实变与泛函分析初步自学考试大纲

合集下载

实变函数与泛函分析考试内容及答案

实变函数与泛函分析考试内容及答案

14、建立下面集合之间的具体双射 1)(-1,1)与[-1,1] 2)实数轴和全体无理数3)R 3中除去一点的单位球面与全平面R 24)平面中的开圆盘{(x,y ):x 2+y 2<1}与闭圆盘{(x,y ):x 2+y 2≤1}解:(1)、从(-1,1)与[-1,1]分别取出两个数集A={r 1,r 2,r 3,……,r n }与B={-1,1,r 1,r 2,……,r n-2}则A 、B 之间可定义以下双射:Ф(r 1)=-1, Ф(r 2)=1, Ф(r n )=r n (n>2)然后定义Ф:(-1,1)︱A →[-1,1]︱B x →x 得Ф(-1,1)→[-1,1]是所求双射(2)、从R 与R\Q 中分别取出两个可数集A=Q ∪B 与B=2,则A 与B 之间可定义如下双射:Ф2然后定义:Ф:R|A →(R\Q)|B x →x得:Ф:R →R\Q 是实数轴与全体无理数之间的双射。

(3)、假设单位球面上除去P 点按以下步骤建立双射: i)球心为O P 点关于O 点对称的点为球内的点Q 以Q 为切点作一个切面R 2以O 为原点作一直角坐标系ii )过切点Q 连接PQ iii )连接P 点与球面上异于P 点的任一点M 并延长,点肯定交R 2与一点记为M ’ 这就建立了R 3中除去一点的单位球面与全平面R 2之间的双射。

(4)、首先两个同心圆周之上的点之间可建立一一对应:做圆周集合子列 A n ={(x,y):x 2+y 2=12n } n ∈N 则 令E 1=n-2∞A n ⊂{(x,y):x 2+y 2<1}E 2=n-1∞ A n ⊂{(x,y):x 2+y 2≤1}且 E 1~E 2 又{(x,y):x 2+y 2<1}| E 1={(x,y):x 2+y 2≤1}|E 2 ,令B 1=(x,y):x 2+y 2<1}B 2={(x,y):x 2+y 2≤1}则 B 2=(B 1|E 1) E 2 令 Ф((x,y))= (x 1,y 1)若(x,,y )∈B 1|E 1或(x 2,y 2)若(x,y )∈E 2 由此得:Ф是B 1到B 2的双射。

实变函数与泛函分析概要

实变函数与泛函分析概要

实变函数与泛函分析概要第一章 集合 基本要求:1、 理解集合的包含、子集、相等的概念和包含的性质。

2、 掌握集合的并集、交集、差集、余集的概念及其运算性质。

3、 会求已知集合的并、交、差、余集。

4、 了解对等的概念及性质。

5、 掌握可数集合的概念和性质。

6、 会判断己知集合是否是可数集。

7、 理解基数、不可数集合不可数集合不可数集合、、连续基数连续基数的概念。

8、了解半序集和Zorn 引理。

第二章 点集 基本要求基本要求:1、 理解n 维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。

2、 掌握内点、聚点的概念、理解外点、界点、孤立点的概念。

掌握聚点的性质。

3、 掌握开核、导集、闭区间的概念及其性质。

4、 会求己知集合的开集和导集。

5、 掌握开核、闭集、完备集的概念及其性质,掌握一批例子。

6、 会判断一个集合是非是开(闭)集,完备集。

7、 了解Peano 曲线概念。

主要知识点主要知识点::一、基本结论:1、 聚点性质§2 中T 1聚点原则:P 0是E 的聚点⇔ P 0的任一邻域内,至少含有一个属于E 而异于P 0的点⇔存在E 中互异的点列{P n },使P n →P 0 (n →∞) 2、 开集、导集、闭集的性质§2 中T2、T3T2:设A ⊂B ,则Aɓ⊂Bɓ, A⊂ B,-A⊂-B。

T3:(A ∪B )′=A ′∪ B ′.3、 开(闭)集性质(§3中T1、2、3、4、5)T1:对任何E ⊂R ⁿ,ö是开集,E ´和―E都是闭集。

(ö称为开核,―E称为闭包的理由也在于此)T2:(开集与闭集的对偶性)设E 是开集,则CE 是闭集;设E 是闭集,则CE 是开集。

T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。

T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。

T5:(Heine-Borel 有限覆盖定理)设F 是一个有界闭集,ℳ是一开集族{U i }i єI 它覆盖了F (即F с ∪iєIU i ),则ℳ中一定存在有限多个开集U 1,U 2…U m ,它们同样覆盖了F (即F ⊂m∪ U i )(i єI )4、 开(闭)集类、完备集类。

实变与泛函分析初步自学考试大纲

实变与泛函分析初步自学考试大纲

实变与泛函分析初步自学考试大纲第一章集合(一)重点集合的概念、集合的表示、子集、真子集;集合的并、交、余、 D.Morgan 法则、集合的直积;上限集、下限集、极限集、单调集列及其极限集;单射、满射、一一映射、映射基本性质、集合的势、对等、对等基本性质、基数、基数的比较、伯恩斯坦定理;可数集、可数集性质、有理数集;不可数集存在性、连续集及其性质、不存在基数最大的无限集;R n中的距离、邻域、区间、开球、闭球、球面;开集、开集性质、内点、内核、边界点、边界;收敛点列、聚点、聚点的等价定义、孤立点、孤立点集、导集、闭集、闭集性质;G 集合、F 集合、G 集合和F 集合的性质、Borel 集;R1中开集与闭集的构造、R n中开集与闭集的构造。

识记:集合的概念、集合的表示、子集、真子集;集合的并、交、余、 D.Morgan 法则、集合的直积;上限集、下限集、极限集、单调集列及其极限集;单射、满射、一一映射、集合的势、对等、对等基本性质、基数、基数的比较、伯恩斯坦定理;可数集、可数集性质、有理数集;不可数集存在性、连续集及其性质、不存在基数最大的无限集;R n中的距离、邻域、区间、开球、闭球、球面;开集、开集性质、内点、内核、边界点、边界;收敛点列、聚点、孤立点、孤立点集、导集、闭集、闭集性质、G 集合、F 集合、G 集合和F 集合的性质、Borel集;R1中开集与闭集的构造、R n中开集与闭集的构造。

理解:集合的表示、子集、真子集;集合的并、交、余、 D.Morgan 法则、集合的直积;上限集、下限集、极限集、单调集列及其极限集;一一映射、映射基本性质、集合对等的基本性质、基数的比较、伯恩斯坦定理;可数集、可数集性质、有理数集;不可数集存在性、连续集及其性质;R n中的距离、邻域、开球、闭球、球面;开集、开集性质、内点、内核、边界点、边界;聚点、聚点的等价定义、孤立点、孤立点集、导集、闭集、闭集性质;G 集合和F集合的性质、Borel集;R1中开集与闭集的构造、R n中开集与闭集的构造。

《实变函数》考试大纲

《实变函数》考试大纲

《实变函数》考试大纲一、课程说明本大纲适用数学专业。

1 本课程的目的和要求实变函数是数学专业重要的分析基础课之一这一部分内容为进一步学习分析数学中的一些专门理论,如函数论,泛函分析,概率论,微分方程,群上调和分析等提供必要的测度和积分论基础,通过本课程的学习,应使出学生较好的掌握测度和积分这个基本工具,特别是极限(或积分)和积分顺序的交换,并且在一定程度上掌握集的分析方法2 本课程的主要内容先介绍近代数学的基础——集与映射等有关概念,同时介绍实直线上的点集的性质,按着讲L-测度以及L-可测集的概念与性质,在介绍可测函数的概念与性质,接着是勒贝格积分的概念与性质,还有积分极限定理,R-积分与L-积分比较,Fubini定理,囿变函数,绝对连续函数及其中N-L公式,最后介绍Lp空间及其性质3 教学重点与难点本课程的重点是勒贝格测度与勒贝格积分。

实变函数的内容虽是微积分的继续深化,但在思想方法上确有较大的飞越,实变函数的一些概念比起数学分析来要抽象得多,这使得初学者对实变函数往往不太习惯,为使学生能较好地适应这一过度,教师在讲解时尽可能将主要概念的产生背景,以北及概念之间的内在联系加以介绍。

例如,教师应向学生交代,为什么要研究新的积分,为什么要研究可列可加测度等,讲解时既要严格论证又要形象说明,同时要配合典型例题,适当地加强对学生的基础训练,这是一个重要的学习环节,教师应当给学生布置一定数量的习题,使学生通过做习题,加深对课文的理解,也帮助学生提高自学能力和解题能力,并开阔思路。

4 本课程的知识范围与相关课程的关系本课是在数学分析的基础上发展而成,同时本课程又用到了高等代数和解析几何中的一些基本知识,故本课程应安排在第四学期或第五学期讲授。

5 教材的选用绍兴文理学院数学系主要选用下面的教材江泽坚、吴智泉编《实变函数论》(第二版),北京:高等教育出版社,2001年(国优教材).该教材论证严谨,重点突出,思路清晰,是一本国优教材。

湖北省高等教育自学考试实变与泛函分析初步

湖北省高等教育自学考试实变与泛函分析初步

湖北省高等教育自学考试《实变与泛函分析初步》自学考试大纲课程名称:实变与泛函分析初步课程代码:2012第一部分课程性质与目标一、课程性质与特点《实变函数》课程是数学与应用数学专业的一门专业基础理论课程,同时也是现代数学的重要基础课程,是古典分析与现代分析之间的一座桥梁。

它的研究对象仍然是定义在一般集合上的实函数,而采用的思想和方法是集合论的思想和方法。

它的中心任务是建立勒贝格(Lebesgue)测度理论和较之传统积分理论更为优越的勒贝格(Lebesgue)积分理论。

二、课程目标与基本要求通过本课程的学习,初步了解近代抽象分析的基本思想;掌握勒贝格(Lebesgue)测度概念和基本性质、可测集类;掌握可测函数的基本概念与基本性质、依测度收敛的可测函数列及其性质;了解可测函数列几乎处处收敛与一致收敛的关系、可测函数列依测度收敛与几乎处处收敛的关系、可测函数与连续函数的关系;掌握勒贝格积分的基本思想、基本性质以及勒贝格积分极限定理及其应用;了解绝对连续函数的可微性和牛顿-莱布尼兹公式。

通过本课程的学习,培养并提高用现代数学的思想方法分析、解决问题的能力,为后续课程的顺利学习提供保证,为今后学习、研究现代数学和从事数学教育工作奠定基础。

三、与本专业其他课程的关系本课程是数学与应用数学专业基础课程之一,它的先行课程是《数学分析》,而概率论与数理统计、泛函分析、分形几何、微分方程与动力系统、偏微分方程等都是与它有着密切联系的后续课程。

其中《数学分析》是学习本课程的基础,而本课程又是进一步学习概率论与数理统计、泛函分析、分形几何、微分方程与动力系统、偏微分方程等课程的基础。

第二部分考核内容与考核目标第一章集合一、学习目的与要求通过本章的学习,应理解集合的概念,熟练掌握集合的并、交、差、余这四种基本运算,掌握集合列的极限运算;了解康托假设的含义,理解一一映射、集合对等与势(基数)的概念,掌握证明集合对等的基本方法;理解可数集与不可数集的概念、熟练掌握基本性质以及判别R中集合的聚点、内点、外点、边界点的概念及互相之间的关系;方法;掌握n维欧氏空间n了解并掌握开集、闭集、完备集的定义及性质,以及直线上开集、闭集、完备集的构造;掌握康托集的构造和康托集的基本性质。

实变函数与泛函分析课程教学大纲

实变函数与泛函分析课程教学大纲

《实变函数与泛函分析》课程教学大纲一、课程基本信息课程代码:110047课程名称:实变函数与泛函分析英文名称:Real variable analysis And Functional analysis课程类别:专业基础课学时:50学分:3适用对象:信息与计算科学专业本科考核方式:考试,平时成绩30%,期末成绩70%先修课程:数学分析和高等代数二、课程简介中文简介:实变函数起源于对连续而不可微函数以及Riemann可积函数等的透彻研究,在点集论的基础上讨论分析数学中一些最基本的概念和性质,其主要内容是引入Lebesgue积分并克服了Riemann积分的不足。

它是数学分析的继续、深化和推广,是一门培养学生数学素质的重要课程,也是现代数学的基础。

泛函分析起源于经典的数学物理边值问题和变分问题,同时概括了经典分析的许多重要概念,是现代数学中一个重要的分支,它综合运用了分析、代数与几何的观点和方法研究、分析数学和工程问题,其理论与方法具有高度概括性和广泛应用性的特点。

英文简介:Real variable analysis And Functional analysis is a theoretical course of mathematics which can be used in variable fields such as engineering and technology, physics, chemical, biology, economic and other fields. The educational aim in this course is to develop the abilities of students in analyzing and solving practical problem by the special ways of Real variable analysis And Functional analysis’ thinking and reasoning.三、课程性质与教学目的本课程是在实变函数与泛函分析基本理论的基础上,着重泛函分析的应用,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。

实变函数与泛函分析课程教学大纲汇总

实变函数与泛函分析课程教学大纲汇总

《实变函数与泛函分析》课程教学大纲一、课程基本信息课程代码:110047课程名称:实变函数与泛函分析英文名称:Real variable analysis And Functional analysis课程类别:专业基础课学时:50学分:3适用对象:信息与计算科学专业本科考核方式:考试,平时成绩30%,期末成绩70%先修课程:数学分析和高等代数二、课程简介中文简介:实变函数起源于对连续而不可微函数以及Riemann可积函数等的透彻研究,在点集论的基础上讨论分析数学中一些最基本的概念和性质,其主要内容是引入Lebesgue积分并克服了Riemann积分的不足。

它是数学分析的继续、深化和推广,是一门培养学生数学素质的重要课程,也是现代数学的基础。

泛函分析起源于经典的数学物理边值问题和变分问题,同时概括了经典分析的许多重要概念,是现代数学中一个重要的分支,它综合运用了分析、代数与几何的观点和方法研究、分析数学和工程问题,其理论与方法具有高度概括性和广泛应用性的特点。

英文简介:Real variable analysis And Functional analysis is a theoretical course of mathematics which can be used in variable fields such as engineering and technology, physics, chemical, biology, economic and other fields. The educational aim in this course is to develop the abilities of students in analyzing and solving practical problem by the special ways of Real variable analysis And Functional analysis’ thinking and reasoning.三、课程性质与教学目的本课程是在实变函数与泛函分析基本理论的基础上,着重泛函分析的应用,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。

泛函分析考试大纲科目代码2093

泛函分析考试大纲科目代码2093

《泛函分析》考试大纲科目代码:2093
基本内容与要求:
一、线性距离空间
1.距离线性空间定义和例子;
2.距离空间可分性、完备性;
3.紧集的相关概念和性质;(Arzelá-Ascoli定理)及其应用;
4.有限维线性赋范空间的性质、Riesz引理;
5 . 压缩映像原理及应用.
二、Hilbert 空间
1.Hilbert空间概;Hilbert空间结构;
2.射影定理、Fréchet-Riesz表现定理;Hilbert空间共轭算子.
三、Banach空间上的有界线性算子
1. Hahn-Banach定理及其常用推论; 凸集分离定理;
2. Baire纲推理; 共鸣定理、逆算子定理、闭图形定理; 一致有界定理应用;
3. 对偶空间、具体空间上连续线性泛函的实例; 二次对偶; 自反空间;
4. Banach共轭算子概念、性质;
5.算子和它的共轭算子之间的值域和零空间关系、商空间及商映射;
6. 序列弱收敛与序列弱*收敛概念.
四、有界线性算子谱理论
1. 谱的概念和性质,谱半径公式;
2. 射影算子、不变子空间、约化子空间
3. 紧连续算子定义和性质
4. 有界自伴算子。

实变函数与泛函分析

实变函数与泛函分析

实变函数与泛函分析长春理工大学数学研究生入学加试《实变函数与泛函分析》考试大纲一、总体要求考生应按本大纲的要求,掌握Lebesgue的测度论,实变量的可测函数理论,Lebesgue 积分理论与微分理论,掌握度量空间和赋范线性空间的概念和例子,有界线性算子和连续线性泛函的概念和例子,掌握Hilbert空间的基本性质。

较好的掌握测度论与抽象积分理论,并且在一定程度上掌握集合的分析方法。

二、教材《实变函数与泛函分析基础(第二版)》,程其襄等,高等教育出版社,2003.三、考试内容(一)集合1. 掌握集合的概念,集合的包含和相等的关系和判定方法;2. 熟练掌握集合的和、交、差、余的运算,掌握上限集、下限集和收敛集的定义3. 会求集合的和、交、差、余,会求集合族的上限集、下限集,会判定集合列是否收敛;4. 理解集合基数的概念,对等的概念,掌握Bernstein定理,会用Bernstein定理判定集合对等;5. 掌握可数集合与具有连续基数的不可数集合的概念、例子和运算性质,能够利用已知的例子和运算性质去确定集合为哪类无限集合;6. 知道不存在具有最大基数的集合。

(二)点集1. 理解距离和距离空间的概念,懂得Euclid空间是距离空间;2. 掌握邻域的概念与性质,掌握点列收敛、点集距离、有界集和区间的概念;3.深入理解内点、外点、界点、聚点、孤立点的定义,理解并掌握集合的开核、导集、边界、闭包的概念及相关的性质;4. 熟练掌握开集、闭集的概念和相关性质,掌握紧集的概念,完备集的概念,掌握有限覆盖定理;5. 理解直线上开集、闭集的构造定理,掌握Cantor集的性质。

(三)测度论1.深入理解并熟练掌握外测度,L-可测集的定义和基本性质,并掌握典型的例子2.理解σ代数的定义,掌握Borel集、Gδ型集、Fσ型集的定义,明确可测集和Borel集、Gδ型集、Fσ型集之间的关系,掌握L-可测集类;(四)可测函数1. 理解并掌握可测函数的定义与等价条件,掌握简单函数的概念,几乎处处收敛的概念,理解简单函数与可测函数的关系;2. 理解Egorov定理,Lusin定理;3. 理解并掌握依测度收敛的定义,理解Riesz定理,Lebesgue定理,会利用这两个定理去解决实际问题。

教学大纲_实变函数与泛函分析

教学大纲_实变函数与泛函分析

教学大纲_实变函数与泛函分析实变函数与泛函分析是高级数学中的一门重要课程,主要涉及实变函数的性质及其应用,以及泛函分析中的函数空间与算子的概念和性质。

本教学大纲旨在培养学生对实变函数与泛函分析的基本理论和方法的理解与应用能力。

一、课程目标通过本课程的学习,学生应该能够:1.了解实变函数的定义、性质和基本的分析方法;2.掌握实数的完备性和实变函数的连续性、可微性等基本概念与定理;3.熟悉重要的实变函数序列收敛的理论和方法;4.理解一元多项式空间及其上的内积、范数等概念;5.了解泛函分析的基本概念,如线性算子、单射、满射、闭算子等;6.掌握泛函分析中重要的泛函空间和赋范向量空间的性质与应用。

二、教学内容1.实变函数的性质与基本分析方法(12学时)1.1实数的完备性与实变函数的极限概念1.2实变函数的连续与可导性质1.3实变函数的积分与微分概念与定理2.实变函数的序列收敛理论与方法(16学时)2.1一致收敛性与收敛级数理论2.2函数项级数的收敛理论与方法2.3 Weierstrass逼近定理的证明与应用2.4傅里叶级数的概念、性质及展开方法3.一元多项式空间与泛函分析基础(14学时)3.1一元多项式空间及其上的内积与范数3.2一元多项式空间中的正交多项式与勒让德多项式3.3泛函分析的基本概念与定理4.泛函空间与线性算子(18学时)4.1泛函空间的定义与性质4.2无穷维度空间的收敛性与紧性4.3线性算子的基本性质与分类4.4线性算子的连续性与有界性5.算子的谱理论与泛函方程(20学时)5.1线性算子的谱理论与应用5.2巴拿赫空间的定义与性质5.3泛函方程的基本理论与应用5.4泛函方程的解的存在唯一性定理三、教学方法1.理论教学:通过讲述与讲解基本概念与定理,引导学生掌握基本原理和方法。

2.解题指导:通过典型例题和习题,引导学生独立思考问题,掌握解题方法和技巧。

3.讨论与交流:鼓励学生参与讨论,提问和回答问题,促进学生之间的交流与合作。

实变函数与泛函分析初步自考浙江2019年1月

实变函数与泛函分析初步自考浙江2019年1月

1浙江省2018年1月高等教育自学考试实变函数与泛函分析初步试题课程代码:10023一、单项选择题(本大题共3小题,每小题4分,共12分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.可数个可数集的交集是( )A.空集B.有限集C.可数集D.无法判定的2.设E=[0,2]-(Q ∩[1,3]),则mE=( )A.0B.1C.2D.33.设P 是Cantor 集,则( )A.P 与R n 对等,且P 的测度为0B.P 与R n 对等,且P 的测度为1C.P 与R n 不对等,P 的测度为0D.P 与R n 不对等,P 的测度为1 二、判断题(本大题共6小题,每小题2分,共12分)判断下列各题,正确的在题后括号内打“√”,错的打“×”。

4.有理数集与无理数集一定是对等的.( )5.开集减去闭集后的差集一定是开集.( )6.不可数点集的外测度一定大于零.( )7.设f (x )在E 上非负可积,e n =E [f ≥n ],则0m lim =⋅∞→n n e n .( ) 8.若f (x )在区间[0,1]上几乎处处可导,则f (x )在区间[0,1]上几乎处处有界.( )9.函数f (x )=⎪⎩⎪⎨⎧=∈0,0]1,0(,1sin x x x x 不是[0,1]上的有界变差函数.( ) 三、填空题(本大题共10小题,每小题4分,共40分)请在每小题的空格中填上正确答案。

错填、不填均无分。

10.设集列{A n }两两不相交,则集列{A n }的上限集为________________.11.设A n =(-n 1,2-n1],则=∞=∞=n m n m A I Y 1________________.2 12.若E 与它的真子集对等,则E 一定是无限集吗?(只需填“是”或“否”即可)答:________________.13.设E 是[0,1]-Q 和[3,7]∩Q 的并集,则m E =________________.14.函数f (x )在E 上几乎处处有界是指________________.15.设f (x )是可测集E 上的函数,若∀δ>0,必有闭子集E δ⊂E ,使f (x )是E δ上的连续函数,且m (E -E δ)<δ,则f (x )是E 上的________________.16.设{f n (x )}是E 上的非负可测函数列,且f n (x )≤f n +1(x )(∀n ),则x x f n d ) (lim E n ⎰∞→与x x f n d ) (lim E n ⎰∞→一定相等吗?(只需填“一定”或“不一定”即可)答:________________.17.构造[0,1]上的一个函数f (x ),使得f (x )在[0,1]上Lesbegue 可测,但不是Lesbegue可积.例如f (x )=________________.18.设f (x )=⎩⎨⎧-∈+∈Q Q ]1,0[21]1,0[2sin x,x x,x I ,则⎰]10[,f(x)dx =________________.19.函数f (x )=⎪⎩⎪⎨⎧∈+=∈(1,2] x 4,x 1 x 7,[0,1) x ,x 3 在[0,1]上的全变差为________________.四、完成下列各题(本大题共4小题,每小题9分,共36分)20.构造一个一一映射f :[0,1]→(0,1).21.设I 为全体无理数所成之集,令E ={(x ,y )|y =sin x1, x ∈I },求E ′,E ,E &. 22.证明可数点集的外测度为零.23.利用10)()1(1132<<++=+x ,-x x -x x Λ,求证ln2=1-21+21-41+….。

自考《实变函数与泛函分析初步(课程代码:02012)》试卷附答案和评分标准

自考《实变函数与泛函分析初步(课程代码:02012)》试卷附答案和评分标准

实变函数与泛函分析初步 试卷(课程代码02012)专业________班级_______姓名 学号注 意 事 项1、本试卷共6页。

2、考生答题时必须准确填写专业、班级、学号等栏目,字迹要清楚、工整。

一.单项选择题(3分×5=15分)1.设,MN 是两集合,则()M M N --=( ) (A) M (B) N (C) M N ⋂ (D) ∅2. 下列说法不正确的是( )(A) 0P 的任一领域内都有E 中无穷多个点,则0P 是E 的聚点 (B) 0P 的任一领域内至少有一个E 中异于0P 的点,则0P 是E 的聚点 (C) 存在E 中点列{}n P ,使0n P P →,则0P 是E 的聚点 (D) 内点必是聚点3. 下列断言( )是正确的。

(A )任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对; 4. 下列断言中( )是错误的。

(A )零测集是可测集; (B )可数个零测集的并是零测集; (C )任意个零测集的并是零测集;(D )零测集的任意子集是可测集; 5. 若()f x 是可测函数,则下列断言( )是正确的 (A) ()f x 在[],a b L -可积|()|f x ⇔在[],a b L -可积; (B) [][](),|()|,f x a b R f x a b R -⇔-在可积在可积 (C) [][](),|()|,f x a b L f x a b R -⇔-在可积在可积;(D) ()()(),()f x a R f x L +∞-⇒∞-在广义可积在a,+可积二. 填空题(3分×5=15分)1、设11[,2],1,2,n A n n n=-=,则=∞→n n A lim _________。

2、设P 为Cantor 集,则 =P ,mP =_____,oP =________。

3、设{}i S 是一列可测集,则11______i i i i m S mS ∞∞==⎛⎫⋃ ⎪⎝⎭∑ 4、鲁津定理:_____________________________________________________________________________________________________________________ 5、设()F x 为[],a b 上的有限函数,如果_________________________________ _____________________________________________________________________________________________则称()F x 为[],a b 上的绝对连续函数。

(完整)《实变函数与泛函分析基础》试卷及答案,推荐文档

(完整)《实变函数与泛函分析基础》试卷及答案,推荐文档

试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A ); (B );1lim n k n n k n A A ∞∞→∞===⋃⋂1lim n k n k n n A A ∞∞==→∞=⋂⋃(C ); (D );1lim n k n n k n A A ∞∞→∞===⋂⋃1lim n k n k n n A A ∞∞==→∞=⋂⋂2、设P 为Cantor 集,则下列各式不成立的是( )(A ) c (B) (C) (D) =P 0mP =P P ='PP = 3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设是上的有限的可测函数列,则下面不成立的是( ){}()n f x E ..a e (A )若, 则 (B) 是可测函数()()n f x f x ⇒()()n f x f x →{}sup ()n nf x (C )是可测函数;(D )若,则可测{}inf ()n n f x ()()n f x f x ⇒()f x 5、设f(x)是上有界变差函数,则下面不成立的是( )],[b a (A) 在上有界 (B) 在上几乎处处存在导数)(x f ],[b a )(x f ],[b a (C )在上L 可积 (D) )('x f ],[b a ⎰-=ba a fb f dx x f )()()('二. 填空题(3分×5=15分)1、_________()(())s s C A C B A A B ⋃⋂--=2、设是上有理点全体,则=______,=______,=______.E []0,1'E o E E 3、设是中点集,如果对任一点集都有E n R T _________________________________,则称是可测的E L 得 分得 分4、可测的________条件是它可以表成一列简单函数的极限函数. )(x f (填“充分”,“必要”,“充要”)5、设为上的有限函数,如果对于的一切分划,使()f x [],a b [],a b _____________________________________________________,则称为 ()f x 上的有界变差函数。

实变函数与泛函分析初步自考浙江2020年10月

实变函数与泛函分析初步自考浙江2020年10月

1浙江省2018年10月高等教育自学考试实变函数与泛函分析初步试题课程代码:10023一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。

每小题4分,共28分)1. 有理数的全体构成一个( )。

A. 有限集B. 可数集C. 不可数集D. 无法判定2. 关于空集最合理的叙述是( )。

A. 空集是开集B. 空集是闭集C. 空集既是开集,又是闭集D. 空集既不是开集,也不是闭集3. 任意个开集的并集是( )。

A. 开集B. 闭集C. 既是开集,又是闭集D. 无法判定4. 设f(x)与g(x)在E 上可测,则E [f>g ]是( )。

A. 可测集B. 不可测集C. 空集D. 无法判定5. 设f(x)在E 上可积,⎰→=⊂A 0mA dx )x (f lim I ,E A ,则有( )。

A. I>0B. I=0C. I<0D. 不能确定6. 设{f n (x)}是在E ⊂R p 上一列非负可测函数,则I 1=dx )x (f lim I ,dx )x (f limn E n E 2n n ⎰⎰=,则有( )。

A. I 1>I 2B. I 1=I 2C. I 1<I 2D. I 1≤I 27. 设f(x)是[a,b ]上有界变差函数,则f(x)是( )。

A. 连续函数B. 绝对连续函数C. 可导函数D. 有界函数二、填空题(每小题4分,共40分)1.A n =[n -1,n),n=1,2,…,则n 1n A ∞=⋃=______. 2.设A 是R n 中任一点集,则A 的导集A ′是一个______集.3.设A ⊂R n ,S ⊂R n ,A ⊂S ,则C S (C S A)=______.4.设E ⊂R n ,E 不但Jordan 可测,而且Lebesgue 可测,则两种测度值的关系为m *E______(m *E)J .2 5.设f(x)与g(x)是在E 上两个可测函数,则max{f(x);g(x)}=______.6.f(x)在E 上可积等价于f(x)在E 上可测的前提条件是______.7.设E=I 1×I 2,其中I 1与I 2分别是R p 与R q 中的左开右闭区间,E x 表示E 关于x 的截面,则当x ∉I 1时,E x =______.8.设R R =R 1,E 表示[0,1]中的有理点集,则E 的内核0E =______.9.设A 1⊂A 2,则A 1与A 2关于x 的截面(A 1)x 与(A 2)x 的关系为:(A 1)x ______(A 2)x . 10.有限个闭集的并集i n 1i F =⋃是______. 三、完成下列各题(每小题8分,共32分)1.设f(x)是(-∞,+∞)上的实值连续函数,且对任意常数a ,记E={x|f(x)>a},证明:E 为开集.2.设R n =R 2,E={(x,y)|x 2+y 2<1},求E 的导集,闭包,开核,边界(E ′,E ,0E ,E ∂)。

《实变函数与泛函分析》教学大纲-数学专业

《实变函数与泛函分析》教学大纲-数学专业

实变函数与泛函分析教学大纲应用数学与信息计算等专业使用修订单位:山东财政学院统计与数理学院修订时间:2009年8月修订课程中文名称:实变函数与泛函分析课程英文名称:Real Analysis and functional Analysis 课程号:30001001学时数:68学分数:4先修课程:数学分析、线性代数适用专业:应用数学与信息计算等专业。

一、课程的性质和任务1. 课程性质《实变函数与泛函分析》是数学专业的一门专业基础课程。

《实变函数》课程结合抽象测度与积分理论, 介绍Lebesgue测度与Lebesgue积分的理论。

通过本课程的学习, 应使学生掌握测度论和实变函数论的基本理论和方法, 并且应用所学知识, 解决一些相关的理论和应用问题, 解决一些具有一定难度的习题。

同时, 通过本课程的学习, 要加深学生对数学分析课程中知识的理解, 培养学生严密的逻辑思维能力。

《泛函分析》课程是现代教学中的一门较新的数学分支,它综合地运用分析的,代数和几何的观点,方法研究分析数学中的许多问题,由它把具体的分析问题,由于它把具体的分析问题抽象到一种更加纯粹的代数拓扑结构的形式中进行研究,因此逐步形成了综合运用代数,几何平段处理问题的新方法,正因为这种纯粹形式的代数,拓扑结构是跟植于肥沃的经典分析和数学物理土壤之中的,所以由此发展起来的基本概念,定理和方法也就显的更为广泛,更为深刻,现在泛函分析已成为一门内容丰富,方法系统,体系完备,应用广泛的独立分支,通过该课程的学习,学生不仅能学到泛函分析的基本理论和方法,而且对学习其他数学分支以及把他应用到数理经济,现代控制论,量子场论,统计物理,工程技术等领域有很大帮助。

学生通过学习本课程,既能从较高的观点总结一、二年级学过的分析、代数中的有关概念、理论和方法,又能获得抽象思维和逻辑论证的进一步训练,为今后深入学习拓扑、微分方程、随机过程、最优化等现代数学各个学科提供基础。

实变与泛函分析初步自学考试大纲

实变与泛函分析初步自学考试大纲

实变及泛函分析初步自学考试大纲第一章 集合(一)重点集合的概念, 集合的表示, 子集, 真子集;集合的并, 交, 余, D.Morgan 法则, 集合的直积;上限集, 下限集, 极限集, 单调集列及其极限集;单射, 满射, 一一映射, 映射基本性质, 集合的势, 对等, 对等基本性质, 基数, 基数的比较, 伯恩斯坦定理;可数集, 可数集性质, 有理数集;不可数集存在性, 连续集及其性质, 不存在基数最大的无限集;nR 中的距离, 邻域, 区间, 开球, 闭球, 球面;开集, 开集性质, 内点, 内核, 边界点, 边界;收敛点列, 聚点, 聚点的等价定义, 孤立点, 孤立点集, 导集, 闭集, 闭集性质;δG 集合, σF 集合, δG 集合和σF 集合的性质, Borel 集;1R 中开集及闭集的构造, n R 中开集及闭集的构造。

识记:集合的概念, 集合的表示, 子集, 真子集;集合的并, 交, 余, D.Morgan 法则, 集合的直积;上限集, 下限集, 极限集, 单调集列及其极限集;单射, 满射, 一一映射, 集合的势, 对等, 对等基本性质, 基数, 基数的比较, 伯恩斯坦定理;可数集, 可数集性质, 有理数集;不可数集存在性, 连续集及其性质, 不存在基数最大的无限集;nR 中的距离, 邻域, 区间, 开球, 闭球, 球面;开集, 开集性质, 内点, 内核, 边界点, 边界;收敛点列, 聚点, 孤立点, 孤立点集, 导集, 闭集, 闭集性质, δG 集合, σF 集合, δG 集合和σF 集合的性质, Borel 集;1R 中开集及闭集的构造, n R 中开集及闭集的构造。

理解:集合的表示, 子集, 真子集;集合的并, 交, 余, D.Morgan 法则, 集合的直积;上限集, 下限集, 极限集, 单调集列及其极限集;一一映射, 映射基本性质, 集合对等的基本性质, 基数的比较, 伯恩斯坦定理;可数集, 可数集性质, 有理数集;不可数集存在性, 连续集及其性质;nR 中的距离, 邻域, 开球, 闭球, 球面;开集, 开集性质, 内点, 内核, 边界点, 边界;聚点, 聚点的等价定义, 孤立点, 孤立点集, 导集, 闭集, 闭集性质;δG 集合和σF 集合的性质, Borel 集;1R 中开集及闭集的构造, n R 中开集及闭集的构造。

实变函数与泛函分析-教学大纲

实变函数与泛函分析-教学大纲

实变函数与泛函分析-教学大纲实变函数与泛函分析教学大纲Functions of Real Variables and Functional Analysis一、基本信息适用专业:信息技术专业课程编号:教学时数:72学时学分:4课程性质:专业核心课开课系部:数学与计算机科学院使用教材:《实变函数论与泛函分析》(上、下册)第2版曹广福.高等教育出版社参考书[1]夏道行《实变函数论与泛函分析》(上、下册)第2版修订本.高等教育出版社;[2]W. Rudin ,Real and Complex Analysis, 3rd Edition;[3] W. Rudin,Functional Analysis, 3rd Edition;[4]周民强《实变函数论》第2版.北京大学出版社.二、课程介绍《实变函数与泛函分析》以掌握Lebesgue测度空间,Lebesgue积分,Hilbert空间和Banach 空间的基本知识,培养学生从几何、拓扑上来认识抽象函数空间,以抽象空间为工具来研究、解决实际问题的能力。

三、考试形式考试课程,考试成绩由平时成绩和期末考试组成,平时作业占百分之二十,,期末考试百分之八十。

期末考试是闭卷的形式,重点考察学生的解题能力和基础理论。

四、课程教学内容及课时分配第一章集合与点集要求1、掌握集合的势,可数集2、熟悉欧氏空间上的拓扑,Cauchy收敛原理主要内容集合的势,可数集,n维欧氏空间上的拓扑,Canchy收敛原理重点集合的势,可数集课时安排(4学时)1、集合的势,可数集2学时2、欧氏空间上的拓扑,Cauchy收敛原理2学时第二章Lebesgue测度要求1、熟练掌握外测度、可测集以及它们的性质2、掌握可测函数及其性质,以及非负可测函数的构造3、熟练掌握可测函数的收敛性主要内容:Lebesgue外测度,可测集(类),可测函数及其性质,可测函数的收敛性重点外测度、可测集以及它们的性质、可测函数的收敛性课时安排(12学时)1、外测度、可测集以及它们的性质4学时2、可测函数及其性质,以及非负可测函数的构造4学时3、可测函数的收敛性4学时第三章Lebesgue积分要求:1、熟练掌握可测函数的积分及性质2、熟练掌握Lebesgue积分基本定理,Fatou引理,控制收敛定理,Riemann可积的充要条件3、弄清重积分与累次积分的关系,Fubini 定理主要内容:可测函数的积分及性质,Lebesgue积分的极限定理,Riemann可积的充要条件,重积分与累次积分的关系,Fubini定理重点可测函数的积分及性质,Lebesgue积分的极限定理课时安排:(16学时)1、可测函数的积分及性质6学时2、Lebesgue积分基本定理,Fatou引理,控制收敛定理,Riemann可积的充要条件6学时3、重积分与累次积分的关系,Fubini定理4学时L空间第四章p要求:1、熟练掌握p L空间的范数、完备性、收敛性、可分性2、熟悉p L空间的内积,标准正交基3、了解卷积与Fourier变换主要内容:pL空间的范数、完备性、收敛性、可分性,p L 空间的内积,标准正交基,卷积与Fourier变换重点p L空间的范数、完备性、收敛性、可分性课时安排(10学时)1、p L空间的范数、完备性、收敛性、可分性4学时2、p L空间的内积,标准正交基,正交化方法4学时3、卷积与Fourier变换2学时第五章Hilbert空间理论要求:1、熟练掌握距离空间的定义与紧致性的定义,Riesz表示定理2、熟悉Hilbert空间上线性算子的有界性和连续性3、熟悉共轭算子、投影算子,紧算子性质及其谱主要内容:距离空间的定义,紧致性,Hilbert空间上线性算子的有界性和连续性,共轭算子、投影算子,紧算子性质及其谱。

0871实变函数与泛函分析初步

0871实变函数与泛函分析初步

高纲1360江苏省高等教育自学考试大纲02012 实变与泛函分析初步江苏教育学院编江苏省高等教育自学考试委员会办公室一课程性质及其设置目的与要求(一)课程性质与特点实变函数论是19世纪末20世纪初形成的一个数学分支,它的基本内容已成为分析数学各个分支的普遍基础.实变函数主要指自变量取实数值的函数,而实变函数论就是研究一般实变函数的理论,如果说微积分所讨论的函数都是性质“良好”的函数,那么实变函数就是讨论一般的函数,包括从微积分学来看性质“不好”的函数,实变函数论是微积分深入与发展,函数的可积性是实变函数论中的主要内容. 总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支的应用是现代数学的特征.(二)教学目的与要求课程内容包括:本课程内容包括集合及其运算,对等与基数,可数集合,不可数集合;度量空间、n维欧氏空间,聚点、内点、界点,开集、闭集、完备集,直线上开集、闭集和完备集的构造;外测度,可测集及其性质;可测函数的定义及其性质,叶果洛夫定理,可测函数构造,依测度收敛;勒贝格积分(L积分)的定义及性质,一般可积函数,积分的极限定理。

教学目的和要求:使学生掌握勒贝格测度与勒贝格积分的基础理论,了解一般度量空间上的测度理论,培养学生的分析学知识,加深学生对微积分和函数的认识。

二课程内容与考核目标第一章集合(一)课程内容集合的概念及运算,对等与基数,可数集与不可数集。

(二)学习与考核要求1、掌握集合概念,掌握集合的交、并、余等运算的定义和性质(包括无穷多个集的运算).2、掌握集列的上极限与下极限集的概念及它们用集列的交和并所表示的式子,能够正确写出具体集列的上、下极限集或极限.3、理解一一映照的概念,能够正确写出两个集之间的一一映照.4、掌握对等和基数的定义及性质,掌握基数大小的定义.掌握证明集合对等的两个定理(两个不交集列对等定理和伯恩斯坦定理),能够应用它们来证明集合对等.5、掌握可数集的概念及可数基数a概念.掌握可数基数a 的最小性,掌握可数集运算后的基数定理及各种可数集的实例.6、掌握实数集的不可数性及连续基数c,掌握各种具有连续基数的集.了解没有最大基数的定理并能够正确地证明之.第二章 点集(一)课程内容度量空间与n 维欧氏空间,外点、界点、聚点,开集、闭集、完备集,直 上开集、闭集、完备集的构造, 康托尔三分集.(二)学习与考核要求1、 理解n 维欧氏空间的概念,掌握邻域概念及邻域的性质.掌握点列收敛的描述(用距离d 及用邻域u 来描述),掌握两集之距离等概念.2、 掌握内点、外点、界点、聚点、孤立点等概念(包括等价命题).掌握开核、边界、导集、闭包等概念,能够正确写出具体点集的开核、边界、导集及闭包.3、 掌握开集、闭集、自密集、完备集等概念(包括等价命题和关系式)并能够对具体集合进行判别.4、 掌握开闭集的对偶性定理及保持开闭性的交并运算定理.能够应用于判别具体实例.5、 掌握直线上开集、闭集、完备集的构造.6、 掌握康托点集的构造及性质(包括非空性、完备性、无处稠密性、无内点、基数为c 、测度为零等).第三章 测度论(一)课程内容外测度,可测集,可测集类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实变及泛函分析初步自学考试大纲第一章 集合(一)重点集合的概念、集合的表示、子集、真子集;集合的并、交、余、D.Morgan 法则、集合的直积;上限集、下限集、极限集、单调集列及其极限集;单射、满射、一一映射、映射基本性质、集合的势、对等、对等基本性质、基数、基数的比较、伯恩斯坦定理;可数集、可数集性质、有理数集;不可数集存在性、连续集及其性质、不存在基数最大的无限集;n R 中的距离、邻域、区间、开球、闭球、球面;开集、开集性质、内点、内核、边界点、边界;收敛点列、聚点、聚点的等价定义、孤立点、孤立点集、导集、闭集、闭集性质;δG 集合、σF 集合、δG 集合和σF 集合的性质、Borel 集;1R 中开集及闭集的构造、n R 中开集及闭集的构造。

识记:集合的概念、集合的表示、子集、真子集;集合的并、交、余、D.Morgan 法则、集合的直积;上限集、下限集、极限集、单调集列及其极限集;单射、满射、一一映射、集合的势、对等、对等基本性质、基数、基数的比较、伯恩斯坦定理;可数集、可数集性质、有理数集;不可数集存在性、连续集及其性质、不存在基数最大的无限集;nR 中的距离、邻域、区间、开球、闭球、球面;开集、开集性质、内点、内核、边界点、边界;收敛点列、聚点、孤立点、孤立点集、导集、闭集、闭集性质、δG 集合、σF 集合、δG 集合和σF 集合的性质、Borel 集;1R 中开集及闭集的构造、n R 中开集及闭集的构造。

理解:集合的表示、子集、真子集;集合的并、交、余、D.Morgan 法则、集合的直积;上限集、下限集、极限集、单调集列及其极限集;一一映射、映射基本性质、集合对等的基本性质、基数的比较、伯恩斯坦定理;可数集、可数集性质、有理数集;不可数集存在性、连续集及其性质;nR 中的距离、邻域、开球、闭球、球面;开集、开集性质、内点、内核、边界点、边界;聚点、聚点的等价定义、孤立点、孤立点集、导集、闭集、闭集性质;δG 集合和σF 集合的性质、Borel 集;1R 中开集及闭集的构造、n R 中开集及闭集的构造。

应用:集合的并、交、余、D.Morgan 法则;上限集、下限集、单调集列及其极限集;一一映射、映射基本性质、集合对等的基本性质、伯恩斯坦定理;可数集、可数集性质;连续集及其性质;nR 中的距离、邻域、开球、闭球;开集、开集性质、内点、内核、边界点、边界;聚点、聚点的等价定义、孤立点、孤立点集、导集、闭集、闭集性质;δG 集合和σF 集合的性质、Borel 集;1R 中开集及闭集的构造、n R 中开集及闭集的构造。

(二)次重点完全集;开集及闭集构造的定理;开集及闭集构造的简单应用。

识记:完全集;开集及闭集构造的定理。

理解:完全集;开集及闭集构造的定理的含义。

应用:开集及闭集构造的简单应用。

(三)一般集合族(类)、环及σ环、代数(域)及σ代数(域);环、σ环、代数(域)、σ代数(域)之间的关系;稠密集、疏朗集;nR 中集合之间的距离以及集合之间距离的可达性,n R 中闭集的隔离性;集合的特征函数、特征函数性质以及集合在研究函数性质中的简单应用。

识记:集合族(类)、环及σ环、代数(域)及σ代数(域);稠密集、疏朗集;n R 中集合之间的距离;n R 中闭集的隔离性;集合的特征函数。

理解:环、σ环、代数(域)、σ代数(域)之间的关系;稠密集、疏朗集;n R 中集合之间的距离以及集合之间距离的可达性,nR 中闭集的隔离性;集合的特征函数、特征函数性质。

应用:集合在研究函数性质中的简单应用。

第二章 测度论(一)重点外测度的定义;外测度的基本性质,即非负性、单调性、次可加性;可测集的定义、可测集的等价条件;可测集的基本性质,即可测集的并、交、余,可测集的可数可加性,可测集列的极限性质;可测集的判别方法;常见的可测集类,即零测集、区间、开集、闭集、Borel 集等;可测集及Borel 集的几种关系,即δG 集及可测集、σF 集及可测集,可测集及Borel 集的关系。

识记:外测度的定义;外测度的基本性质;可测集的定义;可测集的基本性质;常见的可测集类;可测集及Borel 集的几种关系。

理解:外测度的定义;外测度的基本性质以及简单的应用;可测集的定义及等价条件;可测集的基本性质及性质的简单应用;常见的可测集类;可测集及Borel 集的几种关系。

应用:外测度的基本性质以及简单的应用;可测集的定义及等价条件及可测集的判别方法;可测集的基本性质及性质的简单应用;常见的可测集类;可测集及Borel 集的几种关系。

(二)次重点勒贝格(Lebesgue )外测度的分离性;外测度及测度的计算;可测集及Borel 集之间几种关系的简单应用。

识记:勒贝格(Lebesgue )外测度的分离性;几类典型集合的外测度或测度。

理解:勒贝格(Lebesgue )外测度的分离性;几类典型集合的外测度或测度的计算步骤。

应用:可测集及Borel 集之间几种关系的简单。

(三)一般乘积空间及乘积测度。

识记:乘积空间及乘积测度。

理解:乘积测度的计算公式。

应用:乘积测度的计算公式的简单应用。

第三章 可测函数(一)重点简单函数、非负可测函数、一般可测函数的定义及可测函数的等价定义;可测函数的简单性质,比如:几乎处处性,可测函数的和、差、积、商,函数的正部、负部的可测性,可测函数列的上确界、下确界,可测函数列的极限的可测性;可测函数及简单函数的关系;可测函数列的几种收敛(几乎处处收敛,依测度收敛)的含义,可测函数的几种收敛性的关系,比如:几乎处处收敛及一致收敛的关系(包括依果洛夫(Egoroff )定理、依果洛夫逆定理)、几乎处处收敛及依测度收敛的关系、依测度收敛的性质、勒贝格(Lebesgue )定理、黎斯(Riesz )定理;可测集上的连续函数、鲁津(Lusin )定理及逆定理、可测函数及连续函数的关系,直线上连续函数的延拓。

识记:简单函数、非负可测函数、一般可测函数的定义及可测函数的等价定义;可测函数的简单性质;可测函数及简单函数的关系;可测函数列的几种收敛的含义;依测度收敛的性质、勒贝格定理、黎斯定理;鲁津定理及逆定理、可测函数及连续函数的关系。

理解:可测函数的简单性质;可测函数及简单函数的关系;可测函数的几种收敛性的关系;依测度收敛的性质、勒贝格(Lebesgue )定理、黎斯(Riesz )定理;可测集上的连续函数、鲁津(Lusin )定理及逆定理、可测函数及连续函数的关系,直线上连续函数的延拓。

应用:可测函数的判别方法;依果洛夫定理、依果洛夫逆定理以及鲁津定理及逆定理的简单应用,依测度收敛的性质的简单应用。

(二)次重点可测函数及简单函数关系的证明思路;依果洛夫定理、依果洛夫逆定理的证明思路;鲁津定理的证明思路。

识记:可测函数及简单函数关系的的条件和结论;依果洛夫定理、依果洛夫逆定理的条件和结论;鲁津定理及逆定理的条件和结论。

理解:可测函数及简单函数关系的证明思路;依果洛夫定理、依果洛夫逆定理的证明思路;鲁津定理及逆定理的证明思路。

应用:依果洛夫定理、依果洛夫逆定理以及鲁津定理的进一步应用。

(三)一般函数可测的进一步判断;可测函数及简单函数关系的证明;依果洛夫定理、依果洛夫逆定理的证明;鲁津定理及逆定理的证明;依测度收敛的判断及依测度收敛性质的进一步应用。

识记:可测函数及简单函数关系;依果洛夫定理、依果洛夫逆定理;鲁津定理及逆定理。

理解:可测函数及简单函数关系的证明;依果洛夫定理、依果洛夫逆定理的证明;鲁津定理的证明。

应用:函数可测的进一步判断;依测度收敛的判断及依测度收敛性质的进一步应用。

第四章Lebesgue积分(一)重点非负简单函数的勒贝格积分定义、狄利克莱函数的勒贝格积分;非负简单函数的勒贝格积分的基本性质,比如:的唯一性、单调性、线性、有限可加性、简单函数的勒贝格积分的极限性质;非负可测函数的勒贝格积分的定义;非负可测函数的勒贝格积分的基本性质,比如:唯一性、单调性、有限可加性;非负可测函数列的积分收敛性质,比如:勒维(Levi)单调收敛定理、逐项积分定理、法都(Fadou)定理;函数的正部、负部;一般可测函数的勒贝格积分的定义;函数勒贝格可积及正部、负部勒贝格可积的关系;一般可测函数的勒贝格积分的基本性质,比如:绝对可积性、积分的线性性、可积函数的几乎处处有限性、积分的绝对连续性;勒贝格控制收敛定理(包括有界控制收敛定理);黎曼(Riemann)积分及勒贝格积分的关系。

识记:狄利克莱函数的勒贝格(Lebesgue)积分;非负简单函数的勒贝格积分的基本性质;非负可测函数的勒贝格积分的基本性质;函数的正部、负部;函数勒贝格可积及正部、负部勒贝格可积的关系;非负可测函数列的积分收敛性质;一般可测函数的勒贝格积分的基本性质;勒贝格控制收敛定理(包括有界控制收敛定理);黎曼(Riemann)积分及勒贝格积分的关系。

理解:非负简单函数的勒贝格积分定义;非负可测函数的勒贝格积分的定义;一般可测函数的勒贝格积分的定义;非负简单函数的勒贝格积分的基本性质;非负可测函数的勒贝格积分的基本性质;非负可测函数列的积分收敛性质;函数勒贝格可积及正部、负部勒贝格可积的关系;一般可测函数的勒贝格积分的基本性质;勒贝格控制收敛定理(包括有界控制收敛定理);黎曼(Riemann)积分及勒贝格(Lebesgue)积分的关系。

应用:非负可测函数列的积分收敛性质的简单应用;勒贝格(Lebesgue)积分的基本性质的简单应用;勒贝格控制收敛定理的简单应用。

(二)次重点维他利(Vitali)控制收敛定理;函数在一点的振幅;连续函数的等价条件;函数黎曼(Riemann)可积的充分必要条件。

识记:维他利(Vitali)控制收敛定理;函数在一点的振幅;连续函数的等价条件;函数黎曼(Riemann)可积的充分必要条件。

理解:维他利(Vitali)控制收敛定理;函数在一点的振幅;连续函数的等价条件;函数黎曼(Riemann)可积的充分必要条件。

应用:维他利(Vitali)控制收敛定理的简单应用;函数黎曼(Riemann)可积的充分必要条件的简单应用。

(三)一般函数族的等度连续;托尼(Tonelli)定理、富比尼(Fubini)定理;富比尼定理的简单应用(包括函数卷积及其性质、分布函数)识记:函数族的等度连续;托尼(Tonelli)定理;富比尼(Fubini)定理。

理解:函数族的等度连续;托尼(Tonelli)定理、富比尼(Fubini)定理。

应用:富比尼(Fubini)定理的简单应用。

第五章微分及积分(一)重点有界变差函数的定义、变差、全变差、有界变差函数及有界函数的关系;有界变差函数的基本性质,比如:有界变差函数的线性性、有界变差函数列的极限性;变差函数、若当(Jordan)分解定理;绝对连续函数的定义、绝对连续函数及有界变差函数的关系、不定积分的定义、不定积分及绝对连续函数的关系、牛顿莱布尼兹公式。

相关文档
最新文档