C,其中,若,,,,.求证:.【答案】见详解.【解析】先利用勾股定理求出AC2和CE2的值,再根据勾股定理的逆定理证明△ACE为直角三角形.证明:∵,∴在中,根据勾股定理同理可求.在中∵..∴.∴为直角三角形.【点睛】本题考查勾股定理和勾股定理逆定理的综合运用,如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形为直角三角形,本题依次可证.24.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,其中∠DAB = 90°,求证:a2+b2=c2.【答案】证明见解析.【解析】根据即可得证.如图,过点D作,交BC延长线于点F,连接BD,则,由全等三角形的性质得:,,,,即,整理得:.【点睛】本题考查了勾股定理的证明,掌握“面积法”是解题关键.25.如图,某小区对位于小路AC同侧的两个喷泉A,B的管道进行铺设.供水点M在小路AC上,喷泉A,B的距离是400米,供水点M到AB的距离MN是150m,BM=250m.(1)供水点M到A,B两个喷泉铺设的管道总长是多少米?(2)改变供水M的在AC上的位置,若使管道BM最短,求出此时供水点M到A,B两个喷泉铺设的管道总长是多少米?.【答案】(1)500m;(2)560m【解析】(1)根据勾股定理依次求出BN和AM,供水管道总长即为AM+BM;(2)根据垂线段的性质可画出对应图,再根据勾股定理分别在Rt△BM M '和Rt△BAM '中表示,列出方程求解即可求得MM ',由此可求得和AM '即可求解.解:(1)由题意可得:MN⊥AB,∴∠MNA=∠MNB=90°,在Rt△MNB中,∠MNB=90°,BN=,∵AB=400,∴AN=AB﹣BN=200,在Rt△AMN中,∠MNA=90°,AM=,∴供水点M到喷泉A,B需要铺设的管道总长=250+250=500m;(2)由题意可得:BM '⊥AC,AM=BM=250,AB=400,∴∠BM 'M=90°,设MM '=x,则AM '=x+250,在Rt△BM M ' 中,∠BM 'M=90°,,在Rt△BAM ' 中,∠BM 'M=90°,,∴,∴,∴,∴,∴供水点M ' 到喷泉A,B需要铺设的管道总长=320+240=560m.【点睛】本题考查勾股定理的应用,线段垂线段的性质.(2)中能正确作出图形,并熟练掌握方程思想是解题关键.26.如图1,在中,,,是的高,且.(1)求的长;(2)是边上的一点,作射线,分别过点,作于点,于点,如图2,若,求与的和.【答案】(1)3;(2).【解析】(1)根据勾股定理可求AD,再根据勾股定理可求CD,根据BC=BD+CD即可求解;(2)根据三角形面积公式可求AF与CG的和.(1)在Rt△ABD中,ADB=90,由勾股定理得:AD=,在Rt△ACD中,ADC=90,由勾股定理得:CD=,∴BC=BD+CD=1+2=3,∴BC的长为3;(2)∵AF⊥BE,CG⊥BE,BE=,∴,=,=,而=,∴=,即AF与CG的和为.【点睛】本题考查了勾股定理、三角形面积法的应用,正确运用勾股定理是解题的关键.27.如图,某城市接到台风警报,在该市正南方向的处有一台风中心,沿方向以的速度移动,已知城市到的距离.(1)台风中心经过多长时间从移动到点?(2)已知在距台风中心的圆形区域内都会受到不同程度的影响,若在点的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?【答案】(1)台风中心经过16小时时间从B移动到D点;(2)他们要在20时到24时时间段内做预防工作【解析】(1)首先根据勾股定理计算BD的长,再根据时间=路程÷速度进行计算;(2)根据在30千米范围内都要受到影响,先求出从点B到受影响的距离与结束影响的距离,再根据时间=路程÷速度计算,然后求出时间段即可.解:(1)在Rt△ABD中,根据勾股定理,得BD==240km,所以,台风中心经过240÷15=16小时从B移动到D点,答:台风中心经过16小时时间从B移动到D点;(2)如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴BE=BD-DE=240-30=210km,BC=BD+CD=240+30=270km,∵台风速度为15km/h,∴210÷15=14时,270÷15=18,∵早上6:00接到台风警报,∴6+14=20时,6+18=24时,∴他们要在20时到24时时间段内做预防工作.【点睛】本题考查了勾股定理的运用,此题的难点在于第二问,需要正确理解题意,根据各自的速度计算时间,然后进行正确分析.28.如图,在中,过点A作,BE平分交AC于点E.(1)如图1,已知,,,求BD的长;(2)如图2,点F在线段BC上,连接EF、ED,若,,,求证:.【答案】(1)BD=5;(2)证明见解析【解析】(1)利用勾股定理运算即可;(2)利用角平分线的性质可得到,证出得到,,再通过角的等量代换证出,取的中点,连接,即可证出,从而得到结论.解:(1)∵∴∴∴(2)∵平分∴又∵,∴∴,∴∴∵∴取的中点,连接,如图2所示:则∴∵∴∴∴∴∴【点睛】本题主要考查了勾股定理,全等三角形的性质及判定等,合理做出辅助线灵活证明全等是解题的关键.29.(1)探索:请你利用图(1)验证勾股定理.(2)应用:如图(2),已知在中,,,分别以AC,BC为直径作半圆,半圆的面积分别记为,,则______.(请直接写出结果).(3)拓展:如图(3),MN表示一条铁路,A,B是两个城市,它们到铁路所在直线MN的垂直距离分别为千米,千米,且千米.现要在CD之间建一个中转站O,求O应建在离C点多少千米处,才能使它到A,B两个城市的距离相等.【答案】(1)见解析;(2);(3)O应建在离C点52.5千米处.【解析】(1)此直角梯形的面积由三部分组成,利用直角梯形的面积等于三个直角三角形的面积之和列出方程并整理即可;(2)根据半圆面积公式以及勾股定理,知S1+S2等于以斜边为直径的半圆面积;(3)设CO=xkm,则OD=(80-x)km,在Rt△AOC和Rt△BOD中,利用勾股定理分别表示出AO和BO的长,根据AO=BO列出方程,求解即可.(1)由面积相等可得,∴,∴,∴.(2),,∴.故答案为:(3)设千米,则千米.∵到A,B两个城市的距离相等,∴,即,由勾股定理,得,解得.即O应建在离C点52.5千米处.【点睛】本题考查了勾股定理的证明和勾股定理的应用,运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解是解题的关键.30.阅读下面的材料,并解决问题:数学家与勾股数组定义:勾股数是指可以构成一个直角三角形三边的一组正整数.一般地,若三角形三边的长都是正整数,且满足,那么数组称为一组勾股数.每一组勾股数都能确定一个边长都为正整数的直角三角形,研究勾股数对研究直角三角形具有重要意义,历史上很多数学家都对勾股数进行了研究:1.我国西周数学家商高在公元前年发现了“勾三,股四,弦五”,数组是世界上发现最早的一组勾股数.2.毕达哥拉斯学派提出勾股数公式为,其中为正整数.(说明:根据这个公式不能写出所有勾股数)3.柏拉图提出的勾股数公式为,其中为大于的整数.(说明:根据这个公式不能写出所有勾股数)4.世界上第一次给出勾股数通解公式的是《九章算术》,其勾股数公式为,其中是互质的奇数.(注:的相同倍数组成的一组数也是勾股数) 5.国外最先给出勾股数通解公式的是希腊的丢番图,其公式为,其中是互质且为一奇一偶的任意正整数.问题解答:通过观察柏拉图提出的勾股数公式特点,可知_;直接写出一组勾股数,且这组数不能由柏拉图提出的勾股数公式得出;通过阅读可知,一组勾股数中至少有一个数是偶数,请写出一组勾股数,使其中含有数字.【答案】(1)-2;(2)答案不唯一,例如;(3)答案不唯一,例如【解析】(1)直接令b-c即可求解;(2)根据题意即可写出勾股数;(3)根据题意即可写出勾股数.解:(1)∵∴b-c=故答案为:-2.答案不唯一,例如答案不唯一,例如.【点睛】本题考查的是勾股定理的逆定理,掌握完全平方公式、满足a2+b2=c2的三个正整数,称为勾股数是解题的关键.31.问题发现:(1)如图1,已知C为线段AB上一点,分别以线段AC、BC为直角边作等腰直角三角形,∠ACD=90°,CA=CD,CB=CE,连接AE、BD,则AE、BD之间的数量关系为___;位置关系为.拓展探究:(2)如图2,把Rt△ACD绕点C逆时针旋转,线段AE、BD交于点F,则AE与BD 之间的关系是否仍然成立请说明理由.拓展延伸:(3)如图3,已知AC=CD,BC=CE,∠ACD=∠BCE=90°,连接AB、AE、AD,把线段AB 绕点A旋转,若AB=5,AC=3,请直接写出旋转过程中线段AE的最大值.【答案】(1),;(2)成立,理由见解析;(3).【解析】(1)问题发现,由“SAS”可证△ACE≌△DCB,可得AE=BD,∠BDC=∠EAC,可证AE⊥BD;(2)拓展探究,由“SAS”可证△ACE≌△DCB,可得AE=BD,∠AEC=∠DBC,可证AE⊥BD;(3)解决问题,由由“SAS”可证△ACE≌△DCB,可得AE=BD,由三角形的三边关系可求解.解:(1)问题发现如图①,延长BD交AE于H,∵CB=CE,∠ACD=∠BCD=90°,CA=CD,∴△ACE≌△DCB(SAS),∴AE=BD,∠BDC=∠EAC,∵∠CBD+∠CDB=90°,∴∠CBD+∠EAC=90°,∴∠AHB=90°,∴AE⊥BD,故答案为:AE=BD,AE⊥BD;拓展探究:(2)成立.理由:如图2,设与BD相交于点G.∵,∴.又∵,,∴,∴,.∵,,∴,∴,∴.拓展延伸:(3)AE的最大值为.如图3,连接BD.∵,∴,又∵,,∴,∴,∵,,∴,,∴,当点在线段DA的延长线时等号成立,故AE的最大值为.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,勾股定理,三角形的三边关系,证明△ACE≌△DCB是本题的关键.。

北师大版八年级上第一章 《勾股定理》水平测试二及答案

北师大版八年级上第一章 《勾股定理》水平测试二及答案

C第一章 《勾股定理》水平测试(2)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )7152425207152024257252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,CC,D的面积之和为___________cm2.三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20.如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?BALC D第21题图22.如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一:《勾股定理》能力提升卷(二)
本卷难度系数中上,题目类型多样,比较灵活。

涉及到以下问题:(1)勾股定理及逆定理的经典题型(2)利用面积法求线段问题(3)D折叠问题(4)蚂蚁问题(两点之间线段最短问题)(5)配方法(6)动点问题(7)分类讨论思想
建议:耐心认真思考,不懂多问,多整理,学完这个专题,相信你能学到很多解题技巧,对勾股定理有更深刻的理解,加油!
一:选择题
1. 如图,有一块边长为24米的正方形绿地,在绿地旁边B处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A处树立一个标牌“少走▇米,踏之何忍”,请你计算后帮小明在标牌的“▇”填上适当的数字是()
A.3米B.4米C.5米D.6米
2.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为()
A.10米B.6米C.7米D.8米
3.如图,已知△ABC中,AB=10,AC=8,BC=6,AB的垂直平分线分别交AC,AB于D,E,连接BD,则CD的长为()
A .1
B .
C .
D .
4.如图是一块长、宽、高分别是6 cm ,4 cm 和3 cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和点A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长的平方是( )
A .85
B .97
C .109
D .81
5.若△ABC 的三边长a ,b ,c 满足(a -b)(a 2+b 2-c 2)=0,则△ABC 是( )
A .等腰三角形
B .直角三角形
C .等腰直角三角形
D .等腰三角形或直角三角形
6.如图,将三边分别为3,4,5的△ABC ,沿最长边AB 翻转180°得到△ABD ,则CD 的长等于( )
A.125
B.512
C.56
D.245
7.如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是△ABC 的高,则BD 的长为( )
B.C.D.A.
8.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S4=(C)
A.4 B.3 C.2 D.1
二:填空题
9.如图,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8 m,当他把绳子下端拉开4 m后,发现下端刚好接触地面,则旗杆的高度是_________.
10.如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2=.
11.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度范围是(罐壁的厚度和小圆孔的大小忽略不计).
12.如图,有一个直角三角形纸片,两直角边AC=18cm,BC=24cm,现将直角边AC沿直
线AD折叠,使它落在斜边AB上,且与AE重合,则BD的长是______.
13.已知等腰△ABC中,底边BC=20,D为AB上一点,且CD=16,BD=12,则△ABC的周长为.
14.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).
15.如图,已知在△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC2=.
三:解答题
16.已知某开发区有一块四边形的空地ABCD,如图,现计划在空地上种植草皮,经测量,
∠A=90°,AB=3 m,BC=12 m,CD=13 m,AD=4 m.若每平方米草皮需要投入200元,问一共要投入多少元?
17.如图,在长方形ABCD中,AB=5,AD=13,点E为BC上一点,将△ABE沿AE折叠,使
点B落在长方形内点F处,连接DF且DF=12.
(1)试说明:△ADF是直角三角形;
(2)求BE的长.
18.如图,△ABC中,∠ACB=90°,AB=10,BC=6,若点P从点A出发,以每秒1个单
位长度的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).
(1)若点P在AC上,且满足P A=PB时,求此时t的值;
(2)若点P恰好在∠BAC的平分线上,求t的值.。

相关文档
最新文档