矩阵的定义及其运算规则 (2)

合集下载

《高等代数》知识点梳理

《高等代数》知识点梳理

高等代数知识点梳理第四章 矩阵一、矩阵及其运算 1、矩阵的概念(1)定义:由n s ×个数ij a (s i ,2,1=;n j ,2,1=)排成s 行n 列的数表sn s n a a a a 1111,称为s 行n 列矩阵,简记为n s ij a A ×=)(。

(2)矩阵的相等:设n m ij a A ×=)(,k l ij a B ×=)(,如果l m =,k n =,且ij ij b a =,对m i ,2,1=;n j ,2,1=都成立,则称A 与B 相等,记B A =。

(3)各种特殊矩阵:行矩阵,列矩阵,零矩阵,方阵,(上)下三角矩阵,对角矩阵,数量矩阵,单位矩阵。

2、矩阵的运算(1)矩阵的加法:++++= +sn sn s s n n sn s n sn s n b a b a b a b a b b b b a a a a 1111111111111111。

运算规律:①A B B A +=+②)()(C B A C B A ++=++③A O A =+ ④O A A =−+)((2)数与矩阵的乘法:= sn s n sn s n ka ka ka ka a a a a k 11111111运算规律:①lA kA A l k +=+)( ②kB kA B A k +=+)(③A kl lA k )()(= ④O A A =−+)((3)矩阵的乘法:= sm s m nm n m sn s n c c c c b b b b a a a a 111111111111其中nj in i i i i ij b a b a b a c +++= 2211,s i ,2,1=;m j ,2,1=。

运算规律:①)()(BC A C AB = ②AC AB C B A +=+)( ③CA BA A C B +=+)( ④B kA kB A AB k )()()(==一般情况,①BA AB ≠②AC AB =,0≠A ,⇒C B = ③0=AB ⇒0=A 或0=A(4)矩阵的转置: =sn s n a a a a A 1111,A 的转置就是指矩阵=ns n s a a a a A 1111'运算规律:①A A =)''( ②'')'(B A B A +=+③'')'(A B AB = ④')'(kA kA =(5)方阵的行列式:设方阵1111n n nn a a A a a= ,则A 的行列式为1111||n n nn a a A a a = 。

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、计算机科学等领域。

本文将介绍矩阵的基本概念、运算规则以及常见的应用。

一、矩阵的基本概念矩阵是由数个数排列成的矩形阵列。

矩阵可以用方括号表示,例如:A = [a11, a12, a13;a21, a22, a23;a31, a32, a33]其中a11、a12等为矩阵元素,按行排列。

矩阵的行数为m,列数为n,则该矩阵称为m×n矩阵。

矩阵可以是实数矩阵,也可以是复数矩阵。

实数矩阵的元素全为实数,复数矩阵的元素可以是复数。

例如:B = [3+2i, -4-7i, 5+6i;-2+3i, 1-5i, -2i]二、矩阵的运算1. 矩阵的加法和减法若A、B为同型矩阵(行数和列数相同),则有:A +B = [a11+b11, a12+b12, a13+b13;a21+b21, a22+b22, a23+b23;a31+b31, a32+b32, a33+b33]A -B = [a11-b11, a12-b12, a13-b13;a21-b21, a22-b22, a23-b23;a31-b31, a32-b32, a33-b33]2. 矩阵的数乘若A为m×n矩阵,k为标量,则有:kA = [ka11, ka12, ka13;ka21, ka22, ka23;ka31, ka32, ka33]3. 矩阵的乘法若A为m×n矩阵,B为n×p矩阵,则它们的乘积AB为m×p矩阵,满足:AB = [c11, c12, c13;c21, c22, c23;c31, c32, c33]其中:c11 = a11b11 + a12b21 + a13b31c12 = a11b12 + a12b22 + a13b32c13 = a11b13 + a12b23 + a13b33...c33 = a31b13 + a32b23 + a33b334. 矩阵的转置若A为m×n矩阵,则其转置记作A^T,为n×m矩阵,满足:A^T = [a11, a21, a31;a12, a22, a32;a13, a23, a33]三、矩阵的应用1. 网络图论矩阵可以用于表示和分析网络图论中的关系和连接。

矩阵的运算与性质

矩阵的运算与性质

矩阵的运算与性质矩阵是线性代数中的基本概念,广泛应用于各个学科领域。

本文将介绍矩阵的运算及其性质,探讨在不同情况下矩阵的特点和应用。

一、矩阵的定义与分类1. 矩阵的定义:矩阵是一个按照矩形排列的数表,由m行n列的数构成,通常用大写字母表示,如A、B等。

2. 矩阵的分类:根据行数和列数的不同,矩阵可以分为行矩阵、列矩阵、方阵、零矩阵等。

二、矩阵的基本运算1. 矩阵的加法:对应位置元素相加,要求两个矩阵的行数和列数相等。

2. 矩阵的数乘:一个矩阵的所有元素乘以一个常数。

3. 矩阵的乘法:矩阵乘法不满足交换律,要求左边矩阵的列数等于右边矩阵的行数。

4. 矩阵的转置:将矩阵的行和列互换得到的新矩阵,记作A^T。

三、矩阵的性质和特点1. 矩阵的单位矩阵:对角线上元素为1,其余元素为0的方阵。

2. 矩阵的逆矩阵:若矩阵A存在逆矩阵A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。

3. 矩阵的行列式:方阵A经过运算得到的一个标量值,记作det(A)或|A|,用于判断矩阵是否可逆及求解线性方程组等。

4. 矩阵的秩:矩阵中线性无关的行或列的最大个数。

5. 矩阵的特征值与特征向量:对于方阵A,存在数值λ和非零向量x,使得A·x = λ·x,λ为A的特征值,x为对应的特征向量。

四、矩阵的应用1. 线性方程组的求解:通过矩阵的运算和性质,可以将线性方程组表示为矩阵的形式,从而求解出方程组的解。

2. 矩阵在图像处理中的应用:利用矩阵的运算,可以对图像进行变换、旋转、缩放等操作。

3. 矩阵在经济学中的应用:使用矩阵可以模拟经济系统,进行量化分析、预测等。

总结:矩阵作为线性代数中的基本概念,具有丰富的运算规则和性质。

通过矩阵的加法、数乘、乘法、转置等基本运算,可以推导出矩阵的逆矩阵、行列式、秩、特征值等重要概念。

矩阵在不同学科领域有着广泛的应用,如线性方程组求解、图像处理、经济学分析等。

矩阵的基本运算

矩阵的基本运算
证 因 为 H T ( E 2 X X T )T E T 2( X X T )T
E 2XX T H 所以H是对称矩阵.
HH T H 2 (E 2 XX T )2 E 4 XX T 4( XX T )( XX T ) E 4XX T 4X (X T X )X T E 4XX T 4XX T E
坐标分别为 和 , 它们有如 y′
yA x′
下关系:
x x 'cos y 'sin
y x 'sin y 'cos
α
O
x
写成矩阵形式,记为
过渡矩阵
x cos
y
s
i
n
sin x '
cos
y
'
例 (线性代数方程组)一般形式的线性方程组,即
a11 x1 a12 x 2 a1n x n b1
C
2
2
2
2

A
B
0
0
0 ,
AC
0
0
0
0
0
则 A B A C , 但是
BC
注 该例也说明 A B 0 不 能 推 出 A 0 或 B 0
定义 (方阵的幂次) 若A是n 阶方阵, 则Ak为A的
的k次幂,即
Ak
A 14
A 2
L43A
,
并且
k个
A m A k A m k , A m k A m k ( m , k 为 正 整 数 )
例 对 于 任 意 的 n阶 矩 阵 A .证 明 :
(1) A AT 是 对 称 矩 阵 , A AT 是 反 对 称 矩 阵 .
(2) A可 表 示 为 对 称 矩 阵 和 反 对 称 矩 阵 之 和 .

矩阵的计算方式

矩阵的计算方式

矩阵的计算方式1 矩阵的定义矩阵是线性代数的基础概念之一。

它是一个由数构成的矩形阵列(一个表格),并按照特定的规则进行排列。

就像我们平时用的Excel 表格一样,矩阵可以用于描述各种各样的数学问题,例如线性方程组的求解、变换矩阵的应用等等。

2 矩阵的基本运算矩阵的运算有加、减、数乘、矩阵乘法等。

以下将从这几个方面来介绍矩阵的基本运算。

2.1 矩阵加法两个矩阵的加法定义为将它们的对应元素相加得到一个新矩阵。

例如:$\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix} +\begin{bmatrix}5 & 6 \\ 7 & 8\end{bmatrix} = \begin{bmatrix}6 & 8 \\ 10 & 12\end{bmatrix}$矩阵加法需要满足以下条件:- 两个矩阵必须具有相同的行数和列数。

- 相加的两个矩阵对应的元素必须都是相同类型的,例如都是实数。

2.2 矩阵减法两个矩阵的减法与加法类似,不同的是将它们的对应元素相减得到一个新矩阵。

例如:$\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix} -\begin{bmatrix}5 & 6 \\ 7 & 8\end{bmatrix} = \begin{bmatrix}-4 & -4 \\ -4 & -4\end{bmatrix}$矩阵减法需要满足与矩阵加法相同的条件(相同的行数和列数,相同类型的元素)。

2.3 矩阵数乘将矩阵的每个元素都乘以一个标量得到一个新的矩阵,这个操作称为矩阵数乘。

例如:$2 \begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix} =\begin{bmatrix}2 & 4 \\ 6 & 8\end{bmatrix}$矩阵数乘需要满足以下条件:- 被乘的标量必须是一个实数或者复数。

矩阵加减法运算法则

矩阵加减法运算法则

矩阵加减法运算法则
矩阵加减法是矩阵运算中的基本操作之一,它可以用于各种数学问题的求解。

在进行矩阵加减法运算时,需要遵循以下几个法则:
1. 矩阵加减法运算的定义
矩阵加减法指的是将两个矩阵按照相同的位置上的元素进行加
或减的操作。

具体地,假设有两个矩阵A和B,它们的维度分别为m ×n和m×n,那么它们的加法和减法分别定义为:
A +
B = [a_ij + b_ij]m×n
A -
B = [a_ij - b_ij]m×n
其中a_ij和b_ij表示A和B中相同位置上的元素。

2. 矩阵加减法的性质
矩阵加减法具有以下性质:
(1)交换律:A + B = B + A,A - B ≠ B - A
(2)结合律:(A + B) + C = A + (B + C),(A - B) - C = A - (B - C)
(3)分配律:k(A + B) = kA + kB,(k + l)A = kA + lA
其中k和l为任意实数。

3. 矩阵加减法的运算规则
进行矩阵加减法时,需要遵循以下运算规则:
(1)只有维度相同的矩阵才能进行加减法运算。

(2)相同位置上元素相加减。

(3)当进行加减法运算时,结果矩阵的维度与原矩阵相同。

(4)当进行加法运算时,两个矩阵必须具有相同的行数和列数,否则无法进行加法运算。

(5)当进行减法运算时,两个矩阵必须具有相同的行数和列数,否则无法进行减法运算。

总之,矩阵加减法是一种很常见的运算方式,掌握了矩阵加减法的运算规则和性质,可以方便我们在数学问题中进行矩阵运算,为问题的求解提供帮助。

矩阵的定义及其运算规则

矩阵的定义及其运算规则

矩阵的定义及其运算规则1、矩阵的定义一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。

矩阵通常是用大写字母A 、B …来表示。

例如一个m 行n 列的矩阵可以简记为:,或。

即:(2-3)我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。

当m=n时,则称为n阶方阵,并用表示。

当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。

设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。

2、三角形矩阵由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。

如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。

例如,以下矩阵都是三角形矩阵:,,,。

3、单位矩阵与零矩阵在方阵中,如果只有的元素不等于零,而其他元素全为零,如:则称为对角矩阵,可记为。

如果在对角矩阵中所有的彼此都相等且均为1,如:,则称为单位矩阵。

单位矩阵常用E来表示,即:当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。

4、矩阵的加法矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。

如以C=(c ij)m ×n表示矩阵A及B的和,则有:式中:。

即矩阵C的元素等于矩阵A和B的对应元素之和。

由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵):(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)5、数与矩阵的乘法我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。

如:由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则:(1)k(A+B)=kA+kB(2)(k+h)A=kA+hA(3)k(hA)=khA6、矩阵的乘法若矩阵乘矩阵,则只有在前者的列数等于后者的行数时才有意义。

《高等代数》知识点梳理

《高等代数》知识点梳理

高等代数知识点梳理第四章 矩阵一、矩阵及其运算 1、矩阵的概念(1)定义:由n s ×个数ij a (s i ,2,1=;n j ,2,1=)排成s 行n 列的数表sn s n a a a a 1111,称为s 行n 列矩阵,简记为n s ij a A ×=)(。

(2)矩阵的相等:设n m ij a A ×=)(,k l ij a B ×=)(,如果l m =,k n =,且ij ij b a =,对m i ,2,1=;n j ,2,1=都成立,则称A 与B 相等,记B A =。

(3)各种特殊矩阵:行矩阵,列矩阵,零矩阵,方阵,(上)下三角矩阵,对角矩阵,数量矩阵,单位矩阵。

2、矩阵的运算(1)矩阵的加法:++++= +sn sn s s n n sn s n sn s n b a b a b a b a b b b b a a a a 1111111111111111。

运算规律:①A B B A +=+②)()(C B A C B A ++=++③A O A =+ ④O A A =−+)((2)数与矩阵的乘法:= sn s n sn s n ka ka ka ka a a a a k 11111111运算规律:①lA kA A l k +=+)( ②kB kA B A k +=+)(③A kl lA k )()(= ④O A A =−+)((3)矩阵的乘法:= sm s m nm n m sn s n c c c c b b b b a a a a 111111111111其中nj in i i i i ij b a b a b a c +++= 2211,s i ,2,1=;m j ,2,1=。

运算规律:①)()(BC A C AB = ②AC AB C B A +=+)( ③CA BA A C B +=+)( ④B kA kB A AB k )()()(==一般情况,①BA AB ≠②AC AB =,0≠A ,⇒C B = ③0=AB ⇒0=A 或0=A(4)矩阵的转置: =sn s n a a a a A 1111,A 的转置就是指矩阵=ns n s a a a a A 1111'运算规律:①A A =)''( ②'')'(B A B A +=+③'')'(A B AB = ④')'(kA kA =(5)方阵的行列式:设方阵1111n n nn a a A a a= ,则A 的行列式为1111||n n nn a a A a a = 。

矩阵及其运算详解

矩阵及其运算详解

矩阵及其运算详解矩阵是线性代数中重要的概念之一,它不仅在数学理论中有广泛应用,也在各个领域的实际问题中发挥着重要作用。

本文将详细介绍矩阵的概念、性质以及常见的运算法则,以帮助读者深入了解和掌握矩阵相关的知识。

一、矩阵的定义和基本性质矩阵是一个按照矩形排列的数集,通常用方括号表示。

一个 m×n的矩阵包含 m 行和 n 列,并用 aij 表示第 i 行、第 j 列的元素。

例如,一个 2×3 的矩阵可以表示为:A = [ a11 a12 a13a21 a22 a23 ]其中,a11、a12 等分别表示矩阵中不同位置的元素。

对于一个 m×n 的矩阵 A,当且仅当存在 m×n 的矩阵 B,满足 A = B,我们称 B 是 A 的转置矩阵。

转置矩阵中的每个元素是原矩阵对应位置元素的转置。

二、矩阵的运算法则1. 矩阵的加法和减法矩阵的加法和减法规则使其成为一个线性空间。

对于同型矩阵 A 和B,它们的和 A + B 的结果是一个与 A、B 同型的矩阵,其每个元素等于对应位置元素的和。

减法规则类似,也是对应元素相减。

矩阵的数乘指的是将一个矩阵的每个元素乘以一个标量。

即对于矩阵 A 和一个实数 k,kA 的结果是一个与 A 同型的矩阵,其每个元素等于对应位置元素乘以 k。

3. 矩阵的乘法矩阵的乘法是矩阵运算中最重要的一种运算。

对于矩阵 A 和 B,若A 的列数等于B 的行数,则可以进行乘法运算 AB。

结果矩阵C 是一个 m×p 的矩阵,其中的元素 cij 是通过计算矩阵 A 的第 i 行和矩阵 B的第 j 列对应位置元素的乘积,并将结果相加得到的。

4. 方阵和单位矩阵方阵是指行数和列数相等的矩阵,也称为正方形矩阵。

单位矩阵是一种特殊的方阵,它的主对角线上的元素全为1,其它位置元素均为0。

单位矩阵通常用 I 表示。

三、矩阵的性质和应用1. 矩阵的转置性质矩阵的转置运算具有以下性质:- (A^T)^T = A,即两次转置后得到原矩阵。

矩阵的定义及其运算规则

矩阵的定义及其运算规则

矩阵的定义及其运算规则矩阵是数学中的一种重要工具,用于表示数字和符号的矩形阵列。

矩阵由m行n列的数字或符号排列组成,每个数字或符号称为矩阵的元素。

矩阵通常用大写字母表示,例如A,B,C等。

矩阵的大小由它的行数和列数决定,并用m×n表示。

矩阵的运算规则包括加法、减法、数乘和乘法四种运算。

1.加法:对应位置上的元素相加对于相同大小的两个矩阵A和B,它们的加法定义如下:A+B=C其中C的元素由对应位置上的两个矩阵元素相加得到。

2.减法:对应位置上的元素相减对于相同大小的两个矩阵A和B,它们的减法定义如下:A-B=D其中D的元素由对应位置上的两个矩阵元素相减得到。

3.数乘:矩阵的每个元素与一个标量相乘对于一个矩阵A和一个实数k,它们的数乘定义如下:kA=E其中E的元素由矩阵A的每个元素与k相乘得到。

4.乘法:矩阵的行与列的对应元素相乘后求和对于两个矩阵A(m×n)和B(n×p),它们的乘法定义如下:AB=F其中F是一个m×p的矩阵,F的每个元素由矩阵A的其中一行与矩阵B的对应列的元素相乘后求和得到。

矩阵的运算满足以下一些基本性质:1.加法的交换律:A+B=B+A2.加法的结合律:(A+B)+C=A+(B+C)3.加法的零元素:存在一个零矩阵O,满足A+O=A4.减法的定义:A-B=A+(-B)5.数乘的结合律:(k1k2)A=k1(k2A)6.数乘的分配律:(k1+k2)A=k1A+k2A7.数乘的分配律:k(A+B)=kA+kB8.乘法的结合律:(AB)C=A(BC)9.乘法的分配律:A(B+C)=AB+AC和(A+B)C=AC+BC10.乘法的分配律:k(AB)=(kA)B=A(kB)矩阵的运算在应用中具有广泛的应用,包括线性代数、计算机图形学、优化、概率论等。

通过矩阵的运算规则,可以对线性方程组进行求解、描述线性变换、优化问题、图像处理等。

矩阵的运算规则是学习线性代数和其他数学领域的重要基础知识。

矩阵的概念和运算

矩阵的概念和运算

矩阵的概念和运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、经济学等各个领域中。

本文将介绍矩阵的基本概念和运算,以及其在实际问题中的应用。

一、矩阵的定义和表示矩阵是由m行n列的数量排列在一个矩形阵列中的数或者符号所组成的矩形数表。

一般用大写字母表示矩阵,例如A、B、C等。

矩阵可以表示为:A = [a_ij],其中1 ≤ i ≤ m,1 ≤ j ≤ n其中a_ij表示矩阵A中第i行第j列的元素。

二、矩阵的基本运算1. 矩阵的加法矩阵的加法满足相同位置元素相加的规则,即相同位置的元素相加得到新矩阵的对应位置元素。

例如:A = [a_ij],B = [b_ij],C = [c_ij]A +B = [a_ij + b_ij] = C2. 矩阵的数乘矩阵的数乘指将一个数与矩阵中的每个元素相乘,得到新矩阵。

例如:A = [a_ij],k为实数kA = [ka_ij]3. 矩阵的乘法矩阵的乘法是指两个矩阵相乘得到新矩阵的运算。

矩阵的乘法满足“行乘列”规则,即第一个矩阵的行元素与第二个矩阵的列元素相乘并求和得到新矩阵的对应位置元素。

例如:A = [a_ij],B = [b_ij],C = [c_ij]AB = C,其中c_ij = ∑(a_ik * b_kj)4. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到新矩阵。

若A为m行n 列的矩阵,其转置矩阵记作A^T,则A^T为n行m列的矩阵,且A的第i行第j列的元素等于A^T的第j行第i列的元素。

三、矩阵的应用1. 线性方程组矩阵可以用来表示线性方程组,通过矩阵的运算可以更方便地求解线性方程组的解。

例如:Ax = b其中A为系数矩阵,x为未知数向量,b为常数向量。

通过矩阵的运算,可以求解出未知数向量x。

2. 矩阵的特征值和特征向量矩阵的特征值和特征向量是线性代数中的重要概念,用于描述矩阵在向量空间中的变换性质。

特征向量是指在矩阵变换下保持方向不变的非零向量,特征值是指对应于特征向量的标量。

矩阵与行列式的运算与应用

矩阵与行列式的运算与应用

矩阵与行列式的运算与应用矩阵与行列式是线性代数中的重要概念,在数学和工程学科中得到广泛应用。

本文将重点讨论矩阵与行列式的运算规则以及它们在实际问题中的应用。

一、矩阵的定义与基本运算1.1 矩阵的定义矩阵是由一组数按照矩形排列形成的二维数据表,通常用大写字母表示。

一个矩阵由行和列组成,行数与列数分别称为矩阵的行数和列数。

例如,一个3行2列的矩阵可以表示为:A = [a11 a12a21 a22a31 a32]其中aij表示矩阵A中第i行第j列的元素。

1.2 矩阵的基本运算矩阵之间可以进行加法和数乘两种基本运算。

1.2.1 矩阵的加法两个具有相同行数和列数的矩阵可以进行加法运算。

对应位置的元素相加得到结果矩阵。

例如,对于矩阵A和矩阵B:A = [a11 a12a21 a22a31 a32]B = [b11 b12b21 b22b31 b32]它们的和矩阵C为:C = [a11+b11 a12+b12a21+b21 a22+b22a31+b31 a32+b32]1.2.2 矩阵的数乘矩阵与一个数相乘,即将矩阵的每个元素与该数相乘。

例如,对于矩阵A和一个数k,它们的积矩阵D为:D = [k*a11 k*a12k*a21 k*a22k*a31 k*a32]二、行列式的定义与性质2.1 行列式的定义行列式是一个数,用于描述一个方阵的某些性质。

对于一个n阶方阵A,它的行列式记作det(A)或|A|。

2.2 行列式的性质行列式具有以下性质:2.2.1 行列式与矩阵的转置若A为一个n阶方阵,则det(A) = det(A^T),即行列式与矩阵的转置结果相等。

2.2.2 行列式与矩阵的乘法若A、B是两个同阶矩阵,则有det(AB) = det(A) * det(B),即两个矩阵的乘积的行列式等于两个矩阵的行列式的乘积。

2.2.3 行列式的行列互换对于n阶方阵A,若交换A中两行(或两列),则行列式的符号改变。

三、矩阵与行列式的应用3.1 线性方程组的求解利用矩阵与行列式的运算方法,可以简化线性方程组的求解过程。

矩阵及其运算

矩阵及其运算

矩阵及其运算矩阵是线性代数中的一个重要概念,它在数学和工程领域中得到广泛应用。

本文将介绍矩阵的定义和基本操作,包括矩阵的加法、减法、乘法以及转置运算。

1. 矩阵的定义矩阵由m行n列的数排列成的矩形数表称为m×n矩阵,其中m表示矩阵的行数,n表示矩阵的列数。

矩阵中的每个数称为元素,用a(i,j)表示矩阵中第i行第j列的元素。

例如,一个2×3的矩阵A可以定义为:A = [a(1,1) a(1,2) a(1,3)][a(2,1) a(2,2) a(2,3)]2. 矩阵的加法和减法对于两个同型矩阵A和B(即行列数相等),它们的和记为A + B,差记为A - B。

加法和减法的运算法则是对应元素相加或相减。

例如,对于两个2×3的矩阵A和B,它们的和A + B和差A - B可以表示为:A +B = [a(1,1) + b(1,1) a(1,2) + b(1,2) a(1,3) + b(1,3)][a(2,1) + b(2,1) a(2,2) + b(2,2) a(2,3) + b(2,3)]A -B = [a(1,1) - b(1,1) a(1,2) - b(1,2) a(1,3) - b(1,3)][a(2,1) - b(2,1) a(2,2) - b(2,2) a(2,3) - b(2,3)]3. 矩阵的乘法矩阵的乘法是定义在矩阵上的一种运算,对于矩阵A(m×p)和矩阵B(p×n),它们的乘积记为AB,结果是一个m×n的矩阵。

具体计算过程是,矩阵AB的第i行第j列的元素是矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。

用数学公式表示为:AB(i,j) = ∑(A(i,k) * B(k,j)) (k从1到p)例如,对于一个2×3的矩阵A和一个3×2的矩阵B,它们的乘积AB可以表示为:AB = [a(1,1)*b(1,1) + a(1,2)*b(2,1) + a(1,3)*b(3,1) a(1,1)*b(1,2) +a(1,2)*b(2,2) + a(1,3)*b(3,2)][a(2,1)*b(1,1) + a(2,2)*b(2,1) + a(2,3)*b(3,1) a(2,1)*b(1,2) +a(2,2)*b(2,2) + a(2,3)*b(3,2)]4. 矩阵的转置一个矩阵的转置是将其行和列互换得到的新矩阵。

矩阵运算及应用

矩阵运算及应用

矩阵运算及应用矩阵是数学中的重要概念,广泛应用于各个领域,尤其在线性代数和计算机科学中。

矩阵运算是对矩阵进行各种操作和计算的过程,通过这些运算,可以得到矩阵的转置、相加、相乘等结果,进而解决具体的问题。

本文将介绍矩阵的基本定义及其运算规则,并通过实际应用案例展示矩阵在科学、工程和社会生活中的应用。

一、矩阵的定义和基本运算1.1 矩阵的定义矩阵是由数个数排列成的矩形阵列。

一个矩阵由 m 行 n 列的元素所组成,一般用大写字母 A、B、C...表示,其中 A[i,j] 表示矩阵 A 的第 i 行第 j 列的元素。

1.2 矩阵的转置矩阵的转置是指将矩阵的行变为列,列变为行。

记矩阵 A 的转置为A^T,即 A^T[i,j] = A[j,i]。

1.3 矩阵的相加两个相同大小的矩阵 A 和 B 相加,即将对应位置的元素相加,得到新的矩阵 C。

设 A,B 和 C 都是 m 行 n 列的矩阵,则 C[i,j] = A[i,j] + B[i,j]。

1.4 矩阵的相乘假设 A 是一个 m 行 n 列的矩阵,B 是一个 n 行 p 列的矩阵。

那么A 和 B 的乘积 AB 是一个 m 行 p 列的矩阵,其中 AB[i,j] 表示 A 的第 i 行与 B 的第 j 列的对应元素依次相乘再求和的结果。

二、矩阵运算的应用案例2.1 矩阵在图像处理中的应用图像处理是矩阵运算的一个重要应用领域。

在图像处理中,常常需要对图像进行旋转、缩放、模糊等操作,这些操作都可以通过矩阵运算来实现。

例如,对于图像的旋转操作,可以通过矩阵乘法来实现。

设原图像矩阵为 A,旋转矩阵为 R,新的图像矩阵为 B,那么有 B = R * A。

通过矩阵的乘法运算,可以将旋转矩阵作用于原图像矩阵上,得到旋转后的图像。

2.2 矩阵在经济学中的应用矩阵运算在经济学中的应用也是非常广泛的。

经济学家通常使用矩阵来表示各种经济指标之间的关系,通过对矩阵的运算,可以得到有关经济系统的重要信息。

矩阵和行列式知识要点

矩阵和行列式知识要点

矩阵和行列式知识要点一、矩阵的定义与基本运算:1.矩阵的定义:矩阵是一个按照矩阵元素排列形成的矩形阵列。

通常用大写字母表示,如A。

2.矩阵的元素:矩阵中的每个数称为矩阵的元素,用小写字母表示,如a。

3.矩阵的维数:矩阵的行数和列数称为矩阵的维数。

若一个矩阵有m 行n列,称为m×n阶矩阵。

4.矩阵的运算:a.矩阵的加法:如果两个矩阵A和B的维数相同,则它们可以相加,A+B的结果是一个与A和B维数相同的矩阵,即对应元素相加。

b.矩阵的数乘:如果一个矩阵A乘以一个数k,那么结果是一个与A 维数相同的矩阵,即将A的每个元素乘以k。

c.矩阵的乘法:如果两个矩阵A和B可以相乘,那么它们的乘积AB 的结果是一个新的矩阵,其行数等于A的行数,列数等于B的列数。

矩阵乘法不满足交换律。

二、行列式的定义与性质:1.行列式的定义:对于一个n×n的矩阵,将它的元素按照一定的规则排列成一个方阵,方阵元素的排列称为一个排列,用行列式表示。

行列式实际上是对矩阵的一种性质的一种数学描述。

2.行列式的计算:a.二阶行列式:二阶行列式即2×2阶矩阵的行列式。

b. 三阶行列式:三阶行列式即3×3阶矩阵的行列式。

可以利用“Sarrus法则”进行计算。

c. n阶行列式:n阶行列式可以利用定义展开、代数余子式、Laplace定理等方法进行计算。

3.行列式的性质:a.行列式的性质1:行列式与它的转置行列式相等。

b.行列式的性质2:互换行列式的两行(两列),行列式变号。

c.行列式的性质3:若行(列)中有零元素,则行列式的值为0。

d.行列式的性质4:若行(列)的其中一元素可被另一行(列)的元素表示,则行列式的值为0。

e.行列式的性质5:行列式中有两行(两列)完全相同,则行列式的值为0。

三、逆矩阵与可逆矩阵:1.逆矩阵的定义:对于一个n×n的矩阵A,如果存在一个n×n的矩阵B,使得AB=BA=I(单位矩阵),则A称为可逆矩阵,B称为A的逆矩阵,且B=A^(-1)。

第二章矩阵与其运算

第二章矩阵与其运算

数,所以矩阵A与B可以相乘,其乘积AB=C是一个2 3 矩
阵。按公式(6)有
4 1 0
1 C AB 2
0 1
3 0
21
1 2 1
1 0 3
3
1 4
1 4 0 (1) 11 0 1
10 03
3 2 (1) 1 2 4 1 (1)
02 21
3 0 (1) 3 2 1 11
而BT的第i行为 (b1i
b2i
bsi ) , AT 的第j列为 a j1
aj2
aT js
因此
s
s
d ij bki a jk a jk bki
k 1
k 1
所以
dij c ji (i 1,2, , n;j 1,2, , m)
即 D=CT,亦即 ABT BT AT
例7 已知
A
2 1
下, AB BA 。
例5 还表明,矩阵 A O,B O,但却有 BA=O 这就提醒我 们要特别注意:若有两个矩阵A、B满足 AB=O,不能得出 A=O 或 B=O的结论;若A O 而AX Y O ,也不能得出 X=Y 的结论。
§2 矩阵的运算
矩阵的乘法虽不满足交换律,但仍满足下列结合律和分 配律(假设运算都是可行的)
(ⅲ) AB A B .
§3 逆矩阵
定义7 对于n阶矩阵A,如果有一个n阶矩阵B,使 AB=BA=E 则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵。
如果矩阵A是可逆的,那么A的逆矩阵是唯一的,这是因 为:设B、C都是A的逆矩阵,则有
B=BE=B(AC)=B(AC)=(BA)C=EC=C 所以A的逆矩阵是唯一的。
§2 矩阵的运算
设A为n阶方阵,如果满足AT=A, 即

矩阵(Matrix)PPT课件

矩阵(Matrix)PPT课件

a11 a12
A
a21
a22
am1 am2
a1n x1 b1
a2n
,
x
x2
,
b
b2
amn xn bn
ai1x1 ai2 x2 ain xn bi
则方程组又可表示为 Ax b.
x1ai1 x2ai2 xnain bi
a11 a21
定义成
a11 a21
x1 x1
a12 x2 a22 x2
x1
a11
a21
x2
a12
a22
x1 1 x2 2
e2
(a12 , a22 )
2
1
y ( y1, y2 )
2
A和x的乘法实质给出了 向量y在A坐标系(β1Oβ2) 下的刻划方法。
e1
(a11,1a21 )
y y1e1 y2e2
ai1b1 j ai 2b2 j a b b 1j is sj
a a a i1 i2
b2 j is
注:A的列数和B的行数相等时 b,sj AB才有意义。
• 例3 设矩阵
1 0 1
A
1
1
3
,
求乘积 AB.

1 0
C
AB
1
1
0 3 4 B 1 2 1
3 1 1
B
a12
a22
a1n a2n
am1
am2
y (x1, x2, , xn )
c (b1,b2, ,bm)
amn nm
则方程组又可表示为 yB c.
矩阵向量乘法意义之二:为刻划向量提供了坐标系
根据矩阵乘法定义,m n 阶矩阵A与n维列向

矩阵及其运算

矩阵及其运算

矩阵及其运算矩阵是在数学中常见的一种数据结构,它由行和列组成的矩形或方形的数表。

矩阵的运算涉及到加法、减法、乘法等多种操作。

下面将对矩阵及其运算进行详细介绍。

1. 矩阵定义与表示方法:矩阵可以用一个大写字母表示,如A;矩阵的行数和列数分别用小写m和n表示,记为A(m,n)。

也可以用方括号表示矩阵,如A=[a_ij](m×n),其中a_ij表示矩阵A的第i行第j列的元素。

2. 矩阵的加法:矩阵加法要求两个矩阵具有相同的行数和列数,即A(m,n)和B(m,n)。

两个矩阵相加的结果是一个新的矩阵C,C(i,j) = A(i,j) + B(i,j),其中1≤i≤m,1≤j≤n。

3. 矩阵的减法:矩阵减法与矩阵加法类似,也要求两个矩阵具有相同的行数和列数。

两个矩阵相减的结果是一个新的矩阵D,D(i,j) = A(i,j) - B(i,j),其中1≤i≤m,1≤j≤n。

4. 矩阵的乘法:矩阵乘法要求第一个矩阵的列数等于第二个矩阵的行数,即A(m,p)和B(p,n)。

两个矩阵相乘的结果是一个新的矩阵E,E(i,j) = ΣA(i,k) * B(k,j),其中1≤i≤m,1≤j≤n,1≤k≤p。

矩阵乘法是非交换的,即A·B≠B·A。

5. 矩阵的转置:矩阵的转置是将矩阵的行和列互换得到的新矩阵。

若A的转置记为A^T,则矩阵A(m,n)的转置是一个新的矩阵F(n,m),F(i,j) = A(j,i),其中1≤i≤n,1≤j≤m。

6. 矩阵的数量积:矩阵的数量积又称为点积或内积,是两个矩阵对应元素相乘后求和的结果。

若A(m,n)和B(m,n)为两个矩阵,其数量积记为G,G = ΣA(i,j) * B(i,j),其中1≤i≤m,1≤j≤n。

7. 矩阵的幂:矩阵的幂是指矩阵连乘自身多次得到的结果。

若A是一个矩阵,其幂记为A^k,k为正整数,A^k = A·A·...·A。

第二章 矩阵及其运算总结

第二章 矩阵及其运算总结

§1 矩阵及其运算一、矩阵的基本概念(必考)矩阵,是由m*n个数组成的一个m行n列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩阵中的位置.比如,或表示一个m*n 矩阵,下标ij 表示元素位于该矩阵的第行、第列.元素全为零的矩阵称为零矩阵. 特别地,一个m*1矩阵,也称为一个 m维列向量;而一个 1*n矩阵B=(b1,b2,…,bn),也称为一个 n维行向量.当一个矩阵的行数m与烈数n 相等时,该矩阵称为一个 n阶方阵.若一个n阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即: .单位矩阵与实数中的‘1’的运算相近.如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵是一个阶下三角矩阵.例题:1.A既是上三角矩阵,又是下三角矩阵,则A必是对角矩阵2.两矩阵既可相加又可相乘的充要条件是两矩阵为同阶方阵.3.A=(l≠n),则A的主对角线上个元素的和为 (设矩阵为2行3列的矩阵,找规律)二、矩阵的运算1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:.给定矩阵,我们定义其负矩阵为: .这样我们可以定义同型矩阵的减法为: .由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律:(1)交换律:; (2)结合律:;(3)存在零元:;(4)存在负元:.2 、数与矩阵的乘法的运算律:(1);(2);(3);(4) .3 、矩阵的乘法(必考)设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵的列数等与矩阵的行数),所得的积为一个距阵,即,其中,并且(即左行乘右列)矩阵的乘法满足下列运算律(假定下面的运算均有意义):(1)结合律:; (2)左分配律:;(3)右分配律:;(4)数与矩阵乘法的结合律:;(5)单位矩阵的存在性:.若为阶方阵,则对任意正整数,我们定义:,并规定:由于矩阵乘法满足结合律,我们有:, .注意:矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是:(必考重要)(1)矩阵乘法不满足交换律:一般来讲即便有意义,也未必有意义;倘使都有意义,二者也未必相等.正是由于这个原因,一般来讲,在实数中的某些运算不再适应,如,,反过来,这些公式成立的条件又恰是A、B 可逆.例:A,B,C 是同阶矩阵,A ≠0,若AB=BC,必有B=C,则A满足可逆(2)两个非零矩阵的乘积可能是零矩阵,即未必能推出或者. 同理,A ≠0,B ≠0,而AB却肯能等于0.例题:(选择题5、6)(3)矩阵的乘法不满足消去律:如果并且,未必有 .4 、矩阵的转置:定义:设为矩阵,我们定义的转置为一个矩阵,并用表示的转置,即:.矩阵的转置运算满足下列运算律:(1);(2);(3);(4) (重要).5、对称矩阵:n 阶方阵若满足条件:,则称为对称矩阵;若满足条件:,则称为反对称矩阵.若设,则为对称矩阵,当且仅当对任意的成立;为反对称矩阵,当且仅当对任意的成立.从而反对称矩阵对角线上的元素必为零.对称矩阵具有如下性质:(1)对于任意矩阵,为阶对称矩阵;而为阶对称矩阵;(2)两个同阶(反)对称矩阵的和,仍为(反)对称矩阵;(3)如果两个同阶(反)对称矩阵可交换,即,则它们的乘积必为对称矩阵,即.运算性质:1) (2) (3)(4) (5)三、逆矩阵1.定义 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==.则A 称为可逆矩阵或非奇异矩阵.B 称为A 的逆矩阵,.由定义可得,A 与B 一定是同阶的,而且A 如果可逆,则A 的逆矩阵是唯一的.这是因为(反证法),如果1B 、2B 都是A 的逆矩阵,则有E A B AB ==11,E A B AB ==22,那么22212111)()(B EB B A B AB B E B B =====所以逆矩阵是唯一的.我们把矩阵A 的逆矩阵记作1-A .逆矩阵有下列性质: (1)如果A 可逆,则1-A 也可逆,且A A =--11)(.由可逆的定义,显然有A 与1-A 是互逆的. (2)如果A 、B 是两个同阶可逆矩阵,则)(AB 也可逆,且111)(---=A B AB .(必考重点) 这是因为 E A A AEA ABB A A B AB =⋅===------111111)())((E B B EB B B A A B AB A B ====------111111)())((,所以111)(---=A B AB .(必考重点)这个结论也可以推广到有限个可逆矩阵想乘的情形. (3)可逆矩阵A 的转置矩阵T A 也是可逆矩阵,且T T A A )()(11--=.这是因为E E A A A A T T TT===--)()(11,E E AA A A T T T T ===--)()(11所以 T TA A )()(11--=.(4)如果A 是可逆矩阵,则有11--=A A .这是因为E AA=-1,两边取行列式有 11=⋅-A A ,所以111--==A AA . 矩阵可逆的条件(1)n 阶方阵A 可逆的充分必要条件是| A | ≠ 0(也即r (A )= n );(2)n 阶方阵A 可逆的充分必要条件是A 可以通过初等变换(特别是只通过初等行(列)变换)化为n 阶单位矩阵;(3)n 阶方阵A 可逆的充分必要条件是A 可以写成一些初等矩阵的乘积;(4)n 阶方阵A 可逆的充分必要条件是A 的n 个特征值不为零;(5)对于n 阶方阵A ,若存在n 阶方阵B 使得AB = E (或BA = E ),则A 可逆,且A -1= B. 逆矩阵的有关结论及运算必考 ——求法方法1 定义法:设A 是数域P 上的一个n 阶方阵,如果存在P 上的n 阶方阵B ,使得AB = BA= E ,则称A 是可逆的,又称B 为A 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 惟一确定,记为A -1.例1:设A 为n 阶矩阵,且满足22A - 3A + 5E = 0,求A -1.【解】22 2 -12A - 3A + 5E = 02A - 3A = - 5E23-A - A =E 552323A (- A - E) = - A - E = E555523A A = - A - E55∴∴∴∴可逆且方法 2 伴随矩阵法:A -1= 1|A|A*.定理n 阶矩阵A = a ij 为可逆的充分必要条件是A 非奇异.且11211122221121n n nnnn A A A A A A A A A A A -⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭其中A ij 是|A|中元素a ij 的代数余子式.矩阵112111222212n n nnnn A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵,记作A*,于是有A -1=1|A|A*. 注 ①对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意A* = (A ji )n ×n 元素的位置及符号.特别对于2阶方阵11122122a a A a a ⎛⎫= ⎪⎝⎭,其伴随矩阵22122111*a a A a a -⎛⎫=⎪-⎝⎭,即伴随矩阵具有“主对角元素互换,次对角元素变号”的规律.②对于分块矩阵A B C D ⎛⎫⎪⎝⎭不能按上述规律求伴随矩阵.例2:已知101A=210325⎛⎫ ⎪ ⎪ ⎪--⎝⎭,求A -1.【解】 ∵| A | = 2 ≠ 0 ∴A 可逆.由已知得111213212223313233A = - 5, A = 10, A = 7A = 2, A = - 2, A = - 2A = - 1, A = 2, A = 1 , A -1= 1|A| A* = 5115212211022511272171122⎛⎫-- ⎪--⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭方法3 初等变换法:注 ①对于阶数较高(n ≥3)的矩阵,采用初等行变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.②也可以利用1E A E A -⎛⎫⎛⎫−−−−→⎪ ⎪⎝⎭⎝⎭初等列变换求得A 的逆矩阵. ③当矩阵A 可逆时,可利用求解求得A -1B 和CA -1.这一方法的优点是不需求出A 的逆矩阵和进行矩阵乘法,仅通过初等变换即求出了A -1B 或CA -1.例3::用初等行变换求矩阵231A 013125⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵.【解】()231100125001125001A E 01301001301001301012500123110000611212500112500101301001301001910211100166311341006631310122111001663⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪---⎝⎭-- ⎪⎝⎭⎛--→---⎝⎫⎪⎪⎪⎪ ⎪⎪ ⎪⎭1113410066313A 010********1663-⎛⎫--⎪ ⎪ ⎪=- ⎪ ⎪ ⎪-- ⎪⎝⎭故 方法4 用分块矩阵求逆矩阵:设A 、B 分别为P 、Q 阶可逆矩阵,则:1111111111111111A A 000B 0C O A A A CB A O A O BD B O B B DA B B O A O B B O AO ----------------⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭例4:已知0052002112001100A ⎛⎫⎪ ⎪=⎪-⎪⎝⎭,求A -1.【解】 将A 分块如下:12005200211200110O A A A O ⎛⎫ ⎪ ⎪⎛⎫⎪== ⎪⎪⎝⎭- ⎪ ⎪⎝⎭其中 125212,2111A A -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可求得 1*1*1122121212111,2511||||3A A A A A A ---⎛⎫⎛⎫==== ⎪ ⎪--⎝⎭⎝⎭ 从而11211120033110331200250O A A A O ---⎛⎫ ⎪ ⎪ ⎪-⎛⎫ ⎪== ⎪⎪⎝⎭ ⎪ ⎪- ⎪-⎝⎭方法5 恒等变形法求逆矩阵:有些计算命题表面上与求逆矩阵无关,但实质上只有求出矩 阵的逆矩阵才能算出来,而求逆矩阵须对所给的矩阵等式恒等变 形,且常变形为两矩阵的乘积等于单位矩阵的等式.例8 已知,且,试求.解 由题设条件得3.伴随矩阵 如果n 阶矩阵A 的行列式0≠A ,则称A 是非奇异的(或非退化的).否则,称A 是奇异的(或退化的).(n 阶矩阵A 可逆的充要条件是:|A|≠0)设n n ij a A ⨯=)(,ij A 是A 中元素)21(n j i a ij ,,,, =的代数余子式.矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n A A A A A A A A A A 212221212111*(顺序变化,重点)称为A 的伴随矩阵. 矩阵n n ij a A ⨯=)(为可逆矩阵的充分必要条件是A 为非奇异矩阵,并且当A 可逆时,有*11A AA =-,伴随矩阵 例1. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=313132121A 判断A 是否可逆,如果可逆,求1-A .解: 因为01313132121≠=---=A ,所以A 可逆.又.13221)1(11211)1(;11312)1(71321)1(;63311)1(53112)1(;11332)1(93312)1(;83113)1(333323321331322322221221311321121111=---==-==---=-=--=-=--=-=---==--==--==---=+++++++++A A A A A A A A A所以 ⎪⎪⎪⎭⎫⎝⎛---==-1711691581*1A A A 四、分块矩阵一、分块矩阵的概念对于行数和列数较高的矩阵, 为了简化运算,经常采用分块法,使大矩阵的运算化成若干小矩阵间的运算,同时也使原矩阵的结构显得简单而清晰. 具体做法是:将大矩阵用若干条纵线和横线分成多个小矩阵. 每个小矩阵称为A 的子块, 以子块为元素的形式上的矩阵称为分块矩阵.矩阵的分块有多种方式,可根据具体需要而定注:一个矩阵也可看作以n m ⨯个元素为1阶子块的分块矩阵. 二、分块矩阵的运算分块矩阵的运算与普通矩阵的运算规则相似. 分块时要注意,运算的两矩阵按块能运算,并且参与运算的子块也能运算,即,内外都能运算.1. 设矩阵A 与B 的行数相同、列数相同,采用相同的分块法, 若,,11111111⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=st s t st s t B B B B B A A A A A其中ij A 与ij B 的行数相同、列数相同, 则.11111111⎪⎪⎪⎭⎫ ⎝⎛++++=+st st s s t t B A B A B A B A B A2.设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A Ak 为数, 则.1111⎪⎪⎪⎭⎫ ⎝⎛=st s t kA kA kA kA kA 3.设A 为l m ⨯矩阵, B 为n l ⨯矩阵, 分块成,,11111111⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=tr t r st s t B B B B B A A A A A其中pt p p A A A ,,,21 的列数分别等于tq q q B B B ,,,21 的行数, 则,1111⎪⎪⎪⎭⎫ ⎝⎛=sr s r C C C C AB 其中).,,2,1;,,2,1(1r q s p B A C t k kqpk pq ===∑=4. 分块矩阵的转置设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A A则.1111⎪⎪⎪⎪⎭⎫ ⎝⎛=T st T tT s T TA A A A A 5. 设A 为n 阶矩阵, 若A 的分块矩阵只有在对角线上有非零子块, 其余子块都为零矩阵, 且在对角线上的子块都是方阵, 即⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A O A O A A21, 其中),,2,1(s i A i =都是方阵, 则称A 为分块对角矩阵.分块对角矩阵具有以下性质:(1) 若 ),,2,1(0||s i A i =≠,则0||≠A ,且|;|||||||21s A A A A =(2) .112111⎪⎪⎪⎪⎪⎭⎫⎝⎛=----s A O A O A A(3) 同结构的对角分块矩阵的和、差、积、商仍是对角分块矩阵. 且运算表现为对应子块的运算。

矩阵的定义及其运算规则-矩阵的定义

矩阵的定义及其运算规则-矩阵的定义

矩阵的【2 】界说及其运算规矩1.矩阵的界说一般而言,所谓矩阵就是由一组数的全部,在括号()内分列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵.矩阵平日是用大写字母 A .B …来表示.例如一个m 行n 列的矩阵可以简记为:,或.即:(2-3)我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母 ,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数.当m=n时,则称为n阶方阵,并用表示.当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵 .设两个矩阵,有雷同的行数和雷同的列数,并且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B.2.三角形矩阵由i=j的元素构成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素.假如在方阵中主对角线一侧的元素全为零,而别的一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵.例如,以下矩阵都是三角形矩阵:, ,, .3.单位矩阵与零矩阵在方阵中,假如只有的元素不等于零,而其他元素全为零,如:则称为对角矩阵,可记为.假如在对角矩阵中所有的彼此都相等且均为1,如:,则称为单位矩阵.单位矩阵常用E来表示,即:当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示.4.矩阵的加法矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必需要有雷同的行数和列数.如以C=(c ij)表示矩阵A及B的和,则有:m ×n式中:.即矩阵C的元素等于矩阵A和B的对应元素之和.由上述界说可知,矩阵的加法具有下列性质(设 A.B.C都是m×n矩阵):(1)交流律:A+B=B+ A (2)联合律:(A+B)+C=A+(B+C)5.数与矩阵的乘法我们界说用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵.如:由上述界说可知,数与矩阵相乘具有下列性质:设A.B都是m×n矩阵,k.h为随意率性常数,则:(1) k(A+B)=kA+kB(2)(k+h)A=kA+hA(3) k(hA)=khA6.矩阵的乘法若矩阵乘矩阵,则只有在前者的列数等于后者的行数时才有意义.矩阵的元素的盘算办法界说为第一个矩阵第i行的元素与第二个矩阵第j列元素对应乘积的和.若:则矩阵的元素由界说知其盘算公式为:(2-4)【例2-1】设有两矩阵为:, ,试求该两矩阵的积.【解】因为A矩阵的列数等于B矩阵的行数,故可乘,其成果设为C:个中:【例2-2】已知:A=,B=,求A.B两个矩阵的积.【解】盘算成果如下:矩阵的乘法具有下列性质:(1)平日矩阵的乘积是不可交流的.(2)矩阵的乘法是可联合的.(3)设A是m×n矩阵, B.C是两个n×t矩阵,则有:A(B+C)=AB+AC.(4)设A是m×n矩阵,B是n×t矩阵.则对随意率性常数k有:k(AB)=(kA)B=A(kB).【例2-3】用矩阵表示的某一组方程为:(2-5)式中:(2-6)试将矩阵公式睁开,列出方程组.【解】现将(2-6)式代入(2-5)式得:(2-7)将上式右边盘算整顿得:(2-8)可得方程组:可见,上述方程组可以写成(2-5)式的矩阵情势.上述方程组就是测量平差中的误差方程组,故知(2-5)式即为误差方程组的矩阵表达式.式中称为纠正数阵,称为误差方程组的系数阵,称为未知数阵,称为误差方程组的常数项阵.【例2-4】设由n个不雅测值列出r个前提式如下,试用矩阵表示.【解】现记:(2-9)则前提方程组可用矩阵表示成:(2-10)上式中称为前提方程组的系数阵,称为纠正数阵,称为前提方程组的闭合差排阵.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵的定义及其运算规则
1、矩阵的定义
一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。

矩阵通常是用大写字母 A 、B …来表示。

例如一个m 行n 列的矩阵可以简记为:
,或。

即:
(2-3)
我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。

当m=n时,则称为n阶方阵,并用表示。

当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。

设两个矩阵,有相同的行数和相同的列数,而且
它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。

2、三角形矩阵
由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。

如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。

例如,以下矩阵都是三角形矩阵:
,,,。

3、单位矩阵与零矩阵
在方阵中,如果只有的元素不等于零,而其他元素全为零,如:
则称为对角矩阵,可记为。

如果在对角矩阵中所有的彼此
都相等且均为1,如:,则称为单位矩阵。

单位矩阵常用E来表示,即:
当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。

4、矩阵的加法
矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。

如以C=(c ij)表示矩阵A及B的和,则有:
m ×n
式中:。

即矩阵C的元素等于矩阵A和B的对应元素之和。

由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵):
(1)交换律:A+B=B+A
(2)结合律:(A+B)+C=A+(B+C)
5、数与矩阵的乘法
我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。

如:
由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则:
(1)k(A+B)=kA+kB
(2)(k+h)A=kA+hA
(3)k(hA)=khA
6、矩阵的乘法
若矩阵乘矩阵,则只有在前者的列数等于后者的行数时才有意义。

矩阵的元
素的计算方法定义为第一个矩阵第i行的元素与第二个矩阵第j列元素对应乘积的和。

若:
则矩阵的元素由定义知其计算公式为:
(2-4)
【例2-1】设有两矩阵为:,,试求该两矩阵的积。

【解】由于A矩阵的列数等于B矩阵的行数,故可乘,其结果设为C:
其中:
【例2-2】已知:A=,B=,求A、B两个矩阵的积。

【解】计算结果如下:
矩阵的乘法具有下列性质:(1)通常矩阵的乘积是不可交换的。

(2)矩阵的乘法是可结合的。

(3)设A是m×n矩阵,B、C是两个n×t矩阵,则有:A(B+C)=AB+AC。

(4)设A是m×n矩阵,B是n×t矩阵。

则对任意常数k有:k(AB)=(kA)B=A (kB)。

【例2-3】用矩阵表示的某一组方程为:
(2-5)
式中:
(2-6)试将矩阵公式展开,列出方程组。

【解】现将(2-6)式代入(2-5)式得:
(2-7)
将上式右边计算整理得:
(2-8)
可得方程组:
可见,上述方程组可以写成(2-5)式的矩阵形式。

上述方程组就是测量平差中的误差方程组,故知(2-5)式即为误差方程组的矩阵表达式。

式中称为改正数阵,称为误差
方程组的系数阵,称为未知数阵,称为误差方程组的常数项阵。

【例2-4】设由n个观测值列出r个条件式如下,试用矩阵表示。

【解】现记:
(2-9)则条件方程组可用矩阵表示成:
(2-10)
上式中称为条件方程组的系数阵,称为改正数阵,称为条件方程组的闭合差列阵。

相关文档
最新文档