排列组合及二项式定理
排列组合与二项式定理
排列组合与二项式定理排列组合与二项式定理是概率论和组合数学中重要的概念和定理。
它们在数学、统计学、计算机科学等领域中具有广泛的应用。
本文将介绍排列组合和二项式定理的概念、性质和应用,并探讨它们之间的关系。
一、排列组合的概念和性质排列和组合是组合数学中的基本概念,用于计算事物的不同排列和组合方式。
1. 排列:排列是指从若干个元素中选择一部分元素按照一定的顺序进行排列。
设有n个元素,要从中选择r个元素进行排列,有P(n,r)种排列方式。
排列的计算公式为P(n,r) = n! / (n-r)!2. 组合:组合是指从若干个元素中选择一部分元素进行组合,不考虑元素的顺序。
设有n个元素,要从中选择r个元素进行组合,有C(n,r)种组合方式。
组合的计算公式为C(n,r) = n! / (r!(n-r)!)排列和组合的计算公式是基于阶乘的,阶乘表示从1到某个正整数的连乘积。
排列和组合的性质包括交换律、结合律和分配律等。
二、二项式定理的概念和性质二项式定理是代数中的一个重要定理,用于展开二项式的幂。
二项式是两个项的和,形式为 (a + b)^n,其中a和b为实数或变量,n为非负整数。
二项式定理的表达式为:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n其中C(n,r)为组合数,表示从n个元素中选择r个元素进行组合的方式数。
二项式定理的性质包括二项式系数的对称性、二项式系数的递推性和二项式系数与排列组合的关系等。
三、排列组合与二项式定理的应用排列组合和二项式定理在许多领域中有广泛的应用。
1. 概率论:排列组合和二项式定理用于计算事件的可能性和概率。
通过组合数可以计算从一组元素中选择特定数量的元素的概率。
2. 统计学:排列组合和二项式定理用于计算事件的组合和排列数量,从而分析数据的分布和规律。
35:排列组合和二项式定理高三复习数学知识点总结(全)
排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。
排列组合二项式定理
排列组合和二项式定理一、排列组合1.1 排列排列是指从一组元素中选取一部分进行操作,按照一定的顺序进行排列。
在排列中,每个元素只能使用一次。
例如,从1、2、3这三个元素中选出两个进行排列,可以得到以下6个排列: 12、13、21、23、31、32。
排列的数目可以用符号P表示,表示从n个元素中选取r 个进行排列。
排列数的计算公式如下所示: P(n, r) = n! / (n - r)!其中,!表示阶乘,例如4! = 4 × 3 × 2 × 1 = 24。
1.2 组合组合是指从一组元素中选取一部分进行操作,不考虑元素的顺序。
与排列不同,组合中的元素只有选择与不选择两种情况。
例如,从1、2、3这三个元素中选出两个进行组合,可以得到以下三个组合: 12、13、23。
组合的数目可以用符号C表示,表示从n个元素中选取r 个进行组合。
组合数的计算公式如下所示: C(n, r) = n! / (r! × (n - r)!)二、二项式定理二项式定理是代数学中的一个重要定理,用于展开任意幂的二项式。
二项式定理公式如下所示: (a + b)^n = C(n, 0) × a^n × b^0 + C(n, 1) × a^(n-1) × b^1 + C(n, 2) × a^(n-2) × b^2 + … + C(n, n) × a^0 × b^n其中,C(n, r)表示组合数,表示从n个元素中选取r个进行组合。
a和b表示两个变量,n表示幂。
在二项式定理中,展开后的式子包含了各个组合数和变量的乘积,这些乘积的和即为二项式定理的展开结果。
二项式定理在代数学中有着广泛的应用,它可以用于计算各种复杂的代数表达式的展开结果。
二项式定理也是高中数学课程中常见的内容,通过学习二项式定理,可以帮助学生更好地理解代数学中的概念。
排列组合二项式定理
排列组合与二项式定理一、排列与组合简介在概率论和组合数学中,排列和组合是两个重要的概念。
排列和组合通常被用来描述从给定的有限集合中选择若干元素的方式。
排列指的是从一组元素中选择若干不同的元素并按照一定的顺序排列的方式。
对于一个有n个元素的集合,从中选择r个元素进行排列的方式数目记作P(n, r)。
排列主要有两种情况:1.重复元素情况下的排列,即元素可重复使用。
此时,P(n, r) = n^r.2.不重复元素情况下的排列,即元素不可重复使用。
此时,P(n, r) = n(n-1)(n-2)…(n-r+1) = n!/(n-r)!.组合指的是从一组元素中选择若干不同的元素,而不考虑元素的顺序的方式。
对于一个有n个元素的集合,从中选择r个元素进行组合的方式数目记作C(n, r)。
组合的计算公式为:C(n, r) = n!/[(n-r)!*r!].二、二项式定理的概念与展开二项式定理是高中数学中非常重要的一个定理,也是排列组合理论的重要应用。
它用于展开一个二项式的幂。
二项式定理的公式为:(x+y)^n = C(n,0)x ny^0 + C(n,1)x(n-1)y^1 + C(n,2)x(n-2)y^2 + … + C(n,n-1)x1y^(n-1) +C(n,n)x^0y^n.其中,C(n,r)表示从n个元素中选择r个元素进行组合的方式数目。
三、二项式定理的解读与应用二项式定理可以用来求解(x+y)^n的展开式中的各项系数。
在展开式中,每一项的系数就是对应的组合数。
举例说明,当n=3时,展开式为:(x+y)^3 = C(3,0)x3y^0 + C(3,1)x2y^1 + C(3,2)x1y^2 + C(3,3)x0y^3.展开后,得到:(x+y)^3 = x^3 + 3x^2y + 3x y^2 + y^3.可以看出,展开式中的每一项系数正好是对应的组合数。
二项式定理在概率论、组合数学、代数等领域具有广泛的应用。
排列组合、二项式定理与概率统计
排列组合、二项式定理与概率统计
概率统计与排列组合和二项式定理是数学中的重要知识。
它们主要用来解释和计算物理实验的概率,以及理解事件出现的概率统计规律。
排列组合是概率统计的基础,是指在一组数中,每个数字的位置不同的可能的组合数。
它的公式有:A(n,m)=n(n-1)...(n-m+1)。
这里的A表示从n个中取出m个的排列数。
二项式定理(亦称二项分布定理)是研究一个随机变量满足二项分布的定理。
它是推导概率统计解决一些问题的重要方法,它通过如下公式来计算事件发生的概率:
C(n,k)=An,m/k!,其中n表示试验次数,m表示成功的次数,k表示重复的次数。
概率统计用来研究不同事件出现的可能性和规律。
这些规律会告诉我们正发生的事件的可能性有多大,并帮助我们更好地解释现象。
概率统计的计算和分析是一个复杂的过程,需要全面的、简易的的方法。
排列组合、二项式定理等工具是进行概率统计分析的有力帮助,它们可以帮助我们了解不同事件出现的概率,并对现象加以解释和推断。
排列、组合与二项式定理(理)
二项式定理的未来发展方向
理论完善
随着数学的发展,二项式定理的理论体系将不断完善,新的证明方 法和技巧将不断涌现。
应用拓展
随着各学科的发展,二项式定理的应用领域将不断拓展,特别是在 大数据处理、人工智能和量子计算等领域。
排列数的计算
01
二项式定理也可以用来计算排列数,特别是当排列数的上标和
下标较大时,使用二项式定理可以简化计算过程。
排列数的性质
02
通过二项式定理,我们可以推导出排列数的性质,如排列数的
增减性等。
排列数的递推关系
03
利用二项式定理,我们可以得到排列数的递推关系,从而更方
便地计算排列数。
利用二项式定理解决实际问题
互异性
有序性
排列中的元素顺序是确定的,不能随 意调换。
排列中的元素没有重复出现的情况。
组合的定义与性质
组合的定义
从n个不同元素中取出m个元素 (0<m≤n),不考虑顺序,称为 从n个不同元素中取出m个元素的
一个组合。
互异性
组合中的元素没有重复出现的情况。
无序性
组合中的元素顺序不影响其组合结 果。
排列与组合的关系
利用组合数的性质,通过数学推导推导出二项式定理的展开式。
利用多项式乘法推导
将$(a+b)^n$展开成多项式,然后利用多项式乘法的性质推导出二 项式定理的展开式。
利用幂的性质推导
利用幂的性质,将$(a+b)^n$展开成幂的形式,然后通过数学推导 推导出二项式定理的展开式。
04 二项式定理的应用举例
利用二项式定理计算组合数
职高数学——排列、组合与二项式定理
计数原理一、高考要求:掌握分类计数原理及分步计数原理,并能用这两个原理分析和解决一些简单的问题.二、知识要点:1.分类计数原理(又称加法原理):完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有12n N m m m =+++种不同的方法.2.分步计数原理(又称乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事共有 12n N m m m =⨯⨯⨯种不同的方法.三、典型例题: 例1: (1)有红、黄、白色旗子各n 面(n >3),取其中一面、二面、三面组成纵列信号,可以有多少不同的信号?(2)有1元、2元、5元、10元的钞票各一张,取其中一张或几张,能组成多少种不同的币值?(1)解 因为纵列信号有上、下顺序关系,所以是一个排列问题,信号分一面、二面、三面三种情况(三类),各类之间是互斥的,所以用加法原理:①升一面旗:共有3种信号;②升二面旗:要分两步,连续完成每一步,信号方告完成,而每步又是独立的事件,故用乘法原理,因同色旗子可重复使用,故共有3×3种信号;③升三面旗:有N =3×3×3种信号,所以共有39种信号.(2)解 计算币值与顺序无关,所以是一个组合问题,有取一张、二张、三张、四张四种情况,它们彼此互斥的,用加法原理,因此,不同币值有N =14C +24C +34C +44C =15(种). 例4: (1)5本不同的书放在3个不同的书包中,有多少种不同的方法?(2)3个旅客在5家旅店住宿,有多少种不同的方法?(1)解 每本书有3种不同方法,共有35=243种.(2)解 每个人有5种选择,共有53=125种.四、归纳小结:两个基本原理的共同点是,都是研究“完成一件事,共有多少种不同的方法”,它们的区别在于一个与“分类”有关,一个与“分步”有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论哪一种办法中的哪一种都能单独的完成这件事,求完成这件事的方法种数,就用分类计数原理;如果完成一件事,需要分成n 个步骤,各个步骤都不可缺少,需要完成所有的步骤才能完成这件事,而完成每一个步骤又各有若干方法,求完成这件事方法的种数,就用分步计数原理.五、基础知识训练:(一)选择题:1.将5封信投入3个邮筒,不同的投法共有( )A.35种B.53种C.3种D.15种2.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有( )A.43种B.34种C.18种D.36种3.已知集合M={1,-1,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是( )A.18B.10C.16D.144.用1,2,3,4四个数字在任取数(不重复取)作和,则取出这些数的不同的和共有( )A.8个B.9个C.10个D.5个(二)填空题:5.由数字2,3,4,5可组成________个三位数,_________个四位数,________个五位数.6.用1,2,3…,9九个数字,可组成__________个四位数,_________个六位数.7.从2,3,5,7这四个数中,取出两数来作假分数,这样的假分数有_____ _个.8.全国移动电话号码从1999年7月22日零时开始升到10位,前四位号码为1390,剩下的位数码从0,1,2,…,9中任取6个数字组成(可以重复),该方案的移动电话用户最多能容纳户.9.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有_______种不同的选法.要买上衣、裤子各一件,共有_________种不同的选法.10.现有甲组3人,乙组3人,两组进行乒乓球单打对抗(甲组每人必须和乙组每人赛一场),一共有比赛的场数是 .(三)解答题:11.有不同的数学书11本,不同的物理书8本,不同的化学书5本,从中取出不同学科的书2本,有多少种不同的取法?12.用0,1,2,3,4这5个数字,(1)组成比1000小的正整数有多少种不同的方法?(2)组成无重复数字的三位偶数有多少种不同的方法?13.五封不同的信投入四个邮筒,(1)随便投完五封信,有多少种不同投法?(2)每个邮筒中至少要有一封信,有多少种不同投法?排列一、高考要求:理解排列的意义,掌握排列数的计算公式,并能用它解决一些简单的问题.二、知识要点:1.一般地,从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.如果m <n,这样的排列叫做选排列,如果m=n,这样的排列叫做全排列.2.一般地,从n 个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P (或m n A )表示.3.排列数公式:(1)(2)(1)m n P n n n n m =⋅-⋅-⋅⋅-+,其中+∈N n m ,,且m≤n.全排列的排列数等于自然数1到n 的连乘积,这个连乘积叫做n 的阶乘,用n!表示,即!(1)(2)321n n P n n n n ==⋅-⋅-⋅⨯⨯⨯. 排列数公式还可以写成!()!m n n P n m =-.规定0!=1. 三、典型例题: 例: ⑴ 7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列——77A =5040⑵ 7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040⑶ 7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作:余下的6个元素的全排列——66A =720⑷ 7位同学站成一排,甲、乙只能站在两端的排法共有多少种?解:根据分步计数原理:第一步 甲、乙站在两端有22A 种;第二步 余下的5名同学进行全排列有55A 种,则共有22A 55A =240种排列方法 ⑸ 7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法一(直接法):第一步 从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有25A 种方法;第二步 从余下的5位同学中选5位进行排列(全排列)有55A 种方法 所以一共有25A 55A =2400种排列方法.解法二:(排除法)若甲站在排头有66A 种方法;若乙站在排尾有66A 种方法;若甲站在排头且乙站在排尾则有55A 种方法.所以甲不能站在排头,乙不能排在排尾的排法共有77A -662A +55A =2400种.小结一:对于“在”与“不在”的问题,常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑.(6)7位同学站成一排,甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有66A 种方法;再将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有66A 22A =1440种.(7) 7位同学站成一排,甲、乙和丙三个同学都相邻的排法共有多少种?解:方法同上,一共有55A 33A =720种. (8) 7位同学站成一排,甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有25A 种方法;将剩下的4个元素进行全排列有44A 种方法;最后将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有25A 44A 22A =960种方法.解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有255A 种方法,所以丙不能站在排头和排尾的排法有960)2(225566=⋅-A A A 种方法.解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因丙不能站在排头和排尾,所以可以从其余的四个位置选择共有14A 种方法,再将其余的5个元素进行全排列共有55A 种方法,最后将甲、乙两同学“松绑”,所以这样的排法一共有14A 55A 22A =960种方法.小结二:对于相邻问题,常用“捆绑法”(先捆后松).(9) 7位同学站成一排,甲、乙两同学不能相邻的排法共有多少种?解法一:(排除法)3600226677=⋅-A A A解法二:(插空法)先将其余五个同学排好有55A 种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有26A 种方法,所以一共有36002655=A A 种方法.(10) 7位同学站成一排,甲、乙和丙三个同学都不能相邻的排法共有多少种?解:先将其余四个同学排好有44A 种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有35A 种方法,所以一共有44A 35A =1440种. 小结三:对于不相邻问题,常用“插空法”(特殊元素后考虑).四、归纳小结:1.全排列所有不同的排法所含有的元素完全一样,只是元素排列的顺序不完全相同.2.对有约束条件的排列问题,应注意如下类型:⑴某些元素不能在或必须排列在某一位置;⑵某些元素要求连排(即必须相邻);⑶某些元素要求分离(即不能相邻);3.基本的解题方法:⑴有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法);⑵某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;⑶某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;⑷在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻求有效的解题途径,这是学好排列问题的根基.五、基础知识训练:(一)选择题:1.(96高职-4)12344444P P P P +++等于( )A.421-B.2455P P +C.64D.422.某段铁路共有6个站,共需准备普通客票的种数是( )A.30B.24C.15D.123.有4本不同的书分给4位同学,每人一本,不同的分法有( )A.64种B.24种C.16种D.8种4.5人中选出4人完成4项不同的工作,不同的选法种数为( )A.5B.45C.54D.45A 5.用0,1,2,…,9这十个数字组成的无重复数字的三位数不可能是( )A.299PB.310910P C.33109P P - D.23992P P + 6.从若干个元素中,每次取出2个元素的排列种数为210,则元素的个数是( )A.20B.15C.30D.147.有n(n N +∈)件不同产品排成一排,若其中A 、B 两件产品排在一起的不同排法有48种,则n=( )A.4B.5C.6D.7(二)填空题:8.若2n A =30,则n= .9.已知从n 个不同元素中取出2个元素的排列数等于从n-4个不同元素中取出2个元素的排列数的7倍,则n= .10.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,共有 种种植方法.11.从6人中选出4人参加4×100米接力赛,甲必须跑第一棒,乙必须跑第四棒,不同的安排方案种数是 .12.某班有3名男同学和4名女同学外出随机站成一排照相,但4名女同学要站在一起,其排法有种 .13.国内某汽车生产厂有六种不同型号的环保型电动汽车参加国际博览会展览,排成一排,其中甲、乙两型号必须相邻的排法总数是(用数字回答) .(三)解答题:14.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?解法一:(从特殊位置考虑)1360805919=A A 解法二:(从特殊元素考虑)若选:595A ⋅;若不选:69A ,则共有 595A ⋅+69A =136080.解法三:(间接法)=-59610A A 136080 15.⑴八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后排,则共有多少种不同的排法?略解:甲、乙排在前排24A ;丙排在后排14A ;其余进行全排列55A .所以一共有24A 14A 55A=5760种方法.⑵不同的五种商品在货架上排成一排,其中a , b 两种商品必须排在一起,而c, d 两种商品不排在一起, 则不同的排法共有多少种?略解:(“捆绑法”和“插空法”的综合应用)a , b 捆在一起与e 进行排列有22A ;此时留下三个空,将c, d 两种商品排进去一共有23A ;最后将a , b “松绑”有22A .所以一共有22A 23A 22A =24种方法.⑶6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的坐法有多少种?略解:(分类)若第一个为老师则有33A 33A ;若第一个为学生则有33A 33A ,所以一共有233A 33A =72种方法.16.⑴由数字1,2,3,4,5可以组成多少个没有重复数字的正整数?略解:3255545352515=++++A A A A A⑵由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000大的正整数? 解法一:分成两类,一类是首位为1时,十位必须大于等于3有3313A A 种方法;另一类是首位不为1,有4414A A 种方法.所以一共有3313A A 1144414=+A A 个数比13 000大.解法二:(排除法)比13 000小的正整数有33A 个,所以比13 000大的正整数有-55A 33A =114个.17.求证:11m m m n n n P mP P -++=.18.学校要安排一场文艺晚会的11个节目的演出顺序,除第1个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求跑在第4,8的位置,共有多少种不同的排法?组合一、高考要求:理解组合的意义,掌握组合数的计算公式和性质,并能用它解决一些简单的问题.二、知识要点:1.一般地,从n 个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.一般地,从n 个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.3.组合数公式:(1)(2)(1)!m mn nm m P n n n n m C P m ---+==,其中+∈N n m ,,且m≤n. 组合数公式还可以写成:!!()!m n n C m n m =-. 4.组合数的两个性质:m n m n n C C -=;11m m m n n n C C C -+=+.三、典型例题:例1:100件产品中有合格品90件,次品10件,现从中抽取4件检查.⑴ 都不是次品的取法有多少种?⑵ 至少有1件次品的取法有多少种?⑶ 不都是次品的取法有多少种?解: ⑴ 2555190490=C ;⑵ 13660354101903102902103901104904100=+++=-C C C C C C C C C ;⑶ 39210154901103902102903101904104100=+++=-C C C C C C C C C .例2:从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?解:分为三类:1奇4偶有4516C C ;3奇2偶有2536C C ;5奇1偶有56C所以一共有4516C C +2536C C +23656=C . 例3:现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?解:我们可以分为三类:① 让两项工作都能担任的青年从事英语翻译工作,有2324C C ;② 让两项工作都能担任的青年从事德语翻译工作,有1334C C ;③ 让两项工作都能担任的青年不从事任何工作,有2334C C .所以一共有2324C C +1334C C +2334C C =42种方法.例4:甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ?解法一:(排除法)422131424152426=+-C C C C C C解法二:分为两类:一类为甲不值周一,也不值周六,有2414C C ;另一类为甲不值周一,但值周六,有2324C C .所以一共有2414C C +2324C C =42种方法.例5:6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?解:第一步从6本不同的书中任取2本“捆绑”在一起看成一个元素有26C 种方法;第二步将5个“不同元素(书)”分给5个人有55A 种方法.根据分步计数原理,一共有26C 55A =1800种方法.变题1:6本不同的书全部送给5人,有多少种不同的送书方法?变题2: 5本不.同的书全部送给6人,每人至多1本,有多少种不同的送书方法? 变题3: 5本相.同的书全部送给6人,每人至多1本,有多少种不同的送书方法? 答案:1.1562556=; 2.72056=A ; 3.656=C .例6:身高互不相同的7名运动员站成一排,甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?解:(插空法)现将其余4个同学进行全排列一共有44A 种方法,再将甲、乙、丙三名同学插入5个空位置中(但无需要进行排列)有35C 种方法.根据分步计数原理,一共有44A 35C =240种方法.例7:⑴ 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?⑵ 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?解: ⑴根据分步计数原理:一共有25644=种方法.⑵(捆绑法)第一步从四个不同的小球中任取两个“捆绑”在一起看成一个元素有24C 种方法,第二步从四个不同的盒取其中的三个将球放入有34A 种方法.所以一共有24C 34A =144种方法.四、归纳小结:如果两个组合中的元素完全相同,那么不管元素的顺序如何,它们是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.五、基础知识训练:(一)选择题:1.在下列问题中:(1)从1,2,3三个数字中任取两个,可以组成多少个和?(2)从1,2,3三个数字中任取两个,可以组成多少个没有重复数字的两位数?(3)将3个乒乓球投入5个容器,每个容器只能容纳一个乒乓球,问有多少种投法?(4)将3张编号的电影票给三个同学,每人一张,有多少种分法?属于组合问题的是( )A.(1)B.(2)C.(3)D.(4)2.从10名同学中选出3名代表,所有可能的不同选法种数是( )A.120B.240C.720D.303.(2000-13)凸10边形共有对角线( )A.90条B.70条C.45条D.35条4.某班有50名学生,其中有一名正班长,一名副班长,现选派5人参加一个游览活动,其中至少有一名班长(正、副均可)参加,共有几种不同的选法,其中错误的一个是( )A.n=12C ·448C +22C ·348CB. n=550C -548CC. n=12C ·449CD.n=12C ·449C -348C5.从7名男队员和5名女队员中选出4人进行乒乓球男女混合双打,不同的组队数有( )A.27C ·25CB. 427C ·25CC. 227C ·25CD. A 27C ·25C(二)填空题:6.96979898C C = .7.平面内有12个点,其中任意3点不在同一直线上,以每3点为顶点画三角形,一共可画三角形的个数是 .8.从1,2,3,4,5,6,7,8,9这9个数中取出2个数,使它们的和是偶数,共有 种选法.9.有13个队参加篮球赛,比赛时先分成二组,第一组7个队,第二组6个队,各组都进行单循环赛(即每队都要与本组其它各队比赛一场),然后由各组的前两名共4个队进行单循环赛决定冠、亚军,共需要比赛的场数是 .10.4个男同学进行乒乓球双打比赛,有 种配组方法. (三)解答题:11.某赈灾区医疗队由4名外科医生和8名内科医生组成,现需从中选派5名医生去执行一项任务.(1)若某内科医生必须参加,而某外科医生因故不能参加,有多少种选派方法? (2)若选派的5名医生中至少有1名内科和外科医生参加,有多少中选派方法?解: (1)依题意,只须从剩余的10名医生中选出4名医生与内定的一名内科医生组成医疗队.故共有410C =210种选派方法.(2)方法一:5名医生全由内科医生组成,有58C 种方法,故符合题意的方法为512C 58C -=936种; 方法二:我们将内科、外科医生分别当作一组有序实数对的前后两实数,则按题意组队方式可有:(1,4),(2,3),(3,2),(4,1)四种,故共有18C ·44C +28C ·34C +38C ·24C +48C ·14C =736种.12.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?解:可以分为两类情况:① 若取出6,则有)(217171228C C C A +种方法;②若不取6,则有2717A C 种方法.根据分类计数原理,一共有)(217171228C C C A ++2717A C =602种方法.13.在产品检验时,常从产品中抽出一部分进行检查,现从10件产品中任意抽3件.(1) 一共有多少种不同的抽法?(2) 如果10件产品中有3件次品,抽出的3件中恰好有1件是次品的抽法有多少种? (3) 如果10件产品中有3件次品,抽出的3件中至少有1件是次品的抽法有多少种?排列、组合的应用一、高考要求:熟练应用排列、组合知识解排列组合应用题. 二、知识要点:排列问题与组合问题的根本区别在于,取出元素后是否按一定顺序排列.元素需要按一定顺序排列,属排列问题;不需要考虑元素顺序,属组合问题.三、典型例题:例1:完成下列选择题与填空题:(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种.A.81B.64C.24D.4(2)四名学生争夺三项冠军,获得冠军的可能的种数是( )A.81B.64C.24D.4(3)有四位学生参加三项不同的竞赛,①每位学生必须参加一项竞赛,则有不同的参赛方法有;②每项竞赛只许有一位学生参加,则有不同的参赛方法有;③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有.解析(1)完成一件事是“分步”进行还是“分类”进行,是选用基本原理的关键.将“投四封信”这件事分四步完成,每投一封信作为一步,每步都有投入三个不同信箱的三种方法,因此:N=3×3×3×3=34=81,故答案选A.本题也可以这样分类完成,①四封信投入一个信箱中,有C31种投法;②四封信投入两个信箱中,有C32(C41·A22+C42·C22)种投法;③四封信投入三个信箱,有两封信在同一信箱中,有C42·A33种投法、,故共有C31+C32(C41·A22+C42C22)+C42·A33=81(种).故选A.(2)因学生可同时夺得n项冠军,故学生可重复排列,将4名学生看作4个“店”,3项冠军看作“客”,每个“客”都可住进4家“店”中的任意一家,即每个“客”有4种住宿法.由分步计数原理得:N=4×4×4=64.故答案选B.(3)①学生可以选择项目,而竞赛项目对学生无条件限制,所以类似(1)可得N=34=81(种);②竞赛项目可以挑学生,而学生无选择项目的机会,每一项可以挑4种不同学生,共有N=43=64(种);③等价于从4个学生中挑选3个学生去参加三个项目的竞赛,每人参加一项,故共有C43·A33=24(种).注本题有许多形式,一般地都可以看作下列命题:设集合A={a1,a2,…,a n},集合B={b1,b2,…,b m},则f:A→B的不同映射是m n,f:B→A的不同映射是n m.若n≤m,则f:A→B的单值映射是:A m n.例2:同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有( )A.6种B.9种C.11种D.23种解法一由于共四人(用1,2,3,4代表甲、乙、丙、丁四人),这个数目不大,化为填数问题之后,可用穷举法进行具体的填写:再按照题目要求检验,最终易知有9种分配方法.解法二记四人为甲、乙、丙、丁,则甲送出的卡片可以且只可以由其他三人之一收到,故有3种分配方式;以乙收到为例,其他人收到卡片的情况可分为两类:第一类:甲收到乙送出的卡片,这时丙、丁只有互送卡片1种分配方式;第二类:甲收到的不是乙送出的卡片,这时,甲收到卡片的方式有2种(分别是丙和丁送出的).对每一种情况,丙、丁收到卡片的方式只有一种.因此,根据乘法原理,不同的分配方式数为3×(1+2)=9.解法三给四个人编号:1,2,3,4,每个号码代表1个人,人与号码之间的关系为一对一的关系;每个人送出的贺年卡赋给与其编号相同的数字作为代表,这样,贺年卡的分配问题可抽象为如下“数学问题”:将数字1,2,3,4,填入标号为1,2,3,4的4个方格里,每格填写一个数字,且每个方格的编号与所填数字都不同的填法共有多少种(也可以说成:用数字1,2,3,4组成没有重复数字的4位数,而且每位数字都不等于位数的4位数共有多少个)?这时,可用乘法原理求解答案:首先,在第1号方格里填写数字,可填上2、3、4中的任一个数,有3种填法;其次,当第1号方格填写的数字为i(2≤i≤4)时,则填写第i种方格的数字,有3种填法;最后,将剩下的两个数填写到空着的两个空格里,只有1种填法(因为剩下的两个数中,至少有1个与空着的格子的序号相同).因此,根据乘法原理,得不同填法:3×3×1=9注本题是“乱坐问题”,也称“错排问题”,当元素较大时,必须用容斥原理求解,但元素较小时,应用分步计数原理和分类计数原理便可以求解,或可以穷举.例3:宿舍楼走廊上有有编号的照明灯一排8盏,为节约用电又不影响照明,要求同时熄掉其中3盏,但不能同时熄掉相邻的灯,问熄灯的方法有多少种?解法一我们将8盏灯依次编号为1,2,3,4,5,6,7,8.在所熄的三盏灯中,若第一盏熄1号灯,第二盏熄3号灯,则第3盏可以熄5,6,7,8号灯中的任意一盏,共有4种熄法.若第一盏熄1号灯,第2盏熄4号灯,则第3盏可以熄6,7,8号灯中的任意一盏.依次类推,得若1号灯熄了,则共有4+3+2+1=10种熄法.若1号灯不熄,第一盏熄的是2号灯,第二盏熄的是4号灯,则第三盏可以熄6,7,8号灯中的任意一盏,共有3种熄法.依次类推得,若第一盏灯熄的是2号灯,则共有3+2+1=6种熄法.同理,若第一盏熄的是3号灯,则共有2+1=3种熄法.同理,若第一盏熄的是4号灯,则有1种熄法.综上所述共有:10+6+3+1=20种熄法.解法二我们可以假定8盏灯还未安装,其中5盏灯是亮着的,3盏灯不亮.这样原问题就等价于:将5盏亮着的灯与3盏不亮的灯排成一排,使3盏不亮的灯不相邻(灯是相同的).5盏亮着的灯之间产生6个间隔(包括两边),从中插入3个作为熄灭的灯——就是我们经常解决的“相邻不相邻”问题,采用“插入法”,得其答案为C63=20种.注解法一是穷举法,将所有可能的情况依次逐一排出.这种方法思路清晰,但有时较繁.。
排列组合与二项式定理
排列、组合与二项式定理16.1 加法原理和乘法原理1、加法原理问题:从甲地到乙地,可以乘火车,也可以乘汽车,一天中火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种方法?加法原理:完成一件事有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有12n N m m m =+++ 种不同的方法。
2、乘法原理问题:从甲地到乙地有3条道路,从乙地到丙地有2条道路,问:某人从甲地经过乙地到丙地有多少种不同的走法?乘法原理:完成一件事需要n 个步骤,第1步有1m 种不同的方法,第2步有2m 种不同的方法,……,第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法。
例1:书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。
(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同科目的书两本,有多少种不同的取法?++=。
解:(1)35614⨯⨯=。
(2)35690⨯+⨯+⨯=。
(3)35365663例2:(1)由数字1,2,3,4,5可以组成多少个各位数字可以重复的三位整数?(2)由数字0,1,2,3,4,5可以组成多少个各位数字可以重复的三位整数?(3)由数字0,1,2,3,4,5组成的三位整数中,有且只有两位数字相同(如114、303、255等)的数有多少个?N=⨯⨯=。
解:(1)555125N=⨯⨯=。
(2)566180N=⨯+⨯+⨯=。
(3)55555575N=⨯⨯--⨯⨯=。
另解:566555475课堂练习1、4名同学报名参加篮球、射击、游泳三个活动小组,每人限报一项,则不同的报名情况共有多少种?2、4名运动员争夺3项冠军,则冠军获得者的可能情况有多少种?3、用红、黄、蓝的小旗各一面挂在旗杆上表示信号,每次可以挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可表示多少种不同的信号?4、540(23540235=⨯⨯)的不同正约数共有多少个?5、在300和800之间,有多少个无重复数字的奇数?6、某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,从中选出2人,一人去当英语翻译,另一人去当日语翻译,有多少种不同的选法?解:1、分4步:4381=2、分3步:3464=3、先分类,再分步33232115+⨯+⨯⨯=4、分3步:34224⨯⨯=5、先分类,再分步:348258176⨯⨯+⨯⨯=6、分两类:553437⨯+⨯=课后作业1、要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?2、将四封信投入到三个邮筒中,有多少种不同的投递方式?3、在所有的两位数中,个位数字小于十位数字的共有多少个?4、用数字0、1、2、3可以组成多少个无重复数字的自然数?5、满足A∪B={1,2,3}的集合A、B共有多少组?6、如下图,共有多少个不同的三角形?7、4名同学各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则不同的分配方式共有多少种?8、矩形的两条对角线把矩形分成4个部分,用4种不同颜色给这4个部分涂色,要求每个部分只涂一种颜色,且有公共边的相邻部分颜色不同,则共有多少种不同的涂法?解:1、6; 2、81; 3、45; 4、49; 5、9; 6、35; 7、27; 8、8416.2 排列1、排列的概念问题:(1)从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?(2)从,,,a b c d 这四个字母中,每次取出3个按顺序排成一列,共有多少种不同的排法?从n 个不同元素中,任取m (m n ≤)个不同元素,按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....。
第11讲 排列组合和二项式定理,概率(2021高考数学 新东方内部
第11讲排列组合和二项式定理,概率(2021高考数学新东方内部第11讲排列、组合和二项式定理,概率(2021高考数学---新东方内部第一一章排列组合与二项式定理1.排列数公式成年男子n(n?1)(n?2)?(n?m?1)?Nn(m?n);an?Nn(n?1)(n?2)?2.1.(n?m)!如①1!+2!+3!+…+n!(n?4,n?n*)的个位数字为;(答:3)②满足a8x?6a8x?2的x=(答:8)组合数公式曼恩?(n?1)???(n?m?1)n!0c?M(m?n);指定0!?1,中国?一amm?(m?1)???2?1m!?n?m?!mnmnm如已知cn?cm?1?an?6,求n,m的值.(答:m=n=2)(了解)排列数、组合数的性质①cnmcnn?M1②cnm?cnm?1?cnm??1;kk?1.③kcn?ncn?1.1.④crr?crr?1.crr?r?cnr1.⑤NN(n?1)!?Nn11??⑥.(n?1)!n!(n?1)!2.解排列组合问题的依据是:分类和添加(每种方法都可以独立完成这项任务,相互独立,每次都得到最终结果,只有一种方法可以完成这项任务),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序的安排,无序的组合如①将5封信投入3个邮筒,不同的投法共有种;(答:35)②从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有种;(答:70)③ 从收集中?1,2,3? 和1,4,5,6? 如果将每个元素作为点的坐标,则它位于直角坐标系中中能确定不同点的个数是_;(答:23)④72的正约数(包括1和72)共有个;(答:12)⑤?a的一边ab上有4个点,另一边ac上有5个点,连同?a的一个顶点总共有10个点。
将这些点作为顶点可以形成三个三角形;(答复:cb90)⑥ 使用六种不同的颜色来分隔右图中的四个区域a、B、C和D,并且允许使用相同的颜色一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有d种不同涂法;(答:480)⑦ 同一个房间里的四个人每人写一张新年贺卡,然后每人拿一张别人寄来的新年贺卡。
高中数学高考总复习---排列组合、二项式定理知识讲解及考点梳理
高中数学高考总复习---排列组合、二项式定理知识讲解及考点梳理【高考展望】命题角度:该部分的命题就是围绕两个点展开.第一个点是围绕排列,组合展开,设计利用排列组合和两个基本原理求解的实际计数问题的试题,目的是考查对排列组合基本方法的掌握程度,考查分类与整合的思想方法,试题都是选择题或者填空题,难度中等或者偏易;第二点是围绕二项式定理展开,涉及利用二项式的通项公式计算二项式中特定项的系数、常数项、系数和等试题,目的是考查对二项式定理的掌握程度和基本的运算求解能力,试题也都是选择题或者填空题,难度中等.预计高考对该部分的考查基本方向不变,即考查简单的计数问题、二项式定理的简单应用,但由于排列,组合试题的特点,也不排除出现难度稍大的试题的可能.复习建议:该部分的复习以基本问题为主,要点有两个:一个是引导学生掌握解决排列,组合问题的基本思想,即分类与分步的思想,使学生在解题时有正确的思维方向;一个是掌握好二项展开式的通项公式的应用,这是二项式定理的考查核心.【知识升华】一、排列与组合1、分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.2、排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.3、排列与组合的主要公式①排列数公式:)1()1()!(!+-⋅⋅⋅-=-=mnnnmnnA mn(m≤n)A nn=n! =n(n―1)(n―2) ·…·2·1.②组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=mmmnnnmnmnC mn(m≤n).③组合数性质:①mnnmnCC-=(m≤n). ②nnnnnnCCCC2210=+⋅⋅⋅+++③1314202-=⋅⋅⋅++=⋅⋅⋅++nnnnnnCCCCC4、分类应在同一标准下进行,确保“不漏”、“不重”,分步要做到“步骤连续”和“步骤独立”,并能完成事项.5、界定“元素与位置”要辩证地看待,“特殊元素”、“特殊位置”可直接优先安排,也可间接处理.6、解排列组合综合问题注意先选后排的原则,复杂的排列、组合问题利用分类思想转化为简单问题求解.7、常见的解题策略有以下几种:(1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略;(10)构造模型的策略.二、二项式定理1、二项式定理(a +b)n =C 0n an +C1n an-1b+…+Crn an-rbr +…+Cnn bn,其中各项系数就是组合数Crn,展开式共有n+1项,第r+1项是Tr+1 =C rn an-rbr.2、二项展开式的通项公式二项展开式的第r+1项Tr+1=C rn an-rbr(r=0,1,…n)叫做二项展开式的通项公式。
高中数学排列组合及二项式定理知识点
高中数学之排列组合二项式定理一、分类计数原理和分步计数原理:分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。
分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。
区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。
二、排列与组合:(1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。
(2)排列数、组合数:排列数的公式:)()!(!)1()2)(1(n m m n n m n n n n A m n ≤-=+---= 注意:①全排列:!n A n n =; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①11--=m n m n nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成:第一步从n 个元素中选出1个排在指定的一个位置上;第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)②m n m n m n A mA A 111---+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成:第一类:m 个元素中含有a ,分两步完成:第一步将a 排在某一位置上,有m 不同的方法。
第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)即有11--m n mA 种不同的方法。
第二类:m 个元素中不含有a ,从1-n 个元素中取出m 个元素排在m 个位置上,有m n A 1-种方法。
排列组合与二项式定理
B. 24种 D. 36种
解析:因为恰有2人选修课程甲,共有C2 4 6 种结果,所以余下的两个人各有两种选法, 共有2 2 4种结果,根据分步计数原理知共 有6 4 24种结果.
2.(2011 重庆卷) 1 2x 的展开式中x 4的系数是
6
_________ .
r r 解析:展开式的通项为Tr 1 2r C6 x. 4 令r 4得展开式中x 4的系数是24 C6 240.
4 得常数1 1 C8 70; 4
当第一个括号中取2x 2时,则第二个括号必取
5
1 x2
5 项,由通项易知当r 5时,取得常数2 1 C8
112,所以展开式中常数项为 112 70 42.
【思维启迪】本题主要考查二项式定理的通项 公式及分类讨论的思想方法.解答两个因式 积的展开式问题主要有两种途径:
究;
6 近似计算:构造二项式,展开后根据精确度的要
求分析应取前几项,从哪项开始去掉后面的所有项.
拍卖预展 龙威
1.(2 011 全国大纲卷)4位同学每人从甲、乙、丙3 门课程中选修1门,则恰有2人选修课程甲的不同 选法共有 A. 12种 C. 30种
专题三
排列、组合、二项式 定理、概率与统计
1.计数原理 分类计数原理:完成一件事,有n类办法,在第1类办 法中有m1种不同的方法,在第2类办法中有m2种不同 的方法, ,在第n类办法中有mn种不同的方法,那么 完成这件事共有N m1 m2 mn种不同的方法. 分步计数原理:完成一件事,需要n个步骤,做 第1步有m1种不同的方法,做第2步有m2种不同的方法, ,做第n步有mn种不同的方法,那么完成这件事共有 N m1 m2 mn种不同的方法.
【高考一轮复习,二级结论高效解题】专题13 排列组合、二项式定理
专题13 排列组合、二项式定理二级结论1:排列组合中的分组与分配【结论阐述】①“非均匀分组”是指将所有元素分成元素个数彼此不相等的组,使用分步组合法;①“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组.不论是全部均匀分组,还是部分均匀分组,如果有m个组的元素是均匀的,都有A m m种顺序不同的分法只能算一种分法;①对于非均匀编号分组采用分步先组合后排列法,部分均匀编号分组采用分组法;①平均分堆问题倍缩法采用缩倍法、除倍法、倍除法、除序法、去除重复法);①有序分配问题逐分法采用分步法);①全员分配问题采用先组后排法;①名额分配问题采用隔板法(或元素相同分配问题隔板法、无差别物品分配问题隔板法);①限制条件分配问题采用分类法.【应用场景】需要根据题意判断出符合题意的分组、分配方式,涉及平均分配、部分平均不定向分配、非平均不定向分配,以及分类、分步计数原理等.【典例指引1】1.某高校从某系的10名优秀毕业生中选派4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?【典例指引2】2.有6本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种分法?【针对训练】(2022·江苏省苏州)3.现有5个不同的小球,放到标号分别为①①①的三个空盒中,每个盒子至少放一个小球,有()种不同的放法A.240种B.150种C.360种D.540种4.将20个完全相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中球的个数不小于它的编号,则不同的放法种数为()A.1615B.1716C.286D.3645.10个相同的小球放在三个编号为1,2,3的盒中,每盒至少1个,有_________种方分法.(2022·重庆巴蜀中学高二)6.学校要安排2名班主任,3名科任老师共五人在本校以及另外两所学校去监考,要求在本校监考的老师必须是班主任,且每个学校都有人去,则有( )种不同的分配方案. A .18B .20C .28D .34(2022·山西·芮城)7.有3个完全相同的标号为1的小球和两个标号为2,3的小球,将这5个小球放入3个不同的盒子中,每个盒子至少放一个小球,则不同的放法总数为( ) A .45B .90C .24D .150(2022·山西省长治市)8.某社区服务站将5名志愿者分到3个不同的社区参加活动,要求每个社区至少1人,不同的分配方案有( ) A .360种B .300种C .90种D .150种(2022·江苏·昆山)9.(1)4个不同的小球放入编号为1,2,3,4的盒子,共有多少种放法;(2)4个不同的小球放入编号为1,2,3,4的盒子,恰有一个盒子空,共有多少种放法;(3)10个相同的小球放入编号为1,2,3,4的盒子,每个盒子不空,共有多少种放法;(4)4个相同的小球放入编号为1,2,3,4的盒子,恰有两个盒子空,共有多少种放法?10.按下列要求分配6本不同的书,各有多少种不同的分配方式? (1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本; (3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本; (5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本; 二级结论2:()()(),mn nax by cx dy ax by cz ++++型的系数【结论阐述】一、三项展开式中的特定项(系数)问题的处理方法:(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系数)问题的处理方法求解;(2)将其中某两项看成一个整体,直接利用二项式展开,然后再分类考虑特定项产生的所有可能情形;(3)也可以按照推导二项式定理的方法解决问题.二、几个多项式积的展开式中的特定项(系数)问题的处理方法:可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可.【应用场景】对于()()(),mn nax by cx dy ax by cz ++++型系数问题,可以采用相应的方法解决问题。
高考排列组合及二项式定理知识总结与例题讲解(5分)
解:假设 项最大,
,化简得到 ,又 , ,展开式中系数最大的项为
题型七:含有三项变两项;
例:求当 的展开式中 的一次项的系数?
解法①: , ,当且仅当 时, 的展开式中才有x的一次项,此时 ,所以 得一次项为
它的系数为 。
解法②:
故展开式中含 的项为 ,故展开式中 的系数为240.
2、 2、
2、4n
3、 的展开式中的有理项是展开式的第项
3、3,9,15,21
4、(2x-1)5展开式中各项系数绝对值之和是
4、(2x-1)5展开式中各项系数系数绝对值之和实为(2x+1)5展开式系数之和,故令x=1,则所求和为35
5、求(1+x+x2)(1-x)10展开式中x4的系数
5、 ,要得到含x4的项,必须第一个因式中的1与(1-x)9展开式中的项 作积,第一个因式中的-x3与(1-x)9展开式中的项 作积,故x4的系数是
解:设 展开式中各项系数依次设为
,则有 ①, ,则有 ②
将①-②得:
有题意得, , 。
练:若 的展开式中,所有的奇数项的系数和为 ,求它的中间项。
解: , ,解得
所以中间两个项分别为 , ,
题型六:最大系数,最大项;
例:已知 ,若展开式中第 项,第 项与第 项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?
练:求式子 的常数项?
解: ,设第 项为常数项,则 ,得 , , .
题型八:两个二项式相乘;
例:
解:
.
练:
解:
.
练:
解:
题型九:奇数项的系数和与偶数项的系数和;
例:
排列组合与二项式定理
排列组合和二项式定理是数学中的重要概念,它们在很多领域都有应用,包括统计学、概率论和计算物理等。
排列组合主要研究的是从n个不同元素中取出m个元素(m≤n)的排列和组合问题。
排列是指按照一定的顺序将元素进行排列,而组合则是指不考虑顺序地将元素进行组合。
排列和组合都有各自的数量表示方法,即排列数和组合数。
二项式定理则是用来展开二项式的定理,它的一般形式是(a+b)的n次方的展开式。
这个定理的证明可以通过归纳法和乘法原理进行。
二项式定理的各项系数,即合并同类项后的系数,可以用排列数来表示。
二项式定理的证明有很多种,其中一种基于其组合意义的证明方法是通过选择第i 个元素或者不选择第i个元素来进行证明。
此外,排列组合和二项式定理都涉及到可重元素的问题。
对于可重元素的情况,需要考虑到元素的重复次数和排列的顺序等因素。
对于含有相同元素的排列问题,可以通过设重集S的方法来求解排列个数。
总的来说,排列组合和二项式定理是密切相关的数学概念,它们在很多数学问题和实际问题中都有应用。
排列、组合、二项式定理的精品教案3篇
排列、组合、二项式定理的精品教案排列、组合、二项式定理的精品教案精选3篇(一)教案主题:排列、组合、二项式定理教学目标:1. 了解和理解排列、组合的概念和特点;2. 学习排列、组合的计算公式;3. 通过实际问题应用排列、组合的知识;4. 理解和应用二项式定理。
教学准备:1. PowerPoint演示文稿;2. 排列、组合的计算示例;3. 计算器。
教学流程:一、导入(5分钟)1. 引出学生对于排列、组合的了解,以及他们对于二项式定理的了解。
2. 引出排列、组合涉及到的实际问题,如抽奖、排座位等。
二、讲解排列(15分钟)1. 讲解排列的概念:从n个元素中选取r个元素进行排列,一共有多少种不同的排列方式。
2. 讲解排列的计算公式:P(n, r) = n!/(n-r)!。
3. 讲解排列的特点:次序有关,一个元素不能重复选取。
三、讲解组合(15分钟)1. 讲解组合的概念:从n个元素中选取r个元素进行组合,一共有多少种不同的组合方式。
2. 讲解组合的计算公式:C(n, r) = n!/[(n-r)!r!]。
3. 讲解组合的特点:次序无关,一个元素不允许重复选取。
四、讲解二项式定理(15分钟)1. 讲解二项式定理的概念:将一个二项式表达式展开后的结果。
2. 讲解二项式定理的公式:(a+b)^n = C(n, 0) a^n b^0 + C(n, 1) a^n-1 b^1 + ... + C(n, n-1) a^1 b^n-1 + C(n, n) a^0 b^n。
3. 讲解二项式定理的应用:展开二项式表达式,求特定项的值。
五、练习与应用(20分钟)1. 给出一些排列、组合的计算问题,让学生自主计算并回答。
2. 提供一些实际问题,让学生应用排列、组合的知识进行解决。
六、总结与延伸(5分钟)1. 对排列、组合和二项式定理进行简要总结。
2. 探讨一些延伸问题,如多项式展开、二项式系数等。
教学反思:1. 教学内容安排合理,从概念到计算公式,再到实际应用,能够让学生逐步理解和掌握知识。
高中数学专题讲解排列组合及二项式定理
排列组合及二项式定理【基本知识点】1.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=). (2)增减性与最大值:当n 是偶数时,中间一项2nn C 取得最大值;当n 是奇数时,中间两项12n nC -,12n nC+取得最大值.(3)各二项式系数和:∵1(1)1n r rn n n x C x C x x +=+++++,令1x =,则0122n rn nn n n n C C C C C =++++++【常见考点】一、可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。
(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34 (3)34二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.(4),,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 (5)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432 种其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.(6)七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种(7) 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504(8)马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的 二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?【解析】:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯35C 种方法,所以满足条件的关灯方案有10种.四.元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元 素;再排其它的元素。
排列组合二项式定理
3 C 3 C 3 C 3C 1024
4 6 10 3 7 10 2 8 10 9 10
⑶求证: 3 2
n
n 1
(n 2)(n N , n 2)
例、 从6个学校中选出30名学生参加数学竞赛,每 校至少有1人,这样有几种选法?
分析:问题相当于把个30相同球放入6个不同盒子(盒 子不能空的)有几种放法?这类问题可用“隔板法”处 5 理. C29 4095 解:采用“隔板法” 得:
混合问题,先“组”后“排”
例:对某种产品的6件不同的正品和4件不同的次品, 一一进行测试,至区分出所有次品为止,若所有次 品恰好在第5次测试时全部发现,则这样的测试方法 有种可能? 解:由题意知前5次测试恰有4次测到次品,且第5 次测试是次品。故有: 3C 1 A4 576 种可能。 C
1.3:二项式定理
奇数项二项式系数和 偶数项二项式系数和: C C C C C C 2
0 n 2 n 4 n 1 n 3 n 5 n n 1
赋值法
x 2 5 1.求: ( ) 的有理项 2 x
4 3 2 ( 2.化简:x 1) 4( x 1) 6( x 1) 4( x 1) 1
A 6(种)
3 3
涂色问题
例3:如图,要给地图A、B、C、D四个区域 分别涂上3种不同颜色中的某一种,允许同一种 颜色使用多次,但相邻区域必须涂不同的颜色, 不同的涂色方案有多少种?
若用2色、4色、5色 等,结果又怎样呢?
1.3:二项式定理
1、二项定理: 一般地,对于n N*有
排列组合、二项式定理知识点
排列组合二项定理考试内容:分类计数原理与分步计数原理.排列.排列数公式.组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质.考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.排列组合二项定理知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..的排列...重复..元素从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列.1. ⑴对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示.⑷排列数公式:注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m nm n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题.对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m nm mm nmn-=+--==Λ ⑶两个公式:①;m n n mn CC -= ②m n m n m n C C C11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C1-m n,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn种,依分类原理有mn m n m n C C C11+-=+.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑸①几个常用组合数公式 ②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n Λ(利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C Λ. vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++Λ证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅--ΛΛ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-. ②有n 件不同商品,若其中A 、B 排在一起有2211A A n n ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?m m n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m π个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n!/ m !;解法二:(比例分配法)mm n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C Λ)1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mm mm n mn m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义.⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用na a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,x 1x 2x 3x 4并且都排在某r 个指定位置则有r k r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有mn A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的) ⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)直接法:根据加法原理及乘法原理,直接把一个复杂的事件分解成为简单的排列组合问题,这种解题方法为直接法。
(2)间接法:不管限定条件,全部的排列数或组合数,必含两类情况,一类是符合题意限定条件的种数,另一类不符合题意限定条件的种类,用全部种类减去不符合题意限定条件的种类可得符合题意限定条件的种类,此种方法属数学中常用的间接法。当符合题意限定条件中的种类不易求,或情况多样易出错,而不符合题意条件的种类易求时,常采用此法。
【答案】48.
3.以正方体的顶点为顶点,能作出的三棱锥的个数是()
. ; . . -6. . .
【答案】 .
4.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有()
.6种; .9种; .11种 .23种
【答案】
5.设有编号为1、2、3、4、5的五个球和编号为1、2、3、4、5的五个盒子,现将这五个球投入这五个盒内,要求每个盒内投放一个球,并且恰好有两个球的编号与盒子的编号相同,则这样投放的方法总数为()
如果二项式的幂指数 是奇数时,则中间两项的二项式系数 , 同时取得最大值.
⑥系数的最大项:求 展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别
为 ,设第 项系数最大,应有 ,从而解出 来.
(4)常用的结论:
令
令
二、同步题型分析
例1. 9名身高各不相同的人排队,按下列要求,各有多少种不同的排法?
①若取出6,则有 种方法;
②若不取6,则有 种方法.
根据分类计数原理,一共有 + =602种方法.
9、从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有种.
【参考答案】由分析,完成第一类办法还可以分成两步:第一步在原装计算机中任意选取2台,有 种方法;第二步是在组装计算机任意选取3台,有 种方法,据乘法原理共有 种方法.同理,完成第二类办法中有 种方法.据加法原理完成全部的选取过程共有 种方法.
【答案】2520.
2.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后进行,又工程丁必须在丙完成后立即进行,那么安排这6项工程的不同的排法种数是__________.(用数字作答)【答案】20.
3.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有_______种不
(5)①千位上为9,8,7,6的四位数各有 个;
②千位上是5,百位上为3,4,6,7,8,9的四位数各有 个;
③千位上是5,百位上为2,十位上为4,6,7,8,9的四位数各有 个;
④千位上是5,百位上为2,十位上为3且满足要求的共有5个,因此共有
2392种
综合题型1:会根据两个原理解决有关分配决策的问题(要正确区分分类和分步):
(1)共有几个三位数?
(2)末位数字是4的三位数有多少?
(3)求所有三位数的和;
(4)四位偶数有多少?
(5)比5231大的四位数有多少?
【答案】(1)百位不能为“0”,因此共有 个;
(2)末位为4,百位不能为“0”,因此共有 × =64个
(3)考虑各数位上的数字之和,可得所有三位数的和为:
(4)分末位数字是否为0两种情况考虑。 种;
同室四人各写一贺年卡先集中起来然后每人从中拿一别人送出的贺年卡则四贺年卡不同的分配方式有设有编号为12345的五个球和编号为的五个盒子现将这五个球投入这五个盒要求每个盒投放一个球并且恰好有两个球的编号与盒子的编号相同则这样投放的方法总数为个大人2个小孩约定星期日乘红色白色两辆轿车结伴郊游每辆车最多乘坐两个小孩不能独坐一辆车则不同的乘车方法种数是
(3)七个人排成一列,三个女生不全相邻
【答案】(1)捆绑法 =576;(2)捆绑法 =960;(3)间接法 =4320
例3.某校高一年级有6个班级,现要从中选出10人组成高一女子篮球队参加高中篮球比赛,且规定每班至少要选1人参加,这10个名额有多少种不同的分配方法?
【答案】隔板法,相当于9个空隔了5块板, =126种
1.乘法原理和加法原理
(1)乘法原理:如果完成一件事需要 个步骤,第1步有 种不同的方法,第2步有 种不同的方法, ,第 步有 种不同的方法,那么完成这件事共有 种不同的方法.
(2)加法原理:如果完成一件事有 类办法,在第1类办法中有 种不同的方法,在第2类办法中有 种不同的方法, ,在第 类办法中有 种不同的方法,那么完成这件事共有 种不同的方法.
1.5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有()
.15种; .8种 . 种 . 种
【答案】D
2.四名医生分配到三所医院工作,每所医院至少一名,则不同的分配方案有______种.
【答案】36
3.有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有()
(1)排成一排
(2)排成前排4人,后排5人的两排
(3)排成一排,其中A,B两人不相邻
(4)排成一排,其中C,D两人相邻
(5)排成一排,其中E不在排首,F不在排尾
(6)排成一排,其中A必须站在B的右侧(不一定相邻)
(7)排成一排,身高最高的人站中间且向两边递减
(8)排成一排,其中H,I之间必须间隔2人
.1260种; .2025种; .2520种; .5040种.
【答案】 .
综合题型2:会用捆绑法、插空法处理元素相邻或不相邻问题
1.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有()
.12种; .20种; .24中 不在左端也不和 相邻的排法种数为()
.70; .140; .280; .840.
【答案】 .
综合题型5:会解其它有限制条件的排列组合问题(要注意使用最常用、最本原的方法:枚举法)
1.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()
.36个; .24个; .18个; .6个.
【答案】 .
2.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).
同的方法(用数字作答).
【答案】1260.
综合题型4:会解与平均分组和非平均分组有关的问题
1.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()
.140种; .84种; .70种; .35种.
【答案】 .
2.将9个人(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为()
.48; .54; .60; .66.
【答案】 .
3.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有个.(用数字作答)
【答案】1152.
综合题型3:会求某些元素按指定顺序排列的问题
1.七个人排成一行,则甲在乙左边(不一定相邻)的不同排法数有_________种.
【答案】
3、在上海高考改革方案中,要求每位高中生必须在理科学科:物理、化学、生物,文科学科:政治、历史、地理这6门学科中选择3门学科参加等级考试.小王同学对理科学科比较感兴趣,决定至少选择两门理科学科,那么小王同学的选科方案有___________种.
【答案】10
【答案】方法一:从数学课入手
(第一类)数学排在第一节,班会课排在下午,其余四科任排,得 ,
(第二类)数学排在上午另三节中的一节,班会排在下午,体育排在余下(不会第一节)三节中的一节,其余三科任排,得
共有排法 (种)
方法二:从体育课入手
(第一类)体育课在上午
(第二类)体育课在下午
共有排法 (种)
例3.用0~9这十个数字组成没有重复数字的正整数
(3) .
【参考答案】(1) 或
或
或
经检验
(2)原式=
(3)
原式=
7、书架上有9本不同的书,若把另外3本不同的书插进去,且要求不插在两头,
有种不同的插法.
【参考答案】720
8、九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?
【参考答案】可以分为两类情况:
(3)捆绑法:关于某些元素必“相邻”的问题,可把这些元素看作一个整体,当成一个元素和其它元素进行排列,然后这些元素自身再进行排列,这种方法叫做捆绑法。
(4)插空法:若题目限制某些元素必“不相邻”,可将无此限制的元素进行排列,然后在它们的空格处,插入不能相邻元素,这种方法叫插空法。
二项式定理
(1)二项式定理:
经典例题:
例1.四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同取法共有()
A.150种B. 147种C. 144种D.141种
【答案】取出的四个点不共面的情况要比取出的四个点共面的情况复杂,可采用间接法,
先不加限制任取四点,再减去四面共点的取法.
在10个点中任取4点,有 种取法,取出的4点共面有三类
第一类:共四面体的某一个面,有4 种取法;
第二类:过四面体的一条棱上的三点及对棱的中点,如图中的平面 ,有6种取法;
第三类:过四面体的四条棱的中点,面与另外两条棱平行,如图中的平面 ,共有3个.
故取4个不共面的点的不同取法共有 -(4 +6+3)=141,因此选D
例2.一天要排语文、数学、英语、生物、体育、班会六节课(上午四节,下午二节),要求上午第一节不排体育,数学课排在上午,班会课排在下午,问共有多少种不同的排课方法?