费马点问题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
>
费马点的问题
定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。它是这样确定的:
1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;
2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。
3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。我们称这一结果为最短路线原理。
【
性质:费马点有如下主要性质:
1.费马点到三角形三个顶点距离之和最小。
2.费马点连接三顶点所成的三夹角皆为120°。
3.费马点为三角形中能量最低点。
)
4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。
例1:已知:△ABH是等边三角形。
求证:GA+GB+GH最小
证明:∵△ABH是等边三角形。G是其重心。
^
∴∠AGH=∠AGB=∠BGH=120°。
以HB为边向右上方作等边三角形△DBH.
以HG为边向右上方作等边三角形△GHP.
∵ AH=BH=AB=12.
!
∴∠AGH=120°, ∠HGP=60°.
∴ A、G、P三点一线。
再连PD两点。
∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°.
!
∴∠PHD=30°,.
在△HGB和△HPD中
∵ HG=HP
∠GHB=∠PHD;
:
HB=HD;
∴△HGB≌△HPD;(SAS)
∴∠HPD=∠HGB=120°;
∵∠HPG=60°.
@
∴ G、P、D三点一线。
∴ AG=GP=PD,且同在一条直线上。
∵ GA+GH+GB=GA+GP+PD=AD.
∴ G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。也就是重心。,
、
|
例2:已知:△ABC是等腰三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°。求证:GA+GB+GC最小
证明:将△BGC逆时针旋转60°,连GP,DB.则△HGB≌△HPD;
!
∴∠CPD=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠GCB=∠PCD.
∵∠GCP=60°,
∴∠BCD=60°,
∴△GCP和△BCD都是等边三角形。
]
∵∠AGC=120°, ∠CGP=60°.
∴ A、G、P三点一线。
∵∠CPD=120°, ∠CPG=60°.
∴ G、P、D三点一线。
】
∴ AG、GP、PD三条线段同在一条直线上。
∵ GA+GC+GB=GA+GP+PD=AD.
∴ G点是等腰三角形内到三个顶点的距离之和最小的哪一点,费马点。
但它不同于等边三角形的费马点是重心。
\
)
例3:已知:△ABC是锐角三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°。
·
求证:GA+GB+GC最小
证明:将△BGC逆时针旋转60°,连GP,DB.则△CGB≌△CPD;
∴∠CPD=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠GCB=∠PCD.
∵∠GCP=60°,
;
∴∠BCD=60°,
∴△GCP和△BCD都是等边三角形。
∵∠AGC=120°, ∠CGP=60°.
∴ A、G、P三点一线。
~
∵∠CPD=120°, ∠CPG=60°.
∴ G、P、D三点一线。
∴ AG、GP、PD三条线段同在一条直线上。
∵ GA+GC+GB=GA+GP+PD=AD.
;
∴ G点是等腰三角形内到三个顶点的距离之和最小的哪一点,费马点。
但它不同于等边三角形的费马点是重心。
;
。
(费马点问题)如图,P 是边长为1的等边ABC ∆内的任意一点,求t PA PB PC =++的取值范围.
解:Part1:将BPC ∆绕点B 顺时针旋转60°得到''BP C ∆,易知'BPP ∆为等边三角形.从而''''PA PB PC PA PP P C AC ++=++≥(两点之间线段最短)
,从而3t ≥.
Part2:过P 作BC 的平行线分别交AB AC 、于点M N 、,易知MN AN AM ==.
因为在BMP ∆和PNC ∆中,PB MP BM <+①, PC PN NC <+②。 又APM ANM AMN ∠>∠=∠,所以PA AM <③. ①+②+③可得
()()()12t AM BM MP NP NC AB MN NC AN NC <++++=++=++=,
[
即2t <.综上,t PA PB PC =++32t ≤<.
{
“费马点”与中考试题
费尔马,法国业余数学家,拥有业余数学之王的称号,他是解析几何的发明者之一.费马点——就是到三角形的三个顶点的距离之和最小的点.费尔马的结论:对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.
△三个顶点的距离之和PA+PB+PC最小这就是所谓的费尔马问下面简单说明如何找点P使它到ABC
题.
图1
解析:如图1,把△APC绕A点逆时针旋转60°得到△AP′C′,连接PP′.
则△APP′为等边三角形,AP= PP′,P′C′=PC,
~
所以PA+PB+PC= PP′+ PB+ P′C′.
点C′可看成是线段AC绕A点逆时针旋转60°而得的定点,BC′为定长,所以当B、P、P′、C′四点在同一直线上时,PA+PB+PC最小.
这时∠BPA=180°-∠APP′=180°-60°=120°,
∠APC=∠A P′C′=180°-∠AP′P=180°-60°=120°,