湖北省武汉市2018届高三四月调研测试数学理试题含答案
湖北省武汉市2018届高三毕业生四月调研测试数学(文)试卷(含答案)
武汉市2018届高中毕业生四月调研测试文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数52i -的共轭复数是( ) A .2i + B .2i -+ C .2i -- D .2i - 2.已知集合2{|20}A x x x =-<,{|lg(1)0}B x x =-≤,则A B =I ( ) A .(0,2) B .(1,2) C .(1,2] D .(0,2]3.曲线1C :221259x y +=与曲线2C :221259x y k k+=--(09)k <<的( ) A .长轴长相等 B .短轴长相等 C .离心率相等 D .焦距相等 4.执行如图所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于( )A .[4,2]-B .[2,2]-C .[2,4]-D .[4,0]-5.若x 、y 满足约束条件31230x y x x y +≤⎧⎪≥⎨⎪--≤⎩,则32z x y =+的最小值为( )A .9B .7C .1D .3-6.从装有3双不同鞋的柜子里,随机取2只,则取出的2只鞋不成对的概率为( ) A .1415 B .45 C .35 D .157.若实数a ,b 满足1a b >>,log (log )a a m b =,2(log )a n b =,2log a l b =,则m ,n ,l 的大小关系为( )A .m l n >>B .l n m >>C .n l m >>D .l m n >> 8.在ABC ∆中,角A 、B 、C 的对应边分别为a ,b ,c ,条件p :2b c a +≤,条件q :2B CA +≤,那么条件p 是条件q 成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为( )A .3B .6C .23D .2610.已知()f x 是R 上的奇函数,且(1)y f x =+为偶函数,当10x -≤≤时,2()2f x x =,则()2f 7=( )A .12B .12-C .1D .1- 11.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最大值点,则ω的取值范围为( ) A .[2,4]ππ B .9[2,)2ππ C .1325[,)66ππ D .25[2,)6ππ 12.已知(2,0)A ,(0,1)B 是椭圆22221x y a b+=的两个顶点,直线(0)y kx k =>与直线AB 相交于点D ,与椭圆相交于E ,F 两点,若6ED DF =u u u r u u u r,则斜率k 的值为( )A .23 B .38 C .23或38 D .23或34二、填空题:本大题共4小题,每小题5分,共20分.13.已知sin 2cos αα=,则sin cos αα= .14.已知向量a r ,b r 满足条件2a =r ,3b =r ,a r 与b r 的夹角为60o,则a b -=r r .15.过点(1,1)P 作曲线3y x =的切线,则切线方程为 .16.在四面体ABCD 中,1AC CB AB AD BD =====,且平面ABC ⊥平面ABD ,则四面体ABCD 的外接球半径R = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知正数等比数列{}n a 的前n 项和n S 满足:21342n n S S +=+. (1)求数列{}n a 的首项1a 和公比q ; (2)若n n b na =,求数列{}n b 的前n 项和n T .18.如图,在棱长为3的正方体1111ABCD A B C D -中,E ,F 分别在棱AB ,CD 上,且1AE CF ==.(1)求异面直线1A E 与1C F 所成角的余弦值. (2)求四面体11EFC A 的体积.19.已知直线2y x =与抛物线Γ:22y px =交于O 和E 两点,且5OE =(1)求抛物线Γ的方程;(2)过点(2,0)Q 的直线交抛物线Γ于A 、B 两点,P 为2x =-上一点,PA ,PB 与x 轴相交于M 、N 两点,问M 、N 两点的横坐标的乘积M N x x ⋅是否为定值?如果是定值,求出该定值,否则说明理由.20.在某市高中某学科竞赛中,某一个区4000名考生的参赛成绩统计如图所示.(1)求这4000名考生的竞赛平均成绩x (同一组中数据用该组区间中点作代表);(2)记70分以上为优秀,70分及以下为合格,结合频率分布直方图完成下表,并判断是否有99%的把握认为该学科竞赛成绩与性别有关?合格优秀 合计 男生 720女生 1020合计4000附:20()p k k ≥0.010 0.005 0.001 0k6.6357.87910.82822()()()()()n ad bc k a b c d a c b d -=++++.21.(1)求函数ln ()xf x x=的最大值; (2)若函数()xg x e ax =-有两个零点,求实数a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,l 的极坐标方程为(cos 2sin )10ρθθ+=,C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数,R θ∈).(1)写出l 和C 的普通方程;(2)在C 上求点M ,使点M 到l 的距离最小,并求出最小值. 23.[选修4-5:不等式选讲] 已知()22f x ax x =--+.(1)在2a =时,解不等式()1f x ≤;(2)若关于x 的不等式4()4f x -≤≤对x R ∈恒成立,求实数a 的取值范围.武汉市2018届高中毕业生四月调研测试文科数学参考答案一、选择题1-5: CBDAC 6-10: BBABA 11、12:CC二、填空题13.25 15. 32y x =-,3144y x =+ 16. 6三、解答题17.解:(1)∵21342n n S S +=+,可知311342S S =+,421342S S =+, 两式相减得:4214a a =,∴214q =,而0q >,则12q =.又由311342S S =+,可知:12311342a a a a ++=+,∴111113(1)2442a a ++=+,∴11a =.(2)由(1)知11()2n n a -=.∵12n n nb -=, ∴21231222n n nT -=+++⋅⋅⋅+,21112122222n n n n n T --=++⋅⋅⋅++. 两式相减得11112222n n n n T =++⋅⋅⋅+-1222n n n=--.∴1242n n n T -+=-.18.解:(1)在正方体1111ABCD A B C D -中,延长DC 至M ,使1CM =,则//AE CM . ∴11//A E C M .∴1FC M ∠为异面直线1A E 与1C F 所成的角.在1FC M ∆中,11C F C M ==2FM =,∴14cos 521010FC M ∠==⋅.(2)在11D C 上取一点N ,使11ND =.∴1//A E FN ,从而1//A N EF ,1//A N 平面1EFC , ∴1111A EFC N EFC E NFC V V V ---==11113(23)33332NFC S ∆=⋅⋅=⋅⋅⋅=.19.解:(1)由22y px =与2y x =,解得交点(0,0)O ,(,)2pE p , ∴22()52pOE p =+=2p =. ∴抛物线方程为:24y x =.(2)设AB :2x ty =+,代入24y x =中,设11(,)A x y ,22(,)B x y , 则2480y ty --=,∴121248y y t y y +=⋅⋅⋅⎧⎨⋅=-⋅⋅⋅⎩①②.设0(2,)P y -,则PA :1001(2)2y y y y x x --=++, 令0y =,得01011()2M y y x y x y -=+③ 同理由BP 可知:02022()2N y y x y x y -⋅=+④由③×④得0102()()M N y y y y x x --⋅011022(2)(2)y x y y x y =++201201221122()4y x x y y x y x y y =+++2222212210012122()44444y y y y y y y y y y =+⋅+⋅+⋅2221201201212124164y y y y y y y y y y +=⋅++(其中128y y =-.) 20120124[(()]y y y y y y =-++,从而4M N x x ⋅=为定值. 20.解:(1)由题意,得:∴450.1550.15650.2750.3x =⨯+⨯+⨯+⨯850.15950.170.5+⨯+⨯=. ∴4000名考生的竞赛平均成绩x 为70.5分. (2)224000(720102011801080)1800220019002100K ⨯⨯-⨯=⨯⨯⨯284000(540000)1822192110⨯=⨯⨯⨯⨯ 2000545473.8210.82818221921⨯⨯=≈>⨯⨯⨯.故有99%的把握认为有关. 21.解:(1)对ln ()x f x x =求导数,21ln '()xf x x-=. 在0x e <<时,()f x 为增函数,在x e >时()f x 为减函数,∴1()()f x f e e ≤=,从而()f x 的最大值为1e. (2)①在0a =时,()xg x e =在R 上为增函数,且()0g x >,故()g x 无零点. ②在0a <时, ()xg x e ax =-在R 上单增,又(0)10g =>,11()10a g e a=-<,故()g x 在R 上只有一个零点. ③在0a >时,由'()0xg x e a =-=可知()g x 在ln x a =时有唯一极小值,()()ln 1ln g a a a =-.若0a e <<,()()1ln 0g x a a =->极小,()g x 无零点, 若a e =,()0g x =极小,()g x 只有一个零点, 若a e >,()()1ln 0g x a a =-<极小,而(0)10g =>. 由(1)可知,ln ()xf x x=在x e >时为减函数, ∴在a e >时,2a e e a a >>,从而()20ag a e a =->. ∴()g x 在(0,ln )a 与(ln ,)a +∞上各有一个零点. 综上讨论可知:a e >时,()f x 有两个零点.22.解:(1)由l :cos sin 100ρθρϕ+-=,及cos x ρθ=,sin y ρθ=. ∴l 的方程为2100x y +-=.由3cos x θ=,2sin y θ=,消去θ得22194x y +=. (2)在C 上取点(3cos ,2sin )M ϕϕ,则d =05cos()10ϕϕ=--.其中003cos 54sin 5ϕϕ⎧=⎪⎪⎨⎪=⎪⎩,当0ϕϕ=时,d此时093sin 3cos 5ϕϕ==,0082sin 2cos 5ϕϕ==,98(,)55M . 23.解:(1)在2a =时,2221x x --+≤. 在1x ≥时,(22)(2)1x x --+≤,∴15x ≤≤; 在2x ≤-时,(22)(2)1x x --++≤,3x ≥,∴x 无解; 在21x -≤≤时,(22)(2)1x x ---+≤,13x ≥-,∴113x -≤≤. 综上可知:不等式()1f x ≤的解集为1{|5}3x x -≤≤. (2)∵224x ax +--≤恒成立, 而22(1)x ax a x +--≤+, 或22(1)4x ax a x +--≤-+,故只需(1)4a x +≤恒成立,或(1)44a x -+≤恒成立, ∴1a =-或1a =. ∴a 的取值为1或1-.。
湖北省武汉市2018届高三毕业生四月调研测试理科数学试题(解析版)
故选:A.
【点睛】本题主要考查程序框图的识别和判断,根据条件结构,结合分段函数的表达式是解决本题的关键.
4.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为()
A. B. C. D.
【答案】B
【解析】
【分析】
在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长宽高分别为2,1,1的长方体的体对角线,进而得到答案.
A. B.ห้องสมุดไป่ตู้C. D.
【答案】B
【解析】
【分析】
推导出0=loga1<logab<logaa=1,由此利用对数函数的单调性能比较m,n,l的大小.
【详解】∵实数a,b满足a>b>1,m=loga(logab), , ,
∴0=loga1<logab<logaa=1,
∴m=loga(logab)<loga1=0,
14.已知向量 , , 满足 ,且 , , ,则 _________________.
【答案】
【解析】
【分析】
先根据已知得到 ,再计算出 ,再化简 得解.
【详解】因为 ,所以 ,
所以 .
故答案为:
【点睛】(1)本题主要考查向量的数量积运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是通过观察想到消元消去 .
点睛:本题主要考查三角函数的图像和性质,意在考查学生对三角函数的图像性质等基础知识的掌握能力,考查学生数形结合分析推理的能力.要注意 ,这里不等式的右边不能取等,否则有可能有三个零点,这样与已知就不符了,写不等式一定要注意取等的问题.
12.过点 作抛物线 的两条切线,切点分别为 , , , 分别交 轴于 , 两点, 为坐标原点,则 与 的面积之比为( )
2018高三数学试题(理科)第三次诊断性考试(有答案)
6
【答案】 【解析】由三视图知:几何体是长方体中挖去一个半径为 1 的圆柱,且圆柱与长方体的高都 是 1, 长方体的长为 2+1+1=4,宽为 0.5+2+0.5=3, ∴几何体的体积 V=V 长方体﹣V 圆柱=4×3×1﹣π×12×1=12﹣π.
2. 设向量
,则实数 x 的值是
A. 0 B. 【答案】D
C. 2 D. ±2
【解析】向量
因为 ,由向量平行的坐标运算得到
故答案为:D。
3. 己知实数 满足约束条件
的最大值为
A. B. C. 3 D. 4
【答案】C
【解析】根据不等式组画出可行域,可得可行域是一个封闭的三角形区域,记 和
交于点 A(1,1),目标函数化为
个公共点,则实数 k 的取值范围是
5
A.
B.
C.
D.
【答案】C
【解析】根据题意知道函数 是偶函数,且满足
,故函数还是周期为 4 的函
数,根据表达式画出图像是定义在 R 上的周期性的图像,一部分是开口向下的二次函数,
一部分是一次函数,当 k>0 时,根据题意知两图像有两个交点,当直线
和图像
,
,相切时是一种临界,要想至少有 4 个交点,斜率要变小;所得各点的横坐标变为原来的 ,纵坐标不变 B. 向左平移至 个长度单位,再把所得各点的横坐标变为原来的 2 倍,纵坐标不变 C. 向左平移 个长度单位,再把所得各点的横坐标变为原来的 ,纵坐标不变 D. 向左平移 个长度单位,再把所得各点的横坐标变为原来的 2 倍,纵坐标不变 【答案】A
当 k<0 时,临界是过点(-6,1)时,此时 ,要想至少有 4 个交点需要逆时针继续旋转,
湖北省武汉市2018届高三毕业生四月调研测试数学(理)试卷(含答案)
湖北省武汉市2018届⾼三毕业⽣四⽉调研测试数学(理)试卷(含答案)武汉市2018届⾼中毕业⽣四⽉调研测试理科数学⼀、选择题:本⼤题共12个⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.复数52i -的共轭复数是() A .2i + B .2i -+ C .2i -- D .2i -2.已知集合2{|1}M x x ==,{|1}N x ax ==,若N M ?,则实数a 的取值集合为()A .{1}B .{1,1}-C .{1,0}D .{1,1,0}-3.执⾏如图所⽰的程序框图,如果输⼊的[2,2]t ∈-,则输出的S 属于()A .[4,2]-B .[2,2]-C .[2,4]-D .[4,0]-4.某⼏何体的三视图如图所⽰,则在该⼏何体的所有顶点中任取两个顶点,它们之间距离的最⼤值为() A .3 B .6 C .23 D .26 5.⼀张储蓄卡的密码共有6位数字,每位数字都可以从09:中任选⼀个,某⼈在银⾏⾃动提款机上取钱时,忘记了密码最后⼀位数字,如果任意按最后⼀位数字,不超过2次就按对的概率为()A .25 B .310C .15D .110 6.若实数a ,b 满⾜1a b >>,log (log )a a m b =,2(log )a n b =,2log a l b =,则m ,n ,l 的⼤⼩关系为()A .m l n >>B .l n m >>C .n l m >>D .l m n >>7.已知直线1y kx =-与双曲线224x y -=的右⽀有两个交点,则k 的取值范围为()A .B .C .(D . 8.在ABC ?中,⾓A 、B 、C 的对应边分别为a ,b ,c ,条件p :2b c a +≤,条件q :2B C A +≤,那么条件p 是条件q 成⽴的()A .充分⽽不必要条件B .必要⽽不充分条件C .充要条件D .既不充分也不必要条件9.在61(1)x x+-的展开式中,含5x 项的系数为() A .6 B .6- C .24 D .24-10.若x ,y 满⾜1212x y -++≤,则2222M x y x =+-的最⼩值为()A .2-B .211 C .4 D .49- 11.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最⼤值点,则ω的取值范围为() A .[2,4]ππ B .9[2,)2ππ C .1325[,)66ππ D .25[2,)6ππ 12.过点(2,1)P -作抛物线24x y =的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F两点,O 为坐标原点,则PEF ?与OAB ?的⾯积之⽐为()A .2B .3C .12D .34⼆、填空题:本⼤题共4⼩题,每⼩题5分,共20分.13.已知sin 2cos αα=,则sin cos αα= .14.已知向量a r ,b r ,c r 满⾜20a b c ++=r r r ,且1a =r ,3b =r ,2c =r ,则22a b a c b c ?+?+?=r r r r r r .15.已知(,)22x ππ∈-,()1y f x =-为奇函数,'()()tan 0f x f x x +>,则不等式()cos f x x >的解集为.16.在四⾯体ABCD 中,1AD DB AC CB ====,则四⾯体体积最⼤时,它的外接球半径R = .三、解答题:共70分.解答应写出⽂字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考⽣都必须作答.第22题~第23题为选考题,考⽣根据要求作答.(⼀)必考题:共60分.17.已知正数数列{}n a 满⾜:12a =,11212n n n n n a a a a ---+=+-(2)n ≥. (1)求2a ,3a ;(2)设数列{}n b 满⾜22(1)n n b a n =--,证明:数列{}n b 是等差数列,并求数列{}n a 的通项n a . 18.如图,在棱长为3的正⽅体1111ABCD A B C D -中,E ,F 分别在棱AB ,CD 上,且1AE CF ==.(1)已知M 为棱1DD 上⼀点,且11D M =,求证:1B M ⊥平⾯11A EC .(2)求直线1FC 与平⾯11A EC 所成⾓的正弦值.19.已知椭圆Γ:22142x y +=,过点(1,1)P 作倾斜⾓互补的两条不同直线1l ,2l ,设1l 与椭圆Γ交于A 、B 两点,2l 与椭圆Γ交于C ,D 两点.(1)若(1,1)P 为线段AB 的中点,求直线AB 的⽅程;(2)记AB CDλ=,求λ的取值范围. 20.在某市⾼中某学科竞赛中,某⼀个区4000名考⽣的参赛成绩统计如图所⽰.(1)求这4000名考⽣的竞赛平均成绩x (同⼀组中数据⽤该组区间中点作代表);(2)由直⽅图可认为考⽣竞赛成绩z 服正态分布2(,)N µσ,其中µ,2σ分别取考⽣的平均成绩x 和考⽣成绩的⽅差2s ,那么该区4000名考⽣成绩超过84.41分(含84.81分)的⼈数估计有多少⼈?(3)如果⽤该区参赛考⽣成绩的情况来估计全市的参赛考⽣的成绩情况,现从全市参赛考⽣中随机抽取4名考⽣,记成绩不超过...84.81分的考⽣⼈数为ξ,求(3)P ξ≤.(精确到0.001)附:①2204.75s =204.7514.31=;②2(,)z N µσ:,则()0.6826P z µσµσ-<<+=,(22)0.9544P z µσµσ-<<+=;③40.84130.501=.21.已知函数()(ln )x f x xe a x x =-+,a R ∈.(1)当a e =时,求()f x 的单调区间;(2)若()f x 有两个零点,求实数a 的取值范围. (⼆)选考题:共10分.请考⽣在22、23题中任选⼀题作答,如果多做,则按所做的第⼀题记分.作答时请写清题号.22.[选修4-4:坐标系与参数⽅程]在平⾯直⾓坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建⽴极坐标系,l 的极坐标⽅程为(cos 2sin )10ρθθ+=,C 的参数⽅程为3cos 2sin x y θθ=??=?(θ为参数,R θ∈). (1)写出l 和C 的普通⽅程;(2)在C 上求点M ,使点M 到l 的距离最⼩,并求出最⼩值.23.[选修4-5:不等式选讲] 已知()22f x ax x =--+.(1)在2a =时,解不等式()1f x ≤;(2)若关于x 的不等式4()4f x -≤≤对x R ∈恒成⽴,求实数a 的取值范围.武汉市2018届⾼中毕业⽣四⽉调研测试理科数学参考答案⼀、选择题1-5: BDABC 6-10: BDABD 11、12: CC⼆、填空题 13. 25 14. 13- 15. (0,)2π16. 6三、解答题17.(1)由已知212132a a a a +=+-,⽽12a =,∴2222232(2)a a -=+-,即222230a a --=.⽽20a >,则23a =. ⼜由323252a a a a +=+-,23a =,∴233952(3)a a -=+-,即233280a a --=.⽽30a >,则34a =.∴23a =,34a =.(2)由已知条件可知:22112()21n n n n a a a a n ---=-+-,∴22221(1)(1)(1)n n a a n n ----=--,则22221(1)(1)(1)n n a n a n ---=---223(1)2a ==--222(1)1a =--0=,⽽22(1)n n b a n =--,∴0n b =,数列{}n b 为等差数列.∴22(1)n a n -=.⽽0n a >,故1n a n =+.18.解:(1)过M 作1MT AA ⊥于点T ,连1B T ,则11AT =.易证:111AA E A B T ,于是111AA E A B T ∠=∠.由111190A B T ATB ∠+∠=o ,知11190AA E ATB ∠+∠=o ,∴11A E B T ⊥.显然MT ⊥⾯11AA B B ,⽽1A E ?⾯11AA B B ,∴1MT A E ⊥,⼜1B T MT T =I ,∴1A E ⊥⾯MTB ,∴11A E MB ⊥.连11B D ,则1111B D A C ⊥.⼜111D M A C ⊥,1111B D D M D =I ,∴11A C ⊥⾯11MD B ,∴111AC MB ⊥.由11A E MB ⊥,111AC MB ⊥,1111A E A C A =I ,∴1B M ⊥⾯11A EC .(2)在11D C 上取⼀点N ,使11ND =,连接EF . 易知1//A E FN .∴1111A EFC N EFC E NFC V V V ---==11113(23)33332NFC S ?=??==.对于11A EC ?,11AC =,1A E =⽽1EC =由余弦定理可知11cos EAC ∠==. ∴11A EC ?的⾯积11111sin 2S AC A E EAC =?∠12=?=. 由等体积法可知F 到平⾯11A EC 之距离h 满⾜111113A EC A EFC S h V ?-?=,则133h =,∴h =,⼜1FC ,设1FC 与平⾯1AEC 所成⾓为θ,∴sin θ===. 19.解:(1)设直线AB 的斜率为tan k α=,⽅程为1(1)y k x -=-,代⼊2224x y +=中,∴222[(1)]40x kx k +---=.∴222(12)4(1)2(1)40k x k k x k +--+--=.判别式222[4(1)]4(21)[2(1)4]k k k k ?=--+--28(321)k k =++.设11(,)A x y ,22(,)B x y ,则 12221224(1)212(1)421k k x x k k x x k -?+=??+?--?=?+?. ∵AB 中点为(1,1),∴12212(1)()1221k k x x k -+==+,则12k =. ∴直线的AB ⽅程为11(1)2y x -=-,即210x y -+=. (2)由(1)知12AB x =-==. 设直线的CD ⽅程为1(1)(0)y k x k -=--≠.同理可得CD =.∴0)ABk CD λ==≠. ∴2241312k k k λ=++-41132k k=++-. 令13t k k=+,则4()12g t t =+-,(,)t ∈-∞-+∞U . ()g t在(,-∞-,)+∞分别单调递减,∴2()1g t -<或1()2g t <≤+故221λ-≤<或212λ<≤+即λ∈U . 20.解:(1)由题意知:∴450.1550.15650.2750.3x =?+?+?+?850.15950.170.5+?+?=,∴4000名考⽣的竞赛平均成绩x 为70.5分.(2)依题意z 服从正态分布2(,)N µσ,其中70.5x µ==, 2204.75D σξ==,14.31σ=,∴z 服从正态分布22(,)(70.5,14.31)N N µσ=,⽽()(56.1984.81)0.6826P z P z µσµσ-<<+=<<=,∴10.6826(84.81)0.15872P z -≥==. ∴竞赛成绩超过84.81分的⼈数估计为0.158********.8?=⼈634≈⼈.(3)全市竞赛考⽣成绩不超过84.81分的概率10.15870.8413-=.⽽(4,0.8413)B ξ:,∴444(3)1(4)10.8413P P C ξξ≤=-==-?10.5010.499=-=.21.解:(1)定义域为:(0,)+∞,当a e =时,(1)()'()x x xe e f x x+-=. ∴()f x 在(0,1)时为减函数;在(1,)+∞时为增函数.(2)记ln t x x =+,则ln t x x =+在(0,)+∞上单增,且t R ∈.∴()(ln )x f x xe a x x =-+()te at g t =-=.∴()f x 在0x >上有两个零点等价于()t g t e at =-在t R ∈上有两个零点.①在0a =时,()t g t e =在R 上单增,且()0g t >,故()g t ⽆零点;②在0a <时,'()t g t e a =-在R 上单增,⼜(0)10g =>,11()10a g e a =-<,故()g t 在R 上只有⼀个零点;③在0a >时,由'()0t g t e a =-=可知()g t 在ln t a =时有唯⼀的⼀个极⼩值(ln ) (1ln )g a a a =-. 若0a e <<,(1ln )0g a a =->最⼩,()g t ⽆零点;若a e =,0g =最⼩,()g t 只有⼀个零点;若a e >时,(1ln )0g a a =-<最⼩,⽽(0)10g =>,由于ln ()x f x x=在x e >时为减函数,可知:a e >时,2a e e a a >>.从⽽2()0a g a e a =->,∴()g x 在(0,ln )a 和(ln ,)a +∞上各有⼀个零点.综上讨论可知:a e >时()f x 有两个零点,即所求a 的取值范围是(,)e +∞.22.解:(1)由l :cos sin 100ρθρ?+-=,及cos x ρθ=,sin y ρθ=. ∴l 的⽅程为2100x y +-=. 由3cos x θ=,2sin y θ=,消去θ得22194x y +=. (2)在C 上取点(3cos ,2sin )M ??,则d=05cos()10??=--. 其中003cos 54sin 5=?=??,当0??=时,d此时093sin 3cos 5??==,0082sin 2cos 5??==,98(,)55M . 23.解:(1)在2a =时,2221x x --+≤.在1x ≥时,(22)(2)1x x --+≤,∴15x ≤≤;在2x ≤-时,(22)(2)1x x --++≤,3x ≥,∴x ⽆解;在21x -≤≤时,(22)(2)1x x ---+≤,13x ≥-,∴113x -≤≤. 综上可知:不等式()1f x ≤的解集为1{|5}3x x -≤≤. (2)∵224x ax +--≤恒成⽴,⽽22(1)x ax a x +--≤+,或22(1)4x ax a x +--≤-+,故只需(1)4a x +≤恒成⽴,或(1)44a x -+≤恒成⽴,∴1a =-或1a =.∴a 的取值为1或1-.。
湖北省武汉市2018届高三四月调研测试数学文试题含答案
此文档为Word 文档,可任意修改编辑 武汉市2018届高中毕业生四月调研测试文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数52i -的共轭复数是( ) A .2i +B .2i -+ C .2i --D .2i -2.已知集合2{|20}A x x x =-<,{|lg(1)0}B x x =-≤,则A B = ( ) A .(0,2) B .(1,2) C .(1,2] D .(0,2]3.曲线1C :221259x y +=与曲线2C :221259x y k k+=--(09)k <<的( ) A .长轴长相等 B .短轴长相等 C .离心率相等 D .焦距相等 4.执行如图所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于( )A .[4,2]-B .[2,2]-C .[2,4]-D .[4,0]-5.若x 、y 满足约束条件31230x y x x y +≤⎧⎪≥⎨⎪--≤⎩,则32z x y =+的最小值为( )A .9B .7C .1D .3-6.从装有3双不同鞋的柜子里,随机取2只,则取出的2只鞋不成对的概率为( ) A .1415B .45C .35D .157.若实数a ,b 满足1a b >>,log (log )a a m b =,2(log )a n b =,2log a l b =,则m ,n ,l 的大小关系为( )A .m l n >>B .l n m >>C .n l m >>D .l m n >> 8.在ABC ∆中,角A 、B 、C 的对应边分别为a ,b ,c ,条件p :2b ca +≤,条件q :2B CA +≤,那么条件p 是条件q 成立的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件9.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为( )A .C ..10.已知()f x 是R 上的奇函数,且(1)y f x =+为偶函数,当10x -≤≤时,2()2f x x =,则()2f 7=( ) A .12B .12- C .1D .1- 11.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最大值点,则ω的取值范围为( )A .[2,4]ππB .9[2,)2ππ C .1325[,)66ππ D .25[2,)6ππ 12.已知(2,0)A ,(0,1)B 是椭圆22221x y a b+=的两个顶点,直线(0)y kx k =>与直线AB 相交于点D ,与椭圆相交于E ,F 两点,若6ED DF =,则斜率k 的值为( )A .23 B .38 C .23或38 D .23或34二、填空题:本大题共4小题,每小题5分,共20分. 13.已知sin 2cos αα=,则sin cos αα=.14.已知向量a ,b 满足条件2a = ,3b = ,a 与b 的夹角为60,则a b -= .15.过点(1,1)P 作曲线3y x =的切线,则切线方程为.16.在四面体ABCD 中,1AC CB AB AD BD =====,且平面ABC ⊥平面ABD ,则四面体ABCD 的外接球半径R =.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知正数等比数列{}n a 的前n 项和n S 满足:21342n n S S +=+. (1)求数列{}n a 的首项1a 和公比q ; (2)若n n b na =,求数列{}n b 的前n 项和n T .18.如图,在棱长为3的正方体1111ABCD A BC D -中,E ,F 分别在棱AB ,CD 上,且1AE CF ==.(1)求异面直线1A E 与1C F 所成角的余弦值. (2)求四面体11EFC A 的体积.19.已知直线2y x =与抛物线Γ:22y px =交于O 和E 两点,且OE =(1)求抛物线Γ的方程;(2)过点(2,0)Q 的直线交抛物线Γ于A 、B 两点,P 为2x =-上一点,PA ,PB 与x 轴相交于M 、N 两点,问M 、N 两点的横坐标的乘积M N x x ⋅是否为定值?如果是定值,求出该定值,否则说明理由.20.在某市高中某学科竞赛中,某一个区4000名考生的参赛成绩统计如图所示.(1)求这4000名考生的竞赛平均成绩x (同一组中数据用该组区间中点作代表); (2)记70分以上为优秀,70分及以下为合格,结合频率分布直方图完成下表,并判断是否有99%的把握认为该学科竞赛成绩与性别有关?附:22()()()()()n ad bc k a b c d a c b d -=++++. 21.(1)求函数ln ()xf x x=的最大值; (2)若函数()xg x e ax =-有两个零点,求实数a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,l 的极坐标方程为(cos 2sin )10ρθθ+=,C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数,R θ∈).(1)写出l 和C 的普通方程;(2)在C 上求点M ,使点M 到l 的距离最小,并求出最小值. 23.[选修4-5:不等式选讲] 已知()22f x ax x =--+.(1)在2a =时,解不等式()1f x ≤;(2)若关于x 的不等式4()4f x -≤≤对x R ∈恒成立,求实数a 的取值范围.武汉市2018届高中毕业生四月调研测试文科数学参考答案一、选择题1-5: CBDAC 6-10: BBABA 11、12:CC 二、填空题13.2532y x =-,3144y x =+ 16.6三、解答题17.解:(1)∵21342n n S S +=+,可知311342S S =+,421342S S =+, 两式相减得:4214a a =,∴214q =,而0q >,则12q =.又由311342S S =+,可知:12311342a a a a ++=+,∴111113(1)2442a a ++=+,∴11a =.(2)由(1)知11()2n n a -=.∵12n n n b -=,∴21231222n n nT -=+++⋅⋅⋅+, 21112122222n n n n n T --=++⋅⋅⋅++. 两式相减得11112222n n n n T =++⋅⋅⋅+-1222n n n=--.∴1242n n n T -+=-.18.解:(1)在正方体1111ABCD A BC D -中,延长DC 至M ,使1CM =,则//AE CM . ∴11//A E C M .∴1FC M ∠为异面直线1A E 与1C F 所成的角.在1FC M ∆中,11C F C M =,2FM =, ∴14cos 5FC M ∠==.(2)在11D C 上取一点N ,使11ND =.∴1//A E FN ,从而1//A N EF ,1//A N 平面1EFC , ∴1111A EFC N EFC E NFC V V V ---==11113(23)33332NFC S ∆=⋅⋅=⋅⋅⋅=.19.解:(1)由22y px =与2y x =,解得交点(0,0)O ,(,)2pE p ,∴OE ==2p =. ∴抛物线方程为:24y x =.(2)设AB :2x ty =+,代入24y x =中,设11(,)A x y ,22(,)B x y , 则2480y ty --=,∴121248y y t y y +=⋅⋅⋅⎧⎨⋅=-⋅⋅⋅⎩①②. 设0(2,)P y -,则PA :1001(2)2y y y y x x --=++, 令0y =,得01011()2M y y x y x y -=+③ 同理由BP 可知:02022()2N y y x y x y -⋅=+④由③×④得0102()()M N y y y y x x --⋅011022(2)(2)y x y y x y =++201201221122()4y x x y y x y x y y =+++ 2222212210012122()44444y y y y y y y y y y =+⋅+⋅+⋅2221201201212124164y y y y y y y y y y +=⋅++(其中128y y =-.) 20120124[(()]y y y y y y =-++,从而4M N x x ⋅=为定值. 20.解:(1)由题意,得:∴450.1550.15650.2750.3x =⨯+⨯+⨯+⨯850.15950.170.5+⨯+⨯=. ∴4000名考生的竞赛平均成绩x 为70.5分. (2)224000(720102011801080)1800220019002100K ⨯⨯-⨯=⨯⨯⨯284000(540000)1822192110⨯=⨯⨯⨯⨯ 2000545473.8210.82818221921⨯⨯=≈>⨯⨯⨯.故有99%的把握认为有关. 21.解:(1)对ln ()x f x x =求导数,21ln '()xf x x -=. 在0x e <<时,()f x 为增函数,在x e >时()f x 为减函数, ∴1()()f x f e e ≤=,从而()f x 的最大值为1e. (2)①在0a =时,()xg x e =在R 上为增函数,且()0g x >,故()g x 无零点.②在0a <时,()xg x e ax =-在R 上单增,又(0)10g =>,11()10a g e a=-<,故()g x 在R 上只有一个零点.③在0a >时,由'()0x g x e a =-=可知()g x 在ln x a =时有唯一极小值,()()ln 1ln g a a a =-.若0a e <<,()()1ln 0g x a a =->极小,()g x 无零点, 若a e =,()0g x =极小,()g x 只有一个零点, 若a e >,()()1ln 0g x a a =-<极小,而(0)10g =>. 由(1)可知,ln ()xf x x=在x e >时为减函数, ∴在a e >时,2a e e a a >>,从而()20ag a e a =->.∴()g x 在(0,ln )a 与(ln ,)a +∞上各有一个零点. 综上讨论可知:a e >时,()f x 有两个零点.22.解:(1)由l :cos sin 100ρθρϕ+-=,及cos x ρθ=,sin y ρθ=. ∴l 的方程为2100x y +-=.由3cos x θ=,2sin y θ=,消去θ得22194x y +=. (2)在C 上取点(3cos ,2sin )M ϕϕ,则d=05cos()10ϕϕ=--. 其中003cos 54sin 5ϕϕ⎧=⎪⎪⎨⎪=⎪⎩,当0ϕϕ=时,d此时093sin 3cos 5ϕϕ==,0082sin 2cos 5ϕϕ==,98(,)55M . 23.解:(1)在2a =时,2221x x --+≤. 在1x ≥时,(22)(2)1x x --+≤,∴15x ≤≤; 在2x ≤-时,(22)(2)1x x --++≤,3x ≥,∴x 无解;在21x -≤≤时,(22)(2)1x x ---+≤,13x ≥-,∴113x -≤≤. 综上可知:不等式()1f x ≤的解集为1{|5}3x x -≤≤. (2)∵224x ax +--≤恒成立, 而22(1)x ax a x +--≤+, 或22(1)4x ax a x +--≤-+,故只需(1)4a x +≤恒成立,或(1)44a x -+≤恒成立, ∴1a =-或1a =. ∴a 的取值为1或1-.。
武汉市2018届高中毕业生四月调研测试理科试题及答案world版
武汉市2018届高中毕业生四月调研测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数52i -的共轭复数是( )A .2i +B .2i -+C .2i --D .2i -2.已知集合2{|1}M x x ==,{|1}N x ax ==,若N M ⊆,则实数a 的取值集合为( )A .{1}B .{1,1}-C .{1,0}D .{1,1,0}-3.执行如图所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于( )A .[4,2]-B .[2,2]-C .[2,4]-D .[4,0]-4.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为( )A C .. 5.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( ) A .25 B .310 C .15 D .1106.若实数a ,b 满足1a b >>,log (log )a a m b =,2(log )a n b =,2log a l b =,则m ,n ,l 的大小关系为( )A .m l n >>B .l n m >>C .n l m >>D .l m n >> 7.已知直线1y kx =-与双曲线224x y -=的右支有两个交点,则k 的取值范围为( )A .(0,2 B .[1,]2C .(22-D .(1,2 8.在ABC ∆中,角A 、B 、C 的对应边分别为a ,b ,c ,条件p :2b c a +≤,条件q :2B CA +≤,那么条件p 是条件q 成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 9.在61(1)x x+-的展开式中,含5x 项的系数为( )A .6B .6-C .24D .24- 10.若x ,y 满足1212x y -++≤,则2222M x y x =+-的最小值为( )A .2-B .211 C .4 D .49- 11.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最大值点,则ω的取值范围为( )A .[2,4]ππB .9[2,)2ππ C .1325[,)66ππ D .25[2,)6ππ 12.过点(2,1)P -作抛物线24x y =的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则PEF ∆与OAB ∆的面积之比为( )AC .12D .34二、填空题:本大题共4小题,每小题5分,共20分.13.已知sin 2cos αα=,则sin cos αα= .14.已知向量a ,b ,c 满足20a b c ++=,且1a =,3b =,2c =,则22a b a c b c ⋅+⋅+⋅= .15.已知(,)22x ππ∈-,()1y f x =-为奇函数,'()()tan 0f x f x x +>,则不等式()cos f x x >的解集为 .16.在四面体ABCD 中,1AD DB AC CB ====,则四面体体积最大时,它的外接球半径R = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知正数数列{}n a 满足:12a =,11212n n n n n a a a a ---+=+-(2)n ≥.(1)求2a ,3a ;(2)设数列{}n b 满足22(1)n n b a n =--,证明:数列{}n b 是等差数列,并求数列{}n a 的通项n a .18.如图,在棱长为3的正方体1111ABCD A B C D -中,E ,F 分别在棱AB ,CD 上,且1AE CF ==.(1)已知M 为棱1DD 上一点,且11D M =,求证:1B M ⊥平面11A EC .(2)求直线1FC 与平面11A EC 所成角的正弦值.19.已知椭圆Γ:22142x y +=,过点(1,1)P 作倾斜角互补的两条不同直线1l ,2l ,设1l 与椭圆Γ交于A 、B 两点,2l 与椭圆Γ交于C ,D 两点.(1)若(1,1)P 为线段AB 的中点,求直线AB 的方程;(2)记ABCDλ=,求λ的取值范围.20.在某市高中某学科竞赛中,某一个区4000名考生的参赛成绩统计如图所示.(1)求这4000名考生的竞赛平均成绩x (同一组中数据用该组区间中点作代表);(2)由直方图可认为考生竞赛成绩z 服正态分布2(,)N μσ,其中μ,2σ分别取考生的平均成绩x 和考生成绩的方差2s ,那么该区4000名考生成绩超过84.41分(含84.81分)的人数估计有多少人?(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取4名考生,记成绩不超过...84.81分的考生人数为ξ,求(3)P ξ≤.(精确到0.001)附:①2204.75s =14.31=;②2(,)zN μσ,则()0.6826P z μσμσ-<<+=,(22)0.9544P z μσμσ-<<+=;③40.84130.501=.21.已知函数()(ln )xf x xe a x x =-+,a R ∈.(1)当a e =时,求()f x 的单调区间;(2)若()f x 有两个零点,求实数a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,l 的极坐标方程为(cos 2sin )10ρθθ+=,C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数,R θ∈). (1)写出l 和C 的普通方程;(2)在C 上求点M ,使点M 到l 的距离最小,并求出最小值.23.[选修4-5:不等式选讲] 已知()22f x ax x =--+.(1)在2a =时,解不等式()1f x ≤;(2)若关于x 的不等式4()4f x -≤≤对x R ∈恒成立,求实数a 的取值范围.武汉市2018届高中毕业生四月调研测试理科数学参考答案一、选择题1-5: BDABC 6-10: BDABD 11、12:CC二、填空题13.25 14. 13- 15. (0,)2π三、解答题17.(1)由已知212132a a a a +=+-,而12a =,∴2222232(2)a a -=+-,即222230a a --=.而20a >,则23a =.又由323252a a a a +=+-,23a =,∴233952(3)a a -=+-,即233280a a --=.而30a >,则34a =.∴23a =,34a =.(2)由已知条件可知:22112()21n n n n a a a a n ---=-+-,∴22221(1)(1)(1)n n a a n n ----=--,则22221(1)(1)(1)n n a n a n ---=---223(1)2a =⋅⋅⋅=--222(1)1a =--0=,而22(1)n n b a n =--,∴0n b =,数列{}n b 为等差数列.∴22(1)n a n -=.而0n a >,故1n a n =+.18.解:(1)过M 作1MT AA ⊥于点T ,连1B T ,则11AT =.易证:111AA E A B T ∆≅∆,于是111AA E A B T ∠=∠.由111190A B T ATB ∠+∠=,知11190AAE ATB ∠+∠=,∴11A E B T ⊥.显然MT ⊥面11AA B B ,而1AE ⊂面11AA B B ,∴1M T A E ⊥,又1B T MT T =,∴1A E ⊥面MTB ,∴11A E MB ⊥.连11B D ,则1111B D AC ⊥.又111D M A C ⊥,1111B D D M D =,∴11A C ⊥面11MD B ,∴111AC MB ⊥.由11A E MB ⊥,111AC MB ⊥,1111A E A C A =,∴1B M ⊥面11A EC .(2)在11D C 上取一点N ,使11ND =,连接EF .易知1//A E FN .∴1111A EFC N EFC E NFC V V V ---==11113(23)33332NFC S ∆=⋅⨯=⨯⨯⨯=.对于11A EC ∆,11AC =,1A E =1EC =,由余弦定理可知11cos EAC ∠==.∴11A EC ∆的面积11111sin 2S AC A E EAC =⋅∠12=⨯=.由等体积法可知F 到平面11A EC 之距离h 满足111113A EC A EFC S h V ∆-⋅=,则133h =,∴h =,又1FC =,设1FC 与平面1AEC 所成角为θ,∴sin 95θ===. 19.解:(1)设直线AB 的斜率为tan k α=,方程为1(1)y k x -=-,代入2224x y +=中,∴222[(1)]40x kx k +---=.∴222(12)4(1)2(1)40k x k k x k +--+--=.判别式222[4(1)]4(21)[2(1)4]k k k k ∆=--+--28(321)k k =++.设11(,)A x y ,22(,)B x y ,则12221224(1)212(1)421k k x x k k x x k -⎧+=⎪⎪+⎨--⎪=⎪+⎩.∵AB 中点为(1,1),∴12212(1)()1221k k x x k -+==+,则12k =. ∴直线的AB 方程为11(1)2y x -=-,即210x y -+=. (2)由(1)知12AB x =-==. 设直线的CD 方程为1(1)(0)y k x k -=--≠.同理可得CD =.∴0)ABk CD λ==≠.∴2241312k k k λ=++-41132k k=++-.令13t k k =+,则4()12g t t =+-,(,[23,)t ∈-∞-+∞.()g t 在(,-∞-,)+∞分别单调递减,∴2()1gt ≤<或1()2g t<≤+故221λ≤<或212λ<≤.即6(1,λ+∈. 20.解:(1)由题意知:∴450.1550.15650.2750.3x =⨯+⨯+⨯+⨯850.15950.170.5+⨯+⨯=,∴4000名考生的竞赛平均成绩x 为70.5分.(2)依题意z 服从正态分布2(,)N μσ,其中70.5x μ==,2204.75D σξ==,14.31σ=,∴z 服从正态分布22(,)(70.5,14.31)N N μσ=,而()(56.1984.81)0.6826P z P z μσμσ-<<+=<<=,∴10.6826(84.81)0.15872P z -≥==.∴竞赛成绩超过84.81分的人数估计为0.158********.8⨯=人634≈人.(3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=.而(4,0.8413)B ξ,∴444(3)1(4)10.8413P P C ξξ≤=-==-⋅10.5010.499=-=.21.解:(1)定义域为:(0,)+∞,当a e =时,(1)()'()x x xe e f x x+-=.∴()f x 在(0,1)时为减函数;在(1,)+∞时为增函数.(2)记ln t x x =+,则ln t x x =+在(0,)+∞上单增,且t R ∈.∴()(ln )x f x xe a x x =-+()t e at g t =-=.∴()f x 在0x >上有两个零点等价于()t g t e at =-在t R ∈上有两个零点.①在0a =时,()t g t e =在R 上单增,且()0g t >,故()g t 无零点;②在0a <时,'()tg t e a =-在R 上单增,又(0)10g =>,11()10a g e a =-<,故()g t 在R 上只有一个零点; ③在0a >时,由'()0tg t e a =-=可知()g t 在ln t a =时有唯一的一个极小值(ln )(1ln )g a a a =-. 若0a e <<,(1ln )0g a a =->最小,()g t 无零点;若a e =,0g =最小,()g t 只有一个零点;若a e >时,(1ln )0g a a =-<最小,而(0)10g =>,由于ln ()x f x x =在x e >时为减函数,可知:a e >时,2a e e a a >>.从而2()0a g a e a =->,∴()g x 在(0,ln )a 和(ln ,)a +∞上各有一个零点.综上讨论可知:a e >时()f x 有两个零点,即所求a 的取值范围是(,)e +∞.22.解:(1)由l :cos sin 100ρθρϕ+-=,及cos x ρθ=,sin y ρθ=.∴l 的方程为2100x y +-=.由3cos x θ=,2sin y θ=,消去θ得22194x y +=. (2)在C 上取点(3cos ,2sin )M ϕϕ,则d=05cos()10ϕϕ=--. 其中003cos 54sin 5ϕϕ⎧=⎪⎪⎨⎪=⎪⎩,当0ϕϕ=时,d此时093sin 3cos 5ϕϕ==,0082sin 2cos 5ϕϕ==,98(,)55M . 23.解:(1)在2a =时,2221x x --+≤.在1x ≥时,(22)(2)1x x --+≤,∴15x ≤≤;在2x ≤-时,(22)(2)1x x --++≤,3x ≥,∴x 无解;在21x -≤≤时,(22)(2)1x x ---+≤,13x ≥-,∴113x -≤≤.综上可知:不等式()1f x ≤的解集为1{|5}3x x -≤≤.(2)∵224x ax +--≤恒成立,而22(1)x ax a x +--≤+,或22(1)4x ax a x +--≤-+, 故只需(1)4a x +≤恒成立,或(1)44a x -+≤恒成立,∴1a =-或1a =.∴a 的取值为1或1-.。
湖北省武汉市2018届高三毕业生四月调研测试数学(理)(答案打印版)
S (0) 0, S (1) 2, S (2) 2 ,所以当 0 t 2 时, S (t ) [2, 2] ;
综上,输入的 t [ 2, 2] ,则输出的 S [ 4, 2] . 4.答案:B
C1 A1 B1 C A
D1
解析:该几何体为如图所示的四棱柱 ABCD A1 B1C1 D1 , 任取两个顶点,它们之间距离最大的为线段 A1 D ,
D B
A1 D 12 12 2 2 6 .
5.答案:C 解析:所求概率 P
1 9 1 1 . 10 10 9 5
6.答案:B 解析:不妨取 a 4, b 2 ,则
m log 4 (log 4 2) log 4
1 1 1 1 , n (log 4 2)2 , l log 4 22 1 ,所以 l n m 2 2 4 2
所以 M 的最小值为 2d
2
1 1 1 4 . 2 18 2 9
P0 O A
B
C
D
11. 答案: C 解析: 当 0 时, x
3
3
, 令x
3
2
, 得x
5 13 , 令x , 得x , 6 3 2 6
第 2 页 共 8 页
1 a
2.答案:D 解析: M {x | x 2 1} {1,1} ,当 a 0 时, N ,满足 N M ,当 a 0 时, N , 因为 N M ,可得
1 1 或 1 ,解得 a 1 或 1 ,所以实数 a 的取值集合是 {1, 1, 0} . a
1 1 5 (1) 6 x . x
湖北省武汉市2018届高中毕业生四月调研测试理科数学试题(精编含解析)
∴S△PEF= 解方程①可得 x=2k, ∴A(2+2 ,3+2 ),B(2﹣2 ,3﹣2 ), ∴直线 AB 方程为 y=x+1,|AB|=8,
原点 O 到直线 AB 的距离 d= ,
∴S△OAB=
,
∴△PEF 与△OAB 的面积之比为 . 故答案为:C
【点睛】本题主要考查直线和抛物线的位置关系,考查三角形的面积,意在考查学生对这些知识的掌握水
A.
B.
【答案】D
【解析】
C.
D.
【分析】 画出约束条件表示的可行域,通过表达式的几何意义,求出表达式的最小值.
【详解】令
,
,
,作出可行域,如图所示:
表示可行域上的动点到定点
距离的平方,然后减去 ,故其最小值为
定点
到直线 AB 的距离的平方减去 。
AB:
定点
到直线 AB 的距离:
∴ 故选: 【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次 确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等, 最后结合图形确定目标函数最值取法、值域范围.
15. 已知
,
【答案】 【解析】 【分析】
为奇函数,
,则不等式
的解集为_________.
令 g(x)= ,
,根据函数的单调性求出 g(x)>g(0),从而求出不等式的解集即可.
【详解】∵y=f(x)﹣1 为奇函数,
∴f(0)﹣1=0,即 f(0)=1,
令 g(x)= ,
,
则 g′(x)=
>0,
故 g(x)在 f(x)>cosx,
【答案】 【解析】 【分析】
2018届湖北省高三4月调研考试理科数学试题(解析版)
2018年湖北省高三4月调考理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,集合,则( )A. B. C. D.【答案】B【解析】分析:现根据指数函数与对数函数的图象与性质,求得集合,即可求解.详解:由题意,所以,故选B.点睛:本题主要考查了集合的运算,对于集合的基本运算,要注意三个方面:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.2. 欧拉公式为虚数单位)是由著名数学家欧拉发明的,她将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式,若将表示的复数记为,则的值为( )A. B. C. D.【答案】A【解析】分析:根据题意,现求得,则根据复数的四则运算,即可求解.详解:由题意的,所以,故选A.点睛:复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.3. 记不等式组的解集为,若,则实数的最小值是( )A. 0B. 1C. 2D. 4【答案】C【解析】分析:由约束条件作出可行域,结合直线,求出过点的直线的斜率得到答案. 详解:作出约束条件所表示的可行域,如图所示,直线经过点,而经过两点的直线的斜率为,所以要使得,成立,则,所以实数的最小值是,故选C.点睛:线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用,本题就是第三类实际应用问题.4. 已知,则的值等于( )A. B. C. D.【答案】C【解析】分析:由已知求得,结合,展开两角差的正弦求解.详解:因为,所以,由,得,则,故选C.点睛:本题考查了三角函数的化简求证,考查了同角三角函数基本关系式的应用,关键是“拆角配角”思想的应用,属于基础题.5. 函数的图像大致为( )A. B. C. D.【答案】C【解析】分析:研究的函数的基本性质,和利用特殊点的函数值,即可作出选择.详解:由函数,满足且,所以排除A、D;又,排除D,故选C.点睛:函数图像问题首先关注定义域,从图象的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择支,从图象的最高点、最低点,分析函数的最值、极值利用特值检验,较难的需要研究单调性、极值等,从图象的走向趋势,分析函数的单调性、周期性等确定图象.6. 已知双曲线的一条渐近线方程为分别是双曲线的左、右焦点,点在双曲线上,且,则( )A. 1B. 3C. 1或9D. 3或7【答案】C【解析】分析:由双曲线的方程,渐近线的方程求出,由双曲线的定义求出即可.详解:由双曲线的方程,渐近线方程可得,因为,所以,所以,由双曲线的定义可得,所以或,故选C.点睛:本题考查了双曲线的定义和双曲线的标准方程,以及双曲线的简单的几何性质的应用,其中由双曲线的方程、渐近线的方程求出的解题的关键.7. 执行如图所示的程序框图,若输出的值为6,且判断框内填入的条件是,则的取值范围是( )A. B. C. D.【答案】C【解析】分析:程序运行的,根据输出的值,从而可得判断框的条件.详解:由程序框图知,程序运行的,当,所以,因为输出的,所以,所以实数满足,故选C.点睛:利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用;赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.8. 党的十九打报告指出,建设教育强国是中华民族伟大复兴的基础工程,必须把教育事业放在优先位置,深化教育资源的均衡发展.现有4名男生和2名女生主动申请毕业后到两所偏远山区小学任教.将这6名毕业生全部进行安排,每所学校至少安排2名毕业生,则每所学校男女毕业至少安排一名的概率为( )A. B. C. D.【答案】C【解析】分析:根据题意求得基本事件的总数为种,每所学校毕业至少安排一名包含的基本事件的个数为种,利用古典概型的概率计算公式,即可求解.详解:由题意,将这六名毕业生全部进行安排,每所学校至少名毕业生,基本事件的总数为种,每所学校那女毕业生至少安排一名共有:一是其中一个学校安排一女一男,另一个学校有一女三男,有种,二是其中一个学校安排一女二男,另一个学校有一女两男,有种,共有种,所以概率为,故选C.点睛:本题考查了古典概型及概率的计算,排列组合的综合应用,对于排列组合问题:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).9. 已知,则( )A. B. C. D.【答案】B【解析】分析:设,得,利用导数研究其单调性可得的大小关系,又由,即可得出结论.详解:设,则,可得函数在内单调递增,所以,即,可化为,即,又,所以,故选B.点睛:本题考查了指数函数与对数函数基本性质的应用,利用导数研究函数的单调性,利用函数单调性比较大小是解答的关键,着重考查了学生的推理与运算能力,属于中档试题.10. 锐角中,角所对的边为的面积,给出以下结论:①;②;③;④有最小值8.其中正确结论的个数为( )A. 1B. 2C. 3D. 4【答案】D【解析】分析:由三角形的面积公式得,结合正弦定理证得①正确;把①中的用表示,化弦为切证得②正确;由,展开两角和的正切证得③正确;由,结合②转化为关于的代数式,换元即可求得最值,证得④正确.详解:由,得,又,得,故①正确;由,得,两边同时除以,可得,故②正确;由且,所以,整理移项得,故③正确;由,,且都是正数,得,设,则,,当且仅当,即时取“=”,此时,,所以的最小值是,故④正确,故选D.点睛:本题考查了命题的真假判定与应用,其中解答中涉及到两家和与差的正切函数,以及基本不等式的应用等知识点的综合运用,着重考查了学生的推理与运算能力,属于中等试题.11. 已知正三棱锥的顶点均在球的球面上,过侧棱及球心的平面截三棱锥及球面所得截面如图所示,已知三棱锥的体积为,则球的表面积为( )A. B. C. D.【答案】A【解析】分析:根据图示,这个截面三角图形和球的体积,求得正三棱锥的底面边长,进而求得球的半径,求的球的表面积.详解:设正三棱锥的底面边长为,外接球的半径为,因为正三棱锥的底面为正三角形,边长为,则,则,所以,即,又因为三棱锥的体积为,所以,解得,所以球的表面积为,故选A.点睛:本题考查了空间想象能力,关键是抓住这个截面三角形由原正三棱锥的一条棱,一个侧面三角形的中线和侧面是正三角形的中线围成,正三棱锥的外接球的球心在截面正三角形的重心上,着重考查学生分析问题和解答问题的能力.12. 设,其中,则的最小值为( )A. B. C. D.【答案】C【解析】分析:由表示两点与点的距离,而点在抛物线上,抛物线的焦点,准线为,则表示与的距离和与准线的距离的和加上1,由抛物线的定义可得表示与的距离和加上1,画出图象,当三点共线时,可求得最小值.详解:由题意,,由表示两点与点的距离,而点在抛物线上,抛物线的焦点,准线为,则表示与的距离和与准线的距离的和加上1,由抛物线的定义可得表示与的距离和加上1,由图象可知三点共线时,且为曲线的垂线,此时取得最小值,即为切点,设,由,可得,设,则递增,且,可得切点,即有,则的最小值为,故选C.点睛:本题考查直线与抛物线的综合应用问题,解答中注意运用两点间的距离公式和抛物线的定义,以及三点共线等知识综合运用,着重考查了转化与化归思想,以及推理与运算能力,属于中档试题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在的展开式中,常数项为__________.(用数字填写答案)【答案】112【解析】分析:利用二项展开式的通项公式求出展开式的通项,令的指数为,求出,将的值代入通项求出展开式的常数项.详解:二项式展开式的通项为,令,解得,所以常数项为.点睛:本题主要考查二项式定理的通项与系数,属于简单题,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用.14. 已知向量与的夹角为30°,,则的最大值为_________.【答案】【解析】分析:由题意,利用基本不等式和向量的运算,求的,进而可求得的最大值.详解:由题意,则,所以,即,又因为,即,所以,所以,当且仅当时,等号成立,所以.点睛:平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.15. 已知函数在区间上恰有三个零点,则的取值范围是__________.【答案】【解析】分析:函数在区间上恰有三个零点,转化为和函数在区间上恰有三个交点,利用余弦函数的图象即可求解.详解:由题意函数在区间上恰有三个零点,转化为和函数在区间上恰有三个交点,当时,,当时,,根据余弦函数的图象,要使的图象有三个交点,则,解得,点睛:本题主要考查了三角函数的图象与性质,以及函数的零点问题的判定问题,属于中档试题,对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.16. 点是直线上的动点,是圆的两条切线,是切点,则三角形面积的最小值为__________.【答案】【解析】分析:由圆的方程求得圆心坐标和半径,在由是圆的两条切线,利用点到直线的距离公式,进而求解三角形面积的最小值.详解:由圆的大风车,可得圆心,半径,则圆心到直线的距离为,设,则,则,所以,所以函数在单调递增,所以.点睛:本题题考查直线与圆的位置关系的应用,解答的关键在于根据题意得到面积的表示,进而求解函数的最值,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列,其中,且满足,.(1)求证:数列为等比数列;(2)求数列的前项和.【答案】(1)见解析;(2).【解析】分析:由题意,化简得,且,即可证得数列是首项为4,公比为2的等比数列;由(1)得,进而求得,利用裂项法,即可求解数列的和.详解:(1),又,所以是首项为4,公比为2的等比数列(2)由(1)知,①又又,所以为常数数列,)②联立①②得:,所以点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.18. 如图,在平行四边形中,°,四边形是矩形,,平面平面.(1)若,求证:;(2)若二面角的正弦值为,求的值.【答案】(1)见解析;(2)或.【解析】分析:连接,在中,利用余弦定理和勾股定理,得到,再由四边形为矩形,得到,进而得到,,利用线面垂直的判定定理证得面,即可证得;(2)以为原点,所在的直线为轴,建立空间直角坐标系,求解平面和平面的法向量,利用向量的夹角公式,即可求解二面角的余弦值,即可求解的值.详解:(1)连接,在中,由,由余弦定理易得,又,则;同理由余弦定理易得:,由四边形是矩形,则,又平面平面,所以平面,所以,同理,由勾股定理易求得,,显然,故;由,所以面,所以,所以面,所以;(2)以点为原点,所在的直线分别为轴,轴,过点与平面垂直的直线轴建立空间直角坐标系,则设平面的法向量为,则,即,取,则,即,同理可求得平面的法向量为设二面角的平面角为,则则,即,解之得或,又,所以或点睛:本题涉及到了立体几何中的线面平行与垂直的判定与性质,全面考查立体几何中的证明与求解,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.19. 随着网络的飞速发展,人们的生活发生了很大变化,其中无现金支付是一个显著特征,某评估机构对无现金支付的人群进行网络问卷调查,并从参与调查的数万名受访者中随机选取了300人,把这300人分为三类,即使用支付宝用户、使用微信用户、使用银行卡用户,各类用户的人数如图所示,同时把这300人按年龄分为青年人组与中年人组,制成如图所示的列联表:(1) 完成列联表,并判断是否有99%的把握认为使用支付宝用户与年龄有关系?(2)把频率作为概率,从所有无现金支付用户中(人数很多)随机抽取3人,用表示所选3人中使用支付宝用户的人数,求的分布列与数学期望.附:,其中.【答案】(1)见解析;(2)见解析.【解析】分析:(1)列出列联表,利用公式求得,即可作出判断;(2)把频率作为概率,从所有无现金支付用户(人数最多)中抽取人,可以近似看作次独立重复实验,所以的取值依次为,且服从二项分布,即可求解分布列和数学期望.详解:(1)列联表补充如下,故有99%的把握认为支付宝用户与年龄有关系.(2)把频率作为概率,从所有无现金支付用户(人数最多)中抽取3人,可以近似看作3次独立重复实验,所以的取值依次为0,1,2,3,且服从二项分布所以的分布列为点睛:本题考查了独立性检验思想的应用,离散型随机变量的分布列与数学期望,求解离散型随机变量概率分布列问题首先要清楚离散型随机变量的可取值有那些,当随机变量取这些值时所对应的事件的概率有是多少,计算出概率值后,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望.;列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.20. 已知椭圆的离心率为分别为椭圆的左、右焦点,点在椭圆上,当时,内切圆的半径为.(1)求椭圆的方程;(2)已知直线与椭圆相较于两点,且,当直线的斜率之和为2时,问:点到直线的距离是否存在最大值?若存在,求出最大值;若不存在,说明理由.【答案】(1) 椭圆的方程为;(2)见解析.【解析】分析:(1)依据题意,得到,又由,求得的值,即可得到椭圆的标准方程;(2)直线与椭圆的方程的联立,求得,由,代入整理,求得的值,再由点到直线的距离公式,设,即可求得距离的最大值,得到结论.详解:(1)依题意:,则,即又,联立解得:,故,所以椭圆的方程为(2)设,联立直线和椭圆的方程得:,当时有:由得:,即,整理得:,所以,化简整理得:,代入得:,解之得:或,点到直线的距离,设,易得或,则,当时;当时,,若,则;若,则,当时,综上所述:,故点到直线的距离没有最大值.点睛:本题主要考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常利用的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21. 已知函数.(1)当时,讨论函数的单调性;(2)求函数的极值.【答案】(1)时,递减;时,递增;(2)见解析.【解析】分析:(1)求得函数,代入,得,设,得,得到函数的单调性,进而求得函数的单调性;(2)由(1),得到,由在区间递减,在递增,得到时,分类讨论即可求得的极值.详解:(1)函数的定义域为,其导数为.当时,设,则,显然时递增;时,递减,故,于是,所以时,递减;时,递增;(2)由(1)知,函数在递增,在递减,所以又当时,,讨论:①当时,,此时:因为时,递增;时,递减;所以,无极小值;②当时,,此时:因为时,递减;时,递增;所以,无极大值;③当时,又在递增,所以在上有唯一零点,且,易证:时,,所以,所以又在递减,所以在上有唯一零点,且,故:当时,递减;当,递增;当时,递减;当,递增;所以,,,.点睛:本题主要考查导数在函数中的应用,着重考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22. 在直角坐标系中,曲线,曲线为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.(1)求曲线的极坐标方程;(2)已知射线与曲线分别交于点(异于原点),当时,求的取值范围.【答案】(1)曲线的极坐标方程为;(2).【解析】分析:(1)先把曲线的参数方程化为直角坐标方程,再根据极坐标与直角坐标的互化公式,即可得到的极坐标方程;(2)由(1)得,即可得到的取值范围.详解:(1)因为,所以曲线的普通方程为:,由,得曲线的极坐标方程,对于曲线,,则曲线的极坐标方程为(2)由(1)得,,因为,则点睛:本题考查了极坐标方程的求法及应用.重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程.23. 已知函数的最小值为3.(1)求的值;(2)若,求证:.【答案】(1);(2)见解析.【解析】分析:由绝对值三角不等式,得,即,进而得到的值;(2)由(1),得,进而利用基本不等式,即可作出证明.详解:(1)解:所以,即(2)由,则原式等价为:,即,而,故原不等式成立点睛:本题考查了绝对值不等式的性质,同时考查了基本不等式的应用,绝对值不等式的解法有三种:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 1)求这 4000 名考生的竞赛平均成绩 x (同一组中数据用该组区间中点作代表) ;
( 2)由直方图可认为考生竞赛成绩
z 服正态分布 N( , 2 ) ,其中
2
, 分别取考生的平均
成绩 x 和考生成绩的方差 s2 ,那么该区 4000 名考生成绩超过 84.41 分(含 84.81 分)的人数
a b 2a c 2b c
.
15. 已知 x ( , ) , y f ( x) 1为奇函数, f '(x) f ( x) tan x 0 ,则不等式 22
f (x) cos x 的解集为
.
16. 在四面体 ABCD 中, AD DB AC CB 1,则四面体体积最大时,它的外接球半径
R
.
三、解答题:共 70 分 . 解答应写出文字说明、证明过程或演算步骤
. 第 17 题~第 21 题为必考
题,每个试题考生都必须作答 . 第 22 题~第 23 题为选考题,考生根据要求作答 .
(一)必考题:共 60 分 .
17. 已知正数数列 { an} 满足: a1 2 , an an 1 2n 1 2 (n 2) . an an 1
( 1)求 a2 , a3 ;
于 E , F 两点, O 为坐标原点,则 PEF 与 OAB 的面积之比为(
)
A. 3 2
B
.3
C
.1
D
3
2
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分 .
.3 4
13. 已知 sin 2cos ,则 sin cos
.
14. 已知向量 a , b , c 满足 a b 2c 0 ,且 a 1 , b 3 , c 2 ,则
A. 3
B
.6
C .2 3 D .2 6
5. 一张储蓄卡的密码共有 6 位数字,每位数字都可以从 0 9 中任选一个,某人在银行自动提 款机上取钱时, 忘记了密码最后一位数字, 如果任意按最后一位数字, 不超过 2 次就按对的概
率为( )
2
A.
5
3
1
B
.
C
.
10
5
1
D
.
10
6. 若实数 a, b 满足 a b 1 , m log a (log a b) , n (log a b)2 , l log a b2 ,则 m , n ,
BC
A
,那么条件 p 是条件 q 成立的( )
2
bc ,条件 q :
2
A.充分而不必要条件
B
.必要而不充分条件
C.充要条件
D
.既不充分也不必要条件
9. 在 ( x 1 1)6 的展开式中,含 x5 项的系数为(
)
x
A. 6
B
.6
C
பைடு நூலகம்
. 24
D
. 24
10. 若 x , y 满足 x 1 2 y 1 2 ,则 M 2 x2 y2 2x 的最小值为( )
2
4
A. 2
B
.
C
.4
D
.
11
9
11. 函数 f (x) 2sin( x )( 3
为( )
0) 的图象在 [0,1] 上恰有两个最大值点,则
的取值范围
A. [2 , 4 ]
9
13 25
25
B
. [2 , ) C . [ , ) D . [2 , )
2
66
6
12. 过点 P(2, 1) 作抛物线 x2 4y 的两条切线,切点分别为 A , B , PA , PB 分别交 x 轴
z
) 0.6826 , P( 2 z
③ 0.84134 0.501.
21. 已知函数 f ( x) xex a(ln x x) , a R .
( 1)当 a e时,求 f ( x) 的单调区间;
2 ) 0.9544 ;
( 2)若 f (x) 有两个零点,求实数 a 的取值范围 .
(二)选考题:共 10 分. 请考生在 22、 23 题中任选一题作答,如果多做,则按所做的第一题
估计有多少人? ( 3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生
中随机抽取 4 名考生,记成绩不超.过.. 84.81 分的考生人数为 ,求 P ( 3) . (精确到 0.001 )
附:① s2 204.75 , 204.75 14.31;
② z N ( , 2) ,则 P(
19. 已知椭圆
: x2 4
y2 1 ,过点 P(1,1) 作倾斜角互补的两条不同直线 2
l1, l2 ,设 l1 与椭圆
交于 A 、 B 两点, l2 与椭圆 交于 C , D 两点 .
( 1)若 P(1,1) 为线段 AB 的中点,求直线 AB 的方程;
( 2)记
AB
,求 的取值范围 .
CD
20. 在某市高中某学科竞赛中,某一个区 4000 名考生的参赛成绩统计如图所示 .
武汉市 2018 届高中毕业生四月调研测试
理科数学
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有
一项是符合题目要求的 .
5
1. 复数
的共轭复数是(
)
i2
A. 2 i
B
.2 i
C
.2 i
D .2 i
2. 已知集合 M { x | x2 1} , N { x | ax 1} ,若 N M ,则实数 a 的取值集合为(
( 2)设数列 { bn} 满足 bn (an 1)2 n2 ,证明: 数列 { bn} 是等差数列, 并求数列 { an} 的通项
an .
18. 如图,在棱长为 3 的正方体 ABCD A1B1C 1D1 中, E , F 分别在棱 AB , CD 上,且
AE CF 1 .
( 1)已知 M 为棱 DD1上一点,且 D1M 1,求证: B1M 平面 A1EC1 . ( 2)求直线 FC1 与平面 A1EC1 所成角的正弦值 .
)
A. {1}
B
. { 1,1}
C . { 1,0}
D . { 1, 1,0}
3. 执行如图所示的程序框图,如果输入的 t [ 2,2] ,则输出的 S 属于( )
A. [ 4, 2] B . [ 2, 2] C . [ 2, 4] D . [ 4,0]
4. 某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的 最大值为( )
l 的大小关系为(
)
A. m l n B . l n m C . n l m D . l m n
7. 已知直线 y kx 1 与双曲线 x2 y2 4 的右支有两个交点,则 k 的取值范围为(
)
A. (0,
5 )
B
. [1,
5 ]
C
.(
55 ,)
5 D . (1, )
2
2
22
2
8. 在 ABC 中,角 A 、 B 、 C 的对应边分别为 a, b , c ,条件 p : a