讲义 角平分线辅助线
角平分线四大辅助线模型 总结+习题+解析
角平分线四大辅助线模型角平分线的性质为证明线段或角相等开辟了新的途径,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.涉及到角平分线的考点主要是性质、判定以及四大辅助线模型,在初二上期中、期末考试中都是经常考察的方向。
角平分线性质:角平分线上的点到角两边的距离相等.角平分线判定:到角的两边距离相等的点在角的角平分线上.四大模型1、角平分线+平行线,等腰三角形必出现已知:OC平分∠AOB,CD∥OB交OA于D.则△ODC为等腰三角形,OD=CD.2、角平分线+两垂线,线等全等必出现已知:OC平分∠AOB.辅助线:过点C作CD⊥OA,CE⊥OB.则CD=CE,△ODC ≌△OEC.3、角平分线+一垂线,中点全等必出现已知:OC平分∠AOB,DC垂直OC于点C.辅助线:延长DC交OB于点E.则C是DE的中点,△ODC ≌△OEC.4、角平分线+截长补短线,对称全等必出现已知:OC平分∠AOB,截取OE=OD,连接CD、CE.则△ODC和△OCE关于OC对称,即△ODC ≌△OEC.【核心考点一】角平分线的性质与判定1.(2016•张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上一个动点,若3PA =,则PQ 的最小值为( )A B .2 C .3 D .【分析】首先过点P 作PB OM ⊥于B ,由OP 平分MON ∠,PA ON ⊥,3PA =,根据角平分线的性质,即可求得PB 的值,又由垂线段最短,可求得PQ 的最小值.2.(2016秋•抚宁县期末)如图,在ABC ∆中,AD 是它的角平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ∆∆= )A .3:4B .4:3C .16:9D .9:16【分析】利用角平分线的性质,可得出ABD ∆的边AB 上的高与ACD ∆的AC 上的高相等,估计三角 形的面积公式,即可得出ABD ∆与ACD ∆的面积之比等于对应边之比.3.(2017春•崇仁县校级月考)如图,在ABC ∆中,90ACB ∠=︒,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )。
人版八年级数学[上册]第十二章《全等三角形的综合、角平分线》讲义(有答案解析)
第7讲 全等三角形的综合、角平分线⑴平移全等型⑵ 对称全等型⑶ 旋转全等型⑴、角平分线上的点到角的两边的距离相等; ⑵、到角的两边距离相等的点在角的平分线上. 它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB ,这种对称的图形应用得也较为普遍,ABOPPOBAABOP角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.考点1、三角形全等综合1、如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L 上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,ED=AB这时,测ED的长就得AB得长,判定△ACB≌△ECD的理由是()A. SASB. ASAC. SSS D .AAS2、如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( B )A.PO B.PQ C.MO D.MQ(1)(2)3、如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的点B处打开,墙壁厚是35cm,点B与点O的垂直距离AB长是20cm,在点O处作一直线平行于地面,在直线上截取OC=35cm,过C作OC的垂线,在垂线上截取CD=20cm,连接OD,然后,沿着D0的方向打孔,结果钻头正好从点B处打出.这是什么道理?4、1805年,法军在拿破仑的率领下与德军在莱茵河畔激战.德军在莱茵河北岸Q处,如图所示,因不知河宽,法军大炮很难瞄准敌营.聪明的拿破仑站在南岸的点O处,调整好自己的帽子,使视线恰好擦着帽舌边缘看到对面德国军营Q 处,然后他一步一步后退,一直退到自己的视线恰好落在他刚刚站立的点0处,让士兵丈量他所站立位置B与0点的距离,并下令按照这个距离炮轰德军.试问:法军能命中目标吗?请说明理由.用帽舌边缘视线法还可以怎样测量,也能测出河岸两边的距离吗?5、某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙、丙三位同学分别设计出如下几种方案:甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.乙:如图②,先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离.丙:如图③,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.(1)以上三位同学所设计的方案,可行的有______;(2)请你选择一可行的方案,说说它可行的理由.1、已知: 如图,AB=AE,BC=ED, ∠B= ∠E,AF ⊥CD,F 为垂足, 求证:CF=DF.2、已知:如图,AB=CD,BC=DA,AE=CF.求证:BF=DE.3、如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?1、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC. 求证:(1)EC=BF;(2)EC⊥BF.2、已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC。
角平分线的几种辅助线作法与三种模型
一、角平分线的三种“模型”模型一:角平分线+平行线→等腰三角形如图1,过∠AOB平分线OC上的一点P,作PE∥OB,交OA于点E,则EO=EP.A A AE P C E CD FE PO B B C O F B图1 图2 图3例1如图2,∠ABC,∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.求证:BD+EC=DE.模型二:角平分线+垂线→等腰三角形如图3,过∠AOB平分线OC上的一点P,作EF⊥OC,交OA于点E,交OB于点F,则OE=OF,PE=PF.例2如图4,BD是∠ABC的平分线,AD⊥BD,垂足为D,求证:∠BAD=∠DAC+∠C.模型三:角平分线+翻折→全等三角形在△ABC中,AD是∠BAC的平分线,沿角平分线AD将△ABD往右边折叠就得到如图5的图形.此时有:△ABD≌△AB/D.此翻折相当于在三角形的一边截取线段等于另一边,或延长一边等于另一边构造出相等的线段.用此方法可解决一些不相等的线段和差类问题.DA EA P/ B CD B/ B C图5 图6例3如图6,点P是△ABC的外角∠CAD的平分线上的一点.求证:PB+PC>AB+AC.二、角平分线定理使用中的几种辅助线作法一、已知角平分线,构造三角形1、如图所示,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F。
求证:1()2BE AC AB=-2、在△ABC中,AD平分∠BAC,CE⊥AD 于E.求证:∠ACE=∠B+∠ECD.21FED CBAABDCEF图1 / 22 / 2二、已知一个点到角的一边的距离,过这个点作另一边的垂线段1、如图所示,∠1=∠2,P 为BN 上的一点,并且PD ⊥BC于D ,AB +BC=2BD 。
求证:∠BAP +∠BCP=180°。
三、已知角平分线和其上面的一点,过这一点作角的两边的垂线段1、如图所示,在△ABC 中,PB 、PC 分别是∠ABC 的外角的平分线,求证:∠1=∠22、2、 如图2,AB ∥CD ,E 为AD 上一点,且BE 、CE 分别平分∠ABC 、∠BCD .求证:AE=ED3、(四(2))四、以角的平分线为对称轴构造对称图形例1 如图1,在△ABC 中,AD 平分∠BAC ,∠C=2∠B .求证:AB=AC+CD .2、例题:如图2,BC >AB ,BD 平分∠ABC ,且∠A+∠C=1800,求证:AD=DC .五、利用角的平分线构造等腰三角形1、 如图,在△ABC 中,AB=AC ,BD 平分∠ABC ,DE ⊥BD 于D ,交BC 于点E .求证:CD=21BE .N P EDC B AG21P F EC B AA G C H D E F图2B ACDE 图1 ABDE CB ACDE 图2。
初一春季讲义.09全等三角形的辅助线之角平分线
②如右图,当D在线段MA延长线,B在射线AN上时,求证:CD=CB
如图所示,AC为∠MAN平分线,过点C发射两条射线CD,CB,使得∠DCB+∠MAN=180°,分别交直线MA,NA于点D,B。
①如左图,当D,B在线段MA,NA上时,求证:CD=CB
②如右图,当D在线段MA延长线,B在射线AN上时,求证:CD=CB
如图所示,正方形ABCD底边的延长线为CE,CF为∠DCE的角平分线,P为底边BC所在直线上第一个动点,连接AP,过点P作直线PF⊥AP,交CF于点F
1)求证:AP=PF
2)当点P移动到CE上时,求证:AP=PF
第九讲全等三角形的辅助线之角平分线
一、角平分线的定义
【概念】把一个角分成两个相等的角的射线叫做角的平分线。
【性质】在角的平分线上的点到这个角的两边的距离相等。
【判定】如果一条射线的端点与角的顶点重合,且把一个角分成两个等角,那么这条射线是这个角的平分线,到一个角两边距离相等的点在这个角的平分线上。
二、角平分线的三大模型
【概念】
如图,在△ABC中,∠B=2∠C,∠BAC的平分线,AD交BC与D.求证: .
(1)如图,△ABC中,∠A的平分线交BABC中, ,∠BAC的平分线AD交BC与D.求证: .
在△ABC中,已知 与 的角平分线交于点D,连接AD,求证:AD平分
如图,已知 , ,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,求证:①AC=AE+CD②
如图,已知 ,AD、CE分别是 、 的平分线,AD、CE相交于点F.
求证:①AC=AE+CD②
如图所示,∠MAN=120°,AC为∠MAN平分线,过点C发射两条射线CD,CB,使得∠DCB=60°,分别交直线MA,NA于点D,B。
初三几何3角平分线辅助线.基础(2013-2014)教师
B
C
【答案】(利用角平分作对称模型)如图,延长 BD 到 E ,使 DE AD ,在 BC 上截取 BF BA .
∵ 1 2 , BD 为公共边,∴ BAD ≌ BFD , AD FD , ADB FDB .
∵ 1 1 ABC 1 1 180 100 20 ,
2
22
∴ ADB 180 A 1 180 100 20 60 .
B
C
【例4】 如图,在 ABC 中, BAC 60 , AD 是 BAC 的平分线,且 AC AB BD ,求 ABC 的度数.
A
B
D
【答案】解法一(补短):
如图所示,延长 AB 至 E 使 BE BD ,连接 ED 、 EC .
A
由 AC AB BD 知 AE AC ,
而 BAC 60o ,则 AEC 为等边三角形.
结论:① CD CE ② OD OE 2OC cos
D C
③ S四边形DOEC S△ODC S△OCE OC 2 sin cos
难度较大,记得经常复习(庆功独家提供,见几何小秘籍)
O
E
B
中考满分必做题
一、往角两边截取相等的线段
☞考点说明:解读:在角两边截取相等的线段,这也是角平分线常用的辅助线,常用于解决线段和差问题 把两条折线段“拉直”成线段,利用角平分线可以构造全等三角形. 同样地,将长线段拆分成两段,之后再利用三角形全等亦可,此思路也是十分自然的. 需要说明的是,无论采取哪种方法,都体现出关于角平分线“对称”的思想. 常用方法分别称之为“补短法”和“截长法”,它们是证明等量关系时优先考虑的方法.
1
∴ FDB 60 ,故 FDC 60 , EDC 60 .
《实验校》八上数学第十一讲—角平分线辅助线方法
第十一讲辅助线方法三辅助线方法(三)已知一个角的角平分线:(1)过角平分线上的点向角的两边作垂线段;(2)截取角的两边对应线段相等证全等;(3)过角平分线上的点作一边的平行线,形成等腰三角形;(4)作角平分线的垂线,形成等腰三角形(或已知角平分线及角平分线的垂线,延长后形成等腰三角形).1.如图,在△ABC中,∠A=2∠B,CD平分∠ACB,若AC=3,AD=2,求BC的长度.2.如图,四边形ABCD的对角线相交于点O,∠BAD=∠BCD=60°,∠CBD=55°,∠ADB=50°,求∠AOB 的度数.3.如图,在四边形ABCD中,AB=AC,∠ABD= 60°,∠ADB=78°,∠BDC=24°,求∠DBC.4.如图,∠CAB=40°,D为∠CAB的平分线与线段BC的垂直平分线的交点,连接CD,求∠DCB.5.如图,△ABC中,D是BC上一点,已知∠DAC=30°,∠DAB=75°,CE平分∠ACB交AB于接DE,求∠DEC.3 6.如图,已知B,C,E三点在同一条直线上,CD平分∠ACE,DB= DA,DM上BE于M.若AC=2,BC=2求CM.7.如图,在四边形ABCD中,∠BAD+∠BCD =180°,BD平分∠ABC,求证:AD=CD.8.如图,在等腰三角形ABC中,∠BAC =100°,BD平分∠ABC,求证:BD+AD=BC.9.如图,△ABC中,∠ABC= 60°,AD,CE分另0平分∠BAC,∠ACB,AD,CE相交于点P.(1)求∠CPD的度数;(2)若AE=3,CD=7,求线段AC的长.10.已知,如图,在Rt△ABC中,AB=BC,点F在BC的延长线上,CD平分∠ACF,∠ADB=45°,求证:BC=AE.11.如图,已知△ABC的面积为6cm2,BP为∠ABC的角平分线,AP⊥BP于点P,求△BCP的面积.12.在△ABC中,∠ABC=2∠C,BD平分∠ABC,交AC于D,AE⊥BD,垂足为E.求证:AC=2BE.13.如图,在平面直角坐标系中,OA= OB,点P为△ABO的角平分线的交点,若PN⊥P A交x轴于N,延长OP交AB于M,写出AO,ON,PM之间的数量关系,并证明.14.如图,Rt△ABC中,D是CB延长线上一点,以AD为边作△ADE,连BE,且AE=AD,∠ABC=∠ABE.(1)求证:∠DBE=2∠BAC;(2)试判断BE-BD与BC的数量关系,并证明.15.在△ABC中,∠ABC=110°,∠C的平分线交AB于E,在AC上取点D,使得∠CBD=40°.(1)求证:点E到AC和BD的距离相等;(2)连接ED,求∠CED的度数.16.如图,在△ABC中,BD平分∠ABC交AC于点D,CP平分∠ACB的外角交BD延长线于点P,连AP,点F是BC延长线上一点,PF=P A.若∠DPC=α,求∠PFC的度数(用含α的式子表示).17.如图,已知BF平分△ABC的外角∠ABE,D为BF上一点,∠ABC=∠ADC.(1)如图1,求证:∠DAB=∠DCB;(2)判断△ADC形状并证明;(3)如图2,过点D作DH⊥AB于点,若AH=7,BH=1,求线段CB的长.18.如图,P 为△ABC 的外角∠BCD 的平分线上一点,P A =PB .(1)如图1,求证:∠P AC =∠PBC ;(2)如图2,作PE 上BC 于E ,若AC =5,BC =11,求S △PCE :S △PBE ;(3)如图3,若M ,N 分别是边AC ,BC 上的点,且∠MPN =21∠APB ,则线段AM ,MN ,BN 之间有何数量关系,并说明理由.19.射线AE 为△ABC 的外角平分线,P 为射线AE 上不与A 点重合的一个动点.(1)如图1,若BP 平分∠ABC ,且∠ACB =50°,则∠APB = ;(直接写结果)(2)如图1,求证不论P 在何处,总有AB +AC <PB +PC ;(3)如图2,若点P 在AE 上,作PM ⊥BA 于M 点,且∠BPC =∠BAC ,求AMAB AC .。
2025年九年级中考数学一轮考点复习课件:微专题四角平分线的常见辅助线作法
∴△CDE≌△CDF(SAS),
∴CE=CF,∴BC=BF+CF=AB+CE.
类型四
作平行线,构造等腰三角形
情形1:
条件
如图,点P是∠AOB的平分线上一点
示例
结论
PQ=OQ, △POQ是等腰三角形
情形2:
条件
如图,OC是∠AOB的平分线,点D是OA上的一点
示例
结论
OE=OD,△EOD是等腰三角形
长BD至点E,使ED=AD,连接CE.求证:BC=AB+CE.
证明:如图所示,在BC上取一点F使得BF=AB,连接DF.
∵∠A=100°,∠ABC=40°,
∴∠ACB=∠ABC=40°.
∵BD平分∠ABC,
∴∠ABD=∠FBD=20°.
= ,
在△ABD和△FBD中, Байду номын сангаас = ∠,
+ = .
类型二
遇角平分线的垂线,联想“三线合一”
条件 如图,点P是∠MON的平分线上一点,AP⊥OP于点P
示例
结论 Rt△BOP≌Rt△AOP,△AOB是等腰三角形,OP垂直平分AB
对点训练
3.如图,△ABC的面积为6,AP垂直∠ABC的平分线BP于点P,求△PBC的面
积.
解:如图,延长AP交BC于点E.
∵AC平分∠BAD,
∴∠BAC=∠EAC.
又∵AC=AC,
∴△BAC≌△EAC(SAS),
∴∠B=∠AEC,BC=EC.
∵∠D= ∠B,
∴∠D= ∠AEC,∴∠D=∠ECD,
∴CE=DE,∴BC=DE,
∴AD=AE+DE=AB+BC=4+2=6.
人教版八年级下数学机构讲义:角平分线及中点相关辅助线
一、角平分线相关辅助线1.对于几何图形的每条辅助线的画出都是有据可依的,没有一条辅助线是“天兵天将”的。
2.辅助线的来源在于我们平时对辅助线画法的积累以及对题目深刻的理解与研究,所以平时要注意开发我们的思维,清晰几何辅助线的产生以及具体的解题思路。
3.解题过程:分析题目(条件和结论),可从条件出发或者从结论出发或者二者同时进行分析知识点一:由角平分线想到的辅助线技巧一:截长补短技巧二:角分线上点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。
知识归纳角平分线及中点相关辅助线技巧三:作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。
(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。
技巧四:做平行例1:如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
【对应练习】1、如图,AB=2AC,∠BAD=∠CAD,DA=DB,求证DC⊥AC。
精讲精练2、已知如图,在△ABC中,∠B=60°,AD、CE是△ABC的角平分线,并且它们交于点O,(1)求:∠AOC的度数;(2)求证:AC=AE+CD.例2:如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。
求证:∠ADC+∠B=180。
【对应练习】1、如图,在△ABC中,∠A=90 ,AB=AC,∠ABD=∠CBD。
求证:BC=AB+AD。
2、已知如图,△ABC的角平分线BM、CN相交于点P。
求证:∠BAC的平分线也经过点P。
例3:已知:如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。
1、如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE.求证:AF=AD+CF2、如图所示,BD=DC,DE ⊥BC,交∠BAC 的平分线于E ,EM ⊥AB,EN ⊥AC,求证:BM=CN二、中点相关辅助线一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半知识归纳A CNEMB D A B CED 当堂练习斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形二、与中点有关的辅助线秘籍一:倍长中线解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。
2024年中考数学二轮复习题型突破课件—与角平分线有关的辅助线问题
180°- ∠BFD = 80°.∴ ∠FDC = 60°.∵ ∠EDC =
∠ADB=180°-∠1-∠A=180°-20°-100°=60°,
∴ ∠EDC = ∠FDC. 又 ∵ CD = CD , ∴
△DCE≌△DCF.∴ CE=CF.∴ BC=BF+CF=AB
积是
16
.
第3题
1
2
3
4
5
6
7
4. 如图,∠ADE=∠BDE=15°,EF∥DB,EC⊥DB于点C.若EC= 3,
则EF的长为
2
.
第4题
1
2
3
4
5
6
7
5. 如图,在△ABC中,AD是∠BAC的平分线,BE是△ABD的边AD上的
中线.若△ABC的面积是24,AB=5,AC=3,则△ABE的面积是
2024年中考数学二轮复习题型突破—与角平分线有关的辅助线问
题
主讲人:XXX
类型1 作垂线
模型解读:如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点
A,PB⊥ON于点B,则PA=PB,△OAP≌△OBP.
典例1 如图,∠AOB=30°,OC平分∠AOB,CD⊥OA于点D,CE∥AO
交OB于点E,OE=20cm,求CD的长.
∠NBD.在△CDM和△BDN中,∵ ∠CMD=∠BND=90°,∠MCD=
∠NBD,DM=DN,∴ △CDM≌△BDN.∴ CD=BD
第6题答案
1
2
3
4
5
6
7
7. 如图,在△ABC中,∠BAC=60°,∠ABC=80°,∠BAC与∠ABC的平
22.第四章 微专题 遇到角平分线如何添加辅助线
微专题 遇到角平分线如何添加辅助线 例2 如图,在△ABC中,AD平分∠BAC,E是BC的中点,AD⊥BD,若 AC=7,AB=3,则DE的长为 2 .
例2题图
微专题 遇到角平分线如何添加辅助线
例3 如图,在四边形ABCD中,AC为∠BAD的平分线,BC=2,若∠B =2∠D=120°,求CD的长.
在△ABD和△ACF中,
∠ABD=∠ACF
AB=AC
,
∠BAD=∠CAF=90°
∴△ABD≌△ACF(ASA),
∴BD=CF,
∵BD平分∠ABC,
∴∠EBC=∠EBF,
第5题图
F
微专题 遇到角平分线如何添加辅助线
在△BCE和△BFE中,
∠EBC=∠EBF
BE=BE
,
∠CEB=∠FEB
∴△BCE≌△BFE(ASA),
微专题 遇到角平分线如何添加辅助线
例5
一题多解法 如图,在△ABC中,AB=3,BC=6,BD平
分∠ABC,求
CD AD
的值.
解:如图,过点D作DE∥AB交BC于点E,
则∠ABD=∠BDE,
∵BD平分∠ABC, ∴∠ABD=∠DBC, ∴∠BDE=∠DBE,Байду номын сангаас∴DE=BE,
E
例5题图
微专题 遇到角平分线如何添加辅助线
AC上,连接DE,DF,DE=4,若∠BAC+∠EDF=180°,则DF的长
为___4____.
第4题图
解题关键点 在AB上截取AG=AF,连接DG,构造全等三角形.
微专题 遇到角平分线如何添加辅助线
5.如图,在等腰直角△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的
三角形角平分线辅助线的几种做法
三角形角平分线辅助线的几种做法在数学的世界里,三角形就像一个个神秘的小家伙,角平分线更是它们的秘密武器。
嘿,你听说过吗?角平分线可是让三角形变得更有趣的神器。
想象一下,三角形的每个角都是一个小演员,而角平分线就像是导演,把它们的表演完美地分开,让它们各自发挥光彩。
说实话,这个过程就像是把一个美味的披萨切成两半,不仅让每一块都看起来更好看,还能让每个人都吃得开心。
好吧,咱们先聊聊怎么画这个角平分线。
你得有一个三角形。
你可以用铅笔和尺子,或者直接拿出那根神奇的圆规。
把三角形的一个角作为出发点,然后把圆规的尖尖扎在那个角上,转一圈,画一个小圆。
这个小圆像是个神秘的传送门,连接着三角形的两条边。
拿着尺子,把这个小圆和两条边的交点连起来。
哇,看看!这就是你的角平分线!就像魔法一样,瞬间就完成了。
角平分线不只是个小花样。
它还有很多秘密等着你去挖掘。
比如,你知道角平分线有什么特别的性质吗?它能把三角形的两条边分成比例,嘿,这可真是个大新闻!这就意味着,如果你知道了其中一条边的长度,你几乎可以轻松算出另一条边的长度。
就像在玩拼图,拼对了,结果就全对。
这个性质在解决一些复杂问题时,简直就像给你开了一扇窗,让光线照进来。
说到这里,很多小伙伴可能会问,角平分线到底有什么用呢?它在生活中随处可见!比如,建筑师在设计房子的时候,常常会用到角平分线来确保房子的结构均匀美观。
你想啊,谁不想住在一个美得让人拍手叫好的房子里呢?再比如,艺术家在创作的时候,也会用角平分线来找到最佳的构图,让作品更加和谐。
可以说,角平分线就像是生活中的一位默默无闻的英雄,虽然不张扬,但却在每一个重要时刻都能派上用场。
再说说不同的画法吧。
很多时候,老师会教我们用尺子和圆规。
可是,你知道吗?其实用简单的手法也能画出角平分线!比如,只用一个普通的三角板,就能轻松搞定。
把三角板的一个边对准三角形的一个边,另一边对准角的顶点,轻轻一划,嘿,角平分线又出现了!简单得不能再简单了,谁说数学就得复杂呢?此外,还有一种很酷的方式,叫做“分段法”。
全等辅助线方法专题——角平分线
全等三角形辅助线方法---角平分线一、知,为行之始1.角平分线的定义2.角平分线的画法3.角平分线的性质定理4.角平分线的判定定理二、行,为知之成1.角平分线辅助线方法一:作垂线(角平分线的性质与判定定理)作法:过角平分线上一点向角两边作垂线,构造全等【例】如图,在四边形ABCD 中,BC>BA ,AD=CD ,BD 平分∠ABC ,求证:∠A+∠C=180°.2.角平分线辅助线方法二:截长(角平分线的对称性)作法:在角的两边截取相等的线段构造全等CDBA【例】如图,四边形ABCD中,AD∥BC,点E在CD上,EA,EB分别平分∠DAB和∠CBA,设AD=x,BC=y 且(x﹣3)2+|y﹣4|=0.求AB的长.3.角平分线辅助线方法三:延长(三线合一)作法:延长垂直于角平分线的线段与角的另一边相交构成等腰三角形【例】如图,在△ABC中,∠C=90°,CA=CB,AD平分∠BAC,BE⊥AD于点E,求证:AD=2BE.三、知行合一1.如图,Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠,交BC 于点D ,10AB =,15ABD S ∆=,则CD 的长为( ) A .2 B .3 C .4 D .52.如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,CD =2,BD=3,Q 为AB 上一动点,则DQ 的最小值为( )A .1B .2C .2.5D .33.如图,△ABC 的三条角平分线交于O 点,已知△ABC 的周长为20,OD ⊥AB ,OD=5,则△ABC 的面积=_________.4.如图,已知△ABC 的周长是16,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D 且OD=2,△ABC 的面积是________________.5.如图,在△ABC中,∠C=90°,以点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D.若CD=1,AB=4,则△ABD的面积是_________.6.如图,在△ABC中,以原点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若AC:AB=3:4,△ACD的面积是21,则△ABD的面积是______.7.如图,四边形ABCD中,CA平分∠BAD,CB=CD,CF⊥AD于F. (1)求证:∠ABC+∠ADC=180°;(2)若AF:CF=3:4,CF=8,求四边形ABCD的面积.8.如图,△ABC 中AP 平分∠CAB ,PD 垂直平分BC 交AP 于P ,PE AE ⊥于E . (1)当28PCB ∠=︒时,BPC ∠的度数是__________;(2)求证:2AC AB AE +=.9.四边形ABCD 中,,AB CD DE ∥平分ADC ∠.(1)如图1,若90ABE ∠=︒,E 是BC 的中点,求证:AE 平分BAD ∠;(2)如图2,若AE 平分BAD ∠,求证:E 是BC 的中点;(3)在(2)的条件下,若8,6AE DE ==,求四边形ABCD 的面积.10.如图1,在ABC △中,BD 平分,ABC CE ∠平分,ACB BD ∠与CE 交于点O .(1)如图1,若60A ∠=︒,①求BOC ∠的度数;②作OF AB ⊥于点F ,求证:2AE AD AF +=;(2)如图2,若490,7A OD OB ∠=︒=,则OE OC的值为____________.图1CDB AF E O图2CD B A O E。
有关角平分线的辅助线做法
由角平分线想到的辅助线角平分线具有两条性质:a对称性;b、角平分线上的点到角两边的距离相等。
对于有角平分线的辅助线的作法,一般有两种。
①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。
通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。
至于选取哪种方法,要结合题目图形和已知条件。
与角有关的辅助线(一)、截取构全等如图1-1,/ AOCh BOC如取OE=OF并连接DEDF,则有△ OED^A OFD从而为我们证明线段、角相等创造了条件。
例1. 如图1-2,AB//CD,BE平分/ ABC CE平分/ BCD 点E 在AD上,求证:BC=AB+CD分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。
但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。
简证:在此题中可在长线段BC上截取BF=AB再证明CF=CD从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE与CD的延长线交于一点来证明。
自已试一试。
例2. 已知:如图1-3,AB=2ACZ BAD2 CAD DA=DB 求证DC!AC D C分析:此题还是利用角平分线来构造全等三角形。
构造的方法还是截取线段相等。
其它问题自已证明例3. 已知:如图1-4,在△ ABC中,/ C=2/ B,AD平分/ BAC求证:AB- AC=CD分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。
用到的是截取法来证明的,在长的线段上截取短的线段,来证明。
专题03与角平分线有关的辅助线的三种考法(解析版)【压轴必考】八年级数学上册压轴题攻略(人教版)
专题03 与角平分线有关的辅助线的三种考法类型一、角平分线上的点向两边作垂线例1.如图,已知30AOB Ð=°,P 是AOB Ð的平分线OC 上的任意一点,PD OA ∥交OB 于点D ,PE OA ^于点E ,如果8cm OD =,求PE 的长.【答案】4cm【详解】如图,过点P 作PF ⊥OB 于点F ,∵OC 平分∠AOB ,PE ⊥OA ,∴PF =PE ,∠EOP =∠DOP∵PD P OA ,∠AOB =30°,∴∠PDF =∠AOB =30°,∴∠DPO =∠EOP =∠DOP ,∴ PD =OD =8cm在Rt △PDF 中,∵∠DFP=90°,∠FDP=30°∴PF =12PD =4cm ,∴ PF =PE =4cm .【变式训练1】如图,ABC D 中,90ACB Ð=°,点,D E 分别在边BC ,AC 上,DE DB =,DEC B Ð=Ð.求证: AD 平分BAC Ð.【答案】见解析【详解】证明:过点D 作DF AB ^于点F . 90DFB \Ð=°90ACB Ð=°Q ,DFB ACB DC AC \Ð=Ð^.在DCE D 和DFB D 中,,,,DCE DFB DEC B DE DB Ð=ÐìïÐ=Ðíï=î()DCE DFB AAS \D D ≌.DC DF \=.\点D 在BAC Ð的平分线上.\AD 平分BAC Ð..【变式训练2】图,已知AE ⊥AB ,AF ⊥AC .AE =AB ,AF =AC ,BF 与CE 相交于点M .(1)EC =BF ;(2)EC ⊥BF ;(3)连接AM ,求证:AM 平分∠EMF .【答案】(1)见解析.(2)见解析.(3)见解析.【解析】(1)证明:∵AE ⊥AB ,AF ⊥AC ,∴∠BAE =∠CAF =90°,∴∠BAE +∠BAC =∠CAF +∠BAC ,即∠EAC =∠BAF ,在△ABF 和△AEC 中,∵AE AB EAC BAF AF AC =ìïÐ=Ðíï=î,∴△ABF ≌△AEC (SAS ),∴EC =BF ;(2)根据(1),∵△ABF ≌△AEC ,∴∠AEC =∠ABF ,∵AE ⊥AB ,∴∠BAE =90°,∴∠AEC +∠ADE =90°,∵∠ADE =∠BDM (对顶角相等),∴∠ABF +∠BDM =90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.(3)作AP⊥CE于P,AQ⊥BF于Q.如图:∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.【变式训练3】已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.【答案】(1)见解析;(2)AD﹣AB=2BE,理由见解析;(3)3.【详解】(1)证明:如图1,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,∵∠CBE +∠ADC =180°,∠CDF +∠ADC =180°,∴∠CBE =∠CDF ,在△BCE 和△DCF 中,90CBE CDF CEB CFD CE CF °Ð=ÐìïÐ=Ð=íï=î,∴△BCE ≌△DCF (AAS )∴BC =DC ;(2)解:AD ﹣AB =2BE ,理由如下:如图2,过点C 作CF ⊥AD ,垂足为F ,∵AC 平分∠MAN ,CE ⊥AB ,CF ⊥AD ,∴CE =CF ,AE =AF ,∵∠ABC +∠ADC =180°,∠ABC +∠CBE =180°,∴∠CDF =∠CBE ,在△BCE 和△DCF 中,90CBE CDF CEB CFD CE CF °Ð=ÐìïÐ=Ð=íï=î,∴△BCE ≌△DCF (AAS ),∴DF =BE ,∴AD =AF +DF =AE +DF =AB +BE +DF =AB +2BE ,∴AD ﹣AB =2BE ;(3)解:如图3,在BD 上截取BH =BG ,连接OH ,∵BH =BG ,∠OBH =∠OBG ,OB =OB在△OBH 和△OBG 中,BH BG OBH OBG OB OB =ìïÐ=Ðíï=î,∴△OBH ≌△OBG (SAS )∴∠OHB =∠OGB ,∵AO 是∠MAN 的平分线,BO 是∠ABD 的平分线,∴点O 到AD ,AB ,BD 的距离相等,∴∠ODH =∠ODF ,∵∠OHB =∠ODH +∠DOH ,∠OGB =∠ODF +∠DAB ,∴∠DOH =∠DAB =60°,∴∠GOH =120°,∴∠BOG =∠BOH =60°,∴∠DOF =∠BOG =60°,∴∠DOH =∠DOF ,在△ODH 和△ODF 中,DOH DOF OD OD ODH ODF Ð=Ðìï=íïÐ=Ðî,∴△ODH ≌△ODF (ASA ),∴DH =DF ,∴DB =DH +BH =DF +BG =2+1=3.类型二、过边上的点向角平分线作垂线构造等腰三角形例1.如图,△ABC 的面积为9cm 2,BP 平分∠ABC ,AP ⊥BP 于P ,连接PC ,则△PBC 的面积为______cm 2.【答案】4.5【详解】解:延长AP 交BC 于E ,∵BP 平分∠ABC ,∴∠ABP=∠EBP,∵AP ⊥BP ,∴∠APB=∠EPB=90°,在△ABP 和△EBP 中,ABP EBP PB PB APB EPB Ð=Ðìï=íïÐ=Ðî,∴△ABP ≌△EBP (ASA ),∴AP=PE ,∴,APB EPB ACP ECP S S S S ==V V V V ∴119 4.522BPC ABC S S ==´=V V cm 2,故答案为4.5.【变式训练1】如图,在△ABC 中,∠A =90°,AB =AC ,∠ABC 的平分线BD 交AC 于点D ,CE ⊥BD ,交BD 的延长线于点E ,若BD =4,则CE =________.【答案】2【详解】解:如图,延长BA 、CE 相交于点F ,∵BD 平分∠ABC ,∴∠ABD=∠CBD ,在△BCE 和△BFE 中,90ABD CBD BE BE BEF BEC ìïíïÐÐÐаî====,∴△BCE ≌△BFE (ASA ),∴CE=EF,∵∠BAC=90°,CE ⊥BD ,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF ,在△ABD 和△ACF 中,90ABD ACF AB AC BAC CAF ìïíïÐÐÐаî====,∴△ABD ≌△ACF (ASA ),∴BD=CF ,∵CF=CE+EF=2CE ,∴BD=2CE=4,∴CE=2.故答案为:2.【变式训练2】如图,在△ABC 中,∠C =90°,BC =AC ,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,AE =12BD ,且DF ⊥AB 于F ,求证:CD =DF 【答案】见解析【解析】证明:延长AE 、BC 交于点F. 如图所示:∵AE ⊥BE ,∴∠BEA=90°,又∠ACF=∠ACB=90°,∴∠DBC+∠AFC=∠FAC+∠AFC=90°,∴∠DBC=∠FAC ,在△ACF 和△BCD 中,90ACF BCD AC BC FAC DBC Ð=Ð=°ìï=íïÐ=Ðî,∴△ACF ≌△BCD(ASA),∴AF=BD.又AE=12BD ,∴AE=12AF ,即点E 是AF 的中点,∴AB=BF ,∴BD 是∠ABC 的角平分线,∵∠C=90°,DF ⊥AB 于F ,∴CD=DF.类型三、利用角平分线的性质,在角两边截长补短例1.已知:如图,//AC BD ,AE ,BE 分别平分CAB Ð和ABD Ð,点E 在CD 上.用等式表示线段AB 、AC 、BD三者之间的数量关系,并证明.【答案】AB=AC+BD,证明见详解.【详解】解:延长AE,交BD的延长线于点F,∵//AC BD,∴∠F=∠CAF,∵AE平分CABÐ,∴∠CAF=∠BAF,∴∠F=∠BAF,∴AB=BF,∵BE平分ABFÐ,∴AE=EF,∵∠F=∠CAF,∠AEC=∠FED,∴△ACE≌△FDE,∴AC=DF,∴AB=BF=BD+DF=BD+AC.【变式训练1】如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.(1)求证:∠AOC=90°+12∠ABC;(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.【答案】(1)见解析;(2)43AE+CD=AC,证明见解析【解析】(1)证明:∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC+∠BCA=180°-∠ABC,∵∠BAC的平分线AD与∠BCA的平分线CE交于点O.∴∠OAC=12∠BAC,∠OCA=12∠BCA,∴∠OAC+∠OCA=12(∠BAC+∠BCA)=12(180°-∠ABC)=90°-12∠ABC,∴∠AOC=180°-(∠OAC+∠OCA)=180°-(90°-12∠ABC),即∠AOC =90°+12∠ABC ;(2)解:43AE +CD =AC ,证明:如图2,∵∠AOC =90°+12∠ABC =135°,∴∠EOA =45°,在AC 上分别截取AM 、CN ,使AM =AE ,CN =CD ,连接OM ,ON ,则在△AEO 和△AMO 中,AE AM EAO MAO AO AO =ìïÐ=Ðíï=î,∴△AEO ≌△AMO ,同理△DCO ≌△NCO ,∴∠EOA =∠MOA ,∠CON =∠COD ,OD =ON ,∴∠EOA =∠MOA =∠CON =∠COD =45°,∴∠MON =∠MOA =45°,过M 作MK ⊥AD 于K ,ML ⊥ON 于L ,∴MK =ML ,S △AOM =12AO ×MK ,S △MON =12ON ×ML ,∴AOM MON S AO ON S D D =,∵AOM MON S AM S MN D D =,∴AO AM ON MN=,∵AO =3OD ,∴31AO OD =,∴31AO AM ON MN ==,∴AN =43AM =43AE ,∵AN +NC =AC ,∴43AE +CD =AC .【变式训练2】如图,∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC .求证:AE 是∠DAB 的平分线.(提示:过点E 作EF ⊥AD ,垂足为F .)【答案】见解析【详解】证明:过点E作EF⊥DA于点F,∵∠C=90°,DE平分∠ADC,∴CE=EF,∵E是BC的中点,∴BE=CE,∴BE=EF,又∵∠B=90°,EF⊥AD,∴AE平分∠DAB.【变式训练3】如图所示,已知B(﹣2,0),C(2,0),A为y轴正半轴上的一点,点D为第二象限一动点,点E在BD的延长线上,CD交AB于点F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CDE;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否发生变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.【答案】(1)证明过程见解析;(2)证明过程见解析;(3)∠BAC =60°,理由见解析【解析】(1)证明:∵∠BDC =∠BAC ,∠DFB =∠AFC ,又∵∠ABD +∠BDC +∠DFB =∠BAC +∠ACD +∠AFC =180°,∴∠ABD =∠ACD ;(2)证明:过点A 作AM ⊥CD 于点M ,作AN ⊥BE 于点N ,如下图所示:则∠AMC =∠ANB =90°.∵OB =OC ,OA ⊥BC ,∴AB=AC ,由(1)可知:∠ABD =∠ACD ,∴△ACM ≌△ABN (AAS ),∴AM =AN .∴DA 平分∠CDE .(角的两边距离相等的点在角的平分线上);(3)解:∠BAC 的度数为60°,理由如下:在CD 上截取CP=BD ,连接AP ,如下图所示:∵CD=AD+BD ,∴AD=PD .∵AB=AC ,∠ABD =∠ACD ,BD=CP ,∴△ABD ≌△ACP (SAS ) ,∴AD=AP ,∠BAD =∠CAP ,∴AD=AP=PD ,即△ADP 是等边三角形,∴∠DAP =60°.∴∠BAC =∠BAP +∠CAP =∠BAP +∠BAD =60°.【变式训练4】已知:如图1,在ABC V 中,AD 是BAC Ð的平分线.E 是线段AD 上一点(点E 不与点A ,点D 重合),满足2Ð=ÐABE ACE .(1)如图2,若18Ð=°ACE ,且EA EC =,则DEC Ð=________°,AEB Ð=_______°.(2)求证:AB BE AC +=.(3)如图3,若BD BE =,请直接写出ABE Ð和BAC Ð的数量关系.【答案】(1)36,126;(2)见解析;(3)3180Ð+Ð=°ABE BAC 【详解】(1)∵18Ð=°ACE ,且EA EC =,∴∠EAC =∠ACE =18°,∴∠DEC =∠EAC +∠ACE =36°,又∵AD 是BAC Ð的平分线,∴∠BAD =∠CAD =18°,∵2Ð=ÐABE ACE ,∴∠ABE =36°,∴1801836126Ð=°-°-°=°AEB ;故答案为:36,126(2)在AC 上截取AF AB =,连接FE ,又∵AE =AE ,EAF EAB Ð=Ð,∴()V V ≌AEF AEB SAS ,∴EF EB =,AFE ABEÐ=Ð∵∠AFE =∠ACE +∠FEC ,∠ABE =2∠ACE ,∴FEC FCE Ð=Ð,∴EF FC=∴=+=+AC AF FC AB BE ;(3)∵BD BE =,∴BED BDE Ð=Ð,∵BED ABE BAE Ð=Ð+Ð,Ð=Ð+ÐBDE DAC ACD ,∠CAD =∠BAE ,∴∠ACD =∠ABE ,∵∠ABE =2∠ACE ,∴∠ACD =2∠ACE ,∴CE 平分∠ACB ,∴点E 到CA 、CB 的距离相等,又∵AD 是BAC Ð的平分线,∴点E 到AC 、AB 的距离相等,∴点E 到BA 、BC 的距离相等,∴BE 是ABD Ð的平分线,∴∠ABE =∠CBE ,∴Ð=Ð=ÐABE ACD DBE ,又∵180ACB ABC BAC Ð+Ð+Ð=°,∴2180Ð+Ð+Ð=°ABE ABE BAC ,即3180Ð+Ð=°ABE BAC .课后训练1.如图①,CDE Ð是四边形ABCD 的一个外角,AD //BC ,BC BD =,点F 在CD 的延长线上,FAB FBA Ð=Ð,FG AE ^,垂足为G .(1)求证:①DC 平分BDE Ð;②BC DG AG +=.(2)如图②,若4AB =,3BC =,1DG =.求AFD Ð的度数.【答案】(1)①见解析;②见解析;(2)90°【解析】(1)解:①∵AD ∥BC ,∴∠C =∠CDE ,∵BC =BD ,∴∠C =∠CDB ,∴∠CDB =∠CDE ,∴DC 平分BDE Ð;②如图,过点F 作FH ⊥BD ,交BD 延长线于H ,∵∠FDG =∠CDE ,∠FDH =∠CDB ,∠EDC =∠CDB ,∴∠FDG =∠FDH ,∵FG ⊥AE ,FH ⊥BD ,∴FH =FG ,∠H =∠FGD =∠AGF =90°,∵FD =FD ,∴Rt △FHD ≌Rt △FGD (HL ),∴DH =DG ,∵FAB FBA Ð=Ð,∴FB =FA ,∴Rt △FHB ≌Rt △FGA (HL )∴BH =AG ,∵BD =BC ,∴AG =BH =BD +DH =BC +DG ,即AG =BC +DG ;(2)解:∵AB =4,BC =3,DG =1,∴BD =BC =3,AG =BC +DG =3+1=4,∴AD =AG +DG =4+1=5,∵AB 2+BD 2=42+32=52=AD 2,∴∠ABD =90°,过点F 作FM ⊥AB 于M ,交AD 于N ,如图,则∠AMF =∠BMF =90°=∠ABD ,∴FM ∥BD ,∴∠BFM =∠FBD ,∵FAB FBA Ð=Ð,∴FB =FA ,∴AM =12AB =2,∠AFM =∠BFM ,∴∠AFM =∠FBD ,由(1)②知,Rt △FHB ≌Rt △FGA ,∴∠FAG =∠FBD ,∴∠FAG =∠AFN ,∵FM ∥BD ,∴∠MFD =∠BDC ,∵∠BDC =∠CDE =∠FDG ,∴∠MFD =∠FDG ,∴∠AFM +∠FAG +∠DFN +∠FDG =180°,∴2∠AFM +2∠DFN =180°,∴2∠AFD =180°,∴∠AFD =90°.2.已知:如图1,四边形ABCD 中,135ABC Ð=°,连接AC 、BD ,交于点E ,BD BC AD AC ^=,.(1)求证:90DAC Ð=°;(2)如图2,过点B 作BF AB ^,交DC 于点F ,交AC 于点G ,若2DBF CBF S S =V V ,求证:AG CG =;(3)如图3,在(2)的条件下,若3AB =,求线段GF 的长.【答案】(1)见解析;(2)见解析;(3)52【解析】(1)解:如图,过点A 作AP ⊥BD 于点P ,AF ⊥BC ,交CB 的延长线于点F ,∵AP ⊥BD ,AF ⊥BC ,BD ⊥BC∴四边形APBF 是矩形∵∠ABC =135°,∠DBC =90°,∴∠ABP =45°,且∠APB =90°,∴AP =PB ,∴四边形APBF 是正方形,∴AP =AF ,且AD =AC ,∴ΔΔRt APD Rt AFC HL ≌(),∴∠DAP =∠FAC ,∵∠FAC +∠PAC =90°,∴∠DAP +∠PAC =90°,∴∠DAC =90°(2)如图,过点F 作FM ⊥BC 于点M ,FN ⊥BD 于点N ,过点C 作CP ⊥BF 于点P ,在BD 上截取DH =BC ,连接AH ,∵∠ABC =135°,∠ABF =90°,∴∠CBF =45°,且∠DBC =90°,∴∠DBF =∠CBF ,且FN ⊥BD ,FM ⊥BC ,∴FN =FM ,∵S △DBF =2S △CBF ,∴1122BD FN BC FM ´´=´´×2,∴BD =2BC ,∴BH =BD ﹣DH =BD ﹣BC =BC ,∵∠AED =∠BEC ,∠DAC =∠DBC =90°,∴∠ADH =∠ACB ,且AD =AC ,DH =BC ,∴△ADH ≌△ACB (SAS ),∴∠AHD =∠ABC =135°,AH =AB ,∴∠AHB =∠ABD =45°,∴∠HAB =90°,∵BC =BH ,∠HAB =∠BPC ,∠AHB =∠FBC =45°,∴△AHB ≌△PBC (AAS ),∴AB =PC ,∵AB =PC ,且∠ABP =∠BPC ,∠AGB =∠CGP ,∴△AGB ≌△CGP (AAS ),∴AG =GC(3)解:如图,∵AB =3=PC ,∠PBC =45°,PC ⊥BF ,∴BP =PC=3,∵△AGB ≌△CGP ,∴BG =PG =32,在Rt PGC D 中,CG ∴AG =GC ,∴AC =AD =2AG =在Rt ADC D 中,CD ,∵S △DBF =2S △CBF ,∴DF =2FC∵DF +FC =DC ,∴F C在Rt PFC D 中,PF =1,∴FG =PG +PF =1+32 =52.3.如图1,正方形ABCD 中,点E 是BC 延长线上一点,连接DE ,过点B 作BF ⊥DE 于点F ,交CD 于点G .(1)求证:CG =CE ;(2)如图2,连接FC ,AC .若BF 平分∠DBE ,求证:CF 平分∠ACE ;(3)如图3,若G 为DC 中点,AB =2,求EF【答案】(1)证明见详解;(2)证明见详解;【解析】(1)证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCG =∠DCE =90°,∵BF ⊥DE ,∴∠DFG =∠BCG =90°,∵∠DGF =∠BGC ,∴∠GBC =∠EDC ,在△BCG 和△DCE 中,BCG DCE BC DC GBC EDC Ð=Ðìï=íïÐ=Ðî,∴△BCG ≌△DCE (ASA ),∴CG =CE ;(2)证明:∵BF 平分∠DBE ,BF ⊥DE ,∴DF =EF ,∴CF 是Rt △DCE 的中线,∴CF =EF ,∴∠E =∠FCE ,∵四边形ABCD 是正方形,∴∠DBE =∠ACB =45°,∵BF 平分∠DBE ,∴∠FBE 12=∠DBE =22.5°,∴∠E =90°﹣∠FBE =90°﹣22.5°=67.5°,∴∠FCE =67.5°,∴∠ACF =180°﹣∠FCE ﹣∠ACB =180°﹣67.5°﹣45°=67.5°,∴∠ACF =∠FEC ,∴CF 平分∠ACE ;(3)解:∵四边形ABCD 是正方形,∴∠BCG =90°,AB =BC =CD=2,BD ==∵G 为DC 中点,∴CG =GD 12=CD=1,在Rt△BCG 中,由勾股定理得:BG ===设GF =x ,在Rt △BDF 和Rt △DFG 中,由勾股定理得:BD 2﹣BF 2=DF 2,DG 2﹣GF 2=DF 2,∴2222-=1-x x (),解得:x =,∴DF 2=12﹣22025=,∴DF =,由(1)知:△BCG ≌△DCE ,∴BG =DE =,∴EF =DE ﹣DF =4.已知:在四边形ABCD 中,180,B CAD DE AC Ð+°Ð=^于E ,且2AD AE =.(1)如图1,求B Ð的度数;(2)如图2,BF 平分ABC Ð交AC 于F ,点G 在BC 上,连接FG ,且AF FG =.求证:AB BG =;(3)如图3,在(2)的条件下,AF AD =,过点F 作FH CD ^,且2CH CG =,若21,52CD AB ==,求线段BF 的长.【答案】(1)120°;(2)见解析;(3)3.【解析】(1)解:如图1,取AD 的中点F ,连接EF ,∵DE ⊥AC ,∴∠AED =90°,∴AD =2AF =2EF ,∵AD =2AE ,∴AE =EF =AF ,∴∠CAD =60°,∵∠B +∠CAD =180°,∴∠B =120°;(2)证明:如图2,作FM ⊥BC 于M ,FN ⊥AB 于点N ,∴∠BMF =∠BNF =90°,∠GMF =∠ANF =90°,∵BF 平分∠ABC ,∴FM =FN ,在Rt △BFM 和Rt △BFN 中,BF BF FM FN =ìí=î,∴Rt △BFM ≌Rt △BFN (HL ),∴BM =BN ,在Rt △FMG 和Rt △FNA 中,FG FA FM FN=ìí=î,∴Rt △FMG ≌Rt △FNA (HL ),∴MG =NA ,∴BN +NA =BM +MG ,∴AB =BG .(3)如图3,连接AG ,DF ,DG ,作FM ⊥BC 于M ,延长GF 交AD 于N ,∵AF =AD ,∠DAE =60°,∴△ADF 是等边三角形,∴∠AFD =60°,AF =DF ,∵GF =AF ,∠DFC =180°-∠AFD =120°,∴AF =GF =DF ,∴∠FGD =∠FDG ,∠FAG =∠FGA ,∴∠AGD =12∠AFN +12∠DFN =12∠AFD =12×60°=30°,∵∠ADC =120°,AD =DG ,∴∠DGA =∠DAG =1802ADC °-Ð=30°,∴∠DGC =180°-∠DGA -∠AGD =180°-30°-30°=120°,∴∠DGC =∠DFC ,∵∠1=∠2,∴180°-∠DGC -∠1=180°-∠DFC -∠2,∴∠GCF =∠FDG ,∠DCF =∠FGD ,∴∠GCF =∠DCF ,∵FH ⊥CD ,∴FM =FH ,∵∠FMG =∠FHD =90°,∴Rt △FMG ≌Rt △FHD (HL ),∴DH =MG ,同理可得:△MCF ≌△HCF (HL ),∴CM =CH =2CG ,∴GM =CG =DH ,∴3CG =CD =212,∴GM =CG =72,∴BM =BG -GM =AB -GM =5-72=32,在Rt △BFM 中,∠BFM =90°-∠FBM =90°-60°=30°,∴BF =2BM =3.5.如图1,ABC D 的ABC Ð和ACB Ð的平分线BE ,CF 相交于点G ,60BAC Ð=°.(1)求BGC Ð的度数;(2)如图2,连接AG ,求证:AG 平分BAC Ð;(3)如图3,在⑵的条件下,在AC 上取点H ,使得AGH BGC Ð=Ð,且8AH =,10BC =,求ABC D 的周长.【答案】(1)120°;(2)见解析;(3)28【详解】(1)证明:如图1,BE CF Q 、分别平分ABC ACB ÐÐ、,111 , 2 22ABC ACB \Ð=ÐÐ=Ð,()()11112 180 90 222ABC ACB A A \Ð+Ð=Ð+Ð=°-Ð=°-Ð,60BAC Ð=°Q ,() 1 180 ********BGC A \Ð=°-Ð+Ð=°+Ð=°;(2)如图2,过点G 分别作GM ⊥AB 于M ,GN ⊥BC 于N , GQ ⊥AC 于Q ,BE Q 平分ABC Ð, GM ⊥AB 于M ,GN ⊥BC 于N ,GM GN \=,同理GN GQ =,GM GQ \=,∵GM ⊥AB 于M , GQ ⊥AC 于Q , AG \平分BAC Ð ;(3)解:∵GM ⊥AB 于M , GQ ⊥AC 于Q ,GM =GQ ,∴AG 平分BAC Ð,∵又60BAC Ð=°, 30BAG CAG \Ð=Ð=°,在BC 上取点K ,使 BK BA =,BE Q 平分ABC Ð,ABG CBG \Ð=Ð,又BG BG =Q ,ABG KBG \D D ≌,BKG BAG \Ð=Ð,30BKG BAG \Ð=Ð= ,=18030150GKC \Ð-= ,120AGH BGC Ð=Ð=°Q , 30CAG Ð=°,120 30 150GHC \Ð=°+°=°,GKC GHC \Ð=Ð,又CG CG =Q ,KCG HCG Ð=Ð,KCG HCG \D D ≌,CK CH \=,△ABC 的周长为:()()2210828AB BC CA AB BK KC AH CH BC AH ++=++++=+=´+=, ABC \D 的周长是28.6.如图所示,AD 是ABC V 的高,点H 为AC 的垂直平分线与BC 的交点,HC AB =.(1)如图1,求证:2B C Ð=Ð;(2)如图2,若2DAF B C Ð=Ð-Ð,求证:AC BF BA =+;(3)在(2)的条件下,若12AC =,CF 10=,求DF 的长.【答案】(1)见解析;(2)见解析;(3)1【详解】解:(1)连接AH ,∵H 为AC 的垂直平分线与BC 的交点,∴HA HC =,HAC C Ð=Ð,∵HC AB =,∴AB AH =,∴B AHB Ð=Ð,∵AHB C HAC Ð=Ð+Ð,∴2AHB C Ð=Ð,∴2B C Ð=Ð.(2)∵2DAF B C Ð=Ð-Ð,∴1122DAF B C Ð=Ð-Ð,在Rt ADF V 中,9090DAF AFD FAC C Ð=°-Ð=°-Ð-Ð,∴119022FAC C B C °-Ð-Ð=Ð-Ð∴[]111190180()2222FAC B C B C BAC Ð=°-Ð-Ð=°-Ð+Ð=Ð,即AF 平分BAC Ð, 在AC 上截取AG AB =,连接FG ,在BAF △和GAF V 中,AB AG BAF GAF AF AF =ìïÐ=Ðíï=î,∴()BAF GAF SAS V V ≌,∴BF FG =,AB =AG ,B AGF Ð=Ð,∵2B CÐ=Ð∴2AGF C Ð=Ð,∴GFC C Ð=Ð,∴FG GC BF ==,∴AC GC AG BE BA =+=+.(3)在DB 上截取DM DF =,连接AM ,在ADF V 和ADM △中,AD AD ADF ADM DF DM =ìïÐ=Ðíï=î,∴()ADF ADM SAS V V ≌,∴DAF DAM Ð=Ð,∴2MAC DAF FAC Ð=Ð+Ð,由(2)可知119022FAC B C Ð=°-Ð-Ð,又∵2DAF B C Ð=Ð-Ð,2B C Ð=Ð.∴11131909029022222MAC B C B C C C C Ð=Ð-Ð+°-Ð-Ð=+´Ð-Ð=-°Ð°.∵()11111180909022222AMC AFM C FAC C BAC C B C B C C °Ð=Ð=Ð+Ð=Ð+Ð=Ð+-Ð-Ð=-Ð+°Ð=-а∴MAC AMC Ð=Ð ,∴AC MC =∴2MC CF AC CF DF -=-=,∴12102DF-=∴1DF =.7.教材呈现:如图是华师版八年级上册数学教材第96页的部分内容.请根据教材中的分析,结合图①,写出“角平分线的性质定理”完整的证明过程.定理应用:(1)如图②.在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D .若AC =3,BC =4,求CD 的长;(2)如图③.在△ABC 中,∠ACB =90°,AD 平分∠BAC 交BC 于点D ,点P 在AD 上,点M 在AC 上.若AC =6,BC =8,则PC +PM 的最小值为 .【答案】教材呈现:证明见解析;定理应用:(1)32;(2)245.【详解】教材呈现:OC Q 是AOB Ð的平分线,POD POE \Ð=Ð,,PD OA PE OB ^^Q ,90PDO PEO \Ð=Ð=°,在POD V 和POE △中,POD POE PDO PEO OP OP Ð=ÐìïÐ=Ðíï=î,()POD POE AAS \@V V ,PD PE \=;定理应用:(1)如图,过点D 作DE AB ^于点E ,Q 在ABC V 中,90,3,4C AC BC Ð=°==,5AB \==,Q AD 平分BAC Ð,且90C Ð=°,CD DE \=,在Rt ACD △和Rt AED △中,AD AD CD ED =ìí=î,()Rt ACD Rt AED HL \@V V ,3AC AE \==,532BE AB AE \=-=-=,设CD DE x ==,则4BD BC CD x =-=-,在Rt BDE V 中,222DE BE BD +=,即2222(4)x x +=-,解得32x =,即CD 的长为32;(2)如图,过点M 作MN AD ^,交AB 于点N ,连接PN,Q AD 平分BAC Ð,AD \垂直平分MN (等腰三角形的三线合一),PM PN \=,PC PM PC PN \+=+,由两点之间线段最短得:当点,,C P N 在同一条直线上时,PC PN +取得最小值,最小值为CN ,又由垂线段最短得:当CN AB ^时,CN 取得最小值,Q 在ABC V 中,90,6,8ACB AC BC Ð=°==,10AB \==,又1122Rt ABC S AC BC AB CN =×=×V Q ,11681022CN \´´=´,解得245CN =,即PC PM +的最小值为245,故答案为:245.。
角平分线的4种辅助线
角平分线的4种辅助线(方法总结,讲练结合)中考高频考点系列是笔者根据近两年中考的趋势及热点,结合《新课标》的要求,对中考经常出现的题型,进行了归纳总结,要想在中考时取得好成绩,这些都是必须要掌握的知识。
作有关角平分线的辅助线,常见的有四种方法:①如下图,由角的平分线上的一点向角的一边或两边作垂线,可以用角的平分线性质定理解题;①②③④②如上图,以角的平分线为轴,将图形翻折,在角的平分线两侧构造全等三角形,使已知与结论发生关系出现新的条件;③如上图,当题设有角平分线及与角平分线垂直的线段,可延长这条线段与角的另一边相交,构成等腰三角形,利用等腰三角形的“三线合一”性质证题;④如上图,过角的一边上的点,作另一边的平行线,构成等腰三角形——“角平分线+平行,必出等腰”.【典例1】如下图,已知在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.证法一:如上图,过点D作BC、BA的垂线,垂足分别是M、N.∵BD平分∠ABC∴DM=DN又∵AD=CD∴Rt△DMC≌Rt△DNA(HL)∴∠NAD=∠C∵∠BAD+∠NAD=180°∴∠BAD+∠C=180°.证法二:如上图,在BC上截取BE=AB,连接DE,可证得△ABD≌△EBD(SAS)∴∠A=∠BED,AD=ED∵AD=CD∴ED=CD∴∠C=∠DEC∴∠A+∠C=∠BED+∠DEC=180°.证法三:如上图,延长BA到E,使BE=BC,连接ED.可证△BDE≌△BDC(SAS)∴∠E=∠C,ED=CD.∵AD=CD∴AD=ED.∴∠E=∠DAE,∠C=∠DAE,∴∠BAD+∠C=∠BAD+∠DAE=180°.点评:法一用的是第一种模型“由角的平分线上的一点向角的两边作垂线”,法二和法三实际上用的是第二种模型:以角的平分线为轴,将图形翻折,在角的平分线两侧构造全等三角形.本题证明两角之和等于180°,实际上可以证明一个角等于另一个角的邻补角.许多证明线段、角关系的问题,往往转化为证线段、角相等.证明两个三角形全等是证明两线段、角相等的重要方法,许多时候要通过作辅助线,使图形出现全等三角形,将角或线段相对转移、等量代换,以使问题得到解决.【典例2】如下图,已知在△ABC是等腰直角三角形,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE.求证:CE=1/2BD.思路分析:注意到BD 平分∠ABC,CE⊥BE,这种情况完全和第三种模型吻合,于是延长CE、BA相交于F,如下图,则易证△BEF≌△BEC(ASA)∴EF=CE ∴CE=EF=1/2CF.∵CE⊥BE∴∠1=90°-∠F.同理∠3=90°-∠F∴∠1=∠3又∵AB=AC∠BAD=∠CAF∴△ABD≌△ACF(ASA)∴BD=CF∴CE=1/2BD.点评:本题解题的关键是抓住角平分线加垂直的条件,构造出等腰三角形.【配套练习】已知,如下图,AC是四边形ABCD的一条对角线,并且AC平分∠BAD,若∠B与∠D互补,而且AB>AD.求证:CD=CB.第1题第2题2、如上图,在△ABC中,BE是角平分线,AD⊥BE,垂足为D.求证:∠BAD=∠DAC+∠C.第3题第4题第5题3、如上图,在△ABC中,∠ACB=90°,CD⊥AB,D是垂足,∠ABC 的平分线BE交CD于点G,交AC于点E,GF∥AB交AC于F.求证:AF=CG.4、如下图,在△ABC中,∠A的平分线AD交BC于点D,且AB=AD,CM⊥AD交AD的延长线于点M.5、(乌鲁木齐中考)如上图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为________.【答案】1、分别过C作AB、AD的垂线,垂足为E、F,证△CBE≌△CDF,或在AB上截取AE=AD,连接CE,则CE=CD,证CE=CB.2、延长AD交BC于点F,则∠BAD=∠BFA=∠DAC+∠C.3、过点E作EH⊥AB于H,则EH=EC,证∠CEG=∠CGE,则EC=GC,∴CG=EH,再证△CGF≌△EHA,则CF=EA.4、因AD平分∠BAC,过点C作CE∥AB,则△ACE是等腰三角形.因为CM⊥AD,所以AE=2AM,又AE=AD+DE=AB+DE,证DE=AC 即可.5、利用模型3的方法,延长CF交AB于点G,则△AFC≌△AFG,∴CF=GFAC=AG=2,∵AB=5∴BG=3又∵F是GC的中点,D是BC 的中点,即DF是△CBG的中位线,∴DF平行且等于BG的一半,即DF=角平分线专题训练,得熟悉此类题题1.如图,在△ABC中,∠B=2∠C,且AC=AB+BD.求证:AD是∠BAC的平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级上第十二章全等三角形
12.7 角平分线辅助线添加方法
教师:学生:时间:
教学目标:学会解平面几何题常用辅助线作法——题中有角平线的时。
重难点:根据平面几何题中有角平分线时——采用相对应的辅助作法。
知识回顾与新知识准备
【回顾要点】
角平分线的性质:
1、
2、
3、
【新知识】
角平分线辅助线添加1:角分线上点向角两边作垂线构全等【知识要点】
角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上
的点到两边距离相等的性质来证明问题。
【典型例题】
【例1】如图,BD是四边形ABCD中∠ABC的平分线,∠A+∠C=180°,求证:DA=CD
举一反三:
1、如图,在四边形ABCD 中,AC 平分∠BAD ,∠ADC +∠ABC =180度,CE ⊥AD 于E ,猜想AD 、AE 、AB 之间的数量关系,并证明你的猜想,
2、如图,已知∠B=∠C=90。
,DM 平分∠ADC ,AM 平分∠DAB ,探究线段BM 与CM 的关系,说明理由。
【例2】如图,△ABC 中,AD 是∠A 的平分线,E 、F 分别为AB 、AC 上一点,且∠EDF +∠BAF=180°,求证:DE=DF.
举一反三:如图,在△ABC 中,D 为BC 的中点,DE ⊥BC ,交∠BAC 的平分线AE 于E ,EF ⊥AB 于F ,EG ⊥AC 交
AC 的延长线于G , 求证:BF =CG .
A B
C
D
E
B
A
C
D
B C
M
A
D
角平分线辅助线添加方法2------截取构全等
【知识要点】
截取构全等
如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD , 从而为我们证明线段、角相等创造了条件。
【典型例题】
【例1 方法2】如图,BD 是四边形ABCD 中∠ABC 的平分线,∠A +∠C =180°,求证:DA =CD
举一反三:如图,已知△ABC 中,AB =AC ,∠A =100°,∠B 的平分线交AC 于D ,求证:AD +BD =BC
角平分线辅助线添加方法3------延长垂线段
A
C
B D
图1-1
O
A
B
D E
F
C
A B
C
D
【知识要点】
延长垂线段:题目中有垂直于角平分线的线段,
则延长该线段与角的另一边相交,构成等腰三角形。
【典型例题】
【例3】已知:如图,在Rt △ABC 中,AB =AC ,∠BAC =90°,BD 平分∠ABC ,CE ⊥BD 的延长线于E .
求证:BD =2CE .
举一反三:如图,已知△ABC 中,CE 平分∠ACB ,且AE ⊥CE ,∠AED +∠CAE =180度,求证:DE ∥BC
角平分线辅助线添加方法4------做平行线
【知识要点】
做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形
有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。
或通过一边上的点作角平分
线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。
如图4-1和图4-2所示。
A
C
D
E
B
C
A F
I
D
H。