直线和圆的方程PPT教学课件

合集下载

2.5.1 直线与圆位置关系 课件(共23张PPT)

2.5.1 直线与圆位置关系 课件(共23张PPT)
2


(

3
)
4 1 2= 1 > 0
因为
所以,直线 l 与圆相交,有两个公共点.
由 2 − 3 + 2 = 0 ,解得1 = 2, 2 = 1.
把 1 = 2代入方程①,得 1 = 0 ;
把 2 = 1代入方程① ,得 2 = 3.
所以,直线 l 与圆的两个交点是:
(2,0),(1,3)
【分析】如图,点(2,1)位于圆: 2 + 2 = 1外,经过圆外一点有两条直线与这个圆相切.我们设切线方
程为 − 1 = ( − 2), k为斜率.由直线与圆相切可求出k的值.
y
解法1:设切线的斜率为,则切线的方程为 − 1= − 2 ,
P.
即kx-y+1-2k=0
由圆心(0,0)到切线l的距离等于圆的半径1,得
【分析】思路一 判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;
思路二 可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系.
解法一:由直线 l 与圆的方程,得:
3x y 6 0,
2
2
x

y
2 y 4 0.

消去y,得 x 2 3x 2 0
①当切线l的斜率存在时, 即 − + 2 − = 0,
由圆心(0,0)到切线l的距离等于圆的半径1,得
|2 − |
2
+1
= 1, 解得
3
=4 ,
y
.
P
此时,切线l的方程为3 − 4 + 5 = 0.
②当切线l的斜率不存在时,此时直线x=1也符合题意.

《直线和圆的方程》课件

《直线和圆的方程》课件
参数$D,E,F$必须满足一定的条 件才能构成一个有效的圆。
圆的参数方程
圆的参数方程
01
$x=a+rcostheta, y=b+rsintheta$,其中$(a,b)$是圆心,$r$
是半径,$theta$是参数。
参数方程的应用
02
参数方程常用于圆的极坐标表示,方便计算圆的轨迹和运动。
参数方程与直角坐标系的关系
圆的一般方程
圆的一般方程
$x^2+y^2+Dx+Ey+F=0$, 其中$D,E,F$是常数。
圆心坐标
圆心的坐标为$(-frac{D}{2}, frac{E}{2})$,通过圆心可以确 定圆的位置。
半径
半径的平方为 $frac{D^2+E^2-4F}{4}$,通 过半径可以确定圆的大小。
参数$D,E,F$
02
圆的方程的介绍
圆的标准方程
圆的标准方程
圆心坐标
$(x-a)^2+(y-b)^2=r^2$,其中$(a,b)$是 圆心,$r$是半径。
圆心的坐标为$(a,b)$,通过圆心可以确定 圆的位置。
半径
圆上任一点坐标
半径是圆上任一点到圆心的距离,用$r$表 示。
根据圆的标准方程,圆上任一点的坐标可 以表示为$(a+rcostheta, b+rsintheta)$, 其中$theta$是参数。
《直线和圆的方程》 ppt课件
目 录
• 直线方程的介绍 • 圆的方程的介绍 • 直线与圆的位置关系 • 直线与圆的实际应用
01
直线方程的介绍
直线的斜率与截距式
总结词
斜率截距式是直线方程的基本形式,它描述了直线在直角坐标系中的位置关系 。

选择必修 第二章 2.4.1 圆的标准方程 课件(共26张PPT)

选择必修 第二章   2.4.1  圆的标准方程  课件(共26张PPT)
究位置关系、距离
等问题
新知引入
类比直线方程的研究过程,如何研究圆的方程呢?

平面直角坐标系
圆的方程
代数运算
利用圆的方程,研究
圆有关的位置关系、
几何度量等问题
新知探究
在平面直角坐标系中,如何确定一个圆?
如图,在平面直角坐标系中,⨀A的圆心A的坐标为(a,b),半径为r,M(x,y)为
圆上任意一点,⨀A就是以下点的集合
多边形和圆是平面几何中的两类基本图形.建立直线的方程后,我们可以运
用它研究多边形这些“直线形”,解决边所在直线的平行或垂直、边与边的交
点以及点到线段所在直线的距离等问题.类似地,为了研究圆的有关性质,解决
与圆有关的问题,我们首先需要建立圆的方程.
我国的墨子云:圆,一中同长也.
意思:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等.
程①.于是
(5 − )2 +(1 − )2 = 2 ,
൞(7 − )2 +(−3 − )2 = 2 ,.
(2 − )2 +(−8 − )2 = 2
知新探究
【例2】△ABC的三个顶点分别是A(5,1),B(7,-3),C(2,-8),
求△ABC的外接圆的标准方程.
解: 即
2 + 2 − 10 − 2 + 26 = 2 ,
心A间的距离为r,点M就在⨀A上.
这时,我们把上述方程称为圆心为A,半径为r的圆
的标准方程(standard equation of thecircle).
半径r
圆的几何要素: 圆心(a,b)
圆心在坐标原点,
半径为r的圆的标准
三个独立条件求a,b,r确定一个圆的方程.

中职数学直线和圆的方程ppt课件

中职数学直线和圆的方程ppt课件

x2
y2
Dx
Ey
F
0表示以点(
D 2
,
E) 2
为圆心,1 D2 E2 4F为半径的圆。 2
以下方程是圆的方程吗? x2+y2+2 x+2 y+8=0; x2+y2+2 x+2 y+2=0; x2+y2+2 x+2 y=0.
圆的一般方程
x2 y2 Dx Ey F 0
D2 E2 4F 0
第8章 直线和圆的方程
• 8.1 两点间的距离和线段中点坐标 • 8.2 直线的方程 • 8.3 两条直线的位置关系 • 8.4 圆
8.4 圆
8.4.1 圆的标准方程
8.4.2 圆的一般方程
y
OA
x
r
复习回顾
圆的标准方程
(x a)2 (y b)2 r 2
圆心的坐标和半径
a, b r
回答下列问题
THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS
THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS
x2 y 2 Dx Ey F 0
方程的特点个形如:
x2 y 2 Dx Ey F 0
的方程表示的曲线都是圆?
整理可得
(x
D
2
2
)
(y
E
2
2
)
D2
E2
4

高中数学课件-专题9 直线和圆的方程 (共55张PPT)

高中数学课件-专题9 直线和圆的方程 (共55张PPT)

2.自一点引圆 的切线的条数
3.弦长公式
考点53 直线与圆的位置关系
1.直线与圆 的位置关系
2.自一点引圆 的切线的条数
(1)若点在圆外,则过此点可以作圆的两条切线; (2)若点在圆上,则过此点只能作圆的一条切线,且此点是切 点; (3)若点在圆内,则过此点不能作圆的切线.
3.弦长公式
考点53 直线与圆的位置关系
2.距离公式 的应用
(2)已知距离求有关方程或有关量
借助于距离公式建立方程(组)得出参数的值或
满足的关系式,然后可结合题中其他条件确定方
程、点的坐标等.
【注意】若已知点到直线的距离求直线方程,用
一般式可避免讨论.否则,应讨论斜率是否存在.
23
24
第2节 圆的方程及直线、圆的位置关系
600分基础 考点&考法
8
10
考法2 求直线方程
常用的方法 1.直接法 2.待定系数法
确定定点和斜率或确定两点, 套用直线方程的相应形式, 写出方程.
11
考法2 求直线方程
常用的方法 1.直接法 2.待定系数法
一般步骤: ①设所求直线方程的某种形式; ②由条件(直线的截距、直线上的点、有关图形的面 积等)建立所求参数的方程(组); ③解这个方程(组)求参数; ④把所求的参数值代入所设直线方程.
1.两条直线的 位置关系
2.两条直线 的交点坐标
3.距离公式 距离公式
考点51 两条直线的位置关系
1.两条直线的 位置关系
2.两条直线 的交点坐标
3.距离公式 距离公式
两直线的方程组成的方程组的解
考法3 两直线平行与垂直的判定及应用
1.两直线平行或 垂直的判定方法

直线和圆的参数方程 ppt课件

直线和圆的参数方程 ppt课件
直线的参数方程
【基础知识梳理】
1.直线的参数方程
(1)过点 M0(x0,y0),倾斜角为 α 的直线 l 的参数方程为
x=x0+tcos α y=y0+t sin α
(t 为参数)
.
2 参数的几何意义 直线的参数方程中参数 t 的几何意义是:
直线上动点M到定点M0(x0,y0)的距离就是参数t的绝对值
是多少 ?
【规律方法总结】 直线的参数方程的标准式中 t 的几何意义,有如下
常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为 t1,
t2,则弦长 AB=|t1-t2|; ②设弦 M1M2 中点为 M,则点 M 对应的参数值 tM=
t1+2 t2(由此可求|M2M|及中点坐标).
【练习】
已知直 l:x线 y10与抛物线 yx2交于 A,B两点 ,求线A条 B的长和点
【基本题型】
例1.直线 l 经过点 M0(1,5),倾斜角为π3,且交直线
x-y-2=0 于 M 点,则|MM0|=________.
答案:6( 3+1) 解析:由题意可得直线
l
x=1+12t
的参数方程为
y=5+
3 2t
(t 为参
数),代入直线方程 x-y-2=0,得 1+12t-5+ 23t-2=0,解 得 t=-6( 3+1). 根据 t 的几何意义可知|MM0|=6( 3+1).
所以,由 t 的几何意义可得点 P(-1,2)到线段 AB 中点 C 的距离
为︱-175︱=175.
探究
直线 xx0 tcos , y y0 tsin.
t为参数
与曲线y f x交于M1,M2两点,对应的
参数分别t1,为 t2.
1曲线的M弦1M2的长是多?少 2线段M1M2的中点 M对应的参t的 数值

《直线和圆方程》课件

《直线和圆方程》课件
《直线和圆方程》 ppt课件
目录
• 直线方程的概述 • 圆的方程 • 直线与圆的交点求解 • 直线和圆的几何性质 • 直线和圆的方程在实际问题中的应

01
直线方程的概述
直线的定义
直线是由无数个点组成的几何图形,这些点沿着同一直 线排列,形成一条无限延伸的线。
在平面几何中,直线是连接两个点的最短路径,它没有 宽度和厚度。
圆的参数方程
$x = a + rcostheta, y = b + rsintheta$,其中$(a, b)$是圆心坐 标,$r$是半径,$theta$是参数。
圆的标准方程
圆的标准方程为$(x - a)^{2} + (y b)^{2} = r^{2}$,其中$(a, b)$是圆
心坐标,$r$是半径。
圆的基本性质
01 02
圆的定义
圆是一个平面图形,由所有到定点(圆心)的距离等于定长(半径)的 点组成,表示为 $(x - h)^2 + (y - k)^2 = r^2$,其中 $(h, k)$ 是圆 心坐标,$r$ 是半径。
圆的半径
连接圆心到圆上任意一点的线段的长度称为半径。
03
圆的直径
通过圆心且两端点在圆周上的线段称为直径,长度是半径的两倍。
圆心和半径
直径
通过圆心且两端点在圆上的线段称为 直径。
圆心是圆的中心点,半径是从圆心到 圆上任一点的线段。
圆的方程表示
圆的一般方程
$(x - h)^{2} + (y - k)^{2} = r^{2}$,其中$(h, k)$是圆心坐标
,$r$是半径。
圆的标准方程
$(x - a)^{2} + (y - b)^{2} = r^{2}$,其中$(a, b)$是圆心坐标 ,$r$是半径。

直线和圆的方程复习课PPT课件

直线和圆的方程复习课PPT课件
1
一、知识框架
直线与直线方程

线




圆与圆方程

直线的倾斜角和斜率 直线的方程
两直线的位置关系 线性规划及应用 求曲线方程 圆的标准方程 圆的一般方程
圆的参数方程
直线与圆、圆与圆的位置关系
2
1、直线的倾斜角
倾斜角的取值范围是 0 180.
2、直线的斜率
k tan, ( 90 )
4.两点间的距离
5.点到直线的距离
d Ax0 By0 C A2 B2
6.平行直线间距离
d C1 C2 A2 B2
11
两直线特殊位置关系练习
1、如果直线ax+2y+2=0与直线3x-y-2=0
平行,则a=( B )
A.-3
B.-6
C.

3 2
2
D. 3
2、若直线x+ay+2=0和2x+3y+1=0互相垂直,
返回
7
点与直线
1、点与直线的位置关系 2、点关于直线对称的点坐标 3、直线关于点对称的直线方程 4、点到直线的距离
练习
8
点与直线练习
1、已知直线 l1 : A1x B1 y 1和 l2 : A2 x B2 y 1
相交于点P(2,3),则过点 P1( A1, B1), P2 ( A2 , B2 )的直线 方程为 2x+3y=1_.
2、点P(2,5)关于直线x+y=1的对称点的坐标是( A )
A(-4,-1) B(-5,-2) C(-6,-3) D(-4,-2)
3、已知△ABC的一个顶点为A(3,-1),∠B被y轴平分,∠C 被直线y=x平分,则直线BC的方程是 ( A )

直线和圆课件

直线和圆课件
圆的参数方程
圆的参数方程通常表示为 (x, y) = (a, b) + r(cosθ, sinθ),其中 (a, b) 是圆心, r 是半径,θ 是参数。
参数方程的应用实例
物理学中的应用
在物理学中,许多物理量都是通 过参数方程来描述的,例如简谐 振动的振动曲线、电磁波的传播
等。
工程设计中的应用
在工程设计中,参数方程被广泛 应用于各种曲线和曲面的描述, 例如机械零件的轮廓曲线、建筑
通过圆的半径和直径,可以计算出圆 的弧长和圆周长。
通过比较两个圆的半圆心角和扇形面积
通过圆心角和半径,可以计算出扇形 的面积。
直线和圆在实际生活中的应用
建筑设计
在建筑设计中,直线和圆是非常 重要的元素,它们可以用来确定 建筑物的平面布局、窗户和门的
物的三维模型等。
数学教育中的应用
在数学教育中,参数方程是描述 复杂函数和曲线的重要工具,有 助于学生更好地理解函数的性质
和曲线的几何意义。
THANKS
感谢您的观看
直线和圆 PPT 课件
• 直线和圆的基本概念 • 直线和圆的交点 • 直线和圆的几何应用 • 直线和圆的解析方法 • 直线和圆的参数方程
目录
Part
01
直线和圆的基本概念
直线的定义和性质
直线的定义
直线是无限长的,且在平面内, 可以由两点确定一条直线。
直线的性质
直线具有方向性,可以由斜率表 示;直线是连续的,没有中断; 直线可以无限延伸。
圆的定义和性质
圆的定义
圆是一个平面图形,由一个点(圆心 )和一段固定长度(半径)决定,所 有点都与圆心保持相同距离。
圆的基本性质
圆是中心对称图形,有固定的周长和 面积;圆内的任意一点到圆心的距离 等于半径。

人教版高中数学直线与圆的方程的应用(共20张PPT)教育课件

人教版高中数学直线与圆的方程的应用(共20张PPT)教育课件

:


















































:







1







5












楚 弄
有 怎
完 情













西
(





























)







拍 以






则四个顶点坐标分别为 A(a,0),B(0,b),C(0,c),D(0,d)
第一步:建立坐 标y系,用坐标表 示B有(0关,b的) 量。

2.5.1 直线与圆的位置关系(共27张PPT)

2.5.1 直线与圆的位置关系(共27张PPT)

(1)求直线l的方程;
(2)若圆C的圆心为点(3,0),直线l被该圆所截得的弦长为2
2
,求圆C的标准方程.
解:(1)由已知得:
2x-y-3 = 0,
x = 2,
解得
y = 1,
4x-3y-5 = 0,
∴两直线交点为(2,1).
设直线l的斜率为k1,∵l与x+y-2=0垂直,
∴k1=1,
∵l过点(2,1),∴l的方程为y-1=x-2,即x-y-1=0;
|2-1--1|
心(2,1)到直线 mx-y-m-1=0 的距离 d=



1+2
=
|-2|
1+2
.
4
d<2,即 m>0 或 m<- 时,直线与圆相交,即直线与圆有两个公共点;
3
4
d=2,即 m=0 或 m=-3时,直线与圆相切,即直线与圆只有一个公共点;
4
d>2,即- <m<0 时,直线与圆相离,即直线与圆没有公共点.
轴,建立直角坐标系,设圆心为 C,水面所在弦的端点为 A、
B,则由已知得 A(6,-2).
设圆的半径为 r,则 C(0,-r),即圆的方程为
x2+(y+r)2=r2.①
将点 A 的坐标为(6,-2)代入方程①,解得 r=10.
∴ 圆的方程为 x2+(y+10)2=100.②
当水面下降 1 米后,可设点 A′的坐标为(x0,-3)(x0>3),
当m为何值时,直线与圆
(1)有两个公共点;
(2)只有一个公共点;
(3)没有公共点?
思路分析:可联立方程组,由方程组解的个数判断,也可求出圆心到直线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①l1与l2相交于点P(m,-1); ②l1∥l2; ③l1⊥l2,且l1在y轴上的截距为-1.
【解题回顾】若直线l1、l2的方程分别为A1x+B1y+C1=0和 A2x+B2y+C2=0 , 则 l1∥l2 的 必 要 条 件 是 A1B2-A2B1=0 , 而 l1⊥l2的充要条件是A1A2+B1B2=0.解题中为避免讨论,常依 据上面结论去操作.
l2:A2x+B2y+C2=0
①l1∥l2 A1B2-A2B1=0 且 B1C2-B2C1≠0
②l1⊥l2 A1A2+B1B2=0
③l1与l2相交 A1B2-A2B1≠0
④l1与l2重合 A1B2-A2B1=0且B1C2-B2C1=0。
到角与夹角:
两条直线l1,l2相交构成四个角,它们是两对对顶角,把l1 依逆时针方向旋转到与l2重合时所转的角,叫做l1到l2的角, l1到l2的角的范围是(0,π).l1与l2所成的角是指不大
类型之二 两条直线所成的角及交点
例2、已知直线l经过点P(3,1),且被两平行
直线l1:x+y+1=0和l2:x+y+6=0截得的线段之长
为5。求直线l的方程。
y
解:若直线l的斜率不存在,则
l2 l1 A
P(3,1)
直线l的方程为x=3, 此时与l1、l2的交点分别是 A1(3,-4)和B1(3,-9), 截得的线段AB的长
综上可知,所求l的方程为x=3或y=1
例2、已知直线l经过点P(3,1),且被两平行
〖的直为解距5线。二离l1为〗求:由 d直x=+题线y|意1+l的1,=6方直0| 和线程5ll2。1:、2 lx2之+y间+6=l02 截Bl1得A的线Oy段P之(3x,长1)
22
θ
且直线l被直线l1、l2所截的线段AB的长为5,
课前热身
1、过点A(3,0),且平行于直线 2x 3y 0
的直线方程是__2_x___3__y_ 6 0
2、两直线 x 3y 2 0 与 3x 3y 4 0
的夹角是____6_0_0_____
3、两平行直线 y 2x 和 y 2x 5
间的距离是 ______5____
1、与直线Ax+By+C=0平行的直线方程为 Ax+By+m=0 2、与直线Ax+By+C=0垂直的直线方程为 Bx-Ay+m=0
例5 一条直线L经过点P(3,2),并且分别满足下列条 件,求直线方程:
(1) 倾斜角是直线 x 4y 3 0 的倾斜角的两倍;
(2) 与x、y轴的正半轴交于A、B两点,且△AOB面积 最小值及此时直线L(O为坐标原点)。
8x 15y 6 0 2x 3y 12 0
例5、某房地产公司要在荒地ABCDE(如图)上 划出一块长方形地面(不改变方位)建造一栋八 层公寓,问如何设计才能使面积最大?并求面积 的最大值 (精确到1m2)。
O
x
x+y+1=0
得A( 3k 2 , 4k 1 )
k 1 k 1
解方程组 y=k(x-3)+1 得B( 3k 7
x+y+6=0
k 1
θ A1
, 9k 1 ) B1
k 1
由|AB|=5得 (3k 2 3k 7)2 ( 4k 1 9k 1)2 52
k 1 k 1
k 1 k 1
解之,得k=0,即所求的直线方程为y=1
例4、一条直线被两直线L1:4x+y+6=0, L2:3x-5y-6=0 截 得 的 线 段 的 中 点 恰 好 为 坐标原点,求这条直线的方程.
解:由题意可设所求直线方程为y=kx
分别kL614与与L2,的3 方65程k联立, ,得令两交k点64的+横3坐6标5k分别=0为
k 1 6
从而所求直线方程为x+6y=0
例1、直线 x cos 3y 2 0
的取值范围是_________。
的倾斜角
k 3 cos 3 k 3
3
3
3
0,
6
5 6
,
例2、直线ax+y+1=0与连接A(2,3)、B(-3,2)的
线段相交,则a的取值范围是( D )
A.[-1,2]
B.[2,+∞]∪(-∞,-1)
C. [-2,1]
【课堂小结】
(1)由直线方程找出斜率与倾斜角; (2)确定斜率与倾斜角的范围;注意交叉, (3)灵活地设直线方程各形式,求解直线方程 ;
(4)直线方程的五种形式之间的熟练转化。 (注意)几种特定题型的解法
【布置作业】 优化设计P102、P103、P104
例3 (优化设计P103例2)已知两直线 a1x b1 y 1 0和 a2x b2 y 1 0 的交点为P(2,3),求过两点 Q1(a1,b1)
x y 1 a,b 分别为x,y轴上截距 ab
⑤一般式 Ax+By+C=0 A,B不同时为0
注意:除了一般式以外,每一种方程的形式都有其局限性。
考点练习
3
1、过点(4,0)和(0,3)的直线的斜率为____4__
2、过点(4,0)和(0,3)的直线的倾斜角为______
arctan 3
4
典例分析
〖解三〗设直线l与l1、l2分别相交于 B A(x1,y1)、B(x2,y2),则
O
x
x1+y1+1=0,x2+y2+6=0。 两式相减,得(x1-x2)+(y1-y2)=5 ①
θ A1
又 (x1-x2)2+(y1-y2)2=25 ②
B1
联立 ① ②,可得 x1-x2=5 或 y1-y2=0
x1-x2=0 y1-y2=5
A1
设直线l与l1的夹角为θ,则
52
sin 2 2
52
B1
故θ=450
由直线l1:x+y+1=0的倾斜角为1350,
知直线l的倾斜角为00或900,
又由直线l过点P(3,1),故所求l的方程为x=3或y=1。
例2、已知直线l经过点P(3,1),且被两平行
直为5线。l1求:直x+线y+l的1=方0和程l2。:x+y+6=l02 截l1得A的线y段P之(3,长1)
3、过直线l1:A1x+B1y+C1=0,l2: A2x+B2y+C2=0交点的直线系方程为: A1x+B1y+C1+λ(A2x+B2y+C2)=0( λ∈R)(除l2外)。
Q2 (a2b2 ) (a1 a2) 的直线方程。
【深化拓展】由“两点确定一条直线”,
、(
你有新的解法吗?
直 线 方 程 形 常数意义 名称 式
适用范围 备注
① 点 y-y0=k(x斜式 x0)
K 斜 率 , ( x0,y0) 直线上定点
② 斜 y=kx+b K斜率,b为y轴
截式
上截距
③两 点式
解:设点 P(4, 0) 关于直线 5x 4 y 21 0 的对称点为 P1(x1, y1)
由轴对称概念
PP1
的中点M ( x1 4 ,
2
y1 0)在对称轴
2
5x 4y 21 0

且 PP1 与对称轴垂直,
则有
5 x1 4 4 y1 210 22
y1 4 x1 4 5
解得 x1 6, y1 8, P1(6, 8) 点评:对称问题可化为点关于点对称,点关于直线对称的问题
的斜率公式——k=tanα=
y2 x2
y1 x1
直线方程的几种形式:
直线名称 方程形式
常数意义
①点斜式 y-y0=k(x-x0) ②斜截式 y=kx+b
k斜率,(x0,y0)直线上定 点 k斜率,b为y轴上截距
③两点式 ④截距式
y y1 x x1 y2 y1 x2 x1
(x1,y1), (x2,y2)是线上两 定点且(x1≠x2 ,y1≠,y2),
D. [1,+∞)∪(-∞,-2]
解:直线ax+y+1=0过定点C(0,-1),
当直线处在AC与BC之间时,必与线段AB相交,
应满足 a 3 1 或 a 2 1
2
3
即 a 2 或 a 1
注:确定斜率与倾斜角的范围不能想当然。
例3、△ABC的三个顶点A(3,-4),B(0,3),C(-6,0). 求它的三条边所在的直线方程。
y y1 x x1 y2 y1 x2 x1
(x1,y1), (x2,y2)是直 线上两定点且 (x1≠x2 ,y1≠,y2),
K存在
K存在
不垂直 x,y轴
K不存在 时 x= x0
K不存在 时 x= x0
x1=x2时x=x1 y1=y2时y=,y1
⑤ 一 Ax+By+ A,B不同时为0 任意直线 A,B,C为0时,
直线的方程
知识精讲:
(1)倾斜角:在平面直角坐标系中,把x轴绕直 线L与x轴的交点按逆时针方向旋转到和直线重合 时所转的最小正角。当直线和x轴平行或重合时, 我们规定直线的倾斜角为00。故倾斜角的范围是 [0,π)。 (2)斜率:不是900的倾斜角的正切值叫做直线的 斜率,即k=tanα。
(3)过两点P(x1,y1),P(x2,y2),(x1≠x2)的直线
d Ax0 By0 C A2 B2
(4).两条平行线l1:Ax+By+C1=0,l2:Ax+By+C2=0的
相关文档
最新文档