北理工_自动控制理论matlab实验
北工大自控matlab实验报告
自动控制原理实验报告一、试验设计构造一个二阶闭环系统,使得该系统的%30≥p M对于任意二阶系统,其闭环传递函数为2222)(G nn nc s s s ωξωω++=,其中ξ为二阶系统的阻尼比,n ω为二阶系统的无阻尼振荡频率,该系统的超调量为πξξ21--=e M p 。
若要%30≥p M ,则0.36≤ξ。
取0.3=ξ,又n ω任意,所以取20=n ω,则要求设计的闭环传递函数为40012400)(2++=s s s G c 。
二、实验内容及步骤1.以MATLAB 命令行的方式,进行系统仿真,确定系统时域性能指标 num=[400]; den=[1 12 400]; step(num,den)由图可知,该系统的超调量为%30%37>=p M ,满足要求,上升时间为0985.0=r t ,峰值时间为164.0=p t ,调节时间为0.472=s t 。
2.通过改变系统的开环放大倍数K (分增大和减小两种情况)和系统的阻尼比系数(分增大和减小两种情况),进行系统仿真分析,确定新的性能指标,并与原构造系统的进行比较,根据响应曲线分析并说明出现的现象 (1)增大开环放大倍数num=[500]; den=[1 12 500]; step(num,den)由图可知,该系统的超调量为%30%42>=p M ,上升时间为0858.0=r t ,峰值时间146.0=p t ,调节时间0.48=s t 。
(2)减小开环放大倍数 num=[300]; den=[1 12 300]; step(num,den)由图可知,该系统的超调量为%30%31>=p M ,上升时间为119.0=r t ,峰值时间为0.1921=p t ,调节时间为0.455=s t 。
(3)增大阻尼比 num=[400];den=[1 12.4 400]; step(num,den)由图可知,该系统的超调量为%30%36>=p M ,上升时间为0995.0=r t ,峰值时间为0.163=p t ,调节时间为0.486=s t 。
《自动控制原理》MATLAB中的传递函数模型实验
《自动控制原理》MATLAB中的传递函数模型实验一、实验目的1、熟练运用matlab软件,求解控制系统数学模型2、掌握传递函数在matlab中的表达方法3、掌握matlab求解拉氏变换和反变换4、掌握matlab求系统极值点和零点判断系统稳定性二、实验仪器Matlab2014b版三、实验原理(一)MATLAB中的传递函数模型传递函数在matlab中的表达方法控制系统的传递函数模型为:在MATLAB中,分子/分母多项式通过其系数行向量表示,即:num = [b0 b1 … bm]den = [a0 a1 … an]此时,系统的传递函数模型用tf函数生成,句法为:sys=tf(num, den) 其中,sys为系统传递函数。
如:num = [1 5 0 2]; den = [2 3 15 8];则:sys=tf(num, den)输出为:Transfer function:若控制系统的模型形式为零极点增益形式:此时,系统的传递函数模型用zpk函数生成,句法为:sys=zpk(z, p, k)。
zpk函数也可用于将传递函数模型转换为零极点增益形式,句法为:zpksys=zpk(sys)如:z=[-0.5 -1 -3]; p=[1 -2 -1.5 -5]; k=10;sys=zpk(z, p, k)传递函数的转换[num,den]=zp2tf(z,p,k)[z,p,k]=tf2zp(num,den)实际系统往往由多个环节通过串联、并联及反馈方式互连构成。
MATLAB提供的三个用于计算串联、并联及反馈连接形成的新系统模型的函数。
series函数计算两子系统串联后的新系统模型。
句法:sys = series(sys1, sys2)sys1, sys2分别为两子系统模型parallel函数计算两子系统并联后的新系统模型。
句法: sys = parallel(sys1, sys2)feedback函数计算两子系统反馈互联后的新系统模型。
(最新版)自动控制原理MATLAB仿真实验报告
实验一 MATLAB及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、;其中可以为连续系统,也可为离散系统。
2、;表示时间范围0---Tn。
3、;表示时间范围向量T指定。
4、;可详细了解某段时间的输入、输出情况。
2、脉冲响应:脉冲函数在数学上的精确定义:其拉氏变换为:所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式:①;②③(二)分析系统稳定性有以下三种方法:1、利用pzmap绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den) 运行结果: p =-1.7680 + 1.2673i -1.7680 - 1.2673i 0.4176 + 1.1130i 0.4176 - 1.1130i -0.2991P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
自动控制原理 matlab实验报告
自动控制原理实验(二)一、实验名称:基于MATLAB的控制系统频域及根轨迹分析二、实验目的:(1)、了解频率特性的测试原理及方法;(2)、理解如何用MATLAB对根轨迹和频率特性进行仿真和分析;(3)、掌握控制系统的根轨迹和频率特性两大分析和设计方法。
三、实验要求:(1)、观察给定传递函数的根轨迹图和频率特性曲线;(2)、分析同一传递函数形式,当K值不同时,系统闭环极点和单位阶跃响应的变化情况;(3)、K值的大小对系统的稳定性和稳态误差的影响;(4)、分析增加系统开环零点或极点对系统的根轨迹和性能的影响。
四、实验内容及步骤(1)、实验指导书:实验四(1)、“rlocus”命令来计算及绘制根轨迹。
会出根轨迹后,可以交互地使用“rlocfind”命令来确定点击鼠标所选择的根轨迹上任意点所对应的K值,K值所对应的所有闭环极点值也可以使用形如“[K, PCL] = rlocfind(G1)”命令来显示。
(2)、波特图:bode(G1, omga)另外,bode图还可以通过下列指令得出相位和裕角:[mag,phase,w] = bode(sys)(3)、奈奎斯特图:nuquist(G, omega)(2)课本:例4-1、4-2、4-7五实验报告要求(1)、实验指导书:实验四思考题请绘制下述传递函数的bode图和nyquist图。
1. 根据实验所测数据分别作出相应的幅频和相频特性曲线;2. 将思考题的解题过程(含源程序)写在实验报告中。
幅频特性曲线相频特性曲线Gs = zpk([10], [-5; -16; 9], 200)subplot(1, 2, 1)bode(Gs)gridsubplot(1, 2, 2)nyquist(Gs)grid(2)课本:例4-1、4-2、4-7图像结果:程序:Gs = zpk([-1], [0; -2; -3],1) rlocus(Gs)图像结果:程序:Gs = zpk([-2], [-1-j; -1+j],1) rlocus(Gs)程序:K=[0.5 1 2]for i=1:1:3num=[1,1,0,0]; den=[1,1,K(i)]; sys=tf(num,den); rlocus(sys); hold ongrid onend图像结果:目标:改变增益K和转折频率依次调节源程序:k1=[4.44,10,20];num=[1,2];den=conv([1,1],[1,2,4]);%一阶转折频率 1/T(wn1=2,wn2=1)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 num1=[1,1];den1=conv([1,2],[1,2,4]);%一阶转折频率 1/T(wn1=1,wn2=2)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 t=[0:0.1:7]; %for i=1:3g0=tf(k1(i)*num,den);g=feedback(g0,1);[y,x]=step(g,t);c(:,i)=y;g1=tf(k1(i)*num1,den1);g(1)=feedback(g1,1);[y1,x]=step(g(1),t);c1(:,i)=y1;endplot(t,c(:,1),'-',t,c(:,2),'-',t,c(:,3),'-',t,c1(:,1),'-',t,c1(:,2), '-',t,c1(:,3),'-');gridxlabel('Time/sec'),ylabel('out')结果分析:在本题中(1)改变k值:k值越大,超调量越大,调节时间越长,峰值时间越短,稳态误差越小(2)改变转折频率:超调量,调节时间,峰值时间,稳态误差同样有相应的变化。
自动控制原理MATLAB实验报告
实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验原理1.比例环节的传递函数为 K R K R R R Z ZsG 200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK 图形如图1所示。
2.惯性环节的传递函数为uf C K R K R s C R R R Z Z s G 1,200,10012.021)(121121212===+-=+-=-=其对应的模拟电路及SIMULINK 图形如图2所示。
图1 比例环节的模拟电路及SIMULINK 图形3.积分环节(I)的传递函数为uf C K R s s CR Z Z s G 1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK 图形如图3所示。
4.微分环节(D)的传递函数为uf C K R s s C R Z Z s G 10,100)(111112==-=-=-= uf C C 01.012=<<其对应的模拟电路及SIMULINK 图形如图4所示。
5.比例+微分环节(PD )的传递函数为)11.0()1()(111212+-=+-=-=s s C R R R Z Z s G uf C C uf C K R R 01.010,10012121=<<===其对应的模拟电路及SIMULINK 图形如图5所示。
图3 积分环节的模拟电路及及SIMULINK 图形图4 微分环节的模拟电路及及SIMULINK 图形6.比例+积分环节(PI )的传递函数为 )11(1)(11212sR s C R Z Z s G +-=+-=-= uf C K R R 10,100121=== 其对应的模拟电路及SIMULINK 图形如图6所示。
自动控制原理MATLAB仿真实验报告
实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
北理工:自动控制实验实验报告汇总
北理工:自动控制实验实验报告汇总控制理论基础实验(基于MATLAB)控制理论基础实验班级:05611001 学号:1120211327 姓名:付予实验时间:周五下午7、8节指导教师:范哲意1控制理论基础实验(基于MATLAB)实验一:控制系统的模型建立一、实验目的1. 掌握利用MATLAB 建立控制系统模型的方法。
2. 掌握系统的各种模型表述及相互之间的转换关系。
3. 学习和掌握系统模型连接的等效变换。
二、实验原理1.系统模型的MATLAB描述 1)传递函数(TF)模型 2)零极点增益(ZPK)模型 3)状态空间(SS)模型 4)三种模型之间的转换2. 系统模型的连接在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连接、并联连接和反馈连接。
三、实验内容1. 已知控制系统的传递函数如下2s2?18s?40G(s)?3 2S?5s?8s?6试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。
实验代码: >> num=[2,18,40]; >> den=[1,5,8,6];>> gtf=tf(num,den) >> gzpk=zpk(gtf)2控制理论基础实验(基于MATLAB)>> gss=ss(gtf) >> pzmap(gzpk)实验结果:传递函数模型: gtf =x1 -5 -2 -1.5 x2 4 0 0 >> grid on2 s^2 + 18 s + 40 --------------------- s^3 + 5 s^2 + 8 s + 6零极点增益模型: gzpk =2 (s+5) (s+4) -------------------- (s+3) (s^2 + 2s + 2)状态空间方程模型: gss = a =x1 x2 x3零极点图形:x3 0 1 0 b = u1 x1 4 x2 0 x3 0 c =x1 x2 x3 y1 0.5 1.125 2.5 d = u1 y1 0 3控制理论基础实验(基于MATLAB)2.已知控制系统的状态空间方程如下?0100??0??0010??0??x???ux???0001??0? ????-1-2-3-4???1?y??10200?x试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。
自动控制原理MATLAB仿真实验报告
实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。
实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。
北理工自动控制理论实验报告
Gzpk = 2 (s+5) (s+4) -------------------(s+3) (s^2 + 2s + 2) Continuous-time zero/pole/gain model.
Gss = A= x1 x2 x3 B= x1 x2 x3 C= y1 D= u1 y1 0 Continuous-time state-space model. 系统零极点图 x1 x2 0.5 1.125 x3 2.5 u1 4 0 0 x1 -5 4 0 x2 x3 -2 -1.5 0 0 1 0
系统模型的连接
在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连
接、并联连接和反馈连接。图 1-2 分别为串联连接、并联连接和反馈连接的结构框图和等效总 传递函数。
(a)串联系统
(b)并联系统
(c)反馈连接 在 MATLAB 中可以直接使用“*”运算符实现串联连接,使用“+”运算符实现并联连接。反馈系 统传递函数求解可以通过命令 feedback 实现,调用格式如下: T = feedback(G,H), T = feedback(G,H,sign) 其中,G 为前向传递函数,H 为反馈传递函数;当 sign = +1 时,GH 为正反馈系统传递函 数;当 sign = -1 时,GH 为负反馈系统传递函数;默认值是负反馈系统。
传递函数因式分解后可以写成:
式中 z1,z2,…,zm 称为传递函数的零点;P1,P2,…,Pn 称为传递函数的极点;k 为传递系数(系统增益) 。 在 MATLAB 中,直接用[z,p,k]矢量组表示系统,其中 z,p,k 分别表示系统的零极点及其 增益,即:z=[z1,z2,…,zm];p=[p1,p2,…,pn];k=[k]; 调用 zpk 函数可以创建 ZPK 对象模型,调用格式如下: Gzpk = zpk(z,p,k) 同样,MATLAB 提供了 zpkdata 命令用来提取系统的零极点及其增益,调用格式如下: [z,p,k] = zpkdata(Gzpk) 返回 cell 类型的零极点及增益 [z,p,k] = zpkdata (Gzpk,’v’) 返回向量形式的零极点及增益 函数 pzmap 用来求取系统的零极点或绘制系统得零极点图,调用格式如下:pzmap(G) 在 复平面内绘出系统模型的零极点图。 [p,z] = pzmap(G) 返回的系统零极点,不作图。 3) 状态空间(SS)模型
北京理工大学自动控制matlab实验报告
MATLAB软件工具在控制系统分析和综合中的应用实验班级:01811001学号:1120100209姓名:戚煜华一、试验目的:1.了解MATLAB 这种强大的数学软件的基本特点和语言特点。
2.掌握控制系统在MATLAB 中的描述。
3.学会用MATLAB 的Control 工具箱中提供的仿真函数,例如连续时间系统在阶跃输入激励下的仿真函数step (),脉冲激励下的仿真函数impulse ()等。
4掌握典型一阶、二阶系统中参数的变化对阶跃响应曲线的影响;5掌握使用MATLAB 绘制控制系统的根轨迹图,并了解附加开环零、极点对闭环根轨迹的影响。
6.学会使用MATLAB 绘制系统频率特性曲线—乃氏图和伯德图,并利用MATLAB 求出系统的稳定裕度。
7.掌握系统串联校正后,开环指标及时域响应指标的变化规律。
二、试验设备:一台装有MATLAB 软件的电脑三、试验内容:2.以传函11)(+=Ts s G 为例,令T=0.1,1,10,绘制其单位阶跃响应曲线,并总结给出惯性时间常数对阶跃响应影响的结论。
T=0.1时的单位阶跃响应曲线T=1时的单位阶跃响应曲线T=10时的单位阶跃响应曲线结论:惯性时间常数T越大,上升时间、调节时间和延迟时间越长。
3.以传函2222)(nn n s s s G ωξωω++=为对象,令n ω=1,ξ=0,0.2,0.5,1,1.5分别绘制阶跃响应曲线。
令ξ=0.7,n ω=0.1,1,10分别绘制阶跃响应曲线,进行ξ、n ω对二阶阶跃响应的影响分析。
n ω=1,ξ=0:分析:n ω=1时,ξ=0,零阻尼,响应为无阻尼等幅振荡;ξ=0.2和0.5,欠阻尼,随着ξ的增大,振荡幅值减小,响应速度变慢,超调量减小;ξ=1,临界阻尼,响应变慢,超调和振荡消失;ξ=1.5,过阻尼,系统没有超调,且过渡时间较长。
综上所述,ξ越大,振荡幅值越小,过渡时间越长;ξ>=1以后,系统没有了超调和振荡。
北理工自控实验三
实验3 根轨迹分析一、实验目的1. 学习和掌握利用MATLAB 绘制根轨迹图的方法。
2. 学习和掌握利用系统根轨迹图分析系统的性能。
二、实验原理1. 根轨迹分析的 MATLAB 实现根轨迹是指系统某一参数变化时,闭环特征根在s 平面上运动的轨迹。
在MATLAB 中,提供了用于根轨迹分析的专门函数。
1)rlocus 函数该函数的使用方法如下:rlocus(sys) 绘制单输入单输出LTI 系统的根轨迹图。
rlocus(sys,k) 使用用户指定的根轨迹增益k 来绘制系统的根轨迹图。
[r,k] = rlocus(sys) 返回根轨迹增益值和闭环极点值,不绘制根轨迹图 2)rlocfind 函数该函数的使用方法如下:[k,poles]=rlocfind(sys) 计算鼠标选取点处的根轨迹增益值和闭环极点值,可在图形窗口根轨迹图中显示出十字光标,当用户选择其中一点时,相应的增益值和极点值记录在k 和poles 中。
[k,poles]=rlocfind(sys,p) 计算最靠近给定闭环极点p 处的根轨迹增益。
3)sgrid 函数该函数的使用方法如下:sgrid 可在连续系统根轨迹或零极点图上绘制出栅格线,栅格线由等阻尼系数和等自然频率线构成。
sgrid(’new’) 先清除当前的图形,然后绘制出栅格线,并将坐标轴属性设置成hold on 。
sgrid(z,Wn) 指定阻尼系数z 和自然频率Wn 。
sgrid(z,Wn,’new’) 指定阻尼系数z 和自然频率Wn ,在绘制栅格线之前清除当前的图形并将坐标轴属性设置成hold on 。
三、实验内容1. 已知系统开环传递函数为(s 5)(s)(s 1)(s 3)(s 12)K G +=+++(1)使用MATLAB 绘制系统的根轨迹图。
(2)求根轨迹的两条分支离开实轴时的K 值,并确定该K 值对应的所有闭环极点。
(3)以区间[-40,-5]之间的值替代s = −12处的极点,重新绘制根轨迹图,观察其对根轨迹图的影响。
北京理工大学 控制理论基础实验报告
控制理论基础实验1.控制系统的模型建立2.控制系统的暂态特性分析3.根轨迹分析4.系统的频率特性分析一、实验目的实验一1.掌握利用MATLAB建立控制系统模型的方法。
2.掌握系统的各种模型表述及相互之间的转换关系。
3.学习和掌握系统模型连接的等效变化。
实验二1.学习和掌握利用MATLAB进行系统时域响应求解和仿真的方法。
2.考察二阶系统的时间响应,研究二阶系统参数对系统暂态特性的影响。
实验三1.学习和掌握利用MATLAB绘制根轨迹图的方法2.学习和掌握利用系统根轨迹图分析系统的性能。
实验四1.学习和掌握利用MATLAB绘制系统Nyquist图和Bode图的方法。
2.学习和掌握利用系统的频率特性分析系统的性能。
二、实验原理1)传递函数模型(TF)gtf=tf(num,den)2)零极点增益模型(ZPK)Gzpk=zpk(z,p,k)3)状态空间模型(SS)Gss=ss(a,b,c,d)4)三种模型之间的转换TF→ZPK:z pk(sys)TF→SS:ss(sys)ZPK→TF:t f(sys)ZPK→SS:s s(sys)SS→TF:tf(sys)SS→ZPK:z pk(sys)5)绘制系统零极点图Pzmap(gzpk);Grid on;6)系统模型的串联G(s)=G1(s)*G2(s)7)系统模型的并联G(s)=G1(s)+G2(s)8)系统模型的反馈连接T=feedback(G,H)T=feedback(G,H,sign)9)绘制阶跃响应step(sys)step(sys,T)10)线性时不变系统仿真工具ltiview11)绘制系统根轨迹图rlocus(sys)rlocus(sys,k)[r,k]=rlocus(sys)12)计算鼠标选择点处根轨迹增益值和闭环极点值[k,poles]=rlocfind(sys)13)在连续系统根轨迹或零极点图上绘制出栅格线sgrid(‘new’)sgrid(z,Wn)14)绘制系统的Nyquist图nyquist(SYS)nyquist(sys,w)15)绘制系统的Bode图bode(sys)bode(sys,w)16)从频率响应数据中计算幅度裕度,相位裕度及对应角频率margin(sys)[mag,phase]=bode(sys,w)三、实验结果实验一1)零极点图2)零极点图3)总串联函数Transfer function:10 s^6 + 170 s^5 + 1065 s^4 + 3150 s^3 + 4580 s^2 + 2980 s + 525---------------------------------------------------------------------------------------------------------------------- s^9 + 24 s^8 + 226 s^7 + 1084 s^6 + 2905 s^5 + 4516 s^4 + 4044 s^3 + 1936 s^2 + 384 s 4)闭环传递函数Transfer function:2.25 s^2 + 7.5 s + 6-------------------------------------------------------0.25 s^4 + 1.25 s^3 + 2 s^2 + 5.5 s + 65)闭环传递函数Transfer function:20 s^3 + 160 s^2 + 400 s + 320-------------------------------------------------------------------------s^6 + 10 s^5 + 35 s^4 + 44 s^3 + 82 s^2 + 116 s - 48%1num=[2 18 40]; den=[1 5 8 6]; gtf=tf(num,den) gzpk=zpk(gtf) gss=ss(gtf) pzmap(gzpk);grid on%2a=[0 1 0 00 0 1 00 0 0 1-1 -2 -3 -4];b=[0 0 0 0]’;c=[10 2 0 0];d=0;gss=ss(a,b,c,d); gtf=tf(gss); gzpk=zpk(gss); pzmap(gzpk)grid on%3g1a=[2 6 5]; g1b=[1 4 5 2];g2a=[1 4 1];g2b=[1 9 8 0];g3z=[-3 -7];g3p=[-1 -4 -6];g3k=5;g1tf=tf(g1a,g1b);g2tf=tf(g2a,g2b);g3zpk=zpk(g3z,g3p,g3k);g3tf=tf(g3zpk);g=g1tf*g2tf*g3tf%4g1=tf([1],[1 1]);g2=tf(1,[0.5 1]);g3=g2;g4=tf(3,[1 0]);g=feedback((g1+g2)*g4,g3)%5g1=tf(10,[1 1]);g2=tf(2,[1 1 0]);g3=tf([1 3],[1 2]);g4=tf([5 0],[1 6 8]);g=feedback(g1*(feedback(g2, g3,1)),g4)实验二12(1)t d=0.272 t r=0.371 t p=0.787 t s=1.19ϭ=9%(2)(3)(4)ξ变大,延迟时间,上升时间,峰值时间,调整时间均越来越长,超调量开始时减小,然后保持不变。
北京理工大学自动控制matlab实验报告概要
软件工具在控制系统分析和综合中的应用实验MATLAB 班级:01811001学号:1120100209姓名:戚煜华一、试验目的:1.了解MATLAB这种强大的数学软件的基本特点和语言特点。
2.掌握控制系统在MATLAB中的描述。
3.学会用MATLAB的Control工具箱中提供的仿真函数,例如连续时间系统在阶跃输入激励下的仿真函数step(),脉冲激励下的仿真函数impulse()等。
4掌握典型一阶、二阶系统中参数的变化对阶跃响应曲线的影响;5掌握使用MATLAB绘制控制系统的根轨迹图,并了解附加开环零、极点对闭环根轨迹的影响。
6.学会使用MATLAB绘制系统频率特性曲线—乃氏图和伯德图,并利用MATLAB 求出系统的稳定裕度。
7.掌握系统串联校正后,开环指标及时域响应指标的变化规律。
二、试验设备:一台装有MATLAB软件的电脑三、试验内容:1为例,令T=0.1,1,10,绘制其单位阶跃响应曲线,并?(Gs) 2.以传函1Ts?总结给出惯性时间常数对阶跃响应影响的结论。
时的单位阶跃响应曲线T=0.1T=1时的单位阶跃响应曲线T=10时的单位阶跃响应曲线结论:惯性时间常数T越大,上升时间、调节时间和延迟时间越长。
2?分,,,,为对象,令,n?s)=1=030.2.0.5以传函1G1.5(??n???nn22?2ss?分别绘制阶跃响应曲线,进行,,,别绘制阶跃响应曲线。
令101=0.1=0.7??n对二阶阶跃响应的影响分析。
、??n :,=0=1??n时,分析:=1?n?,零阻尼,响应为无阻尼等幅振荡;=0??的增大,振荡幅值减小,响应速度变慢,超调量和,欠阻尼,随着0.5=0.2减小;?,临界阻尼,响应变慢,超调和振荡消失;=1?,过阻尼,系统没有超调,且过渡时间较长。
=1.5??以后,系统没有了超越大,振荡幅值越小,过渡时间越长;综上所述,>=1?对二阶系统的影响是改变系统的振荡幅值和过渡时调和振荡。
北理工自控实验报告四
实验4 系统的频率特性分析一、实验目的1. 学习和掌握利用MATLAB 绘制系统Nyquist 图和Bode 图的方法。
2. 学习和掌握利用系统的频率特性分析系统的性能。
二、实验原理系统的频率特性是一种图解方法,分析运用系统的开环频率特性曲线,分析闭环系统的性能,如系统的稳态性能、暂态性能常用的频率特性曲线有Nyquist 图和Bode 图。
在MATLAB 中,提供了绘制Nyquist 图和Bode 图的专门函数。
1. Nyquist 图nyquist 函数可以用于计算或绘制连续时间LTI 系统的Nyquist 频率曲线,其使用方法如下:nyquist(sys) 绘制系统的Nyquist 曲线。
nyquist(sys,w) 利用给定的频率向量w 来绘制系统的Nyquist 曲线。
[re,im]=nyquist(sys,w) 返回Nyquist 曲线的实部re 和虚部im ,不绘图。
2. Bode 图bode 函数可以用于计算或绘制连续时间LTI 系统的Bode 图,其方法如下: bode(sys) 绘制系统的Bode 图。
bode(sys,w)利用给定的频率向量w 来绘制系统的Bode 图。
[mag,phase]=bode(sys,w)返回Bode 图数据的幅度mag 和相位phase ,不绘图。
3. 幅度和相位裕度计算margin 函数可以用于从频率响应数据中计算出幅度裕度、相位裕度及其对应的角频率,其使用方法如下: margin(sys)margin(mag,phase,w)[Gm,Pm,Wcg,Wcp] = margin(sys)[Gm,Pm,Wcg,Wcp] = margin(mag,phase,w)其中不带输出参数时,可绘制出标有幅度裕度和相位裕度值的Bode 图,带输出参数时,返回幅度裕度Gm 、相位裕度Pm 及其对应的角频率Wcg 和Wcp 。
三、实验内容1. 已知系统开环传递函数为21000(s)(s 3s 2)(s 5)G =+++绘制系统的Nyquist 图,并讨论其稳定性。
《自动控制原理》Matlab求解控制系统数学模型实验
《自动控制原理》Matlab求解控制系统数学模型实验一、实验目的(1)熟练运用matlab软件,求解控制系统数学模型(2)掌握传递函数在matlab中的表达方法(3)掌握matlab求解拉氏变换和反变换(4)掌握matlab求系统极值点和零点判断系统稳定性二、实验仪器装配Matlab7.0的计算机三、实验原理传递函数在matlab中的表达方法控制系统的传递函数模型为:在MATLAB中,分子/分母多项式通过其系数行向量表示,即:num = [b0 b1 … bm]den = [a0 a1 … an]此时,系统的传递函数模型用tf函数生成,句法为:sys=tf(num, den)其中,sys为系统传递函数。
如:num = [1 5 0 2]; den = [2 3 15 8];则:sys=tf(num, den)输出为:Transfer function:传递函数的转换[num,den]=zp2tf(z,p,k)[z,p,k]=tf2zp(num,den)实际系统往往由多个环节通过串联、并联及反馈方式互连构成。
MATLAB提供的三个用于计算串联、并联及反馈连接形成的新系统模型的函数。
四、实验内容及步骤2、用MATLAB展求拉氏变换和反变换在MATLAB中,多项式通过系数行向量表示,系数按降序排列如要输入多项式:x4-12x3+25x+126>> p=[1 -12 0 25 126]-p = 1 -12 0 25 1263、连续系统稳定性分析的MATLAB函数roots函数:求多项式的根句法: r=roots(p)其中,r为由多项式根组成的列向量。
➢pole函数:计算系统的极点句法: p=pole(sys)其中,p为由极点组成的列向量zero函数:计算系统的零点句法: r=zero(sys) 或 [z, k]=zero(sys)其中,r为由多项式根组成的列向量。
k为零极点增益模型之增益pzmap函数:绘制零极点分布图句法: pzmap(sys) 或 [p,z] = pzmap(sys)五、实验原始数据记录与数据处理在MATLAB中,多项式通过系数行向量表示,系数按降序排列如要输入多项式:x4-12x3+25x+126>> p=[1 -12 0 25 126]-p = 1 -12 0 25 126六、实验结果与分析讨论七、结论掌握 MATLAB命令窗口的基本操作;掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法;掌握了使用各种函数命令建立控制系统数学模型.八、实验心得体会(可略)通过该试验我们熟悉 MATLAB 实验环境,掌握 MATLAB命令窗口的基本操作;掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法;掌握了使用各种函数命令建立控制系统数学模型:完成实验的范例题和自我实践,并记录结果;编写M文件程序,完成简单连接的模型等效传递函数,并求出相应的零极点。
北京理工大学自动控制原理实验报告
本科实验报告实验名称:控制理论基础实验实验1控制系统的模型建立、实验目的1、掌握利用MATLAB建立控制系统模型的方法。
2、掌握系统的各种模型表述及相互之间的转换关系。
3、学习和掌握系统模型连接的等效变换。
二、实验原理1、系统模型的MATLAB苗述系统的模型描述了系统的输入、输出变量以及内部各变量之间的关系,表征一个系统的模型有很多种,如微分方程、传递函数模型、状态空间模型等。
这里主要介绍系统传递函数(TF)模型、零极点增益(ZPK模型和状态空间(SS)模型的MATLAB描述方法。
1)传递函数(TF)模型传递函数是描述线性定常系统输入-输出关系的一种最常用的数学模型,其表达式一般为在MATLAB中,直接使用分子分母多项式的行向量表示系统,即num = [bm, bm- 1,…b1, bO]den = [an, an- 1, …a1, aO]调用tf 函数可以建立传递函数TF 对象模型,调用格式如下:Gtf = tf(num,den)Tfdata 函数可以从TF 对象模型中提取分子分母多项式,调用格式如下:[num,den] = tfdata(Gtf) 返回cell 类型的分子分母多项式系数[num,den] = tfdata(Gtf,'v') 返回向量形式的分子分母多项式系数2)零极点增益(ZPK模型传递函数因式分解后可以写成式中,z 1 , z 2,…,z m称为传递函数的零点,P1,P2,…,p n称为传递函数的极点,k为传递系数(系统增益)。
在MATLAB中,直接用[z,p,k]矢量组表示系统,其中乙p, k分别表示系统的零极点及其增益,即:z=[z1,z2,…,zm];p=[p1,p2,…,pn];k=[k];调用zpk 函数可以创建ZPK 对象模型,调用格式如下:Gzpk = zpk(z,p,k)同样,MATLAB提供了zpkdata命令用来提取系统的零极点及其增益,调用格式如下:[z,p,k] = zpkdata(Gzpk) 返回cell 类型的零极点及增益[z,p,k] = zpkdata (Gzpk, 'v') 返回向量形式的零极点及增益函数pzmap 可用于求取系统的零极点或绘制系统得零极点图,调用格式如下:pzmap(G) 在复平面内绘出系统模型的零极点图。
自动控制原理MATLAB仿真实验报告
实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些?2、 如何判断系统稳定性?3、 系统的动态性能指标有哪些? 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
北理工:自动控制实验实验报告汇总
控制理论基础实验班级:05611001学号:1120101327姓名:付予实验时间:周五下午 7、8节指导教师:范哲意实验一:控制系统的模型建立一、实验目的1. 掌握利用MATLAB 建立控制系统模型的方法。
2. 掌握系统的各种模型表述及相互之间的转换关系。
3. 学习和掌握系统模型连接的等效变换。
二、实验原理1. 系统模型的MATLAB描述1)传递函数(TF)模型2)零极点增益(ZPK)模型3)状态空间(SS)模型4)三种模型之间的转换2. 系统模型的连接在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连接、并联连接和反馈连接。
三、实验内容1.已知控制系统的传递函数如下22s 18s 40G(s)3 2S 5s 8s 6试用MATLAB建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型, 并绘制系统零极点图。
实验代码:>> num=[2,18,40];>> den=[1,5,8,6];>> gtf=tf(num,den)>> gzpk=zpk(gtf)实验结果:传递函数模型:gtf =2 s A2 + 18 s + 40s A3 + 5 sA2 + 8 s + 6零极点增益模型:gzpk =2 (s+5) (s+4)(s+3) (sA2 + 2s + 2)状态空间方程模型:gss = >> gss=ss(gtf)>> pzmap(gzpk)>> grid ona =x1x2x3 x1-5-2 1.5x2400x3010b =u1x14x20x3c =x1x2x3 y10.5 1.125 2.5u1=y1 0零极点图形:Pole-Zero Ntato2•已知控制系统的状态空间方程如下0 10 0 0 0 0 10 0 xx u0 0 0 1 0-1 -2 -3 -4 1y 10 2 0 0x试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。
自动控制原理MATLAB仿真实验指导书(4个实验)
自动控制原理MATLAB仿真实验实验指导书电子信息工程教研室实验一典型环节的MA TLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MA TLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。
图1-1 SIMULINK仿真界面图1-2 系统方框图3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
北理工自动控制实验报告,DOC
本科实验报告实验名称:控制理论基础实验)模型、1)传递函数(TF)模型传递函数是描述线性定常系统输入-输出关系的一种最常用的数学模型,其表达式一般为在MATLAB中,直接使用分子分母多项式的行向量表示系统,即num=[bm,bm-1,…b1,b]den=[an,an-1,…a1,a0]调用tf函数可以建立传递函数TF对象模型,调用格式如下:Gtf=tf(num,den)Tfdata函数可以从TF对象模型中提取分子分母多项式,调用格式如下:[num,den]=tfdata(Gtf)返回cell类型的分子分母多项式系数[num,den]=tfdata(Gtf,'v')返回向量形式的分子分母多项式系数2)零极点增益(ZPK)模型传递函数因式分解后可以写成式中,称为传递函数的零点,?称为传递函的极点,k为传递系数(系统增益)。
在即:z=[p=[调用返回向量形式的零极点及增益函数返回的系统零极点,不作图。
3矩阵;B为n×r矩阵,称为输入矩阵或控制矩阵;C为m×n矩阵,称为输出矩阵;D为m×r矩阵,称为直接传输矩阵。
在MATLAB中,直接用矩阵组[A,B,C,D]表示系统,调用ss函数可以创建ZPK对象模型,调用格式如下:Gss=ss(A,B,C,D)同样,MATLAB提供了ssdata命令用来提取系统的A、B、C、D矩阵,调用格式如下:[A,B,C,D]=ssdata(Gss)。
它返回系统模型的A、B、C、D矩阵。
4)三种模型之间的转换上述三种模型之间可以互相转换,MATLAB实现方法如下TF模型→ZPK模型:zpk(SYS)或tf2zp(num,den)TF模型→SS模型:ss(SYS)或tf2ss(num,den)ZPK模型→TF模型:tf(SYS)或zp2tf(z,p,k)ZPK模型→SS模型:ss(SYS)或zp2ss(z,p,k)SS模型→TF模型:tf(SYS)或ss2tf(A,B,C,D)SS模型→ZPK模型:zpk(SYS)或ss2zp(A,B,C,D)2.系统模型的连接在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连接、并联连接和反馈连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB在自动控制理论中应用实验报告姓名:班级:学号:一、实验目的实验一1. 掌握利用MATLAB建立控制系统模型的方法。
2. 掌握系统的各种模型表述及相互之间的转换关系。
3. 学习和掌握系统模型连接的等效变化。
实验二1.学习和掌握利用MATLAB进行系统时域响应求解和仿真的方法。
2.考察二阶系统的时间响应,研究二阶系统参数对系统暂态特性的影响。
实验三1.学习和掌握利用MATLAB绘制根轨迹图的方法2.学习和掌握利用系统根轨迹图分析系统的性能。
实验四1.学习和掌握利用MATLAB绘制系统Nyquist图和Bode图的方法。
2.学习和掌握利用系统的频率特性分析系统的性能。
一、实验原理1)传递函数模型(TF)gtf=tf(num,den)2)零极点增益模型(ZPK)Gzpk=zpk(z,p,k)3)状态空间模型(SS)Gss=ss(a,b,c,d)4)三种模型之间的转换TF→ZPK: z pk(sys)TF→SS: ss(sys)ZPK→TF: t f(sys)ZPK→SS: s s(sys)SS→TF: tf(sys)SS→ZPK: z pk(sys)5)绘制系统零极点图Pzmap(gzpk);Grid on;6)系统模型的串联G(s)=G1(s)*G2(s)7)系统模型的并联G(s)=G1(s)+G2(s)8)系统模型的反馈连接T=feedback(G,H)T=feedback(G,H,sign)9)绘制阶跃响应step(sys)step(sys,T)10)线性时不变系统仿真工具ltiview11)绘制系统根轨迹图rlocus(sys)rlocus(sys,k)[r,k]=rlocus(sys)12)计算鼠标选择点处根轨迹增益值和闭环极点值[k,poles]=rlocfind(sys)13)在连续系统根轨迹或零极点图上绘制出栅格线sgrid(‘new’)sgrid(z,Wn)14)绘制系统的Nyquist图nyquist(SYS)nyquist(sys,w)15)绘制系统的Bode图bode(sys)bode(sys,w)16)从频率响应数据中计算幅度裕度,相位裕度及对应角频率margin(sys)[mag,phase]=bode(sys,w)二、实验结果实验一1、num=1;den=[1,1.4,1];G=tf(num,den)结果G =1---------------s^2 + 1.4 s + 1Continuous-time transfer function.2、num=1;den=[1,-6,5];z=roots(num);p=roots(den);G=zpk(z,p,1)结果G =1-----------(s-5) (s-1)Continuous-time zero/pole/gain model.3、%1num=[2 18 40];den=[1 5 8 6];gtf=tf(num,den)gzpk=zpk(gtf)gss=ss(gtf)pzmap(gzpk);grid on%2a=[0 1 0 00 0 1 00 0 0 1-1 -2 -3 -4];b=[0 0 0 0]’;c=[10 2 0 0];d=0;gss=ss(a,b,c,d);gtf=tf(gss);gzpk=zpk(gss);pzmap(gzpk)grid on%3g1a=[2 6 5];g1b=[1 4 5 2];g2a=[1 4 1];g2b=[1 9 8 0];g3z=[-3 -7];g3p=[-1 -4 -6];g3k=5;g1tf=tf(g1a,g1b);g2tf=tf(g2a,g2b);g3zpk=zpk(g3z,g3p,g3k);g3tf=tf(g3zpk);g=g1tf*g2tf*g3tf%4g1=tf([1],[1 1]);g2=tf(1,[0.5 1]);g3=g2;g4=tf(3,[1 0]);g=feedback((g1+g2)*g4,g3)%5g1=tf(10,[1 1]);g2=tf(2,[1 1 0]);g3=tf([1 3],[1 2]);g4=tf([5 0],[1 6 8]);g=feedback(g1*(feedback(g2,g3,1)),g4)实验二12 (1)t d=0.272 t r=0.371 t p=0.787 t s=1.19ϭ=9%(2)(4)ξ变大,延迟时间,上升时间,峰值时间,调整时间均越来越长,超调量开始时减小,然后保持不变。
ω变大,延迟时间,上升时间,峰值时间,调整时间均越来越短,超调量不变。
实验三1、sys=zpk(-5,[0 -1 -3 -12],k);rlocus(sys)rlocfind(sys)selected_point =-0.4676 + 0.0000ik =1.6041poles =-12.0094-3.0555-0.4676-0.46753、>> sys1=zpk(-5,[0 -1 -3 -6],k);>> rlocus(sys1)>> sys1=zpk(-5,[0 -1 -3 --25],k);>> rlocus(sys1)>> sys1=zpk(-5,[0 -1 -3 --35],k);>> rlocus(sys1)实验四1、通过impulse函数判断系统是否稳定传递函数:)53()1()67)(3(423322++++++s s s s s s s程序:num = conv(conv(conv([4],[1,3]),[1,7,6]),[1,7,6]);den = conv(conv(conv(conv([1,0],[1,1]),[1,1]),[1,1]),[1,3,0,5]);G =tf(num,den);impulse (G)结论:系统不稳定2、 绘制给定的传递函数G 的冲击曲线及根轨迹图num = 55 * [1 2];den = conv([1 4 3],[1 4 3]);G = tf(num,den)figure(1)impulse (G);figure(2)rlocus(G)六、根据跟定的方程组求出根轨迹图A = [0 1 0;0 0 1;-5 -25 -5];B = [0;25;-120];C = [1 0 0];D = 0;G = ss(A,B,C,D)rlocus(G)七、不通过元件库,通过命令构建simulinknew_system('mymodel')open_system('mymodel')save_system('mymodel')add_block('built-in/Step','mymodel/Step','position',[20,100,40,120])add_block('built-in/Sum','mymodel/Sum','position',[60,100,80,120])add_block('built-in/TransferFcn','mymodel/TransferFcn','position',[120,90,200,130]) add_block('built-in/Scope','mymodel/Scope','position',[240,100,260,120])add_line('mymodel','Step/1','Sum/1')add_line('mymodel','Sum/1','TransferFcn/1')add_line('mymodel','TransferFcn/1','Scope/1')add_line('mymodel','TransferFcn/1','Sum/1')三、实验总结通过四次的控制理论基础实验,我学到了很多用Matlab软件进行控制系统计算,仿真方面的知识,可以说是收获颇丰,回顾四次试验,我学会了用Matlab进行控制系统的模型建立,对控制系统进行暂态特性分析,对控制系统进行根轨迹分析,对控制系统的频率特性进行分析。
随着社会的进步和科技的发展,计算机越来越多地融入了现代的科学研究中,而运用计算机进行控制系统方针是其中一个重要的部分。
如果没有计算机进行仿真,我对一个控制系统进行设计和分析时,不但需要大量的计算,还需要手工绘制很多复杂的图表。
这非常麻烦而且效率极低。
但是有了计算机,我就可以在一台电脑上解决这些事情,不但方便,而且高效。
所以学习使用计算机进行控制系统仿真是我以后进行科学研究所必须的一项技能。
Matlab有着丰富的功能,而我们这次学到的只是其中对控制系统进行仿真计算的一小部分,所以在以后的学习中,我会努力的研究这个软件的各种功能,来帮助我进行辅助设计,提高我的效率。