第七章《平行线的证明》单元小结与复习.ppt
北师大版八年级数学上册第七章平行线的证明复习与小结课件

课后巩固
第七章
练一练
完成相关作业.
平行线的证听
平行线的证明
第六章
数据的分析
九条基本事实
目前我们学习了九条基本事实中的八条,它们是:
基本事实1:两点确定一条直线。 基本事实2:两点之间线段最短。
基本事实3:过一点有且只有一条直线与这条直线垂直。
基本事实4:两条直线被第三条直线所截,如果同位角相等,
那么两直线平行. 简述:同位角相等,两直线平行.
基本事实5:过直线外一点有且只有一条直线与这条直线平行。
于它的任意一个内角C. 三角形的一个外角大于与它
不相邻的任意内角D. 三角形的外角和是180°
基础训练
第七章
4. 如图AB∥CD,∠C=110°,∠B=120°,
则∠E等于 (
)
C
A. 110°
B. 120°
C. 130°
D. 150°
5.如图,将三角板的直角顶点放在直尺的一边上,若
∠1=65°,则∠2的度数为 25° .
什么是证明? 演绎推理的过程称为证明.
什么是定理?经过证明的真命题称为定理. 定理都只能经过公
理、定义和已经证明为真的命题来证明.
什么是推论? 由一个基本事实或定理直接推出的定理,叫做这个
基本事实或定理的推论. 推论可以当作定理使用.
什么是三角形
由三角形的一边与另一边的反向延长线构成的角.
的外角?
基本事实
证明:∵EF⊥AB,CD⊥AB,,
∴CD∥EF,
∴∠BCD=∠CFG,∠DCG=∠CGF.
∵∠CGF=∠CFG,
∴∠BCD=∠DCA,
∴CD平分∠ACB.
第七章
平行线的证明
《平行线的性质》平行线的证明PPT课件

C
∵AB∥CD(已知)
∴∠1=∠D(两直线平行,内错角相等)
∵∠B=∠D(已知)
∴∠1=∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
例2:已知,如图,AB∥CD,∠B=∠D,求证:
AD∥BC.
证法三:
A
D
3
如图,连接BD(构造一组内错角)
4
∵AB∥CD(已知)
B 12
C
∴∠1=∠4(两直线平行,内错角相等)
所以∠BDF=∠EDF.
课堂小结
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
1ppt.
如果∠1 ≠ ∠2c,n AB与CD的位置P课P件T 关系会怎样呢/?kejia
存在两条直线AB和GH都与直线 CD平行.这与基本事实“过直线外 一点有且只有一条直线与这条直
n/ 语文
线平行”相矛盾.
课件
这说明∠1 ≠ ∠2的假设不成立,
/kejia n/yu
所以∠1 =∠2.
wen/
总结归纳
5.如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠C= 180 °-∠B=180°-115°=65°
所以梯形的另外两个角分别是80° 、 65°.
第七章 平行线的证明
平行线的性质
学习目标
1.理解并掌握平行线的性质公理和定理.(重点) 2.能熟练运用平行线的性质进行简单的推理证 明.(难点)
八年级数学上册 第七章 平行线的证明单元复习课件上册数学课件

第十二页,共十四页。
18.如图,AB∥CD,直线(zhíxiàn)l分别交AB,CD于点E,F,点M在EF上, N是直线CD上的一个动点(点N不与点F重合). (1)当点N在射线FC上运动时,∠FMN+∠FNM=∠AEF,说明理由; (2)当点N在射线FD上运动时,∠FMN+∠FNM与∠AEF有什么关系? 请说明理由.
C.a=b或a+b=0 D.a2=b2或a+b=0
第二页,共十四页。
3.(无锡中考)对于命题(mìng tí)“若a2>b2,则a>b”,
下面四组关于a,b的值中,能说明这个命题是假命题的是( )
B
A.a=3,b=2 B.a=-3,b=2
C.a=3,b=-1 D.a=-1,b=3
4.命题“一个角的补角必定是钝角”是____命题(填“假真”或“假”); 若是假命题,举一反例:____________1_0_0_°__角__的___补__角__(.bǔ jiǎo)是锐角
因为DE∥AC,所以∠4=∠____(两直A 线平行,同位角相等),
所以∠2=∠A(等量代换).
因为∠1+∠2+∠3=180°,
所以∠A+∠B+∠C=180°(等量代换).
第十一页,共十四页。
17.(重庆中考)如图,AB∥CD,△EFG的顶点F,G分别落在直线(zhíxiàn)AB, CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°, 求∠EFB的度数.
第三页,共十四页。
5.有下面四个命题: ①若 x<0,则 x2 =-x; ②在直角三角形中,两条直角边的平方和等于斜边的平方; ③函数 y=-2x 中,y 随 x 的增大而减小; ④样本 8,8,9,10,12,12,12,13 的中位数与众数分别是 12,12. 其中正确命题的序号是___①_②__③___(把你认为正确的命题的序号都填上).
北师大版八年级数学上册-第七章平行线的证明(同步+复习)精品讲义课件

【例题】∠AOB是直角,∠BOC是一任意 角,OE平分∠AOC,OD平分∠BOC,则 ∠DOE的度数是一个常数,这个结论正确吗? 为什么? A
E O D 设∠BOC=α,证明∠DOE的大小与α无关即可. C B
【练习】
1 1 2 a1 1 2 3 2 3 1 1 3 a2 2 3 4 3 8 1 1 4 a3 3 4 5 4 15 依上述规律,a99 ? an呢?你能验证你的结论吗?
① ② 三角形一个外角等于不相邻两内角的和。 三角形一个外角大于任何一个不相邻的内角。
【例2】△ABC中,∠ABC的平分线与 △ABC的外角∠ACE的平分线相交于点D, 且∠D=30°,求∠A的度数。
A D
B
每个定理的文字、符号、图形语言。 用来证明两直线平行。 补充:两直线都和第三条直线平行,这 两条直线平行。 定理1、2的证明。
【例题】
【练习1】
【练习2】
第四单元:平行线的性质
平行线的性质
性质与判定的区别—— 性质
公理:两直线平行,同位角相等。 定理1:两直线平行,内错角相等。 定理2:两直线平行,同旁内角互补。
第二单元:定义与命题
一.定义与命题
1. 定义:对名称和术语的含义加以描述,作出 明确的规定,也就是给出它们的定义。叫做 命题:判断一件事情的句子,叫做命题。 命题的条件和结论:一般地,每个命题都由 条件和结论两部分组成。条件是已知事项, 结论是由已知事项推出的事项。 命题可以写成“如果---那么---”的形式,其 中如果引出的部分是条件,那么引出的部分 是结论。 命题有正确的也有错误的。命题改写要熟练。
【练习】△ABC中,∠A=50°,高BE和CF 所在的直线相交于O点,求∠BOC的度数。
北师大版八年级上册数学第七章平行线的证明PPT

新课讲解
解:上述验证过程只是一个特例,为了验证结论的正确 性,可作如下推理:原两位数为10a+b,得到的新 两位数为10b+a,(10a+b)+(10b+a)=11(a+b), 因为11(a+b)是11的整数倍,所以这两个数的 和能被11整除.
新课讲解
知识点2 检验数学结论的常用方法
做一做
(1) 代数式n2-n+11的值是质数吗?取n=0,1,2,3,4, 5试一试,你能否由此得到结论:对交流.
新课讲解
典例分析
例 1.下列语句属于定义的是( D ) A.两点确定一条直线 B.两直线平行,同位角相等 C.等角的补角相等 D.三条边都相等的三角形叫做等边三边形
新课讲解
(2) 如图,在△ABC中,点D,E分别是AB, AC的中点, 连接DE,DE与BC有怎样的位置关系和数量关系? 请你先猜一猜,再设法检验你的猜想.你能肯定你的 结论对所有的△ABC都成立吗?与同伴进行交流.
新课讲解
方法 主要有:实验验证、举出反例、推理证明.实验验证是 最基本的方法,它直接反映由具体到抽象、由特殊到一 般的逻辑思维方法;举出反例常用于说明该数学结论不 一定成立;推理证明是最可靠、最科学的方法,是我们 要掌握的重点.实际上每一个正确的结论都需要我们进 行严格的推理证明才能得出.检验数学结论的具体过程: 观察、度量、实验→猜想归纳→结论→推理正确结论.
(1)要判断一个数学结论是否正确,仅仅依靠实验,观察、归纳是不够的, 必须进行有根有据的证明.
(2)没有经过严格的推理,仅由若干特例归纳得出的结论可能潜藏着错误. (3)对一个结论要肯定其是正确的,必须通过一步一步推理, 论证才能下结论.
新课讲解
结论
(1)直觉有时会产生错误,不是永远可信的; (2)图形的性质并不都是通过测量得出的; (3)对少数具体例子的观察、测量或计算得出的结论,
北师大版八年级数学上册《平行线的判定》平行线的证明PPT课件

学习目标 • 单击此处编辑母版文本样式
三 级
级
此 处
四 级
编
五
辑
• 二级
级
母
击 此 处 编
1.了•解三•级并四级掌握平行线的判定公理和定版文 理.(重点辑)
2.了解证•明五级的一般步骤.(难点)本样
式
母 版
标
题
样
式
2200232/53//55/5
2
2
•
•
•
• •
观单•察单击与击请此思此找处考处编出辑图编母中版辑文的母本平导样版行式入标线新!题它课样五们四 级式三级为二级什单击此处编辑么平行?
• 二级
级
母
单 击 此 处 编
• 三级
• 四级 • 五级
版 文
辑
本
母
样 式
版
标
题
样
式
2200232/53//55/5
3
3
•
•
•
• •
讲授新课 单
单
知单识击点1此平处行编线辑的母判版定标题样式三 级
二 级
击 此 处
击 此
• 单公相•击二等理此级,处编那两辑么条母这直版文两线本条被样直第式线三平条行直五 级.线四 级 所截编辑母,如果同位处编角
练单一练击:此根处据编条辑件完母成版填标空题. 样式三C二级 级
击
此1
处
F 3
① ∵• 单∠击此1处=_编_辑∠_母_2_版(文已本样知式)
四 级
编
五
辑
∴•A二B•级∥三级CE(内错角相等,两直级线平行母版)
②
∵ ∴
∠CD1∥• +四_B•级∠_五F_级(3_同_=旁18内0o(角已互知补),两直A线文本样式平行
北师大版数学八年级上册第七章平行线的证明单元复习课课件

7.已知a,b,c为同一平面内三条不同直线,若a⊥b,c⊥b,则a 与c的位置关系是__a_∥__c____. 8.如图Z7-8,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于 点E,点F为线段CD延长线上一点,∠BAF=∠EDF,则下列结论正确 的是_①__②__③____(填序号). ①∠BAD+∠ADC=180°; ②AF∥DE;③∠DAF=∠F; ④若CD=DF,则DE=AF.
第七章 平行线的证明
单元复习课 本章知识梳理
目录
01 课标要求 02 知识导航
课标要求
1.定义、命题、定理: (1)通过具体实例,了解定义、命题、定理、推论的意义. (2)结合具体实例,会区分命题的条件和结论. (3)知道证明的意义和证明的必要性,知道证明要合乎逻辑,知 道证明的过程中可以有不同的表达情势,会综合运用证明的格式.
2.探索并证明平行线的判定定理:两条直线被第三条直线所截, 如果同位角相等(或内错角相等或同旁内角互补),那么这两条 直线平行;探索并证明平行线的性质定理:两条平行直线被第三 条直线所截,同位角相等(或内错角相等或同旁内角互补). 3.探索并证明三角形内角和定理,掌握该定理的推论:三角形的 一个外角等于与它不相邻的两个内角的和.
知识导航
定义:对名称和术语的含义加以描述,作出明确的规定,就是给 出它们的定义
平 行 线 的 证 明
概念:判断一件事情的句子
定
结构:每个命题都由条件和结论组成,通常可以写
义 命题
成“如果……那么……”的情势
与 命 题
分类:(1)真命题:正确的命题;(2)假命题: 不正确的命题
公理:公认的真命题
定理:经过证明的真命题
证明:(1)∵∠EGB+∠CHE=180°,∠CHE+∠EHD=180°, ∴∠EGB=∠EHD. ∴AB∥CD. (2)∵AB∥CD, ∴∠BGF=∠CHE. ∵GM平分∠BGF,HN平分∠CHE, ∴∠NHE=∠MGF. ∴GM∥NH. ∴∠M=∠N.
第七章 平行线的证明 思维图解+综合与实践 知识考点梳理(课件)北师大版数学八年级上册

∴∠FAB=∠DAF-∠2=52.5°.
综合与实践
[点拨] 本题考查了平行线的判定与性质,锻炼和提升
学生的推理能力,熟练掌握平行线的判定与性质是解答本题
的关键.
行
线
的ห้องสมุดไป่ตู้
证
明
三角形内角和定理
三
角
形
的
外
角
三角形的内角和等
于 180°
三角形的一个外角等于和它不相邻
的两个内角的和
三角形的一个外角大于任何一个和
它不相邻的内角
第七章 平行线的证明
单
元
思
维
图
解
同位角相等,两直线平行
平
行
线
的
证
明
平
行
线
平行线
的判定
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行,同位角相等
三条直线所截,内错角相等(或同旁内角互补).
第七章 平行线的证明
4. 了解平行于同一条直线的两条直线平行.
5. 探索并证明三角形的内角和定理.掌握它的推论:三角
形的外角等于与它不相邻的两个内角的和.
第七章 平行线的证明
本章内容要点
7 个基本概念:定义,命题,真命题,假命题,反例,
公理,定理
3 类常用定理:平行线的判定定理,平行线的性质定理
∠1=∠2.
综合与实践
(1)如图 2,一束光线 m 射到平面镜 a 上,被 a 反
射到平面镜 b 上,又被 b 反射.若被 b反射出的光线 n
与光线 m 平行,且∠1=50°,求∠2 和∠3 的度数;
(2)在(1)中,m∥n,求∠1 分别为 55°和40°时
北师大版八年级数学上册《平行线的性质》平行线的证明PPT课件

例1:如图所示,已知四边形ABCD 中, AB∥CD,
AD∥BC,试问∠A与∠C,∠B与∠D 的大小关系如何?
A
D
解:∠A= ∠ C, ∠B=∠D.
理由:∵AB∥CD (已知 )
B
C
∴∠B+∠C=180°(两直线平行,同旁内角互补 )
又 ∵ AD∥BC (已知)
∴∠C+∠D=180°( 两直线平行,同旁内角互补 )
C
∴∠1=∠4(两直线平行,内错角相等)
∵∠B=∠D(已知)
∴∠B-∠1=∠D-∠4(等式的性质)
∴∠2=∠3
∴AD∥BC(内错角相等,两直线平行)
平行线的判定与性质
讨论:平行线三个性质的条件是什么?结论是
什么?它与判定有什么区别?(分组讨论)
线的关系
判定
角的关系
平行线的判定 两直线平行
平行线的性质
所以∠BDF=∠EDF.
课堂小结
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
已知:直线a∥b,∠1和∠2是直
线a,b被直线c截出的同旁内角. a
求证: ∠1+∠2=180°.
b
证明:∵a∥b (已知)
c
3 1
2
∴∠2=∠3 (两条直线平行,同位角相等)
∵∠1+∠3 =180°(平角等于180°)
∴∠1+∠2=180 °(等量代换) .
定理:如果两条直线都和第三条直线平行, 那么这两条直线也互相平行.
两直线平行,同旁内角互补.
a
∵ a∥b, ∴ ∠1+∠2=1800 .
b
平行线的有关证明复习课件

PPT,a click to unlimited possibilities
汇报人:PPT
目录
CONTENTS
01 添加目录标题 02 平行线的性质 03 平行线的性质证明 04 平行线的判定证明 05 平行线的应用
06 总结与回顾
单击添加章节标题
第一章
平行线的性质
第二章
平行线的应用
第五章
平行线在几何中的应用
平行线的性质:传递性、内错角相等、同位角相等 平行线的判定:同位角相等、内错角相等、同旁内角互补 平行线的应用:平行四边形、梯形、三角形中的平行线应用 平行线的应用举例:等腰三角形、等边三角形、矩形、菱形等
平行线在实际生活中的应用
建筑学:在建筑设计、施工和加固中,平行线可以用于确定水平和垂直方向,确保建筑物的稳定性和安全性。 交通:在道路、桥梁和隧道的设计中,平行线用于确定道路的走向和宽度,确保车辆的安全行驶。 机械制造:在机械制造中,平行线用于确定零件的尺寸和位置,确保机器的精确度和稳定性。 摄影:在摄影中,平行线可以用于构图和拍摄角度的选择,使照片更加美观和生动。 艺术:在绘画、雕塑和建筑艺术中,平行线可以用于创造平衡、稳定和和谐的艺术效果。
性质:平行线的性质包括同位角相等、内错角相等、同旁内角互补等
判定方法:通过同位角相等、内错角相等、同旁内角互补等性质来判断两条直线是否平 行
判定定理:在同一平面内,如果两条直线被第三条直线所截,那么它们之间的同位角相 等,那么这两条直线平行
平行线的性质证明
第三章
平行线的性质证明方法
平行线的性质:同位角相等、内错角相等、同旁内角互补
回顾平行线的证明方法和示例
平行线的性质和 判定方法
《平行线的性质》平行线的证明PPT

第七章平行线的证明平行线的性质导入新课讲授新课当堂练习课堂小结学习目标1.理解并掌握平行线的性质公理和定理.(重点)2.能熟练运用平行线的性质进行简单的推理证明.(难点)两直线平行 1.同位角相等2.内错角相等3.同旁内角互补问题 平行线的判定方法是什么?思考 反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?导入新课回顾与思考讲授新课平行线的性质合作探究问题1:根据“两条平行线被第三条直线所截,同位角相等”.你能作出相关的图形吗?A BC D EF M N12问题2:你能根据所作的图形写出已知、求证吗?两条平行线被第三条直线所截,同位角相等.已知,如图,直线AB ∥CD,∠1和∠2是直线AB 、CD 被直线EF 截出的同位角.文字语言符号语言A BC D EF M N 12问题3:你能说说证明的思路吗?A BC DEF M NGH 12证明:假设∠1 ≠ ∠2,那么我们可以过点M 作直线GH ,使∠EMH= ∠2,如图所示.根据“同位角相等,两直线平行”,可知GH ∥ CD.又因为AB ∥ CD ,这样经过点M 存在两条直线AB 和GH 都与直线CD 平行.这与基本事实“过直线外一点有且只有一条直线与这条直如果∠ 1 ≠ ∠2,AB 与CD 的位置关系会怎样呢?一般地,平行线具有如下性质:定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等. b12a c ∴∠1=∠2 (两直线平行,同位角相等)∵a ∥b (已知)应用格式:总结归纳议一议利用上述定理,你能证明哪些熟悉的结论?两直线平行,内错角相等.两直线平行,同旁内角互补.尝试来证明一下定理2:两条直线被第三条直线所截,内错角相等.12b c 3a已知:直线a∥b,∠1和∠2是直线a,b被直线c截出的内错角.求证:∠1=∠2.证明:∵a∥b(已知),∴∠2=∠3(两条直线平行,同位角相等)∵∠1=∠3(对顶角相等),定理3:两条直线被第三条直线所截,同旁内角互补12bc 3a已知:直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角.求证:∠1+∠2=180°.证明:∵a∥b (已知)∴∠2=∠3 (两条直线平行,同位角相等)∵∠1+∠3 =180° (平角等于180°)证明:∵a∥b,∴∠1=∠2,同理∠2=∠3,∴∠1=∠3,∴a∥c.定理:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.已知:如图,直线a,b,c被直线d所截,且a∥b,c∥b.求证:a∥c.平行线的性质公理:两直线平行,同位角相等.∵a∥b, ∴∠1=∠2.性质定理1:两直线平行,内错角相等.∵a∥b, ∴∠1=∠2.性质定理2:两直线平行,同旁内角互补.∵a∥b, ∴∠1+∠2=1800 . abc21abc12abc12w这里的结论,以后可以直接运用. 总结归纳归纳总结证明一个命题的一般步骤:(1)弄清题设和结论;(2)根据题意画出相应的图形;(3)根据题设和结论写出已知,求证;(4)分析证明思路,写出证明过程.典例精析ADCB例1:如图所示,已知四边形ABCD 中, AB ∥CD , AD ∥BC,试问∠A 与∠C ,∠B 与∠D 的大小关系如何?解:∠A= ∠ C, ∠B=∠D 理由:∵AB ∥CD (已知 )∴∠B+∠C=180°(两直线平行,同旁内角互补 ) 又 ∵ AD ∥BC (已知) ∴∠C+∠D=180°( 两直线平行,同旁内角互补 ) ∴∠ B=∠D ( 同角的补角相等 )同理 ∠A=∠CADC B 例2:已知,如图,AB ∥CD ,∠B=∠D ,求证:AD ∥BC. 证法一:∵AB ∥DC (已知) ∴∠B+∠C=180°(两直线平行,同旁内角互补) ∵∠B=∠D (已知)∴∠D+∠C=180°(等量代换)AD CB 例2:已知,如图,AB ∥CD ,∠B=∠D ,求证:AD ∥BC.证法二:如图,延长BA (构造一组同位角) ∵AB ∥CD (已知)∴∠1=∠D (两直线平行,内错角相等) ∵∠B=∠D (已知) ∴∠1=∠B (等量代换)1ADCB例2:已知,如图,AB ∥CD ,∠B=∠D ,求证:AD ∥BC.证法三:如图,连接BD (构造一组内错角)∵AB ∥CD (已知)∴∠1=∠4(两直线平行,内错角相等) ∵∠B=∠D (已知)∴∠B -∠1=∠D -∠4(等式的性质)1234两直线平行同位角相等内错角相等同旁内角互补平行线的判定平行线的性质线的关系角的关系性质角的关系线的关系判定讨论:平行线三个性质的条件是什么?结论是什么?它与判定有什么区别?(分组讨论)平行线的判定与性质总结归纳当堂练习B1.下列图形中,由AB∥CD,能得到∠1=∠2的是( )【解析】选项A中∠1与∠2是同旁内角,∠1+∠2=180°,错误;选项B中,∠1与∠2是相等的,正确;选项C中,∠1与∠2是AC与BD被AD所截而得的内错角,错误;选项D中,∠1与∠2是AC与BD被CD所截而得的同旁内角,错误.C2.如图所示,下列推理不正确的是( )A.∵AB∥CD,∴∠ABC+∠C=180°B.∵∠1=∠2,∴AD∥BCC.∵AD∥BC,∴∠3=∠4D.∵∠A+∠ADC=180°,∴AB∥CD【解析】A选项的根据是两直线平行,同旁内角互补;B选项的根据是内错角相等,两直线平行;D选项的根据是同旁内角互补,两直线平行;C 选项中,AD∥BC,而∠3与∠4是AB与CD被BD所截的内错角.解: ∠A =∠D .理由:∵ AB ∥DE ( )∴∠A =_______ ()∵AC ∥DF ( ) ∴∠D =______ ( )4.如图1,若AB ∥DE , AC ∥DF ,请说出∠A 和∠D 之 间的数量关系,并说明理由.P F C E BA D 图1已知∠CPE 两直线平行,同位角相等已知∠CPE 两直线平行,同位角相等等量代换解: ∠A +∠D =180o . 理由:∵ AB ∥DE ( )∴∠A = ______ ( )∵AC ∥DF ( ) ∴∠D + _______=180o ( )∴∠A +∠D =180o( )如图2,若AB ∥DE , AC ∥DF ,请说出∠A 和∠D 之间的数量关系,并说明理由.图2FCE B A D P 已知∠CPD 两直线平行,同位角相等已知∠CPD 两直线平行,同旁内角互补等量代换5.如图,是一块梯形铁片的残余部分,量得∠A =100°, ∠B =115°,梯形的另外两个角分别是多少度?A B C D解:因为梯形上、下底互相平行,所以∠A 与∠D 互补, ∠B 与∠C 互补.所以梯形的另外两个角分别是80° 、 65°.于是∠D =180 °-∠A =180°-100°=80°∠C = 180 °-∠B =180°-115°=65°6.如图,在∆ABC中,CE⊥AB于点E,DF⊥AB于点F,AC//ED,CE是∠ACB的平分线,则∠EDF=∠BDF,请说明理由.解:因为CE⊥AB, DF⊥AB所以DF//EC∠EDF=∠3所以∠BDF=∠1,所以∠3=∠2因为ED//AC,所以∠EDF=∠2又CE平分∠ACB所以∠1=∠2所以∠BDF=∠EDF.。