高中数学必修三说课稿范文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修三说课稿范文
高中数学必修三说课稿范文
作为一位兢兢业业的人民教师,编写说课稿是必不可少的,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。如何把说课稿做到重点突出呢?以下是小编精心整理的高中数学必修三说课稿范文,希望能够帮助到大家。
高中数学必修三说课稿1
今天我说课的内容是高中数学人教A版必修3第三章概率3。2节的《古典概型》第1课时。我将从教材分析、学情分析、教法学法、教学过程以及教学评价等五大版块进行介绍。
一、教材分析
1、教材的地位及作用
古典概型是高中数学人教A版必修3第三章概率3。2节的内容,是在学习随机事件的概率之后,但还未学习排列组合的情况下教学的。古典概型是一种理想的数学模型,也是一种最基本的概率模型。它有利于理解概率的概念和计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,学好古典概型可以为概率的学习奠定基础。
2、教学目标
(1)知识与技能:
①能理解古典概型及其概率计算公式。
②会用列举法、树形图等计算古典概型的概率。
(2)过程与方法:
①通过对现实生活中古典概型问题的探究,体会数学与生活的密切联系,培养逻辑推理能力。
②通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
(3)情感态度与价值观:
通过数学的探究活动,加强课堂数学交流,激发对数学学习的兴
趣。
3、教学的重点和难点
重点:理解古典概型的含义及其概率的计算公式。
难点:如何判断一个试验是否为古典概型,会用列举法、树形图等计算包含A的基本事件个数及总的基本事件个数。
二、学情分析
本节之前,学生已经学习了概率的意义,概率的基本性质,知道了互斥事件和对立事件的概率加法公式。
但学生基础知识还比较薄弱,基本技能不扎实。同时,对知识与实践的联系运用能力较弱,对数学的归纳、概括的提炼能力不足,同时在学习数学的积极性方面有待提高。
三、教法学法分析
教法:采用引导发现法,通过“提出问题——思考问题——解决问题”的探索过程,调动学生积极参与到学习活动中。
学法:通过“试验观察——思考探究——归纳总结”,体会到从特殊到一般的数学思维过程。
四、教学过程
下面分别从“创设情境>引出概念>公式推导>典例分析>课堂小结>”等五个教学环节分别进行阐述。
(一)创设情境
老师布置学生分组实验,并提出2个问题;学生实验并回答问题。
(1)学生重复多次进行下面两个模拟试验。
①掷一枚质地均匀的硬币。
②掷一枚质地均匀的骰子。
(2)根据试验结果,分析下列问题:
①这两个试验出现的结果分别有几个?
②结果之间都有什么特点?
试验一试验二
试验材料硬币质地是均匀的骰子质地是均匀的
试验结果“正面朝上”“反面朝上”“1点”、“2点”、“3
点”、“4点”、“5点”、“6点”。
结果关系
两种随机事件的可能性相等,即它们的概率都是六种随机事件的可能性相等,即它们的概率都是……
[设计意图]:
(1)以贴近生活的试验,激发学生的学习兴趣;
(2)通过试验探究和观察类比,找出共性,总结归纳出基本事件的特点。2个问题,学生讨论回答;师生共同归纳基本事件的概念;再通过两个练习加深对概念的理解。
我们把类似上述试验中得出的随机事件称为基本事件,它是试验的每一个可能的结果。基本事件有如下的两个特点:
①(互斥性)任何两个基本事件是互斥的、
②(可表性)任何事件(除不可能事件)都可以表示成基本事件的和。
即时练习:
①掷骰子试验中,“出现偶数点”由哪些基本事件组成?(2点、4点、6点)
②掷骰子试验中,“出现点数不大于3”由哪些基本事件组成?(1点、2点、3点)
[设计意图]:
1、通过对上述试验问题的分析,培养学生自主归纳概括的能力。
2、即时练习使学生加深对基本事件概念的理解。
(二)引出概念
例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
解:所求的基本事件共有6个。
除列举外,我们还可通过画树形图列出基本事件。
[注意事项]:
①列举基本事件要做到不重不漏;
②计算基本事件个数的常用方法有树形图、列表法等。
[设计意图]:
通过例子,让学生对基本事件有更深的理解,尤其了解求基本事件个数的常用方法,例1也是为引出古典概型的概念作铺垫。
共同特点,师生总结得出古典概。
提炼概念:两个模拟试验和例1的共同特点:
(1)(有限性)试验中所有可能出现的基本事件只有有限个。
(2)(等可能性)每个基本事件出现的可能性相等。
我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。思考,教师问,学生答:
(1)试验一个灯泡的寿命,属于古典概型吗?答:不是,因为试验的所有可能结果数是无限的。
(2)随机地射击试验,结果只有有限个:0环,1环,2环 (10)
环,这是古典概型吗?答:不是,击中每个环数的可能性不相等。
[设计意图]:
通过例题,让学生体验由特殊到一般的.数学思维,从而引出古典概型的概念,以两条思考题,加深对古典概型的两个特征的理解。
(三)公式推导
思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?
(1)掷一枚硬币,出现“正面朝上”的概率。
(2)掷一枚骰子,出现“偶数点“的概率。
由以上两个模拟试验,对于古典概型,任何事件的概率为:A所包含的基本事件的个数。
P(A)=基本事件的总数[设计意图]:
让学生带着问题,在讨论探究回答问题的过程中,逐步感受由特殊性演变到一般性,从而得出结论。体现了新课改中把课堂还给学生,提倡自主学习的新理念。
学生解答练习,并讨论总结古典概型的概率公式的步骤1、掷骰子试验中,出现点数大于4的概率是多少?
2、例1中,出现字母“d”的概率是多少?