统计过程控制SPC的基本概念与应用

合集下载

SPC基础知识和应用

SPC基础知识和应用

LSL 64 72 76 LCL UCL
USL 80
68
SPC基础知识和应用
落地炉线 中心值 管制上限 管制下限
2月22日
2月24日 2月26日 2月28日 3 月1 日 3 月3 日 3 月5 日 3 月7 日
上图是我们发泡过程的一组数据,对应SPC中控制图的基本判定准则: 1.X个点超出管制界限 2.续X点分布在管制界限的同侧 3.连续X点的上升或下降 可以说明,我们应当结合实际生产控制需求制定适合我们的SPC控制。
X LSL Cp ˆ 3σ
状态不理想,需改进为A级 制程不良,必须提升制成能力 制成能力太差,必须分析原因,重新设计制成 制程
产品规格设计值为3.5mm 0.1mm, 今在稳定量产线上抽检5个样 品,测量值为: 3.52, 3.53, 3.57, 3.54, 3.53,则Cp计算如下: T=3.6-3.4=0.2, σ=0.0192,X=3.538
Cp 0.2 1.73 0.0192 6
SPC基础知识和应用
Cpk计算公式介绍 :
USL X X LSL , ) 双边规格 :Cpk min( ˆ ˆ 3 3
单边规格:以Cp表示:Cpk=Cp
仅定规格上限
Cp
Cpk=Cp=
仅定规格下限
USL X ˆ 3σ
双边规格也可采用以下公式计算Cpk: Cpk=Cp*(1-Ca)
练习: 设计产品规格为3.5mm±0.1mm, 今在量产线上抽测5个样品, 其 测量值如下:3.52, 3.53, 3.57, 3.54, 3.53,则Ca值计算如下: U=3.50, T=3.6-3.4=0.2, X=3.538
Ca 3.538 3.50 0.038 38% 0.2 / 2 0.1

SPC的定义及应用范围

SPC的定义及应用范围

SPC的定义及应用范围什么是SPC?SPC(统计过程控制)指的是一种通过统计方法来监控和控制过程的质量的方法。

它旨在通过分析过程中的数据,以便更好地了解和理解过程的变异性,并采取适当的措施来控制和改进过程的稳定性和能力。

SPC是一种基于数据的方法,它使用统计技术来分析过程中的变异,并通过控制图和其他工具来监控过程的表现。

通过及时识别和解决问题,SPC可以帮助组织提高质量、降低成本,并提高客户满意度。

SPC的应用范围SPC可以应用于各种类型的过程和行业。

无论是制造业还是服务业,SPC都可以用来监控和改进过程的稳定性和能力。

以下是一些常见的应用范围:制造业在制造业中,SPC可以用来监控和控制生产过程中的关键参数。

通过采集和分析实时数据,可以及时发现过程中的异常和变异,并采取相应的纠正措施,以确保产品的一致性和质量。

SPC可以应用于各种制造领域,如汽车制造、电子制造、医疗设备制造等。

例如,在汽车制造中,SPC可以用来监控关键指标,如车身尺寸、涂装厚度等,以确保生产出符合规格的汽车。

服务业尽管SPC最初是为制造业设计的,但它同样适用于服务业。

在服务业中,过程的稳定性和能力同样重要。

通过收集客户反馈和关键指标数据,可以使用SPC来监控和改进服务过程。

例如,在酒店业中,可以使用SPC来检测房间清洁时间、客户满意度等指标,以确保提供高质量的服务。

在银行业中,SPC可以应用于监控关键指标,如服务等待时间、客户投诉率等,以提高客户满意度。

医疗在医疗行业中,SPC可以用于监控和改进各种过程,如手术过程、药品配制过程等。

通过收集和分析相关数据,可以及时发现问题并采取适当的措施,以确保病人的安全和满意度。

SPC在医疗行业中的应用可以帮助医院提供更高质量的医疗服务,减少手术错误和药物错误等。

总结SPC是一种通过统计方法来监控和控制过程质量的方法。

它适用于各种类型的过程和行业,包括制造业、服务业和医疗行业。

通过采集和分析数据,SPC可以帮助组织提高过程的稳定性和能力,从而提高质量、降低成本,并提高客户满意度。

SPC基本概念

SPC基本概念

SPC的特点 SPC的特点
●与全面质量管理相同,强调全员参与,而 不是只依靠少数质量管理人员 ●强调应用统计方法来保证预防原则的实现 ●SPC不是用来解决个别工序采用什么控制 SPC不是用来解决个别工序采用什么控制 图的问题,SPC强调从整个过程、整个体 图的问题,SPC强调从整个过程、整个体 系出发来解决问题。SPC的重点就在与“ 系出发来解决问题。SPC的重点就在与“P (Process,过程) Process,过程) ●可判断过程的异常,及时告警; ●不能告知此异常是什么因素引起的
判稳原则
●计算公式:
准则 N=25 d=0
N=35 N=100 d≤3 d≤1
P(过程为正常的概率)
25 (0 . 9973 0
判断错误 的概率
= 0 . 9345
)25 (1 − 0 . 9973 )0
1-P 1-P
35 35 35 34 1 (0 .9973 ) + (0 .9973 ) (0 .0027 ) = 0 .9959 0 1
统计学在生产中应用的目的
1. x, s --了解产品总体性能 2. Eliminate outlier due to assignable cause -- 取消人为特殊因素造成的极端值以稳定制程 3. Hit target(µ) -- 规格趋向目标值 4. Reduce variance (s) -- 减小差异 5. Spec Review for feasibility -- 審核規格,看看是否適用
判稳原则
●判稳准则 在点子随机排列的情况下,符合下列各点之一判稳: 在点子随机排列的情况下,符合下列各点之一判稳: -----连续25个点,界外点数d=0 -----连续25个点,界外点数d=0 -----连续35个点,界外点数d≤1 -----连续35个点,界外点数d≤1 -----连续100个点,界外点数d≤2 -----连续100个点,界外点数d≤2 ●分析判稳原则 准则 1 2 3 α 0.0654 0.0041 0.0026 β 0.9346 0.9959 0.9974

统计过程控制(SPC)

统计过程控制(SPC)

(三) x R 控制图的操作步骤
1. 确定控制对象(统计量) 2. 收集k组预备数据(一般K=25;每组数
据个数n ≥ 2;遵循合理子组原则) 3. 计算每一个样本的均值 X i 与极差 Ri 。 4. 计算 X与R 5. 计算R图控制限并作图 6. 用各样本点绘在图中,判断状态。
分析过程若失控或异常,找出原因, 进行纠正,防止再发生。
7. 计算 X 图控制限并作图,判断状态。 8. 计算过程能力指数验证是否符合要求 9. 延长控制限,作控制用控制图,进行日
常管理
四、 X S 图(掌握) 五、X-Rs图(了解)
六、Me-R图(了解)
七、P控制图
(一)P控制图的控制状态
P 常数
n
n
ˆp p di / ni
i1 i1
(二)P控制图的统计基础为二项分布,其
内容 (1)利用控制图分析过程的稳定性,对
过程存在的异常原因进行预警;
(2)计算过程能力指数分析稳定的过程 能力满足技术要求的程度,对过程质量进行 评价。
三、统计过程控制的特点 是一种预防性的方法 贯彻预防原则是现代质量管理的核心 强调全员参与
SPC的涵义
为了贯彻预防原则,应用统计技术对 过程各阶段评估和监控,建立并保持过程 处于可接受的并且稳定的水平从而保证产 品与服务符合规定的要求的一种质量管理 技术。
过程能力指数 过程性能指数
CP
TU TL 6ˆ ST
PP
TU TL 6ˆ LT
其中 ˆ St —— 短期波动的标准差估计,在稳态
下计算
ˆ St
R d2

S C4
ˆ Lt —— 长期波动的标准差估计,在实
际情况下计算 ˆ Lt S

统计过程控制

统计过程控制

统计过程控制统计过程控制(SPC)是一种基于数据分析的质量管理方法,旨在通过对过程的监测与控制,实现生产过程中的连续改进。

这种方法可以帮助提高产品质量,降低生产成本,提高客户满意度。

以下是SPC的简介、使用方法、益处以及实现过程中可能存在的问题。

简介SPC的理念是“控制过程而不是修理产品”,它的核心是把质量管理的重点从检查和纠正缺陷转移到控制过程。

SPC主要应用于制造业,但也适用于服务业和医疗行业等其他领域。

通过数据收集、分析和监控,SPC可以帮助企业了解其生产过程并制定相应的改进计划,从而实现生产效率和产品质量的提高。

使用方法SPC主要包括数据的收集和分析两个阶段。

数据的收集通常是由受训人员通过抽样等方式获取,然后数据会被汇总到一个控制图表中。

控制图表是SPC最基本的工具,它可以反映生产过程中数据的变化情况,通过样本数据的变化来判断是否存在特殊因素,以及是否需要采取相应的措施来防止这些因素的再次出现。

在数据分析阶段,SPC通常使用各种统计方法来分析数据的规律性和变动性,从而确定过程的性能是否符合要求。

如果发现过程出现特殊的变化,就需要针对这些问题采取相应的措施。

然后,通过监控过程的稳定性和性能,来确保所采取的措施有效。

益处SPC的主要益处是提高质量和降低成本。

由于SPC持续地跟踪和分析数据,可以及时发现问题,并采取相应的措施。

这减少了产品缺陷率和因此而导致的重新工作或返工数量。

此外,SPC还可以提高生产效率,因为它可以减少生产中的浪费和停机时间,并优化制造工艺。

此外,SPC还可以增加生产过程的可持续性,使过程更加稳定,从而提高客户满意度。

实现过程中可能存在的问题尽管SPC被广泛运用于生产领域,但在实施过程中仍然存在一些问题。

例如,如果质量数据不正确或不完整,则无法有效地检测和纠正问题。

确保收集到正确和完整的数据非常重要。

另一个问题是寻找和培养高素质的SPC人才。

虽然有许多SPC工具和软件可以帮助质量控制人员更好地应用SPC,但必须确保员工已经得到了适当的培训,以确保他们理解SPC的基本概念和运用方法。

统计过程控制

统计过程控制

失去控制(有异因)
稳态图示
规格下限
技术稳态
规格上限
(偶因的变异减少)
年我国著名质量管理专家、北京科技大学张公绪教授提出选控图及两
种质量诊断理论,突破了休哈特的SPC理论,使SPC上升到SPD。 SPD不仅能预警, 而且能诊断, 为及时纠正提供了有利保障.
统计本身不能提高制程能力,消除 异常因素! 它是我们的工具。
第二节
控制图原理
一、控制图的结构
控制图(Control Chart)是对过程质量特性值进行测定、记录、
评估,从而监察过程是否处于控制状态的一种用统计方法设计的图。
样 本 统 计 量 数 值 描点序列 上控制限(UCL) 中心线(CL)
下控制限(LCL)
控制图示例
时间或样本号
控制图组成包括中心线、上下控制限以及按时间顺序抽取的样本 统计量数值的描点序列。
二、控制图的重要性
控制图是贯彻预防原则的SPC的重要工具,可用以直接对产品生 产过程的控制与诊断,是质量管理(老)七个工具的重要组成部分。
LCL为下控制限。
控制图虽然由正态分布转化而来,由于二项分布、泊松分布当样本量较 大时近似正态分布,因此,控制图对典型分布均适用。
(二)控制图原理的第一种解释 (1)若过程正常,即分布不变,则出现点子超过上或下控制限情
况的概率只有1‰左右。( 0.27%÷2 = 1.35‰ )
(2)若过程异常,发生这种情况的可能性很大,其概率可能为 1‰的几十乃至几百倍。 例如:当正态分布的均值偏移1.5σ 的情况 不合格品率 p=1-Φ(1.5 ) + Φ(-4.5 ) =2- Φ(1.5 ) - Φ(4.5 ) =0.06681 根据小概率事件原理:即小概率事件在一次试验中几乎不可能发 生,因此,若发生即可判断异常。

详细全面的SPC详解

详细全面的SPC详解
详细全面的SPC 详解
汇报人: 202X-01-06
目录
• SPC基本概念 • SPC实施步骤 • SPC应用领域 • SPC优势与局限性 • SPC未来发展趋势 • SPC案例分析
01
SPC基本概念
SPC定义
SPC即统计过程控制,是一种利用统计方法对生产过程进行监控和管理的质量控制技术。它通过收集 和分析生产过程中的数据,对生产过程进行评估和监控,以确保产品质量和生产过程的稳定性。
THANKS
感谢观看
SPC强调预防性的质量控制,通过实时监测和调整生产过程,以降低不良品率和生产成本,提高生产 效率和产品质量。
SPC目的和意义
确保产品质量
通过实时监测和调整生产过程, SPC能够及时发现并解决潜在的 质量问题,从而确保产品质量的 稳定性和可靠性。
提高生产效率
通过预防性的质量控制,SPC能 够降低生产过程中的不良品率, 减少生产浪费和损失,提高生产 效率。
某高校SPC教学案例
实施背景
某高校为了使学生更好地掌握质量管理知识,决定引入SPC 技术进行教学。
实施过程
该高校在课程中设置了SPC模块,通过理论教学、案例分析 和实践操作等方式,使学生全面了解和掌握SPC技术。
实施效果
通过SPC教学,该高校的学生对质量管理知识有了更深入的 理解,同时也提高了实际操作能力和问题解决能力。
优化生产过程
SPC通过对生产过程的实时监测 和分析,能够发现生产过程中的 瓶颈和问题,为生产过程的优化 提供数据支持。
SPC发展历程
20世纪40年代
美国军方开始广泛应用SPC技 术,以提高产品质量和一致性 。
20世纪80年代
随着计算机技术的发展,SPC 技术逐渐实现自动化和智能化 。

SPC统计基础知识

SPC统计基础知识

SPC统计基础知识简介SPC(Statistical Process Control,统计过程控制)是一种用于监控和管理过程稳定性和可靠性的统计技术。

通过收集样本数据并进行分析,SPC能够及时发现过程中的变异和异常情况,从而帮助组织实现质量改进、成本控制和客户满意度的提高。

本文将介绍SPC的基本概念和常用统计方法,帮助读者理解和运用SPC统计基础知识。

1. SPC的基本概念SPC是一种通过分析过程数据来监控过程稳定性的方法。

它基于以下三个基本统计概念:1.1 均值过程中的均值是指一组样本数据的平均值。

在SPC中,通过计算样本的均值来了解过程的中心位置。

如果样本均值始终在预设的目标值附近波动,说明过程稳定。

1.2 变异过程中的变异是指一组样本数据的离散程度。

在SPC中,通过计算样本数据的变异度来了解过程的稳定性。

如果样本数据的变异度较低且在预设的范围内,说明过程稳定。

1.3 控制界限控制界限是为了判断过程是否处于可接受的控制范围内而设定的。

上下控制界限定义了过程稳定的上下限,超出这一范围的样本数据将被认为是异常值或异常事件。

2. 常用的SPC统计方法2.1 过程能力指数(Cp)过程能力指数是一种衡量过程稳定性和可靠性的指标。

它通过比较过程的变异度和指定的公差范围来评估过程性能。

Cp值越高,说明过程的稳定性和可靠性越好。

2.2 控制图控制图是SPC中最常用的统计工具之一。

它通过绘制样本数据的均值、上下控制界限和中心线来反映过程的变化趋势。

通过控制图,可以及时发现和纠正过程中的变异和异常情况。

2.3 散点图散点图是用来显示两个变量之间关系的图表。

在SPC中,散点图可以用来发现变量之间的相关性和趋势。

通过分析散点图,可以帮助确定工艺参数的合理范围和优化生产过程。

2.4 直方图直方图是用来显示数据分布情况的图表。

在SPC中,直方图可以帮助了解过程数据的分布特征和变异程度。

通过分析直方图,可以判断过程是否正常、是否满足规定要求。

SPC统计过程控制技术

SPC统计过程控制技术

SPC统计过程控制技术SPC是指统计过程控制(Statistical Process Control)技术,它是一种采用统计方法来监控和控制生产过程的质量管理工具。

SPC技术通过对过程数据进行统计分析,能够帮助企业发现生产过程中的特殊因素,及时采取措施以避免或减少产品质量问题的发生。

本文将介绍SPC技术的原理、方法和应用。

SPC技术的原理是建立在统计学基础上的。

它利用统计学中的均值、标准差、概率分布等概念和方法,对生产过程中的各种因素进行统计分析,从而了解过程的变异情况。

通过对过程数据的采集和分析,SPC技术可以判断过程稳定性,确定过程能否满足质量要求,并通过控制图等图表形式展示分析结果,帮助生产人员进行决策和改进。

SPC技术主要包括过程能力分析、控制图分析和统计抽样等方法。

过程能力分析是通过统计计算和分析得到的数值指标,评估生产过程是否具备满足产品质量要求的能力。

常用的指标包括过程能力指数(Cp、Cpk)和过程潜力指数(Pp、Ppk)等。

控制图分析是通过绘制控制图来监控过程的稳定性和变异情况,包括过程平均水平的控制图(X̄图)、过程离散程度的控制图(R图、S图)和过程离散程度和平均水平的同时控制图(X̄-R图、X̄-S图)等。

统计抽样是根据统计学原理和抽样方法,通过对样本数据的分析来判断整个过程的质量水平,包括构造抽样方案、抽样样本量的确定和样本数据的分析等。

SPC技术的应用范围广泛。

它适用于各类生产过程中的质量控制和改进,无论是制造业还是服务业。

在制造业中,SPC技术可以应用于各种工艺过程的控制,如冶金、电子、化工等。

在服务业中,SPC技术可以应用于流程控制和质量改进,如银行、保险、医疗等。

此外,SPC技术还可以应用于产品设计阶段的质量控制和改进,通过对设计方案的统计模拟和优化,提高产品的质量性能。

SPC技术的应用有助于提高产品的质量水平和生产的经济效益。

首先,SPC技术可以帮助企业监控生产过程的稳定性,及时发现并消除影响产品质量的变异因素,提高产品的合格率和一致性。

统计过程控制(SPC)

统计过程控制(SPC)
图2
解:
于是,过程能力指数为:
过程能力不够充分,从图2发现分布中心μ=0.1968与规范中心M=(TU+TL)/2=0.1720有偏离,应进行调整。调整后,Cp值会有所提高。
单侧规范情况的过程能力指数
01
只有上限要求,而对下限没有要求: 只适用于的范围:
02
只有下限要求,而对上限没有要求: 只适用于的范围:
4
3
6
5
判稳准则的分析 判稳准则的思路
打一个点未出界有两种可能性:
► 过程本来稳定 ► 漏报 (这里由于α小,所以β大),故打一个点子未出界不能立即判稳。
在点子随机排列的情况下,符合下列各点之一判稳:
01
► 连续25个点,界外点数d=0;
02
► 连续35个点,界外点数d<0;
03
► 连续100个点,界外点数d<2。
0.1821
0.1828
0.0086
18
0.1812
0.1585
0.1699
0.168
0.1694
0.0227
19
0.1700
0.1567
0.1694
0.1702
0.1666
0.0135
20
0.1698
0.1664
0.17
0.16
0.1666
0.01
图1
μ’
μ
图2-7 正态曲线随着标准差变化
σ=2.5
σ=1.0
σ=0.4
y
x
不论μ与σ取值为何,产品质量特性值落在[μ-3σ,μ+3σ]范围内的概率为99.73%。 图2-8 正态分布曲线下的面积

质量管理五大工具-SPC培训

质量管理五大工具-SPC培训

质量管理五大工具SPC培训一、引言随着市场竞争的日益激烈,企业对于产品质量的要求也越来越高。

为了确保产品质量,企业需要采用科学的质量管理方法。

统计过程控制(SPC)作为质量管理五大工具之一,能够帮助企业有效监控和改进产品质量,提高生产效率,降低成本。

本培训将介绍SPC的基本概念、原理、方法和应用,帮助学员掌握SPC工具,提升质量管理水平。

二、SPC概述1. SPC的定义SPC(Statistical Process Control,统计过程控制)是一种利用统计方法对生产过程中的数据进行实时监控和分析,以判断过程是否处于受控状态,并采取措施使过程保持稳定的方法。

2. SPC的核心思想SPC的核心思想是通过对生产过程中的数据进行实时监控和分析,及时发现异常波动,采取纠正措施,使过程保持稳定,从而提高产品质量和生产效率。

3. SPC的作用(1)实时监控生产过程,及时发现异常波动;(2)分析原因,采取纠正措施,使过程保持稳定;(3)降低不合格品率,提高产品质量;(4)降低生产成本,提高生产效率。

三、SPC的基本方法1. 控制图控制图是SPC的核心工具,用于实时监控生产过程中的数据变化。

通过控制图,可以直观地判断过程是否处于受控状态,及时发现异常波动。

2. 过程能力分析过程能力分析是对生产过程稳定性的评估,通过计算过程能力指数,判断过程能否满足产品质量要求。

3. 变差分析变差分析是分析生产过程中各种因素对产品质量的影响,找出主要影响因素,从而采取措施降低变差,提高产品质量。

4. 实验设计实验设计是一种系统化的方法,通过设计实验方案,优化生产过程,提高产品质量和生产效率。

5. 统计推断统计推断是利用统计方法对生产过程中的数据进行推断,评估产品质量和生产过程的稳定性。

四、SPC的应用1. 生产过程中的实时监控在生产过程中,利用控制图对关键质量特性进行实时监控,及时发现异常波动,采取纠正措施,确保产品质量。

2. 产品质量改进通过过程能力分析和变差分析,找出影响产品质量的主要因素,采取措施降低变差,提高产品质量。

SPC统计过程控制基本概念

SPC统计过程控制基本概念

SPC统计过程控制根本概念引言SPC〔统计过程控制〕是一种用于监控和控制过程稳定性的方法。

它使用统计工具来分析过程数据,以便及时识别和纠正任何异常或变异。

本文将介绍SPC统计过程控制的根本概念,包括其定义、原理和常用的控制图。

定义SPC是一种基于统计方法的过程管理技术,用于监测和控制生产过程以保持在既定的质量范围内。

它的目标是确保过程在特定参数范围内保持稳定,并及时识别和纠正任何异常。

SPC主要通过收集数据并应用统计方法来实现过程控制。

原理SPC基于以下两个根本原理: 1. 过程稳定性:稳定的过程是指其输出变量在一定的统计范围内波动,并且其变异性为可控制的。

通过检测过程数据的变异性,可以判断过程是否稳定。

2. 标准限制:每个过程都有一组标准限制,表示其输出变量的可接受范围。

通过比拟过程数据与标准限制,可以判断过程是否符合要求。

控制图控制图是SPC中常用的工具,用于检测和监控过程的稳定性。

常见的控制图包括: - 均值控制图:用于监测过程的平均值是否稳定。

常见的均值控制图有X-bar控制图和均值移动范围控制图。

- 范围控制图:用于监测过程的变异性是否稳定。

常见的范围控制图有R控制图和S 控制图。

- 非参数控制图:用于监测不符合正态分布假设的过程。

常见的非参数控制图有中位数控制图和秩和控制图。

控制图的根本原理是将过程数据与控制界限进行比拟,以识别任何异常或变异。

如果过程数据落在控制界限之外,说明过程不稳定并需要采取纠正措施。

SPC方法SPC方法是实施SPC的步骤和技术。

以下是SPC方法中的关键步骤:1. 收集数据:收集过程相关的数据,通常是通过抽样收集。

2. 统计分析:对收集到的数据进行统计分析,包括计算统计指标和绘制控制图。

3. 解读控制图:通过分析控制图,识别任何异常或变异,判断过程是否稳定。

4. 纠正措施:如果控制图显示过程不稳定,应采取纠正措施,如调整操作参数或改良工艺流程。

SPC方法还可以与其他质量管理工具和方法相结合,例如六西格玛和PDCA循环,以进一步提高过程稳定性和质量性能。

SPC(统计过程控制):基本概念及在质量管理中的作用介绍

SPC(统计过程控制):基本概念及在质量管理中的作用介绍

SPC(统计过程控制):基本概念及在质量管理中的作用介绍一、SPC概述SPC(Statistical Process Control, 统计过程控制)是用于控制生产过程稳定性、提高产品质量的一种管理工具。

它是一种基于统计原理的质量控制技术,通过对质量数据进行分析并处理,帮助生产部门发现异常情况,及时进行纠正和改进。

SPC的主要作用是通过对生产的各项指标进行监控,及时发现异常情况并予以解决,达到减少产品次品率、提高生产效率的目的。

1.1 SPC的定义和发展历程统计过程控制(SPC)是由美国生产者联盟(APQC)制定的标准,是指在生产、服务等等过程中,使用一系列统计方法,对生产过程各项指标进行定量分析、监控,以便及时发现问题并采取纠正和预防措施,以提高质量、提高效率和降低成本。

自20世纪75年以来,SPC 已广为应用于各种制造和服务行业,被广泛认可和推广。

1.2 SPC的基本原理和方法SPC的基本原理是通过收集和分析生产过程中的数据,判断过程是否处于正常状态,如果出现异常情况则采取行动控制,达到稳定生产并控制品质的目的。

其基本方法有控制图、质量测量、过程分析、数据收集和统计方法等。

二、SPC在质量管理中的作用2.1 SPC在质量管理体系中的地位与作用SPC在现代企业的质量管理中处于非常重要的地位,其作用几乎贯穿了整个质量管理体系。

首先,质量管理的核心目标是实现全过程质量控制,SPC可以有效的实现这一目标。

其次,SPC可以帮助企业实现质量的持续改进,提高产品的稳定性和一致性,为企业提供坚实的基础。

再次,SPC可以为企业的产品质量提供科学的依据,使企业在市场竞争中更具有说服力。

2.2 SPC在改进质量管理性能方面的作用SPC对于改进质量管理性能具有很好的作用。

通过对生产过程的监控,SPC可以发现不稳定的因素和不良的趋势,为及时采取行动提供依据。

此外,通过对数据的分析,进一步提高了质量管理的效益,不断完善生产过程,并持续不断地提高产品质量。

SPC统计过程控制之抽样检验

SPC统计过程控制之抽样检验

分类
按照抽样的方式,抽样检验可以分为随机抽样和系统抽样; 按照检验的方法,抽样检验可以分为计数抽样检验和计量抽 样检验。
抽样检验的基本原理
代表性
01
抽样检验的样品应具有代表性,能够反映整批产品的质量状况。
可靠性
02
抽样检验的结果应具有可靠性,能够准确地推断整批产品的质
量状况。
经济性
03
抽样检验应尽可能地减少检验成本,提高检验效率。
抽样检验的标准和规范
GB/T 2828.1-2008《计数抽 样检验程序 第1部分:按接收 质量限(AQL)检索的逐批检验
抽样计划》
GB/T 6378.4-2008《计量抽 样检验程序 第4部分:对均 值的声称质量水平的评定程
序的特殊要求》
ISO 2859-1:1999《计数抽样 检验程序 第1部分:按接收质 量限(AQL)检索的逐批检验抽
SPC统计过程控制之抽样检验
目 录
• SPC统计过程控制概述 • 抽样检验的基本概念 • SPC在抽样检验中的应用 • 抽样检验的常见问题和解决方法 • SPC统计过程控制的未来发展
01 SPC统计过程控制概述
SPC的基本概念
定义
SPC(统计过程控制)是一种利用 统计技术对生产过程进行监控和管 理的质量控制方法。
样计划》
03 SPC在抽样检验中的应用
SPC在抽样检验中的实施步骤
确定抽样检验方案
根据产品特性和质量要求,选择适当的 抽样检验方案,包括抽样水平、检验项
目、合格判定等。
实施抽样检验
按照抽样计划进行抽样,并对性,制定合理 的抽样计划,包括抽样频率、抽样数 量、抽样方式等。
数据分析与改进
定期对控制图进行分析,找出影响产 品质量的关键因素,采取改进措施, 提高产品质量稳定性。

统计过程控制

统计过程控制

统计过程控制目录统计过程控制的概念统计过程的特点SPC解决的两个基本问题SPC理论的应用范围SPC理论的作用SPC—统计过程控制统计过程控制的概念统计过程控制(简称SPC)是应用统计技术对过程中的各个阶段进行评估和监控,建立并保持过程处于可接受的且稳定的水平,从而保证产品与服务符合规定的要求的一种质量管理技术。

它是过程控制的一部分,从内容上说主要是有两个方面:一是利用控制图分析过程的稳定性,对过程存在的异常因素进行预警;二是计算过程能力指数分析稳定的过程能力满足技术要求的程度,对过程质量进行评价。

统计过程的特点它是一种预防性方法;强调全员参与;强调整个过程,重点在于P(Process),即过程。

SPC解决的两个基本问题一是过程运行状态是否稳定,可利用控制图这一统计工具进行测定;二是过程能力是否充足,可通过过程能力分析来实现。

SPC理论的应用范围加工过程、设计过程、管理过程、服务过程等SPC理论的作用1. 确保制程持续稳定、可预测。

2. 提高产品质量、生产能力、降低成本。

3. 为制程分析提供依据。

4. 区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。

SPC—统计过程控制统计过程控制(简称SPC)是一种借助数理统计方法的过程控制工具。

它对生产过程进行分析评价,根据反馈信息及时发现系统性因素出现的征兆,并采取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。

它认为,当过程仅受随机因素影响时,过程处于统计控制状态(简称受控状态);当过程中存在系统因素的影响时,过程处于统计失控状态(简称失控状态)。

由于过程波动具有统计规律性,当过程受控时,过程特性一般服从稳定的随机分布;而失控时,过程分布将发生改变。

SPC正是利用过程波动的统计规律性对过程进行分析控制。

因而,它强调过程在受控和有能力的状态下运行,从而使产品和服务稳定地满足顾客的要求。

实施SPC的过程一般分为两大步骤:首先用SPC工具对过程进行分析,如绘制分析用控制图等;根据分析结果采取必要措施:可能需要消除过程中的系统性因素,也可能需要管理层的介入来减小过程的随机波动以满足过程能力的需求。

统计过程控制(SPC)

统计过程控制(SPC)

5、SPC怎样起作用
SPC将制造过程的测量数据变成可视图。通过
读图工人可以辩别出制程是否是受控的,制程 是否在规格范围之内生产,所有这些在制程发
生时及时避免错误而不是等到事后才纠正。
6、SPC能解决的过程问题
➢ 经济性 ➢ 预警性/时效性 ➢ 分辨普通原因与特殊原因 ➢ 善用机器设备 ➢ 改善的评估
二、控制图
• 1、什么是控制图 • 2、控制图基本原理 • 3、控制图是如何贯彻预防原则的 • 4、控制图常用术语 • 5、控制图的分类 • 6、控制图的选用原则 • 7、控制图的判定规则 • 8、应用控制图需要考虑的一些问题
1、什么是控制图
控制图是对制程质量特性值进行测定、记录、 评估,从而监察制程是否处于控制状态的一种用 统计方法设计的图。图上有中心线、上控制限和 下控制限,并有按时间顺序抽取的样本统计量数 值的描点序列。若控制图中的描点落在UCL与LCL 之外或描点在UCL与LCL之间的排列不随机,则表 明过程异常。控制图有一个很大的优点,即通过 将图中的点子与相应的控制界限相比较,可以具 体看见产品或服务质量的变化。
(3) Xmed-R控制图(中位数-极差控制图) Xmed -控制图检出力较差,但计算较为简单
(4)X-Rm控制图(个别值-移动极差控制图) 品质数据不能合理分组时使用,如液体浓度
• 计数值控制图
• (1) P控制图(不良率控制图) • 用来侦查或控制生产批中不良件数的小数比或百分
比,样本大小n可以不同。 • (2)np控制图(不良数控制图) • 用来侦查一个生产批中的实际不良数量(而不是与样
(2)品质变异因素的分类及其不同的对待策略
机遇原因之变机遇原因,其个别 之变异极为微小
3.几个较代表性之机遇原因如下: (1)原料之微小变异 (2)机械之微小掁动 (3)仪器测定时不十分精确之作 法

质量控制中的统计过程控制技术与应用

质量控制中的统计过程控制技术与应用

质量控制中的统计过程控制技术与应用质量控制是现代工业生产不可或缺的一部分,合理的质量控制可以有效的提高产品质量、降低生产成本、增强竞争力。

而统计过程控制技术(SPC)作为质量控制中的一种重要方法,可以通过对生产过程中某一特定指标进行实时监控和控制,实现对质量过程的持续监控和改善。

一、SPC的基本概念和原理统计过程控制是一种基于统计学方法的质量控制方法。

SPC的理论基础在于统计方法中的正态分布和中心极限定理。

通过对生产过程中某一特定指标的实时监控,SPC可以帮助企业实现对质量过程的监控和控制,从而帮助企业提高产品质量,降低生产成本。

SPC的基本原理是以控制图为基础,通过收集过程数据,建立有效的控制上限和下限线,对过程进行实时监控和控制,当过程落在控制上限和下限线之间时,认为过程处于可控状态,否则认为过程处于不可控状态,需要进行进一步研究和控制。

二、SPC的应用场景SPC在生产过程中的应用非常广泛,可以适用于各种不同的生产场景。

下面列举几个典型的应用场景。

1.瓶颈工序控制在制造工艺过程中,通常存在一些关键生产环节,这些环节通常被称为瓶颈工序。

在这些瓶颈工序中,质量控制尤为重要,因为这些环节的效率和产品的质量直接影响到整个生产过程的效率和质量。

SPC 可以帮助企业实时监控这些瓶颈工序,并对其进行控制,从而提高过程效率和产品质量。

2.常规过程控制在任何生产环节中,都存在着一些常规的生产过程,这些常规过程通常采用流水线生产方式,相对于瓶颈工序而言,这些生产环节的控制相对简单。

SPC可以帮助企业实现对这些常规的生产过程的监控和控制,从而降低生产成本,提高生产效率。

3.新产品开发和试制阶段在新产品的开发和试制阶段,需要对生产过程进行有效的控制和监控,以确保产品的质量和效率。

SPC可以帮助企业在新产品开发和试制阶段进行实时监控和控制,从而提高产品的质量和效率。

三、SPC的应用效果SPC的应用可以帮助企业实现以下目标:1.提高产品质量SPC可以帮助企业进行实时的质量监控和控制,对产品质量进行持续改善,提高产品的合格率和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
直方图制作举例(例1)
*某零件的某特殊特性尺寸规格中心1.40,公差为±0.07; 随机在一批产品中抽样72件: 第一步:数据收集(n=72)
1.35 1.37 1.40 1.38 1.40 1.36 1.39 1.38 1.41 1.37 1.39 1.41 1.42 1.41 1.37 1.43 1.43 1.40 1.38 1.41 1.34 1.44 1.36 1.40 1.45 1.39 1.35 1.40 1.39 1.40 1.36 1.43 1.38 1.43 1.42 1.42 1.43 1.40 1.38 1.41 1.39 1.37 1.38 1.42 1.36 1.40 1.42 1.40 1.39 1.35 1.41 1.37 1.41 1.39
1960 日本
1980 Motorola
1992 TI 1994 Allied Signal
95 GE
98 Sony
5
过程控制系统
1 过程: 过程是指人员、设备、材料、方法及环境的输入,经由一定的整理
程序而得到输出的结果,一般称为成品,成品经观察、测量或测试可 衡量其绩效,SPC所控制的过程必须符合连续性原则; 2 绩效报告
10
二 直方图等统计工具的应用
*统计技术的范围很广,内容很多,经常使用的有: 老七种工具:
直方图、排列图、控制图、因果图、检查表、层别法、散布图
新七种工具: 关联图、亲和图、系统图、矩阵图、箭头表、 过程决策法、矩阵数据分析
其他: 概率、抽样检验、方差分析、回归分析、试验设计等
*QS9000 SPC要求使用的主要有直方图、控制图、过程能力分析等。
中心值 1.349 1.367 1.385 1.403 1.421 1.439
频数 5 10 18 19 12 8
17
第四步:按频数画纵、横坐标及直方图
频数 LSL
SL
USL
20
15
10
5
1.34 1.358 1.376 1.394 1.412 1.43 1.45
*SL为规格中心,LSL为下公差线,USL为上公差线
这些变差有什么区别和特点,如何发现和研究变差 的趋势,进而通过改进或纠正措施减少或控制变差, 是我们的工作,也是统计过程控制SPC的任务。
24
过程变差
---人为因素,包括质量意识、工序熟练程度、遵守工艺纪律和疲劳的 情况等;
---机器方面,包括机器的制造精确度、维修和保养状态等因素; ---材料方面,包括材料的均匀程度、切削性能、加工工艺等因素;有不
过程分类
受控
不受控
符合要求(合格)
1类
3类
不符合要求(不合格)
2类
4类
28
1类(符合要求,受控): ----是理想状态,为持续改进可能需要进一步减小变差;
2类(不符合要求,受控): ----虽然受控,但存在过大的普通原因变差; ----短期内应进行100%检测以保护客户不受影响; ----必须进行持续改进,找出并消除或减小普通原因的影响。
次数划记 XX XXX XXXX XXXXXX XXXXXXXX XXXXXXXXXX XXXXXXXXXXX XXXXXXXX XXXXXX XXXXXX XXXXX XXX
次数 2 3 4 6 8 10 11 8 6 6 5 3
15
第二步:计算、分组
---计算极差R:(R又叫全距) Xmax=1.45 Xmin=1.34 R= Xmax- Xmin=1.45-1.34=0.11
1.43 1.39 1.40 1.40 1.38 1.44 1.44 1.38 1.39 1.37 1.42 1.44 1.45 1.45 1.39 1.34 1.41 1.44
14
并将数据分类填表
数值 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45
本讲目录 一 统计过程控制 SPC的基本概念
二 直方图等统计工具的应用 三 过程变差与统计
2
一 统计过程控制 SPC的基本概念
SPC全称是“Statistical Process Control”,即统计过程控制, 是1924年美国休哈特博士发明控制图后产生的,通过各种工具来区分 普通原因变差和特殊原因变差,以便对特殊原因变差采取措施。
---机器:零件的磨损和老化;
---测量:视觉误差,心理障碍,量具差异;
---工具:强度不同、磨损率差异;
---维护:润滑程度,替换部件;
---材料:硬度、成分、产地不同;
---环境:温度、湿度、光线、电源电压波动。
---操作者:对准精度不同,情绪影响等;
*不同的变差应采取不同的行动去排除或减少:
局部行动
18
第五步:根据直方图画分布曲线
频数 LSL
SL
USL
20
15
10
5
1.34 1.358 1.376 1.394 1.412 1.43 1.45
*本例的分布曲线是正态分布,服从统计规律,说明过程正常
19
直方图分析
30 25 20 15 10
5 0
25 20 15 10
5
缺齿型:可能是测量器具精度 不够或分组不当造成。
行动
对系统采取行动
--可排除特殊波动源 --可由操作者或接近过程的人完成 --可排除过程中发生问题的15%
--可用来减弱正常波动源 --几乎都由管理者完成,固称管理行动 --可排除过程中发生问题的85%
27
过程控制
*如果只存在变差的普通原因,随着时间的推移,过程 的输出形成一个稳定的分布,并可预测; *如果存在变差的特殊原因,随着时间的推移,过程的 输出会不稳定;
人 培訓不足
(中原因)

量具不穩

情緒不穩定

量具標准



厚度變差
成分變化 作業指導
書不完善
過程無控
噪聲

制方法 灰塵

材料
方法
環境
*在因果图的基础上,通过直方图分析各因素变换条件时产品特性分 布,可以得出那些因素对该特性起关键影响的结论。
22
利用排列图分析各种缺陷影响程度
• 某產品過錫爐后QC檢查發現的缺陷如下:
从衡量产品得到有关制程绩效的资料,由此提供过程的控制对策或 改善成品; 3 过程中对策
是防患于未然的一种措施,用于预防制造出不合规格的成品; 4 成品改善
对已经制造出来的不良品加以选别,进行全数检查并修理或报废。
6
过程中对策
绩效报告
过程中对策
人员 设备 材料 成品
方法 环境
成品改善
7
SPC导入流程
25
普通原因与特殊原因之变异
普通原因变差: ---过程中变异因素是在统计的控制状态下,其产品特性有固定的分配; ---影响过程中的每个单位; ---在控制图上表现为随机性,无明确的图案,但遵循一个分布; ---是由所有不可分派的小变差组成,通常需采取系统措施来减小。
特殊原因变差: ---过程中变异因素不在统计的控制状态下,其产品特性没有固定的分配; ---间断的,偶然的,通常是不可预测的和不稳定的变差; ---非随机性的; ---是由可分派的变差源造成的,该变差源可以被纠正。
工业经验说明: ---只有过程变差的15%是特殊的,可以通过与操作直接有关的人员纠正; ---大部分的85%,是管理人员通过对系统采取措施可减小的。
26
波动与波动源
没有两个产品是完全一样的,产品间的差异就是波动; 波动是通过适当的特殊特(过程和产品特性)表现出来的。
*过程中有许多产生波动的波动源,如加工机械轴的直径可能有的波动源:
同批次之间的差异,也有批次内的差异,还有时间、环境造成的; ---制造方法,包括加工工艺方法、操作规程、工装夹具等因素; ---环境方面,包括制造现场环境对人体及物料的影响等; ---测量方面,包括测量量具的精确度(偏倚)、重复性(一个操作人采
用一种测量器具,多次测量同一尺寸的变差)、再现性(不同的操作 人,采用同一测量器具,分别测量同一尺寸的变差)、稳定性(同一 测量系统在不同时间测量同一尺寸时的至少两组测量值的总变差)和 线性(在量具规定的量程内,不同测量点的偏差值的差值)。
30
孤岛型:可能是测量不当或变 换加工条件造成的。
0
20
30
25
20
双峰型:可能是两种条件下生产的,
15
或过程有变异产生。
10
5
0
30
25
20
偏向型:可能是设备偏差或加工习惯
15
造成的,如孔的加工往往偏小。
10
5
0
21
直方图与因果图结合使用寻找关键控制变量
因ห้องสมุดไป่ตู้圖
机器
(大原因) 量
年久失修
具 偏
(小原因)
建立可解决问题之系统
确认关键过程及特性
导入SPC进行关键过程 及特性之控制
检讨过程能力符合规格程序
提报及执行过程改善计划
不足
持续进行过程改善计划
8
SPC的基础--数据处理
*数字数据的处理步骤:
---原始资料审核,保证资料的真实性;
---分类的决定,分成几类,避免重复及遗漏;
---分类后整理,进行归类;
11
直方图
直方图也叫质量分布图、矩阵图、柱形图、频数图; 直方图是将测量所得的一批数据按大小顺序排列,并将它 划分为若干区间,统计各区间的数据频数(或频率),以 这些频数(或频率)的分布状态用直方形表示的图表。
频数 LSL
SL
USL
质量特征值 12
相关文档
最新文档