概率 独立重复试验练习

合集下载

高三数学独立重复试验某事件发生的概率试题

高三数学独立重复试验某事件发生的概率试题

高三数学独立重复试验某事件发生的概率试题1.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6, 0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.【答案】(1)0.31 (2)3【解析】(1)至少3人需使用设备分为恰好有3人使用的设备和4个人使用设备.这两个是事件是互斥事件,首先利用独立事件的概率公式分别求出恰好有3人使用的设备和4个人使用设备的概率,最后相加即可.利用独立事件的概率公式和互斥事件的概率公式计算出同一工作日4人需使用设备的概率.然后结合(1)的结论即可得出结论.试题解析:记Ai表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)D=A1·B·C+A2·B+A2··CP(B)=0.6,P(C)=0.4,P(Ai)=.所以P(D)=P(A1·B·C+A2·B+A2··C)= P(A1·B·C)+P(A2·B)+P(A2··C)= P(A1P)·P(B)·P(C)+P(A2)·P(B)+P(A2)·p()·p(C)=0.31.(2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B·C·A2,P(E)=P(B·C·A2)= P(B)·P(C)·P(A2)=0.06;若k=4,则P(F)=0.06<0.1.所以k的最小值为3.【考点】1.独立事件的概率;2.互斥事件的概率.2.设X为随机变量,X~B,若随机变量X的数学期望E(X)=2,则P(X=2)等于( ) A.B.C.D.【答案】D【解析】∵E(X)=n×=2,∴n=6.∴P(X=2)=24=3.某足球俱乐部2013年10月份安排4次体能测试,规定:按顺序测试,一旦测试合格就不必参加以后的测试,否则4次测试都要参加。

概率练习(一)(附答案)

概率练习(一)(附答案)

11.1 概率 (一)[基础练习]1、有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为( )A 、507 B 、1007 C 、487 D 、203 2、袋中有红、黄、白色球各一个,每次任取一个,有放回地抽取3次,则下列事 件中概率是98的是( ) A 、颜色全同 B 、颜色不全同 C 、颜色全不同 D 、颜色无红色3、甲射击命中目标的概率是21,乙命中目标的概率是31,丙命中目标的概率是41,现在三人同时射击目标,则目标被击中的概率为( )A 、43B 、32C 、54D 、107 4、在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是( )A 、)1,6.0[B 、]6.0,0(C 、]4.0,0(D 、)1,4.0[ 5、5个同学任意站成一排,甲、乙两人恰好站在两端的概率是( )A 、81B 、91C 、101D 、111 6、某班有学生36人,按血型分类为:A 型12人,B 型10人,AB 型8人,O型6人,如果从这个班随机抽出2名学生,则这2名学生血型相同的概率是 7、2个篮球运动员在罚球时投球的命中率分别为0.7和0.6,每人投篮3次,则2人都恰好进2球的概率是(保留两位有效数字)8、有一道竞赛题,A 生解出它的概率为21,B 生解出它的概率为31,C 生解出它的概率为41,则A 、B 、C 三人独立解此题只有1人解出的概率为 [典型例题][例1]甲、乙两人参加普法知识问答,共有10个不同的题目,其中选择题6个、判断题4个,甲、乙两人依次各抽一题(1)甲抽到选择题、乙抽到判断题的概率是多少?(2)甲、乙两人至少有一人抽到选择题的概率是多少?解:甲、乙两人依次抽一题的结果有19110C C 个 (1)甲抽到选择题、乙抽到判断题的结果有1416C C 个, 所求概率154)(191101416==C C C C A P (2)甲、乙两人至少有一人抽到选择题的结果有131419110C C C C -个, 所求概率1513)(19110131419110=-=C C C C C C B P [例2]学校文艺队每个队员唱歌、跳舞至少会一门,已知会唱歌的有5人,会跳舞的有7人,现从中选3人,且至少要有一位既会唱歌又会跳舞的概率是2116,问该队有多少人? 解:设该队既会唱歌又会跳舞的有x 人,从而只会唱歌或只会跳舞的有)212(x -人,记“至少要有一位既会唱歌又会跳舞”的事件为A ,则事件A 的对立事件A 是“只会唱歌或只会跳舞”2116)(1)(,)(3123212=-==--A P A P C C A P xx 又 21161)10)(11)(12()210)(21)(212(-=------∴x x x x x x 解得912,3=-∴=x x ,故该队共有9人[例3]在资料室中存放着书籍和杂志,任一读者借书的概率为0.2,而借杂志的概率为0.8,设每人只借一本,现有五位读者依次借阅,计算:(1)5人中有2人借杂志的概率(2)5人中至多有2人借杂志的概率解:记“一位读者借杂志”为事件A ,则“此人借书”为A ,5位读者各借一次可看作n 次独立重复事件,因此:(1)5人中有2人借杂志的概率0512.0)2.0()8.0(3225==C P(2)5人中至多有2人借杂志,包括三种情况:5人都不借杂志,5人中恰有1人借杂志,5人中恰有2人借杂志,因此所求概率05216.0)2.0()8.0()2.0()8.0()2.0()8.0(322541155005=++=C C C P[例4]进入世界排名前8名的乒乓球女子单打选手中有4名中国人抽签平分为甲、乙两组进行比赛,求4名中国选手不都分在同一组的概率。

独立重复试验(1)

独立重复试验(1)

A 4 3 B A I的概率为: P4 (3) C3 p 3 (1 p) ; 4
I Y的概率为: P4 (1) C1 p1 (1 p) 41 4
那么棋子由A I Y 的概率为
P4 (3) P4 (1) C3 p3 (1 p) C1 p1 (1 p) 41 4 4
P(A1 A 2 A3 A 4 )
2 3 2 2 ( ) (1 ) 81 6 6
因为 4种情况彼此互斥,故4次中3次掷到1或6点, 1次掷到1或6以外点的概率为
2 8 4 81 81
2 3 2 4 3 C ( ) (1 ) 6 6
3 4
1、独立重复试验定义
C p (1 p) C p (1 p)
1
4 2
变式3:求棋子到达Q点的概率
4 1
变式4:求棋子到达U点的概率
0 C4 p 0 (1 p) 40
二项式[(1-p)+p]4展开式的各项
变式5:若棋子共走了n格其中向右走了k格 到达某点O’,求到O’的概率?
C p (1 p)
k n k
共C 4种情况
3 4
P( A1 A2 A3 A4 ) P( A1 ) P( A2 ) P( A3 ) P( A4 ) 2 2 2 2 2 (1 ) 81 6 6 6 6
同理: P( A A A3 A ) P( A A2 A A ) 1 3 4 1 2 4
4 0.9 0.1 0.29
3
某射手射击 4 次恰好击中 3 次的概率约是0.29
例2. 某气象站天气预报的准确率为 80%,计算 (结果保留两个有效数字): (1)5 次天气预报中恰有 4 次准确的概率; (2)5 次天气预报中至少有 4 次准确的概率。 解:(1)记 “预报 1 次,结果准确” 为事件 A. 则预报 5 次相当于作 5 次独立重复试验.

高二数学独立重复试验某事件发生的概率试题

高二数学独立重复试验某事件发生的概率试题

高二数学独立重复试验某事件发生的概率试题1.箱中装有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是________________.【答案】【解析】由题意知,首先求出摸一次中奖的概率,从6个球中摸出2个,共有种结果,两个球的号码之积是4的倍数,共有,,,,,,∴摸一次中奖的概率是,4个人摸奖,相当于发生4次试验,且每一次发生的概率是,∴有4人参与摸奖,恰好有3人获奖的概率是.【考点】次独立重复试验中恰好发生次的概率.2.设随机变量X的分布列为P(X=k)=p k(1-p)1-k(k=0.1,0<p<1),则E(X)=________.【答案】1-p【解析】X服从两点分布,∴E(X)=1-p.3.已知随机变量X服从二项分布,X~B,则P(X=1)的值为________.【答案】【解析】∵X~B,∴P(X=1)=C13·=.44.某大厦的一部电梯从底层出发后只能在第18,19,20层可以停靠,若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用X表示这5位乘客在第20层下电梯的人数,求随机变量X的分布列.【答案】X的分布列为X012345【解析】解:考查每一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,即X~B,k k5-k,k=0,1,2,3,4,5,即有P(X=k)=C5从而X的分布列为X0123455.设随机变量X~B(2,p),Y~B(3,p),若P(X≥1)=,则P(Y=2)=________.【答案】【解析】=P(X≥1)=1-P(X=0)=1-(1-p)2,即(1-p)2=,p=.221=.故P(Y=2)=C36.姚明比赛时罚球命中率为90%,则他在3次罚球中罚失1次的概率是.【答案】0.243【解析】∵姚明比赛时罚球命中率为90%,∴他在3次罚球中罚失1次的概率是【考点】本题考查了独立重复试验的概率点评:独立重复试验的特点:1)每次试验只有两种结果,要么发生,要么不发生;2)任何一次试验中,A事件发生的概率相同,即相互独立,互不影响试验的结果。

独立重复试验概率经典例题

独立重复试验概率经典例题

独立,对立,相互对立互斥事件:不可能同时发生的两个事件称为互斥事件.()()()P A B P A P B +=+ 对立事件:必然有一个发生的互斥事件叫做对立事件.()1()1()P A A P A P A +=⇒=- 相互独立事件事件:A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互 独立事件。

1.甲、乙、丙三人独立地去破译一个密码,他们能译出的概率分别为15、13、14,则此密码能译出的概率为 ( )()A 35()B 25()C 5960()D 1602.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个袋内各摸出1个球,那么56等于 ( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率3.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率; (2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?独立重复试验概率1. 定义2. 公式3. 离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).kn k k n q p C -=b (k ;n ,p ).离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,P(k A )=p ,P(k A )=q(q=1-p),那么112311231()()()()()()()k k k k k P k P A A A A A P A P A P A P A P A q p ξ---====(k =0,1,2,…, p q -=1).于是得到随机变量ξ的概率分布如下:称这样的随机变量记作g (k ,p )= 1k qp -,其中k =0,1,2,…, p q -=1.4. 例题:例1.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字): (1)5次预报中恰有4次准确的概率; (2)5次预报中至少有4次准确的概率。

概率统计综合练习及答案

概率统计综合练习及答案

北京科技大学远程教育学院《概率统计》综合练习(一)参考答案随机事件及其概率一、填空1、A 、B 、C 是三个事件,用A 、B 、C 的运算表示A 、B 、C 中至少发生两个的事件 AC BC AB ,用文字叙述C AB C B A BC A 表示的事件 三个事件中恰好发生两个事件 。

2、A 是试验E 的一个事件,每次试验A 出现的概率为p=0.25,独立重复做试验E 四次, A 是否必定出现一次? 否3、A ⊆B ,P (A )=0.2,P (B )=0.6则 P (B -A ) = 0.4 ,P (A -B ) = 0 。

4、P (A )>0,P (B )>0,A 、B 相互独立与A 、B 互不相容能否同时成立? 否 。

5、事件A 、B 独立,则A 、B 独立 。

6、P (A ∪B ∪C )的计算公式为)()()()()()()(ABC P AC P BC P AB P C P B P A P +---++ 。

7、每次试验A 出现的概率为p ,独立重复做n 次试验,在n 次试验中,A 出现次数k 的可能取值为 0,1,3,…,n ,A 出现k 次的概率为 kn k k n q p C - 。

二、 以A ,B ,C 分别表示某城市居民订阅日报、晚报和体育报。

试用A ,B ,C 表示 以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。

解:(1)C B A ,(2)C AB ,(3)C B A C B A C B A ,(4)C B A BC A C AB , (5)C B A ,(6)C B A ,(7)C B A C B A C B A C B A ,(8)ABC , (9)C B A三、 从0,1,2,…,9中任意选出4个不同的数字,试求它们能组成一个4位偶 数的概率。

数学一轮复习课后限时集训67n次独立重复试验与二项分布含解析

数学一轮复习课后限时集训67n次独立重复试验与二项分布含解析

课后限时集训(六十七) n 次独立重复试验与二项分布建议用时:40分钟一、选择题1.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为( )A .错误!B .错误!C .错误!D .错误!B [设A ={第一次拿到白球},B ={第二次拿到红球},则P (AB )=错误!×错误!,P (A )=错误!。

所以P (B |A )=错误!=错误!.]2.已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是16,14,错误!,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为( )A .错误!B .错误!C .错误!D .错误!B [甲、乙、丙三人都没有被录取的概率为P 1=错误!×错误!×错误!=错误!,所以三人中至少有一人被录取的概率为P =1-P 1=错误!,故选B。

]3.袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是() A.错误!B.错误!C.18125D.错误!D[袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率P1=错误!,∴3次中恰有2次抽到黄球的概率P=C错误!错误!2错误!=错误!。

]4.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0。

75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0。

75C.0。

6 D.0.45A[令A=“第一天空气质量优”,B=“第二天空气质量优”,则P(AB)=0.6,P(A)=0.75,P(B|A)=错误!=0。

8.]5.甲、乙两人练习射击,命中目标的概率分别为错误!和错误!,甲、乙两人各射击一次,有下列说法:①目标恰好被命中一次的概率为12+错误!;②目标恰好被命中两次的概率为错误!×错误!;③目标被命中的概率为错误!×错误!+错误!×错误!;④目标被命中的概率为1-错误!×错误!,以上说法正确的是()A.②③B.①②③C.②④D.①③C[对于说法①,目标恰好被命中一次的概率为错误!×错误!+错误!×错误!=错误!,所以①错误,结合选项可知,排除B、D;对于说法③,目标被命中的概率为错误!×错误!+错误!×错误!+错误!×错误!,所以③错误,排除A.故选C。

高三数学总复习知识点强化提升训练75---独立重复试验与二项分布

高三数学总复习知识点强化提升训练75---独立重复试验与二项分布

高三数学总复习知识点强化提升训练75---独立重复试验与二项分布[基础巩固练]一、选择题1.从1,2,3,4,5中不放回地依次取两个数,事件A ={第一次取到的是奇数},B ={第二次取到的是奇数},则P (B |A )=( )A.15 B .310 C .25D .12[解析] 解法一:依题意P (A )=35,P (AB )=35×24,所以P (B |A )=P (AB )P (A )=35×2435=12.解法二:第一次取到奇数后,第二次取数时还有四个数可取,其中两个奇数,故在第一次取到奇数的条件下,第二次取到奇数的概率为24=12.[答案] D2.(2019·内蒙古包头调研)甲、乙、丙三人参加一次考试,他们合格的概率分别为23,34,25,那么三人中恰有两人合格的概率是( )A.25 B .1130 C .715D .16[解析] 三人中恰有两人合格的概率P =23×34×⎝ ⎛⎭⎪⎫1-25+23×⎝ ⎛⎭⎪⎫1-34×25+⎝ ⎛⎭⎪⎫1-23×34×25=715,故选C.[答案] C3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512 B .12 C .712D .34[解析] 用间接法考虑,事件A 、B 一个都不发生概率为 P (A -B -)=P (A )·P (B )=12×C 15C 16=512.则所求概率P =1-P (A -B -)=712. [答案] C4.(2019·广东汕头4月模拟)已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( )A .0.85B .0.8192C .0.8D .0.75[解析] 因为某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次看做4次独立重复试验,则至少击中3次的概率C 34(0.8)3(1-0.8)+C 48(0.8)4=0.8192,故选B.[答案] B5.(2019·河南濮阳模拟)如图,已知电路中4个开头闭合的概率都是12,且是相互独立的,则灯亮的概率为()A.316B.3 4C.1316D.14[解析]灯泡不亮包括4个开关都开,或下边的2个都开,上边的2个中有一个开,这三种情况是互斥的,每一种情况中的事件是相互独立的,∴灯泡不亮的概率是12×12×12×12+12×12×12×12+12×12×12×12=316.∵灯亮和灯不亮是两个对立事件,∴灯亮的概率是1-316=1316,故选C.[答案] C二、填空题6.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A为“三个人去的景点不相同”,B为“甲独自去一个景点”,则概率P(A|B)等于________.[解析]由题意可知,n(B)=C1322=12,n(AB)=A33=6.∴P (A |B )=n (AB )n (B )=612=12. [答案] 127.(2019·扬州一模)在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为__________.[解析] 解法一:不妨设甲先抽奖,设甲中奖记为事件A ,乙中奖记为事件B ,两人都中奖的概率为P ,则P =P (AB )=23×12=13.解法二:甲乙从三张奖券中抽两张的方法有A 23=6种,两人都中奖的可能有2种,设两人都中奖的概率为P ,则P =26=13. [答案] 138.(2020·江西抚州一中月考)某射手每次射击击中目标的概率都是23,这名射手射击5次,有3次连续击中目标,另外两次未击中目标的概率是________.[解析] 设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件C ,则P (C )=P (A 1A 2A 3A -4A -5)+P (A -1A 2A 3A 4A -5)+P (A -1A -2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881.[答案] 881 三、解答题9.(2019·哈尔滨质检)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.[解] 记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E -)=13,P (F )=35,P (F -)=25,且事件E 与F ,E 与F -,E -与F ,E -与F -都相互独立.(1)记H ={至少有一种新产品研发成功},则H -=E -F -, 于是P (H -)=P (E -)P (F -)=13×25=215, 故所求的概率为P (H )=1-P (H -)=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=P (E -F -)=13×25=215,P (X =100)=P (E -F )=13×35=315=15,P (X =120)=P (E F -)=23×25=415,P (X =220)=P (EF )=23×35=615=25. 故所求的分布列为10.(2019·石家庄模拟)1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障的概率为13.(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维护的概率不少于90%?(2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资.每台机器不出现故障或出现故障能及时维修,就能使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的分布列.[解] (1)1台机器是否出现故障可看作1次试验,在1次试验中,机器出现故障设为事件A ,则事件A 的概率为13.该厂有4台机器,就相当于4次独立重复试验,可设出现故障的机器台数为X ,则X ~B ⎝ ⎛⎭⎪⎫4,13,∴P (X =0)=C 04·⎝ ⎛⎭⎪⎫234=1681, P (X =1)=C 14·13·⎝ ⎛⎭⎪⎫233=3281,P (X =2)=C 24·⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫232=2481, P (X =3)=C 34·⎝ ⎛⎭⎪⎫133·23=881, P (X =4)=C 44·⎝ ⎛⎭⎪⎫134=181. ∴X 的分布列为设该厂有n 名工人,则“每台机器在任何时刻同时出现故障时能及时进行维修”为X ≤n ,即X =0,X =1,X =2,…,X =n ,这n +1个互斥事件的和事件,则∵7281<90%≤8081,∴该厂至少需要3名工人,才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%.(2)设该厂每月可获利Y 万元,则Y 的所有可能取值为18,13,8,P (Y =18)=P (X =0)+P (X =1)+P (X =2)=7281,P (Y =13)=P (X =3)=881,P (Y =8)=P (X =4)=181,∴Y 的分布列为11.(2019·郑州模拟)某工程施工在很大程度上受当地年降水量的影响,施工期间的年降水量X (单位:mm)对工期延误天数Y 的影响及相应的概率P 如下表所示:) A .0.7 B .0.5 C .0.3D .0.2[解析] 设事件A 为“年降水量X 至少是100”,事件B 为“工期延误小于30天”,则P (B |A )=P (AB )P (A )=0.2+0.10.2+0.1+0.3=0.5,故选B.[答案] B12.设事件A 在每次试验中发生的概率相同,若在三次独立重复试验中,事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为( )A.14 B .34 C .964D .2764[解析] 假设事件A 在每次试验中发生的概率为p ,由题意得,事件A 发生的次数X ~B (3,p ),则有1-(1-p )3=6364,得p =34,所以事件A 恰好发生一次的概率为C 13×34×⎝ ⎛⎭⎪⎫1-342=964. [答案] C13.(2019·浙江模拟)某人有4把钥匙,其中2把能打开门.现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是________.如果试过的钥匙不扔掉,这个概率是________.[解析] 第二次打开门,说明第一次没有打开门,故第二次打开门的概率为24×23=13.如果试过的钥匙不扔掉,这个概率为24×24=14.[答案] 13 1414.(2019·洛阳市第二次联考)现有两种投资方案,一年后投资盈亏的情况如下表: 投资股市:购买基金:(1)当p=14时,求q的值;(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p的取值范围;(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知p=12,q=16,求丙投资两种方案的获利金额的分布列.[解](1)∵“购买基金”后,投资结果只有“获利”“不赔不赚”“亏损”三种,且三种投资结果相互独立,∴p+13+q=1.又p=14,∴q=512.(2)记事件A为“甲投资股市且获利”,事件B为“乙购买基金且获利”,事件C为“一年后甲、乙两人中至少有一人投资获利”,则C=A B-∪A-B∪AB,且A,B独立.由题意可知,P(A)=12,P(B)=p,∴P(C)=P(A B-)+P(A-B)+P(AB)=12(1-p)+12p+12p=12+12p.∵P(C)=12+12p>45,∴p>35.又p+13+q=1,q≥0,∴p≤23.∴p 的取值范围为⎝ ⎛⎦⎥⎤35,23.(3)假设丙选择“投资股市”的方案进行投资,记X 为丙投资股市的获利金额(单位:万元),∴随机变量X 的分布列为假设丙选择“购买基金”(单位:万元),∴随机变量Y 的分布列为[拓展延伸练]15.(2019·河南郑州一模)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则从2号箱中取出红球的概率是( )A.1127B .1124C.1627D.38[解析]解法一:记事件A:从2号箱中取出的是红球;事件B:从1号箱中取出的是红球,则根据古典概型和对立事件的概率和为1,可知P(B)=46=23,P(B-)=1-23=1 3;由条件概率公式知P(A|B)=49,P(A|B-)=39=13.从而P(A)=P(AB)+P(A B-)=P(A|B)·P(B)+P(A|B-)·P(B-)=1127.故选A.解法二:根据题意,分两种情况讨论:①从1号箱中取出白球,其概率为26=13,此时2号箱中有6个白球和3个红球,从2号箱中取出红球的概率为13,则此种情况下的概率为13×13=19.②从1号箱中取出红球,其概率为23,此时2号箱中有5个白球和4个红球,从2号箱中取出红球的概率为49,则这种情况下的概率为23×49=827.故从2号箱中取出红球的概率是19+827=1127.故选A.[答案] A16.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入甲袋或乙袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入甲袋中的概率为__________.[解析] 记“小球落入甲袋中”为事件A ,“小球落入乙袋中”为事件B ,则事件A 的对立事件为B .若小球落入乙袋中,则小球必须一直向左或一直向右落下,故P (B )=⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫123=14,从而P (A )=1-P (B )=1-14=34.[答案] 34。

独立重复试验与二项分布概率作业练习含答案解析高二数学北京海淀

独立重复试验与二项分布概率作业练习含答案解析高二数学北京海淀

课时提升作业十一独立重复试验与二项分布一、选择题(每小题5分,共25分)1.已知随机变量X服从二项分布X~B,则P(X=2)= ( )A. B. C. D.【解析】选D.P(X=2)=×=.2.(2018·威海高二检测)在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为( ) A. B. C. D.【解析】选C.设事件A每次试验发生的概率为p,则1-(1-p)3=,解得p=,故事件A发生一次的概率为××=.3.在一次反恐演习中,三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别是0.9,0.9,0.8,若至少有两枚导弹击中目标方可将其摧毁,则目标被摧毁的概率是( )A.0.998B.0.046C.0.936D.0.954【解析】选D.P=0.9×0.9×0.2+0.9×0.1×0.8+0.1×0.9×0.8+0.9×0.9×0.8=0.954.4.某人参加一次考试,4道题中答对3道题则为及格,已知他的解题正确率为0.4,则他能及格的概率为( )A. B. C. D.【解析】选B.他答对3道题的概率为·0.43·(1-0.4)=0.153 6,他答对4道题的概率为0.44=0.025 6,故他能及格的概率为0.153 6+0.025 6=0.179 2=.5.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n}:a n=如果S n为数列{a n}的前n项和,那么S7=3的概率为( )A.·B.·C.·D.·【解题指南】由数列{a n}的定义,S7=a1+a2+…+a7和S7=3知7次摸球中有2次摸取红球,5次摸取白球.【解析】选B.由S7=3知在7次摸球中有2次摸取红球,5次摸取白球,而每次摸取红球的概率为,摸取白球的概率为,则S7=3的概率为·.二、填空题(每小题5分,共15分)6.将一枚硬币连续抛掷5次,则正面向上的次数X的分布为__________. 【解析】由题意得,在5次独立重复试验中事件“正面向上”发生的次数为X,每次试验中事件“正面向上”发生的概率是0.5,所以X~B(5,0.5).答案:X~B(5,0.5)7.每次试验的成功率为p(0<p<1),重复进行10次试验,其中前7次都未成功,后3次都成功的概率为__________.【解析】由题意得,重复进行10次试验,其中前7次都未成功,后3次都成功的概率为p3(1-p)7.答案:p3(1-p)78.下列例子中随机变量ξ服从二项分布的有__________.①随机变量ξ表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,ξ表示n 次抽取中出现次品的件数(M<N);④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,ξ表示n 次抽取中出现次品的件数.【解析】对于①,设事件A为“抛掷一枚骰子出现的点数是3的倍数”,P(A)= .而在n次独立重复试验中事件A恰好发生了k次(k=0,1,2,…,n)的概率P(ξ=k)=××,符合二项分布的定义,即有ξ~B.对于②,ξ的取值是1,2,3,…,P(ξ=k)=0.9×0.1k-1(k=1,2,3,…),显然不符合二项分布的定义,因此ξ不服从二项分布.③和④的区别是:③是“有放回”抽取,而④是“无放回”抽取,显然④中n 次试验是不独立的,因此ξ不服从二项分布,对于③有ξ~B.故应填①③.答案:①③三、解答题(每小题10分,共20分)9.某校举行综合知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有6次答题的机会,选手累计答对4题或答错3题即终止其初赛的比赛.答对4题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题连续两次答错的概率为(已知甲回答每道题的正确率相同,并且相互之间没有影响).(1)求选手甲回答一个问题的正确率.(2)求选手甲可以进入决赛的概率.【解析】(1)设选手甲回答一个问题的正确率为p1,则(1-p1)2=,故选手甲回答一个问题的正确率p1=.(2)选手甲答了4道题进入决赛的概率为=,选手甲答了5道题进入决赛的概率为=;选手甲答了6道题进入决赛的概率为=;故选手甲可进入决赛的概率p=++=.【补偿训练】(2018·武威高二检测)某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响,已知射手射击了5次,求:(1)其中只在第一、三、五次击中目标的概率.(2)其中恰有3次击中目标的概率.【解析】(1)该射手射击了5次,其中只在第一、三、五次击中目标,是在确定的情况下击中目标3次,也即在第二、四次没有击中目标,所以只有一种情况,又各次射击的结果互不影响,故所求概率为P1=××××=.(2)该射手射击了5次,其中恰有3次击中目标,符合独立重复试验概率模型,故所求概率为P2=·=.10.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”“中立”“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率.(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.【解析】(1)该公司决定对该项目投资的概率为P=·+=.(2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:“同意”票张数“中立”票张数“反对”票张数事件A 0 0 3事件B 1 0 2事件C 1 1 1事件D 0 1 2 P(A)==,P(B)==,P(C)==,P(D)==,因为A,B,C,D互斥,所以P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=.。

二项分布经典例题+练习题

二项分布经典例题+练习题

二项分布1.n 次独立重复试验一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。

我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。

(1)独立重复试验满足的条件 第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。

(2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k k n k n C p p --。

2.二项分布若随机变量X 的分布列为()P X k ==k k n k nCp q -,其中0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)XB n p 。

1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。

2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31. (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.3.甲乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.(Ⅰ)求X的分布列;(Ⅱ)求X的数学期望E(X).2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ) 求甲获胜的概率;(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是12,试求需要比赛场数的期望.3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别有关?(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望()E X和方差()D X.5.(2007陕西理)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手被淘汰的概率; (Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数数期望.(注:本小题结果可用分数表示)6. 一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数ξ的概率分别布. (1)每次取出的产品不再放回去; (2)每次取出的产品仍放回去;(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.7. (2007•山东)设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx+c=0实根的个数(重根按一个计). (I )求方程x 2+bx+c=0有实根的概率; (II )求ξ的分布列和数学期望;8.(本题满分12分)某商场为吸引顾客消费推出一项惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. (I )若某位顾客消费128元,求返券金额不低于30元的概率;(II )若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元),求随机变量X 的分布列和数学期望.9. (本题满分12分)中国∙黄石第三届国际矿冶文化旅游节将于2012年8月20日在黄石铁山举行,为了搞好接待工作,组委会准备在湖北理工学院和湖北师范学院分别招募8名和12名志愿者,将这20名志愿者的身高编成如下茎叶图(单位:cm )湖湖9 18若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”,且只有湖北师范学院的“高个子”才能担任“兼职导游”。

条件概率与独立重复实验(十一)

条件概率与独立重复实验(十一)

, ∴甲抽到选择题,乙抽到判断题的概率是 …(6分) (2)记“甲、乙二人中至少有一人抽到选择题”为事件B, 其对立事件为“甲、乙二人都抽到判断题”,记为事件C, 则事件C含有的基本事件数为2×1=2…(8分) ∴ , ∴ ,…(11分) ∴甲、乙二人中至少有一人抽到选择题的概率是 .…(12分) 【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等 可能事件、对立事件概率计算公式的合理运用. 10. 【考点】离散型随机变量的期望与方差;相互独立事件的概率乘法公 式. 【专题】概率与统计. 【分析】(1)设事件Ai表示“乙第i次投中”,由已条件知P(Ai)= ,(i=1,2,3),由P(乙直到第3次才投中)=P( ),能求出乙直到第3次才投中的概率. (2)设乙投中的次数为η,由η~B(3,
女},{女,男},{女,女}. 记事件A为“其中一个是女孩”,事件B为“另一个也是女孩”,则A= {(男,女),(女,男),(女,女)},B={(男,女),(女, 男),(女,女)},AB={(女,女)}. 于是可知 P(A)= ,P(AB)= . 问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由 条件概率公式, 得P(B|A)= =
∴本题是一个独立重复试验, 根据独立重复试验的公式得到恰好击中目标3次的概率是C43×0.93×0.1 ∴②不正确, ∵至少击中目标1次的概率用对立事件表示是1﹣0.14. ∴③正确, 故答案为:①③ 【点评】本题考查独立重复试验,独立重复试验要从三方面考虑①每次 试验是在同样条件下进行,②各次试验中的事件是相互独立的,③每次 试验都只有两种结果. 8. 9. 【考点】互斥事件的概率加法公式;相互独立事件的概率乘法公式;列 举法计算基本事件数及事件发生的概率. 【专题】计算题;转化思想;综合法;概率与统计. 【分析】(1)甲、乙两人从5道题中不重复各抽一道,共有20种抽法 记“甲抽到选择题,乙抽到判断题”为事件A,求出事件A含有的基本事 件数,由此能求出甲抽到选择题,乙抽到判断题的概率. (2)记“甲、乙二人中至少有一人抽到选择题”为事件B,其对立事件 为“甲、乙二人都抽到判断题”,由此能求出甲、乙二人中至少有一人 抽到选择题的概率. 【解答】(本小题满分12分) 解:(1)甲、乙两人从5道题中不重复各抽一道,共有5×4=20种抽法 记“甲抽到选择题,乙抽到判断题”为事件A, 则事件A含有的基本事件数为3×2=6…(4分) ∴

独立重复试验

独立重复试验
P (k)为二项式[(1-p)+p]展开式的第k +1 项。 n
k Pn (k) = CnPk (1− P)n−k
例 1、 某所气象预报站的预报准确率为 % , 试计算 、 某所气象预报站的预报准确率为80% (保留两位有效数字): 保留两位有效数字) 次预报中恰有4次准确的概率 (1)5次预报中恰有 次准确的概率; ) 次预报中恰有 次准确的概率; 次预报中至少有4次准确的概率 (2)5次预报中至少有 次准确的概率。 ) 次预报中至少有 次准确的概率。 解: 这个问题为一个5次独立重复试验,其中“预报1次, 这个问题为一个 次独立重复试验,其中“预报 次 次独立重复试验 结果准确”为事件 , 结果准确”为事件A,p=0.8, 1-p=0.2。 , 。 次预报中4次准确的概率为 (1)5次预报中 次准确的概率为: ) 次预报中 次准确的概率为:
4 P (4) = C5 × 0.84 × 0.2 ≈ 0.41 5
次预报中至少有4次准确的概率为 (2)5次预报中至少有 次准确的概率为: ) 次预报中至少有 次准确的概率为:
4 5 ቤተ መጻሕፍቲ ባይዱ (4) + P (5) = C5 × 0.84 × 0.2 + C5 × 0.85 5 5 ≈ 0.410 + 0.328 ≈ 0.74
<
5 27
= ) C ( +
1 3 3 1 3
1 1 2 3
2 ⋅3
k Pn (k) = CnPk (1− P)n−k
例3、一射手一次射击命中10环、9环、8环、7环的 一射手一次射击命中10环 10 概率分别为0.1、0.3、0.4和0.1,此射手射击5 概率分别为0.1、0.3、0.4和0.1,此射手射击5次, 0.1 试求: 试求: (1)恰有3次命中8环以上(含8环)的概率; 恰有3次命中8环以上( 的概率; (2)恰有2次命中7环以下(不含7环)的概率。 恰有2次命中7环以下(不含7 的概率。

高中数学选修2-3n次独立重复试验和二项分布精选题目(附答案)

高中数学选修2-3n次独立重复试验和二项分布精选题目(附答案)

高中数学选修2-3n次独立重复试验和二项分布精选题目(附答案)(1)n次独立重复试验一般地,在相同条件下重复做的n次试验称为n次独立重复试验.(2)二项分布一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.一、n次独立重复试验1.某气象站天气预报的准确率为80%,计算:(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.解:(1)记预报一次准确为事件A,则P(A)=0.8.5次预报相当于5次独立重复试验,2次准确的概率为C25×0.82×0.23=0.051 2≈0.05,因此5次预报中恰有2次准确的概率约为0.05.(2)“5次预报中至少有2次准确”的对立事件是“5次预报全部不准确或只有1次准确”,其概率为C05×0.25+C15×0.8×0.24=0.006 72.∴所求概率为1-0.006 72=0.993 28≈0.99.(3)说明第1,2,4,5次中恰有1次准确.∴所求概率为C14×0.8×0.23×0.8=0.020 48≈0.02.故5次预报中恰有2次准确,且其中第3次预报准确的概率约为0.02.注:(1)运用n次独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n次独立重复试验,若不符合条件,则不能应用公式求解.(2)解决实际问题时往往需要把所求概率的事件分拆为若干个事件,而每个事件均为独立重复试验.2.已知两名射击运动员的射击水平:甲击中目标靶的概率是0.7,乙击中目标靶的概率是0.6.若让甲、乙两人各自向目标靶射击3次,则(1)甲恰好击中目标2次的概率是________;(2)两名运动员都恰好击中目标2次的概率是________.(结果保留两位有效数字)解析:由题意,甲向目标靶射击1次,击中目标靶的概率为0.7,乙向目标靶射击1次,击中目标靶的概率为0.6,两人射击均服从二项分布.(1)甲向目标靶射击3次,恰好击中2次的概率是C 23×0.72×(1-0.7)≈0.44. (2)甲、乙两人各向目标靶射击3次,恰好都击中2次的概率是[C 23×0.72×(1-0.7)]×[C 23×0.62×(1-0.6)]≈0.19.答案:(1)0.44 (2)0.193.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( )A .C 1012⎝⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582 B .C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582C .C 911⎝ ⎛⎭⎪⎫589⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫582 解析:选B 当ξ=12时,表示前11次中取到9次红球,第12次取到红球,所以P (ξ=12)=C 911·⎝ ⎛⎭⎪⎫389·⎝ ⎛⎭⎪⎫582·38=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582. 4.箱中装有标号分别为1,2,3,4,5,6的六个球(除标号外完全相同),从箱中一次摸出两个球,记下号码并放回,如果两球的号码之积是4的倍数,则获奖.现有4人参与摸球,恰好有3人获奖的概率是( )A.16625B.4625 C.624625 D.96625解析:选D 依题意得获奖的概率为1+5C 26=25(注:当摸出的两个球中有标号为4的球时,两球的号码之积是4的倍数,有5种情况;当摸出的两个球中没有标号为4的球时,要使两球的号码之积是4的倍数,只有1种情况,即摸出的两个球的标号为2,6),因此所求概率为C 34×⎝ ⎛⎭⎪⎫253×⎝ ⎛⎭⎪⎫1-25=96625.故选D.5.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为35,若40分为最低分数线,则该学生被选中的概率是( )A .C 45×⎝ ⎛⎭⎪⎫354×25 B .C 55×⎝ ⎛⎭⎪⎫355C .C 45×⎝⎛⎭⎪⎫354×25+C 55×⎝ ⎛⎭⎪⎫355D .1-C 35×⎝⎛⎭⎪⎫353×⎝ ⎛⎭⎪⎫252解析:选C 该学生被选中包括“该学生做对4道题”和“该学生做对5道题”两种情形.故所求概率为C 45×⎝ ⎛⎭⎪⎫354×25+C 55×⎝ ⎛⎭⎪⎫355. 6.在等差数列{a n }中,a 4=2,a 7=-4.现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________.(用数字作答)解析:由已知可求通项公式为a n =10-2n (n =1,2,3,…),其中a 1,a 2,a 3,a 4为正数,a 5=0,a 6,a 7,a 8,a 9,a 10为负数,∴从中取一个数为正数的概率为410=25,取得负数的概率为12.三次取数相当于三次独立重复试验.∴取出的数恰为两个正数和一个负数的概率为C 23×⎝ ⎛⎭⎪⎫252×⎝ ⎛⎭⎪⎫121=625. 答案:625二、二项分布1.加工某种零件需经过三道工序.设第一、二、三道工序的合格率分别为910,89,78,且各道工序互不影响,(1)加工一个零件是否是独立重复事件?求该零件的合格率;(2)从该种零件中任取3件,恰好取到X 件合格品,X 是否服从二项分布? (3)在(2)的条件下,求恰好取到1件合格品的概率.解:(1)加工一个零件需经过三道工序,各道工序互不影响,它们是独立的,但三道工序的合格率不同,因此不是独立重复试验.由事件的独立性知,该种零件的合格率P =910×89×78=710.(2)从该种零件中任取3件,相当于3次独立重复试验,恰好取到X 件合格品,即随机变量X 的取值是取到合格品的事件发生的次数,因此X 服从二项分布.(3)由二项分布的概率公式得,恰好取到1件合格品的概率P (X =1)=C 13×710×⎝ ⎛⎭⎪⎫3102=0.189. 注:利用二项分布来解决实际问题的关键是在实际问题中建立二项分布的模型,也就是看它是否是n 次独立重复试验,随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.2.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的考生人数为X ,求X 的分布列.解:(1)设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名考生选做同一道题的事件为“AB ∪A B ”,且事件A ,B 相互独立.所以P (AB ∪A B )=P (A )P (B )+P (A )P (B )=12×12+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-12=12.(2)随机变量X 的可能取值为0,1,2,3,4.且X ~B ⎝ ⎛⎭⎪⎫4,12.所以P (X =k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k =C k 4⎝ ⎛⎭⎪⎫124(k =0,1,2,3,4). 所以变量X 的分布列为3.某学生在上学路上要经过4个路口,假设在各个路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间至多是4 min 的概率. 解: (1)第三个路口首次遇到红灯,表示前2个路口是绿灯,第3个路口是红灯.(2)中事件指这名学生在上学路上最多遇到2次红灯.(1)设“这名学生在上学路上到第三个路口时首次遇到红灯”为事件A .因为事件A 等价于事件“这名学生在第一个和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为P (A )=⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-13×13=427.(2)设“这名学生在上学路上因遇到红灯停留的总时间至多是4 min ”为事件B ,“这名学生在上学路上遇到k 次红灯”为事件B k (k =0,1,2,3,4).由题意得P (B 0)=⎝ ⎛⎭⎪⎫234=1681,P (B 1)=C 14×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫233=3281, P (B 2)=C 24×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫232=2481. 所以事件B 的概率为P (B )=P (B 0)+P (B 1)+P (B 2)=89. 注:(1)二项分布的简单应用是求n 次独立重复试验中事件A 恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n ,p →写出二项分布的分布列→将k 值代入求解概率.(2)二项分布求解随机变量涉及“至少”“至多”问题的取值概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.4.某公司安装了3台报警器,它们彼此独立工作,且发生险情时每台报警器报警的概率均为0.9,求发生险情时,下列事件的概率.(1)3台都未报警;(2)恰有1台报警;(3)恰有2台报警;(4)3台都报警;(5)至少有2台报警;(6)至少有1台报警.解:令X为发生险情时3台报警器报警的台数,那么X~B(3,0.9),则X的分布列为P(X=k)=C k30.9k(1-0.9)3-k(k=0,1,2,3).(1)3台都未报警的概率P(X=0)=C03×0.90×0.13=0.001;(2)恰有1台报警的概率P(X=1)=C13×0.91×0.12=0.027;(3)恰有2台报警的概率P(X=2)=C23×0.92×0.1=0.243;(4)3台都报警的概率P(X=3)=C33×0.93×0.10=0.729;(5)至少有2台报警的概率P(X≥2)=P(X=2)+P(X=3)=0.243+0.729=0.972;(6)至少有1台报警的概率P(X≥1)=1-P(X=0)=1-0.001=0.999.5.下列随机变量X不服从二项分布的是()A.投掷一枚均匀的骰子5次,X表示点数为6出现的次数B.某射手射中目标的概率为p,设每次射击是相互独立的,X为从开始射击到击中目标所需要的射击次数C.实力相等的甲、乙两选手进行了5局乒乓球比赛,X表示甲获胜的次数D.某星期内,每次下载某网站数据被病毒感染的概率为0.3,X表示下载n 次数据电脑被病毒感染的次数解析:选B选项A,试验出现的结果只有两种:点数为6和点数不为6,且点数为6的概率在每一次试验中都为16,每一次试验都是独立的,故随机变量X服从二项分布;选项B,虽然随机变量在每一次试验中的结果只有两种,每一次试验事件相互独立且概率不发生变化,但随机变量的取值不确定,故随机变量X不服从二项分布;选项C,甲、乙的获胜率相等,进行5次比赛,相当于进行了5次独立重复试验,故X服从二项分布;选项D,由二项分布的定义,可知被感染次数X ~B (n,0.3).6.将一枚硬币连掷7次,如果出现k 次正面向上的概率等于出现k +1次正面向上的概率,那么k 的值为( )A .0B .1C .2D .3解析:选D 由题意,知C k 7⎝⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫127-k =C k +17⎝ ⎛⎭⎪⎫12k +1·⎝ ⎛⎭⎪⎫127-k -1,∴C k 7=C k +17,∴k +(k +1)=7,∴k =3.7.从学校乘汽车到火车站的途中有三个交通灯,假设在各个交通灯遇到红灯的事件为相互独立的,并且概率都是25,设ξ为途中遇到红灯的次数,求随机变量ξ的分布列.解:由题意ξ~B ⎝ ⎛⎭⎪⎫3,25,则P (ξ=0)=C 03⎝ ⎛⎭⎪⎫250⎝ ⎛⎭⎪⎫353=27125, P (ξ=1)=C 13⎝ ⎛⎭⎪⎫251⎝ ⎛⎭⎪⎫352=54125, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫351=36125, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫253=8125. 所以随机变量ξ的分布列为8.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.4]C .(0,0.6]D .[0.6,1)解析:选A 由题意,知C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,所以0.4≤p <1,故选A.9.设随机变量ξ~B (2,p ),η~B (4,p ),若P (ξ≥1)=59,则P (η≥2)的值为( )A.3281B.1127C.6581D.1681解析:选B 因为随机变量ξ~B (2,p ) ,所以P (ξ≥1)=1-P (ξ=0)=1-(1-p )2=59,解得p =13,所以η~B ⎝ ⎛⎭⎪⎫4,13.则P (η≥2)=1-P (η=0)-P (η=1)=1-⎝ ⎛⎭⎪⎫1-134-C 14⎝ ⎛⎭⎪⎫1-133·⎝ ⎛⎭⎪⎫131=1127.故选B. 10.如图,一个圆形游戏转盘被分成6个均匀的扇形区域,用力旋转转盘,转盘停止转动时,箭头A 所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A 指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每位家庭派一名儿童和一位成年人先后分别转动一次游戏转盘,得分情况记为(a ,b )(假设儿童和成年人的得分互不影响,且每个家庭只能参加一次活动).若规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.(1)求某个家庭获奖的概率;(2)若共有5个家庭参加家庭抽奖活动,记获奖的家庭数为X ,求X 的分布列.解:(1)某个家庭在游戏中获奖记为事件A ,则符合获奖条件的得分包括(5,3),(5,5),(3,5),共3种情况,∴P (A )=13×13+13×13+13×13=13. ∴某个家庭获奖的概率为13.(2)由(1)知每个家庭获奖的概率都是13,5个家庭参加游戏相当于5次独立重复试验.∴X ~B ⎝ ⎛⎭⎪⎫5,13.∴P (X =0)=C 05×⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫235=32243, P (X =1)=C 15×⎝⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫234=80243, P (X =2)=C 25×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=80243,P (X =3)=C 35×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫232=40243,P (X =4)=C 45×⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243,P (X =5)=C 55×⎝ ⎛⎭⎪⎫135×⎝ ⎛⎭⎪⎫230=1243.∴X 的分布列为1.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有1位同学能通过测试的概率为( )A .(1-p )nB .1-p nC .p nD .1-(1-p )n解析:选D 所有同学都不能通过测试的概率为(1-p )n ,则至少有1位同学能通过测试的概率为1-(1-p )n .2.计算机程序每运行一次都随机出现一个五位的二进制数A =a 1a 2a 3a 4a 5,其中A 的各位数中,a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23.记X =a 1+a 2+a 3+a 4+a 5,当程序运行一次时,则X =3的概率为( )A.6581B.2527C.827D.79解析:选C 已知a 1=1,要使X =3,只需后四位数中出现2个1和2个0,∴P (X =3)=C 24×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132=827.3.已知某班有6个值日小组,每个值日小组中有6名同学,并且每个小组中男生的人数相等,现从每个小组中各抽一名同学参加托球跑比赛,若抽出的6人中至少有1名男生的概率为728729,则该班的男生人数为( )A .24B .18C .12D .6解析:选A 设每个小组抽一名同学为男生的概率为p ,则由已知得1-(1-p )6=728729,即(1-p )6=1729,解得p =23,所以每个小组有6×23=4名男生,该班共有4×6=24名男生.4.箱子里有5个黄球,4个白球,每次随机取出1个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概率为( )A.35×14B.⎝ ⎛⎭⎪⎫593×49C .C 14×⎝ ⎛⎭⎪⎫593×49 D .C 14×⎝ ⎛⎭⎪⎫493×59解析:选B 取球次数X 是一个随机变量,X =4表明前3次取出的球都是黄球,第4次取出白球.这4次取球,取得黄球的概率相等,且每次取球是相互独立的,所以这是独立重复试验.设A 表示“取出的1个球是白球”,则P (A )=C 14C 19=49,P (A -)=1-49=59,故P (X =4)=P (A -A -A -A )=[P (A -)]3·P (A )=⎝ ⎛⎭⎪⎫593×49.5.一只蚂蚁位于数轴x =0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位长度,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为________.解析:由题意知,3秒内蚂蚁向左移动一个单位长度,向右移动两个单位长度,所以蚂蚁在x =1处的概率为C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫131=49. 答案:496.如果X ~B ⎝ ⎛⎭⎪⎫20,13,Y ~B ⎝ ⎛⎭⎪⎫20,23,那么当X ,Y 变化时,下面关于P (X =x k )=P (Y =y k )成立的(x k ,y k )的个数为________.解析:根据二项分布的特点可知,(x k ,y k )分别为(0,20),(1,19),(2,18),…,(20,0),共21个.答案:217.某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列.解:(1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110p =4950,解得p =15.(2)由题意,ξ的可能取值为0,1,2,3.P (ξ=0)=C 03⎝ ⎛⎭⎪⎫1103=11 000, P (ξ=1)=C 13⎝ ⎛⎭⎪⎫1-1101⎝ ⎛⎭⎪⎫1102=271 000, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫1-1102⎝ ⎛⎭⎪⎫1101=2431 000, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫1-1103⎝ ⎛⎭⎪⎫1100=7291 000,所以随机变量ξ的概率分布列为8.甲、乙两人各射击一次,击中目标的概率分别是23和34.假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则中止其射击.问:甲恰好射击5次后,被中止射击的概率是多少?解:设A ={甲射击一次击中目标},B ={乙射击一次击中目标},则A ,B相互独立,且P (A )=23,P (B )=34.(1)设C ={甲射击4次,至少有1次未击中目标},则P (C )=1-⎝ ⎛⎭⎪⎫234=6581. (2)设D ={两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次},∴P (D )=C 24·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫132·C 34·⎝ ⎛⎭⎪⎫343·14=18. (3)甲恰好射击5次,被中止射击,说明甲第4,5次未击中目标,第3次击中目标,第1,2两次至多一次未击中目标,故所求概率P =⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫132×23×⎝ ⎛⎭⎪⎫132=16243.。

高二数学《独立重复试验与二项分布》课时练习

高二数学《独立重复试验与二项分布》课时练习

2.2.3 独立重复试验与二项分布一、选择题1.(2020·辽宁省辽师大附中高二月考)下列命题正确的个数是( ) ①某同学投篮的命中率为0.6,他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6);②某福彩中奖概率为p ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,p );③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B ⎝ ⎛⎭⎪⎫n ,12A .0个B .1个C .2个D .3个解析:①某同学投篮的命中率为0.6,该同学投篮10次,是一个独立重复试验,所以他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6),所以该命题正确;②某福彩中奖概率为p ,某人一次买了8张,相当于买了8次,每次中奖的概率都为p ,相当于做了8次独立重复试验,中奖张数X 是一个随机变量,且X ~B (8,p ),所以该命题正确;③从装有5个红球、5个白球的袋中,由于它是有放回地摸球,直到摸出白球为止,所以它不是一个独立重复性试验,因为当X =1时,概率为12,当X =2时,概率为12×12=14,当X =3时,概率为12×12×12=18,依次类推,即每次试验摸到白球的概率不相等,所以它不是独立重复性试验,所以该命题错误.故选C. 答案:C2.某同学通过英语听力测试的概率为12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值是( )A .3B .4C .5D .6解析:选B 由题意得,1-C 0n⎝ ⎛⎭⎪⎫120⎝ ⎛⎭⎪⎫1-12n >0.9,即⎝ ⎛⎭⎪⎫12n<0.1,∴n ≥4.故选B.3.设随机变量ξ~B ⎝ ⎛⎭⎪⎫6,12,则P (ξ≤3)等于( )A.1132 B .732 C.2132D .764解析:P (ξ≤3)=P (ξ=0)+P (ξ=1)+P (ξ=2)+P (ξ=3)=C 06⎝ ⎛⎭⎪⎫126+C 16⎝ ⎛⎭⎪⎫126+C 26⎝ ⎛⎭⎪⎫126+C 36⎝ ⎛⎭⎪⎫126=2132.答案:C4.(2020·陕西省咸阳市实验中学高二月考)若随机变量ξ~B ⎝ ⎛⎭⎪⎫5,13,则P (ξ=k )最大时,k 的值为( )A .1或2B .2或3C .3或4D .5解析:随机变量ξ~B ⎝ ⎛⎭⎪⎫5,13,即试验5次,每次成功概率为13;所以P (ξ=0)=⎝ ⎛⎭⎪⎫235=32243,P (ξ=1)=C 15⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫234=80243, P (ξ=2)=C 25⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫233=80243, P (ξ=3)=C 35⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫232=40243,P (ξ=4)=C 45⎝ ⎛⎭⎪⎫134⎝ ⎛⎭⎪⎫23=10243, P (ξ=5)=⎝ ⎛⎭⎪⎫135=1243,所以P (ξ=k )最大时,k 的值为1或2.故选A. 答案:A5.(多选)(2020·山东省济宁一中高二期中)如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列命题成立的是( )A .这5个家庭均有小汽车的概率为2431 024B .这5个家庭中,恰有三个家庭拥有小汽车的概率为2764 C .这5个家庭平均有3.75个家庭拥有小汽车D .这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为81128 解析:由题得,小汽车的普及率为34,A .这5个家庭均有小汽车的概率为⎝ ⎛⎭⎪⎫345=2431 024,所以该命题是真命题;B .这5个家庭中,恰有三个家庭拥有小汽车的概率为C 35⎝ ⎛⎭⎪⎫343⎝ ⎛⎭⎪⎫142=135512,所以该命题是假命题;C .这5个家庭平均有3.75个家庭拥有小汽车,是真命题;D .这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为C 45⎝ ⎛⎭⎪⎫344⎝ ⎛⎭⎪⎫14+⎝ ⎛⎭⎪⎫345=81128,所以该命题是真命题.故选A 、C 、D. 答案:ACD 二、填空题6.一只蚂蚁位于数轴x =0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为________.解析:由题意知,3秒内蚂蚁向左移动一个单位,向右移动两个单位,所以蚂蚁在x =1处的概率为C 23×232×131=49. 答案:497.设X ~B (4,p ),且P (X =2)=827,那么一次试验成功的概率p 等于________.解析:P (X =2)=C 24p 2(1-p )2=827,即[p (1-p )]2=481. ∴p (1-p )=29. 解得p =13或p =23. 答案:13或238.某一批花生种子,如果每粒发芽的概率为45,那么播下3粒这样的种子恰有2粒发芽的概率是________.解析:依题意,恰有2粒种子发芽的概率P =C 23×⎝⎛⎭⎪⎫452× ⎝ ⎛⎭⎪⎫1-45=48125. 答案:48125 三、解答题9.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率.解:依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4), 则P (A i )=C i 4×13i ×234-i .(1)这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24×132×232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34×133×23+C 44×134=19.所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19. 10.某射手每次射击击中目标的概率是23,且各次射击的结果互不影响. (1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列.解:(1)设X 为射手在5次射击中击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23,在5次射击中,恰有2次击中目标的概率P (X =2)=C 25×⎝⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-233=40243. (2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881. (3)由题意可知,ξ的所有可能取值为0,1,2,3,6,P (ξ=0)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫133=127; P (ξ=1)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=23×⎝ ⎛⎭⎪⎫132+13×23×13+⎝ ⎛⎭⎪⎫132×23=29;P (ξ=2)=P (A 1A 2A 3)=23×13×23=427; P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232×13+13×⎝ ⎛⎭⎪⎫232=827;P (ξ=6)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫233=827.所以ξ的分布列是:。

独立重复试验

独立重复试验

例3:有10道单项选择题,每题有4个 选择项,某人随机选定每题中的一个 答案, (1)问答对5道题的概率是多少?
(2)答对多少题的概率最大?并求出 此种情况下概率的大小?
例3:有10道单项选择题,每题有4个选择项,某人随 机选定每题中的一个答案,求答对多少题的概率最大? 并求出此种情况下概率的大小? P 解:设“答对k道题”为事件A,用 表示其概率, 10 k k 1 11k 由 k 1 k 3 10k 3 k 1 1
相互独立事件同时发生的概率
独立重复试验
2007.05.17
复习回顾:
不可能同时发生的两个事件。 1、互斥事件: 对立事件:必有一个发生的互斥事件。 事件A(或B)是否发生对事件B 相互独立事件: (或A)发生的概率没有影响。 2、互斥事件有一个发生的概率公式:
P A B P A P B
原题:某射手连续射击4次,每次击中目标 的概率都是0.9,求恰好有三次命中的概率.
C 0.9 1 0.9
3 4 3 1
变式:某射手连续射击n次,每次击中 目标的概率都是p,求恰好有k次命 中的概率.
C P 1 P
k n k
nk
二、独立重复试验概率的计算
一般地,在n次独立重复试验中,如果事 件A在其中1次试验中发生的概率是P,那 么在n次独立重复试验中这个事件恰好发 生k次的概率
=0.432
课堂小结: 1.对n次独立重复试验的理解 2.公式 P n (k ) C P (1 P)
k n页
广式点心的主要特点是用料精博,品种繁多,款式新颖,口味清新多样,制作精细,咸甜兼备,能适应四季节令和各方人士的需要。各款点 心都讲究色泽和谐,造型各异,相映成趣,令人百食不厌。[1]

高中数学经典错题深度剖析及针对训练 独立事件、独立重复试验的概率和条件概率

高中数学经典错题深度剖析及针对训练 独立事件、独立重复试验的概率和条件概率

高中数学经典错题深度剖析及针对训练 独立事件、独立重复试验的概率和条件概率【标题01】把独立重复试验的概率定性为古典概型了【习题01】某食品厂为了检查一条自动包装流水线的生产情况,从该流水线上随机抽取40件产品作为样本,测得它们的重量(单位:克),将重量按如下区间分组:(490,495],(495,500],(500,505],(505,510],(510,515],得到样本的频率分布直方图(如图所示).若规定重量超过495克但不超过510克的产品为合格产品,且视频率为概率,回答下列问题:(1)在上述抽取的40件产品中任取2件,设X 为合格产品的数量,求X 的分布列和数学期望EX ; (2)若从流水线上任取3件产品,求恰有2件合格产品的概率.【经典错解】(1)由样本的频率分布直方图得,合格产品的频率为0.0450.0750.0550.8⨯+⨯+⨯=.所以抽取的40件产品中,合格产品的数量为400.832⨯=. 则X 可能的取值为0,1,2,所以()2824070195C P X C ===,()11832240641195C C P X C ===,()2322401242195C P X C ===, 因此X 的分布列为故X 数学期望76412431280121951951951955EX =⨯+⨯+⨯==. (2)由题得从流水线上任取3件产品,求恰有2件合格产品的概率213283404961235C C P C == 【详细正解】(1)同上;(2)因为从流水线上任取1件产品合格的概率为40.85=, 所以从流水线上任取3件产品,恰有2件合格产品的概率为223144855125P C ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.【习题01针对训练】某工厂在试验阶段大量生产一种零件,这种零件有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响.若仅有A ,A 、B 两项技术指标都不达标的(1)求一个零件经过检测为合格品的概率;(2)若任意抽取该种零件4个,设ξ表示其中合格品的个数,求ξ的分布列及数学期望E ξ.【标题02】把独立重复试验的概率定性为独立事件的概率了【习题02】某次数学考试中有三道选做题,分别为选做题1,2,3.规定每位考生必须且只须在其中选做一 题.甲、乙、丙三名考生选做这一题中任意一题的可能性均为13,每位学生对每题的选择是相互独立的,各 学生的选择相互之间没有影响.求这三个人选做的是同一道题的概率.【经典错解】由题得设这三个人选做的是同一道题为事件A ,则1111()33327P A =鬃=【详细正解】由题得设这三个人选做的是同一道题为事件A ,则131111()3339P A C =鬃?.【深度剖析】(1)经典错解错在把独立重复试验的概率定性为独立事件的概率了.(2)这三个人选做的是同一道题为事件A ,则A 实际上是三个互斥事件和和事件,因为甲乙丙可能同时选做第一题或第二题或第三题,而每一个互斥事件的概率又是三个独立事件同时发生的概率.错解把事件A 直接定性为独立事件同时发生的概率了,是错的.(3)解答概率题时,要先定性(六大概型:古典概型、几何概型、互斥事件的概率、独立事件同时发生的概率、独立重复试验的概率和条件概率),后定量.在定性时,要仔细分析,不要把事件定性错了.【习题02针对训练】某市公租房的房源位于A 、B 、C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中: (1)恰有2人申请A 片区房源的概率;(2)申请的房源所在片区的个数的ξ分布列与期望.【标题03】对事件)4,3,2,1(0=≥i S i 且28=S 理解错误【习题03】某人抛掷一枚均匀骰子,构造数列}{n a ,使⎩⎨⎧-=)(,1)(,1次掷出奇数当第次掷出偶数当第n n a n ,记n n a a a S +++= 21 求)4,3,2,1(0=≥i S i 且28=S 的概率.【经典错解】记事件A :28=S ,即前8项中,5项取值1,另3项取值-1,∴28=S 的概率858)21()(⋅=C A P记事件B :)4,3,2,1(0=≥i S i ,将)4,3,2,1(0=≥i S i 分为两种情形: (1)若第1、2项取值为1,则3,4项的取值在1和-1中任意取值;(2)若第1项为1,第2项为-1,则第3项必为1,第四项在1和-1中任意取值. ∴()P B =83)21()21(32=+ ∴所求事件的概率为()()P P A P B =⋅ =858)21(83⋅⋅C 【详细正解】∵)4,3,2,1(0=≥i S i ∴前4项的取值分为两种情形①若1、3项为1;则余下6项中3项为1,另3项为-1即可.即8361)21(⋅=C P ;②若1、2项为正,为避免与第①类重复,则第3项必为-1,则后5项中只须3项为1,余下2项为-1,即8352)21(⋅=C P ,∴所求事件的概率为783536215)21()(=⋅+=C C P【习题03针对训练】一种电脑屏幕保护画面,只有符号""""X O 和随机地反复出现,每秒钟变化一次,每次变化只出现""""X O 和之一,其中出现""O 的概率为p ,出现""X 的概率为q ,若第k 次出现""O ,则记1=k a ;出现""X ,则记1-=k a ,令n n a a a S +⋅⋅⋅++=21. (1)时,求3S 的分布列及数学期望. (2)时,求),,,且4321(028=≥=i S S i 的概率.【标题04】对事件“A B 、两组中有一组恰有两支弱队”没有理解清楚【习题04】已知8支球队中有3支弱队,以抽签方式将这8支球队分为A B 、两组,每组4支,求A B 、两组中有一组恰有两支弱队的概率.【经典错解】将8支球队均分为A B 、两组,共有4448C C 种方法:A B 、两组中有一组恰有两支弱队的分法为:先从3支弱队取2支弱队,又从5支强队取2支强队,组成这一组共有2325C C 种方法,其它球队分在另一组,只有一种分法.∴所求事件的概率为:7344482225=C C C C . 【详细正解】将8支球队均分为A B 、两组,共有4448C C 种方法:A B 、两组中有一组恰有两支弱队的分法为:先从3支弱队取2支弱队,又从5支强队取2支强队,组成这一组共有2325C C 种方法.再把这这组队伍分给A 组或B 组,有12C种方法,所以所求事件的概率P=76244482225=C C C C .【习题04针对训练】某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门.该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同. (1)求恰有2门选修课这3个学生都没有选择的概率;(2)设随机变量ξ为甲、乙、丙这三个学生选修数学史这门课的人数,求ξ的分布列及期望、方差.【标题05】概型判断错误【习题05】某人有5把不同的钥匙,逐把地试开某房门锁,试问他恰在第3次打开房门的概率.【经典错解】由于此人第一次不能开房门的概率为45,若第一次未开,第2次不能打开房门的概率应为34;所以此人第3次打开房门的概率为31. 【详细正解】第1次未打开房门的概率为54;第2次未开房门的概率为43;第3次打开房门的概率为31,所求概率为:51314354=⨯⨯=P .【习题05针对训练】某种项目的射击比赛,开始时在距目标100米处射击,如果命中记3分,且停止射击,若第一次射击未命中,可以进行第二次射击,但目标已经在150米处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200米处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,已知射手甲在100m 处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.(1)求这名射手在三次射击中命中目标的概率;(2)求这名射手比赛中得分的均值.【标题06】没有注意事件的先后顺序导致遗漏了一些情况 【习题06】某运动员射击一次所得环数x 的分布列如下:现进行两次射击,以该运动员两次射击中最高的环数作为他的成绩记为ξ,求ξ的分布列.【经典错解】ξ的取值为8,9,10.ξ=7,两次环数为7,7;ξ=8,两次成绩为7,8或8,8;ξ=9,两次成绩7,9或8,9或9,9;ξ=10,两次队数为7,10或8,10或9,10或10,10. ∴04.02.02.0)7(=⨯==ξP 15.03.03.02.0)8(2=+⨯==ξP23.03.03.03.03.02.0)9(2=+⨯+⨯==ξP 2.02.03.03.02.03.02.0)10(2=+⋅+⋅⨯==ξP (分布列略)【详细正解】8=ξ,即两次成绩应为7,8或8,7或8,8实际为三种情形,21.03.03.02.02)8(2=+⨯⨯==ξP 9=ξ两次环数分别为7,9(或9,7);8,9(或9,8),9.9∴39.03.03.03.023.02.02)9(2=+⨯⨯+⨯⨯==ξP ,同理36.02.042.03.0212.0)10(22=+⨯⨯+⨯==ξP 【深度剖析】(1)经典错解错在没有注意事件的先后顺序导致遗漏了一些情况.(2)8=ξ,即两次成绩应为7,8或8,7或8,8实际为三种情形,21.03.03.02.02)8(2=+⨯⨯==ξP9=ξ两次环数分别为7,9(或9,7);8,9(或9,8),9.9 ∴39.03.03.03.023.02.02)9(2=+⨯⨯+⨯⨯==ξP ,同理36.02.042.03.0212.0)10(22=+⨯⨯+⨯==ξP .【习题06针对训练】学校要用三辆校车从南校区把教职工接到校本部,已知从南校区到校本部有两条公路,校车走公路①堵车的概率为14,不堵车的概率为34;校车走公路②堵车的概率为p ,不堵车的概率为1p -.若甲、乙两辆校车走公路①,丙校车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.(Ⅰ)若三辆校车中恰有一辆校车被堵的概率为716,求走公路②堵车的概率;(Ⅱ)在(1)的条件下,求三辆校车中被堵车辆的辆数ξ的分布列和数学期望.【标题07】把独立事件的概率定性为互斥事件的概率了【习题07】甲投篮命中概率为0.8,乙投篮命中概率为0.7,每人投3次,两人恰好都命中2次的概率是多少?【经典错解】设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B ,则两人恰好投中2次为A B +.所以()()()P A B P A P B +=+ =825.03.07.02.08.0223223=⨯+⨯C C .【详细正解】设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B ,则两人恰好都投中2次为AB .所以()()()P AB P A P B =⋅ =2222330.80.20.70.3C C ⨯⨯⨯0.169=【习题07针对训练】地为绿化环境,移栽了银杏树2棵,梧桐树3棵.它们移栽后的成活率分别为23、12,每棵树是否存活互不影响,在移栽的5棵树中:(1)求银杏树都成活且梧桐树成活2棵的概率;(2)求成活的棵树ξ的分布列与期望.【标题08】把独立事件同时发生的概率定性为独立重复试验了【习题08】某射手射击一次,击中目标的概率是0.5,现该射手连射4次,(1)求恰好前3次击中的概率;(2)恰好第3次击中的概率.【经典错解】(1)由题得334111()()224P C ==;(2P =(10.5)(10.5)0.5(10.5)-⨯-⨯⨯-0.0625= 【详细正解】(1)由题得3111()2216P ==;(2)P =(10.5)(10.5)0.5(10.5)-⨯-⨯⨯-0.0625=【习题08针对训练】甲、乙两人进行乒乓球比赛,采用“五局三胜制”,即五局中先胜三局为赢,若每场比赛甲获胜的概率是23,乙获胜的概率是13,则比赛以甲三胜一负而结束的概率为________.【标题09】把古典概型定性为独立重复试验了【习题09】某产品100件,其中恰有5件次品,现从中任意抽取5件,求恰有一件次品的概率. 【经典错解】由题得145595(A)()()100100P C = 【详细正解】由题得145955100()0.2144C C P A C == 【深度剖析】(1)经典错解错在把古典概型定性为独立重复试验了.(2)所求事件的概型应该是一个古典概型,而错解把它当作是独立重复试验了.因为已知中的抽取,是一次性地从100件产品中抽取5件,所以没有抽多次,所以根本上不是独立重复试验.如果有的同学分5次来抽,每次抽取一件,也不是独立重复.因为第一次抽取时,抽到次品的概率是5100,第二次抽取时,只有99件产品,此时抽到次品的概率肯定不是5100,由于概率不同,所以也不是独立重复试验.【习题09针对训练】现有一批产品共有10件,其中8件为正品,2件为次品. (1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率; (2)如果从中一次取3件,求3件都是正品的概率. 【标题10】把条件概率定性为古典概型了【习题10】一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意抽取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是________.【经典错解】由题得228622108151()453C C P A C C ===【详细正解】记事件“甲取到2个黑球”为A ,“乙取到2个黑球”为B ,则有(|)P B A =()()P AB P A =22862288C C C C ⋅⋅=1528,即事件“甲取到2个黑球,乙也取到2个黑球”的概率是1528.【习题10针对训练】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.【标题11】审题不清忽略了“有放回地取”这个关键词【习题11】一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取1个.求连续取两次都是白球的概率;【经典错解】由题得22241()6A P A A ==.【详细正解】记事件A 为“连续取两次都是白球”,所以()P A 14.【深度剖析】(1)经典错解错在审题不清,忽略了“有放回地取”这个关键词.(2)抽样常用的有“有放回抽样”和“不放回抽样”两种,所以在解题时一定要注意抽样的方法.【习题11针对训练】一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出....3.次红球即停止........(1)从袋中不放回地取球,求恰好取4次停止的概率1P ; (2)从袋中有放回地取球;①求恰好取5次停止的概率2P ;②记5次之内(含5次)取到红球的个数为ξ,求随机变量ξ的分布列及数学期望.【标题12】对事件“某位顾客返券的金额为30元”没有理解透彻【习题12】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.求某位顾客返券的金额为30元的概率.【经典错解】设A =某位顾客返券的金额为30元,则111()236P A ==.【详细正解】设A =某位顾客返券的金额为30元,则11111()23323P A =+= .【习题12针对训练】某运动员射击一次所得环数x 的分布列如下:现进行两次射击,以该运动员两次射击中最高的环数作为他的成绩记为ξ,求(8)P x =.【标题13】把此种条件概率和“丢开法”条件概率混淆了【习题13】10名同学中,有7个人获得了全国数学联赛一等奖,3人没有获得.现在从中任选2名同学,已知其中1名同学获得全国一等奖,求另外一名同学也获得全国一等奖的概率. 【经典错解】由题得6293P ==. 【详细正解】设A =2名同学中有1人获得全国一等奖,B =2名同学中另外一个同学也获得全国一等奖,由题得27112737()211(|)(A)422C n AB P B A n C C C ====+,所以另外一名同学也获得全国一等奖的概率为12.【习题13针对训练】抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”.当已知蓝色骰子的点数为3或6时,则两颗骰子的点数之和大于8的概率为________.【标题14】把古典概型定性为独立重复试验概率了【习题14】某产品100件,其中恰有5件次品,现从中任意抽取5件,求恰有一件次品的概率. 【经典错解】由题得145595(A)()()100100P C = 【详细正解】由题得145955100()0.2144C C P A C == 【深度剖析】(1)经典错解错在把古典概型定性为独立重复试验概率了.(2)所求事件的概型应该是一个古典概型,而错解把它当作是独立重复试验了.因为已知中的抽取,是一次性地从100件产品中抽取5件,所以没有抽多次,所以根本上不是独立重复试验.如果有的同学分5次来抽,每次抽取一件,也不是独立重复.因为第一次抽取时,抽到次品的概率是5100,第二次抽取时,只有99件产品,此时抽到次品的概率肯定不是5100,由于概率不同,所以也不是独立重复试验. 【习题14针对训练】现有一批产品共有10件,其中8件为正品,2件为次品. (1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率. (2)如果从中一次取3件,求3件都是正品的概率.【标题15】概率定性定错了【习题15】某射手射击一次,击中目标的概率是0.5,现该射手连射4次,(1)求恰好前3次击中的概率;(2)恰好第3次击中的概率.【经典错解】(1)由题得334111()()224P C ==;(2)P= (10.5)(10.5)0.5(10.5)-⨯-⨯⨯-0.0625=【详细正解】(1)由题得3111()2216P ==;(2)P=(10.5)(10.5)0.5(10.5)-⨯-⨯⨯-0.0625=【习题15针对训练】甲、乙两人进行乒乓球比赛,采用“五局三胜制”,即五局中先胜三局为赢,若每场比赛甲获胜的概率是23,乙获胜的概率是13,则比赛以甲三胜一负而结束的概率为________.高中数学经典错解深度剖析及针对训练第29讲: 独立事件的概率、独立重复试验的概率和条件概率参考答案【习题01针对训练答案】(1(2满足条件的事件是恰有2人申请A 片区房源,共有2242C C ∴根据等可能事件的概率公式得到224248327C C P == (2)由题意知ξ的可能取值是1,2,3.431(1)327P ξ=== 231222341423414(2)327A C C C C C P ξ+=== 234344(3)39C A P ξ=== ∴ξ的分布列是:∴1144651232727927E ξ=⨯+⨯+⨯= 【习题03针对训练答案】(1)详见解析;(2)218780. 【习题03针对训练解析】(1)3,1,1,33--=S()()0318183=⨯+⨯+⨯-+⨯-=EX(2)前4次有2次出现""O 的概率是前4次有3次出现""O 的概率是前4次有4次出现""O 的概率是P (ξ= 0 ) =P (ξ= 1) =P (ξ= 2 ) =P (ξ= 3 ) =∴ξ的分布列为:E np ξ=34416D npq ξ==⨯⨯=【习题05针对训练答案】(1)95144;(2)8548.【习题05针对训练解析】记第一、二、三次射击命中目标分别为事件,,A B C三次均未命中目标的事件为D.依题意1 ()2P A=.(Ⅱ)依题意,设射手甲得分为ξ,则1121(3)(2)2299P Pξξ====⨯=171749(1)(0)298144144P Pξξ==⨯⨯===∴ξ的分布列为∴32102914414448Eξ=⨯+⨯+⨯+⨯=.【习题06针对训练答案】(Ⅰ; (Ⅱ【习题06针对训练解析】(1)由已知条件得即31p=,则所以p的值为(2)解:ξ可能的取值为0,1,2,3所以ξ的分布列为:,【习题7针对训练答案】(1)6;(2)详见解析.ξ∴的分布列为6E ξ∴=. 【习题08针对训练答案】827【习题08针对训练解析】甲三胜一负即前3次中有2次胜1次负,而第4次胜,∴P=C3223⎛⎫⎪⎝⎭2·13⎛⎫⎪⎝⎭·23=827,∴甲三胜一负而结束的概率为827.【习题09针对训练答案】(1)0.512;(2)7 15.【习题10针对训练答案】(1)0.55 ; (2)311;(3)1.23.【习题10针对训练解析】(1)记A为事件:“一续保人本年度的保费不高于基本保费”.则()0.200.200.100.050.55P A=+++=(2)记B为事件:“一续保人本年度的保费比基本保费60%”.()0.100.050.15P B=+=所以()()0.153 (|A)()()0.5511P AB P BP BP A P A====,所以一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率为3 11.(3)续保人本年度的平均保费估计值为0.850.300.15 1.250.20 1.50.20 1.750.1020.05 1.23 EX a a a a a a a =⨯+⨯+⨯+⨯+⨯+⨯=所以续保人本年度的平均保费与基本保费的比值为1.23.【习题11针对训练答案】(1)128;(2) ①881②13181.【习题11针对训练解析】(1)113363149128C C APA==(2)①22224121833381 P C⎛⎫⎛⎫=⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭②随机变量ξ的取值为0,1,2,3; 由n 次独立重复试验概率公式()()1n kk kn n P k C p p -=-,得()505132013243P C ξ⎛⎫==⨯-= ⎪⎝⎭ ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()231511802133243P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭()328080173124381P ξ++==-=随机变量ξ的分布列是ξ的数学期望是 3280801713101232432432438181E ξ=⨯+⨯+⨯+⨯=∴()P B =1036=518. 当蓝色骰子的点数为3或6时,两颗骰子的点数之和大于8的结果有5个,故()P AB =536.∴(|)P B A =()()P AB P A =53613=512.【习题14针对训练答案】(1)0.512;(2)715. 【习题14针对训练解析】(1)有放回地抽取3次,按抽取顺序(,,)x y z 记录结果,则,,x y z 都有10种可能,所以基本事件总数为10×10×10=103(种);设事件A 为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此338()0.51210P A ==.(2)可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(,,)x y z ,。

高二数学独立重复试验某事件发生的概率试题答案及解析

高二数学独立重复试验某事件发生的概率试题答案及解析

高二数学独立重复试验某事件发生的概率试题答案及解析1.实验女排和育才女排两队进行比赛,在一局比赛中实验女排获胜的概率是2/3,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则实验女排获胜的概率等于A.B.C.D.【答案】B【解析】实验女排要获胜必须赢得其中两局,可以是1,2局,也可以是1,3局,也可以是2,3局.故获胜的概率为:,故选B.【考点】独立事件概率计算.2.设随机变量,则________.【答案】.【解析】由随机变量,利用二项分布的概率计算公式能求出.【考点】二项分布与次独立重复试验的模型.3.设随机变量,则________.【答案】.【解析】由随机变量,利用二项分布的概率计算公式能求出.【考点】二项分布与次独立重复试验的模型.4.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误A.①B.①③C.③D.②【答案】C【解析】解:若,我们有的把握认为吸烟与患肺病有关系,不表示有的可能患有肺病,也不表示在100个吸烟的人中必有99人患有肺病,故①不正确.也不表示某人吸烟,那么他有的可能患有肺病,故②不正确,若从统计量中求出有是吸烟与患肺病的比例,表示有的可能性使得推断出现错误,故③正确.【考点】独立性检验5.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.(1)求这支篮球队首次胜场前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好胜了3场的概率;(3)求这支篮球队在6场比赛中胜场数的期望和方差.【答案】(1)(2)(3)【解析】解:(1)P=2×=.4种,(2)6场胜3场的情况有C6∴P=C333=20××=.6(3)由于X服从二项分布,即X~B,∴E(X)=6×=2,D(X)=6××=.6.某大厦的一部电梯从底层出发后只能在第18,19,20层可以停靠,若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用X表示这5位乘客在第20层下电梯的人数,求随机变量X的分布列.【答案】X的分布列为【解析】解:考查每一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,即X~B,k k5-k,k=0,1,2,3,4,5,即有P(X=k)=C5从而X的分布列为X0123457.甲、乙两人进行乒乓球比赛,采用“五局三胜制”,即五局中先胜三局为赢,若每场比赛甲获胜的概率是,乙获胜的概率是,则比赛以甲三胜一负而结束的概率为________.【答案】【解析】甲三胜一负即前3次中有2次胜1次负,而第4次胜,∴P=C22··=,3∴甲三胜一负而结束的概率为.8.甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为求:(1)乙至少击中目标2次的概率;(2)乙恰好比甲多击中目标2次的概率【答案】(1)(2)【解析】解:(1)乙至少击中目标2次的概率为(2)设乙恰好比甲多击中目标2次为事件A,包含以下2个互斥事件:乙恰好击中目标2次且甲恰好击中目标0次B1P(B1)=B2:乙恰好击中目标3次且甲恰好击中目标1次,P(B2)=则P(A)=P(B1)+P(B2)所以,乙恰好比甲多击中目标2次的概率为【考点】独立重复试验点评:独立重复试验的概率的求法:一般地,如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率。

概率问题之多次独立重复试验-罗勇

概率问题之多次独立重复试验-罗勇

概率问题之多次独立重复试验中公教育研究与辅导专家 罗勇概率问题我们的高中开始接触过,而在各类公职考中也都是常见考点,由此可见其重要性非同一般,概率问题分为两类,一类是古典概率,另一类是多次独立重复试验,今天我们就重点来聊聊多次独立重复试验。

一、独立事件独立事件是指事件A 的发生与否对事件B 发生的概率没有影响,同样事件B 的发生与否对事件A 发生的概率没有影响A 和B 是独立关系,那么A 事件和B 事件同时发生的概率表示为P(AB)=P(A)*P(B)。

二、多次独立重复试验1、示例根据天气预报,未来4天中每天下雨的概率均为0.6,则未来4天中仅有一天下雨的概率P ?解析:未来四天有一天下雨应该是四天中任意选择一天14C ,而这一天下雨的概率是16.0,不下雨的概率应该是3)6.01(-,所以最终的概率应该是3114)6.01(6.0-⨯C 。

2、公式某一实验独立重复n 次,其中某一事件A 每次发生的概率都是p ,那么事件A 恰好发生k 次的概率为:k n k k n p p C P --=)1(。

三、例题展示例1、射击运动员每次射击命中 10 环的概率是 80%,5 次射击有 4 次命中 10 环的概率是( )。

A.80%B.63.22%C.40.96%D.32.81%中公解析:C 项。

分析题干,明确告知5次射击中有4次命中10环的概率,每次命中10环的概率是80%,也就是0.8,符合多次独立重复试验的n 次试验A 事件发生k 次的概率,所以我们可以直接套用公式得到列式为:14452.08.0⨯C =0.4096=40.96%,因此,选择C 项。

例2、某场羽毛球单打比赛采取三局两胜制。

假设甲选手在每局都有 80%的概率赢乙选手,那么这场单打比赛甲有多大的概率战胜乙选手?A.0.768B.0.800C.0.896D.0.924中公解析:C 项。

本题是打比赛之类的题目,最终要求的是甲战胜乙的概率,这时候需要思考的是三局两胜制的比赛,甲战胜乙的情况有两种:一种是甲比乙为2:0的情况,另一种是甲比乙为2:1的情况。

5.独立重复试验练习

5.独立重复试验练习

基础达标1.若在一次测量中出现正误差和负误差的概率都是12,则在5次测量中恰好出现2次正误差的概率是( )A .516B .25C .58D .1322.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第X 次首次测到正品,则P (X =3)=( )A .C 23⎝⎛⎭⎫142×34B .C 23⎝⎛⎭⎫342×14C .⎝⎛⎭⎫142×34 D .⎝⎛⎭⎫342×143.甲、乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A .827B .6481C .49D .894.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值为( )A .6B .5C .4D .35.口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{a n },a n =⎩⎪⎨⎪⎧-1,第n 次摸取红球1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57×(13)2×(23)5B .C 27×(23)2×(13)5C .C 57×(13)2×(13)5 D .C 27×(13)2×(23)2 6.下列例子中随机变量ξ服从二项分布的有________.(填序号) ①随机变量ξ表示重复抛掷一枚骰子n 次,出现点数是3的倍数的次数; ②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;③有一批产品共有N 件,其中M 件为次品,采用有放回抽取方法,ξ表示n 次抽取中出现次品的件数(M <N );④有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,ξ表示n 次抽取中出现次品的件数.7.某市公租房的房源位于甲、乙、丙三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的.则该市的4位申请人中恰有2人申请甲片区房源的概率为________.8.(2019·郑州高二检测)甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.则乙恰好比甲多击中目标2次的概率为________.9.(2019·西安高二检测)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分析求甲打完3局、4局、5局才能取胜的概率. (2)求按比赛规则甲获胜的概率.10.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)用X 表示该地的5位车主中甲、乙两种保险都不购买的车主数,求X 的分布列.[能力提升11.一个口袋内有n (n >3)个大小相同的球,其中3个红球和(n -3)个白球,已知从口袋中随机取出1个球是红球的概率为p .若6p ∈N ,有放回地从口袋中连续4次取球(每次只取1个球),在4次取球中恰好2次取到红球的概率大于827,则p =________,n =________.12.张师傅驾车从公司开往火车站,途经4个交通岗,这4个交通岗将公司到火车站分成5个路段,每个路段的驾车时间都是3分钟,如果遇到红灯要停留1分钟.假设他在各交通岗是否遇到红灯是相互独立的,并且概率都是13.则张师傅此行程时间不少于16分钟的概率为________.13.(2019·沧州高二检测)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱).(1)求在1次游戏中, ①摸出3个白球的概率; ②获奖的概率;(2)求在2次游戏中获奖次数X 的分布列.14.(选做题)某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若这两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审,则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率均为0.5,复审能通过的概率为0.3,各专家评审的结果相互独立.(1)求某应聘人员被录用的概率.(2)若4人应聘,设X为被录用的人数,试求随机变量X的分布列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率(独立重复试验)练习(三)
1.判断下列试验是不是独立重复试验,为什么?
(1)依次投掷四枚质地不同的硬币.
(2)某人射击,击中目标的概率是稳定的,他连续射击了10次
(3)口袋内装有5个白球、3个黑球、2个红球,依次从中抽取5个球. 2.某产品的次品率P=0.05,进行重复抽样检查,选取3个样品,求其中恰有两个
次品的概率和其中至少有两个次品的概率.
3.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;
(2)5次预报中至少有4次准确的概率.
4.某车间的5台机床在1小时内需要工人照管的概率都是1
4
,求1小时内5台
机床中至少2台需要工人照管的概率是多少?
5.保险公司为了估计公司的利润,需要计算各种各样的概率。

有一种人寿保险,现有1000人参加,如果一年中参加这种保险的每个人的死亡概率为0.002 ,试求未来一年中恰有2个人死亡的概率。

(只列式子,不计算)
6.(1)设在四次独立重复试验中,事件A至少发生一次的概率为80
81
,试求在
一次试验中事件A发生的概率
(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为1
3

求在第n次才击中目标的概率
概率(n 次独立重复试验)练习(四)
1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成
功后3次都成功的概率为( )
()A 33710
(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有
一人中奖的概率为( )
()A 32100.70.3C ⨯⨯ ()B 12
30.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅ 3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好
逐把试开,则此人在3次内能开房门的概率是 ( )
()A 33351A A - ()B 211232323355
A A A A A A ⋅⋅+ ()C 331()5- ()D 22112333232()()()()5555
C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能
正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )
()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33
C
5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得
到不少于29环的概率为 .(设每次命中的环数都是自然数)
6.一名篮球运动员投篮命中率为60%,在一次决赛中投10个球,则投中的球
数不少于9个的概率为 .
7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081
,则此射手的命中率为 .
8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为3
1,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率
9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求: ⑴全部成活的概率; ⑵全部死亡的概率;
⑶恰好成活3棵的概率; ⑷至少成活4。

相关文档
最新文档