《高等数学一》第六章多元函数微分学历年试题模拟试题课后习题大汇总(含答案解析)
考研数学一(多元函数微分学)模拟试卷3(题后含答案及解析)
考研数学一(多元函数微分学)模拟试卷3(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设函数f(x,y)在点(0,0)附近有定义,且f’x(0,0)=3,f’y(0,0)=1,则( )A.dz|(0,0)=3dx+dy.B.曲面z=f(x,y)在点(0,0,f(0,0))处的法向量为{3,1,1}.C.曲线,在点(0,0,f(0,0))处的切向量为{1,0,3}.D.曲线,在点(0,0,f(0,0))处的切向量为{3,0,1}.正确答案:C解析:化曲线则该曲线在点(0,0,f(0,0))处的切向量为{1,0,f’x(0,0)}={1,0,3},故选C.知识模块:多元函数微分学2.已知fx(x0,y0)存在,则=( )A.fx(x0,y0).B.0.C.2fx(x0,y0).D.fx(x0,y0).正确答案:C解析:故选C.知识模块:多元函数微分学3.设f(x,y)=则f(x,y)在点(0,0)处( )A.两个偏导数都不存在.B.两个偏导数存在但不可微.C.偏导数连续.D.可微但偏导数不连续.正确答案:B解析:由偏导数定义,有故f(x,y)在(0,0)点不可微.应选B.知识模块:多元函数微分学4.已知为某二元函数u(x,y)的全微分,则a等于( )A.0.B.2.C.1.D.一1.正确答案:B解析:知识模块:多元函数微分学5.函数f(x,y)在(0,0)点可微的充分条件是( )A.B.C.D.正确答案:D解析:可知,f(x,y)的两个一阶偏导数fx(x,y)和fy(x,y)在(0,0)点可微,故选D.知识模块:多元函数微分学6.设z=则该函数在点(0,0)处( )A.不连续.B.连续但偏导数不存在.C.连续且偏导数存在但不可微.D.可微.正确答案:C解析:存在,即x(x,y)在点(0,0)不可微,故选C.知识模块:多元函数微分学填空题7.设f(x,y,z)=ex+y2z,其中z=Z(x,y)是由方程x+y+z+xyz=0所确定的隐函数,则f’x(0,1,一1)=_________.正确答案:1解析:已知f(x,y,z)=ex+y2z,那么有f’x(x,y,z)=ex+y2z’x.在等式x+y+z+xyz=0两端对x求偏导可得1+z’x+yz+xyz’x=0.由z=0,y=1,z=一1,可得z’x=0.故f’x(0,1,一1)=e0=1.知识模块:多元函数微分学8.设f(x,y)=在点(0,0)处连续,则a=_________.正确答案:0解析:因为知识模块:多元函数微分学9.设z==_________.正确答案:解析:知识模块:多元函数微分学10.设f(x,y)=,则f’x(1,0)=_________.正确答案:2解析:由题干可知f(x,0)=x2,那么f’x(x,0)=2x.故f’x(1,0)=2x|x=1=2.知识模块:多元函数微分学11.设z=z(x,y)由方程z+e2=xy2所确定,则dz=_________.正确答案:(y2dx+2xydy)解析:知识模块:多元函数微分学12.设函数f(u)可微,则f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz|(1,1)=_________.正确答案:4(dx+dy)解析:由题干可知,dz=f’(x2+y2)(2xdx+2ydy),则dz|(1,1)=f’(2)(2dx+2dy)=4(dx+dy).知识模块:多元函数微分学13.设f(u,v)为二元可微函数,z=f(xy,yx),则=_________.正确答案:f’1.yxy—1+f’2.yxlny解析:利用复合函数求偏导的公式,有=f’1.yxy—1+f’2.yxlny。
《多元函数微分学》练习题参考答案
解:在 L 上任取一点 P ( x, y ),
f (x , y ) = 0
考虑 d = ( x − x0 ) + ( y − y0 ) 在条件 f ( x, y ) = 0 下的极值问题 作 F = ( x − x 0 ) + ( y − y 0 ) + λ f ( x , y ) ,则
' ⎧ ⎪ F x = 2(x − x 0 ) + λ f 'x ( x , y ) = 0 , ⎨ ' ⎪ ⎩F y = 2( y − y 0 ) + λ f 'y (x , y ) = 0 2 2 2 2 2
P87-练习 4 设 z = f ( xy,
x y ) + g ( ) ,其中 f 有二阶连续偏导数, g 有二阶导数,求 y x
∂2z . (2000) ∂x∂y
解: 根据复合函数求偏导公式
∂z 1 y = f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ (− 2 ) , ∂x y x
24
∂2 z ∂ ⎛ ∂z ⎞ ∂ ⎛ 1 y ⎞ = ⎜ ⎟ = ⎜ f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ ( − 2 ) ⎟ ∂x∂y ∂y ⎝ ∂x ⎠ ∂y ⎝ y x ⎠ x 1 1 x y 1 = f1′ + y[ f11′′ x + f12′′ ⋅ (− 2 )] − 2 f 2′ + [ f 21′′ x + f 22′′ ⋅ (− 2 )] − g ′′ ⋅ 3 − g ′ ⋅ 2 y y y y x x 1 x y 1 = f1′ + xyf11′′ − 2 f 2′ − 3 f 22′′ − 3 g ′′ − 2 g ′ y y x x
《高等数学一》第六章多元函数微分学历年试题模拟试题课后习题大汇总(含答案解析)
第六章多元函数微分学[单选题]1、设积分域在D由直线x+y二0所围成,则| dxdy 如图:[单选题]2、A 9B、4C 3【从题库收藏夹删除】【正确答案】A 【您的答案】您未答题 【答案解析】[单选题]3、 设H 二才,则y=()A V皿2-1)B 、xQnx-1)D【从题库收藏夹删除】【正确答案】C 【您的答案】您未答题 【答案解析】首先设出-,J'二一;,然后求出最后结果中把二】用’’次方代换一下就可以得到结果.[单选题]4、Ft F'y,尸空二dx F f y[% I设Z =则去九£ |()km ,(心+& J D )L 『(也几)AK^*°A'X«■【从题库收藏夹删除】【正确答案】D 【您的答案】您未答题【答案解析】本题直接根据偏导数定义得到[单选题]5、 设z=ln (x+弄),示=()A1B 、X+旷"C1-2妒盂+沙DX + 帘一"【从题库收藏夹删除】 【正确答案】A 【您的答案】您未答题 【答案解析】B 、 lim U m/侃+山+ 3) — / (险用)Ay了0+山』0)—/(兀几)Arlim /(x+Ax.y)-/^)4y|"S 1 I对x求导,将y看做常数,小门•八[单选题]6、设U 了:,;_丁;:£=()【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】<■■-?■■■■■:川[单选题]7、设f(x r x+y) = ^ + x2t则£0,卩)+ £(尽刃二()A丨;B、…C :D ',【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】f(x,兀+y)=砂+ F二疏》+兀)/fcy) = ^yX '(^y)=y二兀£(2)+另(“)=曲[单选题]81,ln(x+y)20》x+》21.综上满足:盘+”1[单选题] 9、函数 的定义域为().少(兀+卩);::x F+丿()•B 、D【从题库收藏夹删除】【正确答案 【您的答案OOA您未答题【答案解析1 1-+-lim —3 -- :—7 = 1 im ——— - 0 心卩齐_砂+尹 gw 兀 y尸2 』 / 尸於一 —]+_一7 x[单选题] 10、()•0宀 2护X + (”In X-2芒)妙(y*" - 2侣)矽+ (H In 兀-—2」壬)必【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】鸣刁严-F 工=j/lnx-£dz - 3/" -”必 + (疋 In z-[单选题] 11、dz1-^'【从题库收藏夹删除】【正确答案】B 【您的答案】您未答题 【答案解析】方程B 、 C与必+ (#阮—函数'■ - 一 I'"的确定的隐函数,贝U 一()•2z口B、” y左右两边求导,dx dx__ -2zdx/-I12、 设Z = X +丿,则在(0,0)处().取得极大值无极值无法判定是否取得极值 【从题库收藏夹删除】 【正确答案】B 【您的答案】您未答题 【答案解析】小务S 釜二心齐2’【从题库收藏夹删除】【正确答案一+ X) — —八)——2&2 — 2/ — 2砂,+ 2”(/+丹B 、 取得极小值B 2-AC<Q t A>0,故取得极小值[单选题] 13、,则【您的答案您未答题【答案解析7矽B、[单选题]14、dz __ 设z=xA2/y,x=v-2u,y=u+2v ,则J ()2(u - 2v)(u- 3v)A、「(K-2V)(K-3V)B、(加+巧2~)(卄刘C(2#+制(u -2vJ(u+邵)(2u+v)3【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】炭边3兀龛创2A D z z . * 2x(y-7^)—二------ H ---- - -- 1+( ----- 7)- J — ---- 母 -- dv dx dy y y2y2_ 2(v~ 2u)(v+ - V - 2u)) _ 2(y - 2u)(v + 3u)(2V+LT)3[单选题](2v+u)15、设函数z=ln(x2+y2),则=()如)B、—:x-yD J - /【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】& 2x & 2y 5c & 2y 2x 2x + 2y 2(x+y) -- • = —: - - = ---- - ;—1 + = ---------------- = ----- =3K F+y3®5?+『’曲勿x2 + y3x2 + y3启+『x3 + y3[单选题]16、设函数,则汕忙丿=().1A、」IzTB、.'■1C、1D、1【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】参见教材P178〜179。
考研数学一(多元函数微分学)历年真题试卷汇编1(题后含答案及解析)
考研数学一(多元函数微分学)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2002年试题,二)考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性质Q,则有( ).A.②→③→①B.③→②→①C.③→④→①D.③→①→④正确答案:A解析:由题设,分析4条性质可知,①与④没有直接联系,从而可排除C,D,关于A和B,重点在于分析性质②和③,显然性质②更强,即f的两个偏导数连续则f可微,因此②→⑧,B也被排除,从而只有A正确,选A.知识模块:多元函数微分学2.(1997年试题,二)二元函数在点(0,0)处( ).A.连续,偏导数存在B.连续,偏导数不存在C.不连续,偏导数存在D.不连续,偏导数不存在正确答案:C解析:二元函数的连续性与可偏导性之间的关系并非与一元函数中可导与连续的关系一样,因此需要按定义一一加以判断.由已知,[*]所以f(x,y)在点(0,0)处不连续;又[*]因此f(x,y)在(0,0)点的两个偏导数都存在.综上选C.讨论分段、分块定义的函数的连续性、偏导数的存在性以及可微性一般按定义处理.知识模块:多元函数微分学3.(2012年试题,一)如果函数f(x,y)在(0,0)处连续,那么下列命题正确的是( ).A.若极限存在,则f(x,y)在(0,0)处可微B.若极限存在,则,(x,y)在(0,0)处可微C.若f(x,y)在(0,0)处可微,则极限存在D.若f(x,y)在(0,0)处可微,则极限存在正确答案:B解析:f(x,y)在(0,0)处连续,如果存在,则f(0,0)=0.且由存在,知存在,则即fx(0,0)=0,同理可得fy(0,0)=0,再根据可微定义;0.可知f(x,y)在(0,0)处可微.选B.知识模块:多元函数微分学4.(2005年试题,二)设函数其中函数φ具有二阶导数,ψ具有一阶导数,则必有( ).A.B.C.D.正确答案:B解析:由题意可得因为所以选B.题中含有二元变限积分,求偏导时,可将一个变量视为常数,按一元函数积分学中求变限积分的导数方法求解即可.知识模块:多元函数微分学5.(2010年试题,一)设函数z=z(x,y)由方程确定,其中F为可微函数,且F2’≠0,则等于( ).A.xB.zC.一xD.-z正确答案:B解析:根据题意可得故而有即正确答案为B.解析二在方程两边求全微分得从而即正确答案为B.解析三方程两边分别对X,Y求偏导数,则有解得从而即正确答案为B.知识模块:多元函数微分学6.(2005年试题,二)设有三元方程xy—xlny+exy=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)正确答案:D解析:根据题意,记方程为F(x,y,z)=0,其中F(x,y,z)=xy—zlny+exx 一1F对x,y,z均有连续偏导数,而且可知r(0,1,1)=0由于F(X,y,z)满足偏导数的连续性,根据隐函数存在定理可知,存在点(0,1,1)的一个邻域,在此邻域该方程可确定有连续偏导数的隐函数:x=x(y,z)和y=y(x,z)所以选D.求解此题应理解隐函数存在性定理的条件和结论,该知识点是2005年大纲新增加的考点.知识模块:多元函数微分学7.(2008年试题,一)函数一在点(0,1)处的梯度等于( ).A.iB.一iC.jD.一j正确答案:A解析:梯度的计算公式中涉及到函数的偏导数,故先求二元函数f(x,y)的偏导数:则fx(0,1)=lfy(0,1)=0.梯度gradf(0,1)=1×i+0×j=i,故应选A.知识模块:多元函数微分学8.(2001年试题,二)设函数f(x,y)在点(0,0)附近有定义,且fx’(0,0)=3,fy’(0,0)=1,则( ).A.出dz|(0,0)=3dx+dyB.曲面z=f(x,y)在点(0,0,f(0,0))的法向量为{3,1,1}C.曲线在点(0,0,f(0,0))的切向量为{1,0,3}D.曲线在点(0,0,f(0,0))的切向量为{3,0,1}正确答案:C解析:多元函数可偏导不一定可微,这一点与一元函数有本质区别,因此从题设给定(0,0)点有偏导数的条件无法推出在(0,0)点函数可微,因而A不一定成立;关于B,假设z=f(x,y)在(0,0,f(0,0))点法向量存在,由定义知该法向量也应为{3,1,一1},何况题设仅给出(0,0)点处fx’,fy’的值,因此B也可排除;选项C,D是互斥的,可算出曲线在点(0,0,f(0,0))的切向量为{3,1,一1}×{0,1,0}={1,0,3},从而选C.本题考查了多个知识点:可微性与可偏导的关系,曲面的法向量及其求法,空间曲线的切向量及其求法.注意A选项是考生易犯的错误,简单地认为将偏导数代入全微分计算公式即得出全微分,而忽视了全微分是否存在的前提.知识模块:多元函数微分学9.(2011年试题,一)设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是( ).A.f(0)>1,f’’(0)>0B.f(0)>1,f’’(0)0D.f(0)若z=f(x)lnf(y)在(0,0)处取极值,则A=f’’(0)lnf(0),B=0,c=f’’(0)由AC=[f’’(0)]2lnf(0)>0且A>0得f(0)>1且.f’’(0)>0,故选A.知识模块:多元函数微分学10.(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).A.若fx’(x0,y0)=0,则f’(x’,y’)=0B.若fx’(x0,y0)=0,则fy’(x0,y0)≠0C.若fx’(x0,y0)≠0,则fy’(x0,y0)=0D.若fx’(x0,y0)≠0,则fy’(x0,y0)≠0正确答案:D解析:考查化条件极值问题为一元函数极值问题.根据拉格朗日乘子法,令F(x,y,λ)=,(x,y)+λφ(x,y),则(x0,y0)满足若fx’(x0,y0)=0,由(1)→λ=0或φx’(x0,y0)=0当A=0时,由(2)得fx’(x0,y0)=0;但当A≠0时,由(2)及φy’(x0,x0)≠0,fy’(x0,y0)≠0所以A,B错误.若fx’(x0,y0)≠0,由(1)→λ≠0,再由(2)及φy’(x0,x0)≠0→fy’(x0,y0)≠0故选D.知识模块:多元函数微分学11.(2003年试题,二)已知函数f(x,y)在点(0,0)的某个邻域内连续,且则( ).A.点(0,0)不是f9x,y)的极值点B.点(0,0)是f(x,y)的极大值点C.点(0,0)是f(x,y)的极小值点D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点正确答案:A解析:根据题意,可将原式改用极坐标表示,即因此且f(pcosθ,psinθ)=ρ2cosθ.sinθ+ρ4+o(ρ4)当p充分小时,f(pcosθ,psinθ)的符号由p2cosθ.sin θ决定,但sinθ.cosθ符号不定,因此f(x,y)在(0,0)点不取极值,选A.知识模块:多元函数微分学填空题12.(2011年试题,二)设函数=____________.正确答案:涉及知识点:多元函数微分学13.(2009年试题,二)设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则____________.正确答案:则解析二因f(u,v)有二阶连续偏导数,故而涉及知识点:多元函数微分学14.(2007年试题,二)设f(u,v)为二元可微函数,z=f(xy,yz).则=____________.正确答案:涉及知识点:多元函数微分学15.(1998年试题,一)设具有二阶连续导数,则=______________.正确答案:由题设,有解析:本题亦可先求再求.因为题设复合函数的混合偏导数与求导次序无关.但求导时应注意f(xy)和φ(x+y)均为一阶复合函数,对x求导时,y被视为常数;对y求导时,x视为常数,切不可与多元复合函数的求导法则混淆.知识模块:多元函数微分学16.(2005年试题,一)设函数单位向量则=____________.正确答案:由题意可知根据方向导数计算公式可得涉及知识点:多元函数微分学17.(2003年试题,一)曲面z=x2+y2与平面2x+4y一z=0平行的切平面的方程是________________。
考研数学一(多元函数微分学)历年真题试卷汇编1(题后含答案及解析)
考研数学一(多元函数微分学)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2002年试题,二)考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性质Q,则有( ).A.②→③→①B.③→②→①C.③→④→①D.③→①→④正确答案:A解析:由题设,分析4条性质可知,①与④没有直接联系,从而可排除C,D,关于A和B,重点在于分析性质②和③,显然性质②更强,即f的两个偏导数连续则f可微,因此②→⑧,B也被排除,从而只有A正确,选A.知识模块:多元函数微分学2.(1997年试题,二)二元函数在点(0,0)处( ).A.连续,偏导数存在B.连续,偏导数不存在C.不连续,偏导数存在D.不连续,偏导数不存在正确答案:C解析:二元函数的连续性与可偏导性之间的关系并非与一元函数中可导与连续的关系一样,因此需要按定义一一加以判断.由已知,[*]所以f(x,y)在点(0,0)处不连续;又[*]因此f(x,y)在(0,0)点的两个偏导数都存在.综上选C.讨论分段、分块定义的函数的连续性、偏导数的存在性以及可微性一般按定义处理.知识模块:多元函数微分学3.(2012年试题,一)如果函数f(x,y)在(0,0)处连续,那么下列命题正确的是( ).A.若极限存在,则f(x,y)在(0,0)处可微B.若极限存在,则,(x,y)在(0,0)处可微C.若f(x,y)在(0,0)处可微,则极限存在D.若f(x,y)在(0,0)处可微,则极限存在正确答案:B解析:f(x,y)在(0,0)处连续,如果存在,则f(0,0)=0.且由存在,知存在,则即fx(0,0)=0,同理可得fy(0,0)=0,再根据可微定义;0.可知f(x,y)在(0,0)处可微.选B.知识模块:多元函数微分学4.(2005年试题,二)设函数其中函数φ具有二阶导数,ψ具有一阶导数,则必有( ).A.B.C.D.正确答案:B解析:由题意可得因为所以选B.题中含有二元变限积分,求偏导时,可将一个变量视为常数,按一元函数积分学中求变限积分的导数方法求解即可.知识模块:多元函数微分学5.(2010年试题,一)设函数z=z(x,y)由方程确定,其中F为可微函数,且F2’≠0,则等于( ).A.xB.zC.一xD.-z正确答案:B解析:根据题意可得故而有即正确答案为B.解析二在方程两边求全微分得从而即正确答案为B.解析三方程两边分别对X,Y求偏导数,则有解得从而即正确答案为B.知识模块:多元函数微分学6.(2005年试题,二)设有三元方程xy—xlny+exy=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)正确答案:D解析:根据题意,记方程为F(x,y,z)=0,其中F(x,y,z)=xy—zlny+exx 一1F对x,y,z均有连续偏导数,而且可知r(0,1,1)=0由于F(X,y,z)满足偏导数的连续性,根据隐函数存在定理可知,存在点(0,1,1)的一个邻域,在此邻域该方程可确定有连续偏导数的隐函数:x=x(y,z)和y=y(x,z)所以选D.求解此题应理解隐函数存在性定理的条件和结论,该知识点是2005年大纲新增加的考点.知识模块:多元函数微分学7.(2008年试题,一)函数一在点(0,1)处的梯度等于( ).A.iB.一iC.jD.一j正确答案:A解析:梯度的计算公式中涉及到函数的偏导数,故先求二元函数f(x,y)的偏导数:则fx(0,1)=lfy(0,1)=0.梯度gradf(0,1)=1×i+0×j=i,故应选A.知识模块:多元函数微分学8.(2001年试题,二)设函数f(x,y)在点(0,0)附近有定义,且fx’(0,0)=3,fy’(0,0)=1,则( ).A.出dz|(0,0)=3dx+dyB.曲面z=f(x,y)在点(0,0,f(0,0))的法向量为{3,1,1}C.曲线在点(0,0,f(0,0))的切向量为{1,0,3}D.曲线在点(0,0,f(0,0))的切向量为{3,0,1}正确答案:C解析:多元函数可偏导不一定可微,这一点与一元函数有本质区别,因此从题设给定(0,0)点有偏导数的条件无法推出在(0,0)点函数可微,因而A不一定成立;关于B,假设z=f(x,y)在(0,0,f(0,0))点法向量存在,由定义知该法向量也应为{3,1,一1},何况题设仅给出(0,0)点处fx’,fy’的值,因此B也可排除;选项C,D是互斥的,可算出曲线在点(0,0,f(0,0))的切向量为{3,1,一1}×{0,1,0}={1,0,3},从而选C.本题考查了多个知识点:可微性与可偏导的关系,曲面的法向量及其求法,空间曲线的切向量及其求法.注意A选项是考生易犯的错误,简单地认为将偏导数代入全微分计算公式即得出全微分,而忽视了全微分是否存在的前提.知识模块:多元函数微分学9.(2011年试题,一)设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是( ).A.f(0)>1,f’’(0)>0B.f(0)>1,f’’(0)0D.f(0)若z=f(x)lnf(y)在(0,0)处取极值,则A=f’’(0)lnf(0),B=0,c=f’’(0)由AC=[f’’(0)]2lnf(0)>0且A>0得f(0)>1且.f’’(0)>0,故选A.知识模块:多元函数微分学10.(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).A.若fx’(x0,y0)=0,则f’(x’,y’)=0B.若fx’(x0,y0)=0,则fy’(x0,y0)≠0C.若fx’(x0,y0)≠0,则fy’(x0,y0)=0D.若fx’(x0,y0)≠0,则fy’(x0,y0)≠0正确答案:D解析:考查化条件极值问题为一元函数极值问题.根据拉格朗日乘子法,令F(x,y,λ)=,(x,y)+λφ(x,y),则(x0,y0)满足若fx’(x0,y0)=0,由(1)→λ=0或φx’(x0,y0)=0当A=0时,由(2)得fx’(x0,y0)=0;但当A≠0时,由(2)及φy’(x0,x0)≠0,fy’(x0,y0)≠0所以A,B错误.若fx’(x0,y0)≠0,由(1)→λ≠0,再由(2)及φy’(x0,x0)≠0→fy’(x0,y0)≠0故选D.知识模块:多元函数微分学11.(2003年试题,二)已知函数f(x,y)在点(0,0)的某个邻域内连续,且则( ).A.点(0,0)不是f9x,y)的极值点B.点(0,0)是f(x,y)的极大值点C.点(0,0)是f(x,y)的极小值点D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点正确答案:A解析:根据题意,可将原式改用极坐标表示,即因此且f(pcosθ,psinθ)=ρ2cosθ.sinθ+ρ4+o(ρ4)当p充分小时,f(pcosθ,psinθ)的符号由p2cosθ.sin θ决定,但sinθ.cosθ符号不定,因此f(x,y)在(0,0)点不取极值,选A.知识模块:多元函数微分学填空题12.(2011年试题,二)设函数=____________.正确答案:涉及知识点:多元函数微分学13.(2009年试题,二)设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则____________.正确答案:则解析二因f(u,v)有二阶连续偏导数,故而涉及知识点:多元函数微分学14.(2007年试题,二)设f(u,v)为二元可微函数,z=f(xy,yz).则=____________.正确答案:涉及知识点:多元函数微分学15.(1998年试题,一)设具有二阶连续导数,则=______________.正确答案:由题设,有解析:本题亦可先求再求.因为题设复合函数的混合偏导数与求导次序无关.但求导时应注意f(xy)和φ(x+y)均为一阶复合函数,对x求导时,y被视为常数;对y求导时,x视为常数,切不可与多元复合函数的求导法则混淆.知识模块:多元函数微分学16.(2005年试题,一)设函数单位向量则=____________.正确答案:由题意可知根据方向导数计算公式可得涉及知识点:多元函数微分学17.(2003年试题,一)曲面z=x2+y2与平面2x+4y一z=0平行的切平面的方程是________________。
考研数学一(多元函数微分学)模拟试卷13(题后含答案及解析)
考研数学一(多元函数微分学)模拟试卷13(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.已知fx(x0,y0)存在,则=( )A.fx(x0,y0)B.0C.2fx(x0,y0)D.正确答案:C解析:故选C。
知识模块:多元函数微分学2.设f(x,y)=则fx(0,1)( )A.等于1。
B.等于0。
C.不存在。
D.等于—1。
正确答案:A解析:fx(0,1)=,故选A。
知识模块:多元函数微分学3.设z=则该函数在点(0,0)处( )A.不连续。
B.连续但偏导数不存在。
C.连续且偏导数存在但不可微。
D.可微。
正确答案:C解析:由于,则z(x,y)在点(0,0)处连续,A项错误。
所以z(x,y)在点(0,0)处偏导数存在,B项错误。
知识模块:多元函数微分学4.设,则f(x,y)在点(0,0)处( )A.不连续。
B.连续但两个偏导数不存在。
C.两个偏导数存在但不可微。
D.可微。
正确答案:D解析:由微分的定义可知f(x,y)在点(0,0)处可微,故选D。
知识模块:多元函数微分学5.设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是( ) A.f(x0,y)在y=y0处的导数大于零B.f(x0,y)在y=y0处的导数等于零C.f(x0,y)在y=y0处的导数小于零D.f(x0,y)在y=y0处的导数不存在正确答案:B解析:因可微函数f(x,y)在点(x0,y0)取得极小值,故有fx(x0,y0)=0,fy(x0,y0)=0,又由fx(x0,y0)=,故选B。
知识模块:多元函数微分学填空题6.设f(x,y)=则fx(1,0)= ________。
正确答案:2解析:由题干可知f(x,0)=x2,则fx(x,0)=2x。
故fx(1,0)=2。
知识模块:多元函数微分学7.设z=z(x,y)由方程z+ez=xy2所确定,则dz= ________。
高等数学第六章习题及答案
微分方程习题课基本概念基本概念一阶方程一阶方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程7.伯努利方程7.伯努利方程可降阶方程可降阶方程线性方程解的结构定理1;定理2定理3;定理4线性方程解的结构定理1;定理2定理3;定理4欧拉方程欧拉方程二阶常系数线性方程解的结构二阶常系数线性方程解的结构特征方程的根及其对应项特征方程的根及其对应项f(x)的形式及其特解形式f(x)的形式及其特解形式高阶方程高阶方程待定系数法特征方程法一、主要内容微分方程解题思路一阶方程一阶方程高阶方程高阶方程分离变量法分离变量法全微分方程全微分方程常数变易法常数变易法特征方程法特征方程法待定系数法待定系数法非全微分方程非变量可分离非全微分方程非变量可分离幂级数解法幂级数解法降阶作变换作变换积分因子1、基本概念微分方程凡含有未知函数的导数或微分的方程叫微分方程.微分方程的阶微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.微分方程的解代入微分方程能使方程成为恒等式的函数称为微分方程的解.通解如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.特解确定了通解中的任意常数以后得到的解,叫做微分方程的特解.初始条件用来确定任意常数的条件.初值问题求微分方程满足初始条件的解的问题,叫初值问题.dxx f dy y g )()(=形如(1) 可分离变量的微分方程解法∫∫=dx x f dy y g )()(分离变量法2、一阶微分方程的解法)(x yf dx dy =形如(2) 齐次方程解法xyu =作变量代换)(111c y b x a c by ax f dxdy++++=形如齐次方程.,01时当==c c ,令k Y y h X x +=+=,(其中h 和k 是待定的常数)否则为非齐次方程.(3) 可化为齐次的方程解法化为齐次方程.)()(x Q y x P dxdy=+形如(4) 一阶线性微分方程,0)(≡x Q 当上方程称为齐次的.上方程称为非齐次的.,0)(≡x Q 当齐次方程的通解为.)(∫=−dxx P Cey (使用分离变量法)解法非齐次微分方程的通解为∫+∫=−∫dx x P dx x P eC dx e x Q y )()(])([(常数变易法)(5) 伯努利(Bernoulli)方程nyx Q y x P dxdy )()(=+形如)1,0(≠n 方程为线性微分方程.时,当1,0=n 方程为非线性微分方程.时,当1,0≠n解法需经过变量代换化为线性微分方程.,1nyz −=令.))1)((()()1()()1(1∫+∫−∫==−−−−c dx e n x Q ez ydxx P n dxx P n n),(),(=+dy y x Q dx y x P 其中dyy x Q dx y x P y x du ),(),(),(+=形如(6) 全微分方程xQ y P ∂∂=∂∂⇔全微分方程注意:解法¦应用曲线积分与路径无关.∫∫+=yy xx dyy x Q x d y x P y x u 0),(),(),(0,),(),(00x d y x P dy y x Q xx yy ∫∫+=.),(c y x u =§用直接凑全微分的方法.通解为3、可降阶的高阶微分方程的解法解法),(x P y =′令特点.y 不显含未知函数),()2(y x f y ′=′′型)()1()(x f yn =接连积分n 次,得通解.型解法代入原方程, 得)).(,(x P x f P =′,P y ′=′′),(x P y =′令特点.x 不显含自变量),()3(y y f y ′=′′型解法代入原方程, 得).,(P y f dydpP =,dydp P y =′′4、线性微分方程解的结构(1)二阶齐次方程解的结构:)1(0)()(=+′+′′y x Q y x P y 形如定理1 如果函数)(1x y 与)(2x y 是方程(1)的两个解,那末2211y C y C y +=也是(1)的解.(21,C C 是常数)定理2:如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 那么2211y C y C y +=就是方程(1)的通解.(2)二阶非齐次线性方程的解的结构:)2()()()(x f y x Q y x P y =+′+′′形如定理 3 设*y 是)2(的一个特解, Y 是与(2)对应的齐次方程(1)的通解, 那么*y Y y +=是二阶非齐次线性微分方程(2)的通解.定理4 设非齐次方程(2)的右端)(x f 是几个函数之和, 如)()()()(21x f x f y x Q y x P y +=+′+′′而*1y 与*2y 分别是方程,)()()(1x f y x Q y x P y =+′+′′ )()()(2x f y x Q y x P y =+′+′′的特解, 那么*2*1y y +就是原方程的特解.5、二阶常系数齐次线性方程解法)(1)1(1)(x f y P y P yP yn n n n =+′+++−−L 形如n 阶常系数线性微分方程=+′+′′qy y p y 二阶常系数齐次线性方程)(x f qy y p y =+′+′′二阶常系数非齐次线性方程解法由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.2=++q pr r 0=+′+′′qy y p y 特征根的情况通解的表达式实根21r r ≠实根21r r =复根βαi r±=2,1xr x r eC e C y 2121+=xr ex C C y 2)(21+=)sin cos (21x C x C e y xββα+=特征方程为1)1(1)(=+′+++−−y P y P yP yn n n n L 特征方程为0111=++++−−n n n nP r P r P r L 特征方程的根通解中的对应项rk 重根若是rxk k exC x C C )(1110−−+++L β±αj k 复根重共轭若是xk k k k ex xD x D D x xC x C C α−−−−β++++β+++]sin )(cos )[(11101110L L 推广:阶常系数齐次线性方程解法n6、二阶常系数非齐次线性微分方程解法)(x f qy y p y =+′+′′二阶常系数非齐次线性方程型)()()1(x P e x f m xλ=解法待定系数法.,)(x Q e x y m xkλ=设⎪⎩⎪⎨⎧=是重根是单根不是根λλλ2,10k型]sin )(cos )([)()2(x x P x x P e x f n l xωωλ+=],sin )(cos )([)2()1(x x R x x R e x y mmxkωωλ+=设次多项式,是其中m x R x R mm)(),()2()1({}n l m ,max =⎩⎨⎧±±=.1;0是特征方程的单根时不是特征方程的根时ωλωλj j k7、欧拉方程欧拉方程是特殊的变系数方程,通过变量代换可化为常系数微分方程.x t e x tln ==或)(1)1(11)(x f y p y x p yxp yx n n n n n n =+′+++−−−L 的方程(其中n p p p L 21,形如叫欧拉方程.为常数),二、典型例题.)cos sin ()sin cos (dy x yx x y y x dx x y y x y x y −=+求通解例1解原方程可化为),cos sin sin cos (xyx y x y x yx y x y x y dx dy −+=,xyu =令.,u x u y ux y ′+=′=代入原方程得),cos sin sin cos (uu u uu u u u x u −+=′+,cos 2cos sin x dx du u u uu u =−分离变量两边积分,ln ln )cos ln(2C x u u +=−,cos 2xCu u =∴,cos 2x C x y x y =∴所求通解为.cos C xy xy =.32343y x y y x =+′求通解例2解原式可化为,32342y x y xy =+′,3223134x y x y y =+′−−即,31−=y z 令原式变为,3232x z xz =+′−,322x z x z −=−′即对应齐方通解为,32Cx z =一阶线性非齐方程伯努利方程,)(32x x C z =设代入非齐方程得,)(232x x x C −=′,73)(37C x x C ′+−=∴原方程的通解为.73323731x C x y ′+−=−利用常数变易法.212yy y ′+=′′求通解例3解.x 方程不显含,,dy dPP y P y =′′=′令代入方程,得,212y P dydP P +=,112y C P =+解得,,11−±=∴y C P ,11−±=y C dxdy即故方程的通解为.12211C x y C C +±=−.1)1()1(,2=′=−=+′−′′y y e xe y y y xx 求特解例4解特征方程,0122=+−r r 特征根,121==r r 对应的齐次方程的通解为.)(21xe x C C Y +=设原方程的特解为,)(2*xe b ax x y +=,]2)3([)(23*xe bx x b a ax y +++=′则,]2)46()6([)(23*xe b x b a x b a ax y +++++=′′代入原方程比较系数得将)(,)(,***′′′y y y ,21,61−==b a 原方程的一个特解为,2623*xx e x e x y −=故原方程的通解为.26)(2321x x xe x e x e x C C y −++=,1)1(=y Q ,1)31(21=−+∴e C C ,]6)1()([3221xe x x C C C y +−++=′,1)1(=′y Q ,1)652(21=−+∴e C C ,31121+=+e C C ,651221+=+e C C 由解得⎪⎩⎪⎨⎧−=−=,121,61221e C e C 所以原方程满足初始条件的特解为.26])121(612[23x x xe x e x e x e e y −+−+−=).cos (x x y y 2214+=+′′求解方程例5解特征方程,042=+r 特征根,22,1i r ±=对应的齐方的通解为.2sin 2cos 21x C x C Y +=设原方程的特解为.*2*1*y y y +=,)1(*1b ax y +=设,)(*1a y =′则,0)(*1=′′y ,得代入x y y 214=+′′,x b ax 2144=+由,04=b ,214=a 解得,0=b ,81=a ;81*1x y =∴),2sin 2cos ()2(*2x d x c x y +=设,2sin )2(2cos )2()(*2x cx d x dx c y −++=′则,2sin )44(2cos )44()(*2x dx c x cx d y +−−=′′,得代入x y y 2cos 214=+′′故原方程的通解为.2sin 81812sin 2cos 21x x x x C x C y +++=,2cos 212sin 42cos 4x x c x d =−由,04=−c ,214=d 即,81=d ,0=c ;2sin 81*2x x y =∴.)(),(1)()(2此方程的通解(2)的表达式;(1),试求:的齐次方程有一特解为,对应有一特解为设x f x p x xx f y x p y =′+′′例6解(1)由题设可得:⎪⎩⎪⎨⎧=−+=+),()1)((2,02)(223x f xx p x x x p 解此方程组,得.)(,)(331x x f xx p =−=(2)原方程为.313x y x y =′−′′,的两个线性无关的特解程是原方程对应的齐次方显见221,1x y y ==是原方程的一个特解,又xy 1*=由解的结构定理得方程的通解为.1221xx C C y ++=例7求微分方程()423d d 0y x y xy x −+=解原方程变形为23d 3,d x x x y y y−=−即223d 62,d x x y y y−=−此是关于函数的一阶线性非齐次微分方程,()2x f y =的通解.由求解公式得66d d 23e 2ed y y y yx y y C −⎛⎞∫∫=−+⎜⎟⎜⎟⎝⎠∫6463d 2.y y C y Cy y ⎛⎞=−+=+⎜⎟⎝⎠∫再作变换则有方程1,z u −=例8求解方程2d cos cos sin sin .d y y x y y x−=解令则原式为sin ,u y =2d cos .d u u x u x−=⋅此方程为伯努利方程,d cos .d zz x x+=−由积分公式, 得该方程的通解为()1sin cos e .2xz x x C −=−++从而得到原方程的通解()11sin sin cos e .2x y x x C −⎡⎤=−++⎢⎥⎣⎦⑵证明当时满足不等式例9设在时所定义的可微函数满足条件1x>−()g x ()()()()01d 0,011xg x g x g t t g x ′+−==+∫⑴求(),g x ′()e1.xg x −≤≤证⑴原方程变形为()()()()01d .xx g x g x g t t ′++=⎡⎤⎣⎦∫两端求导, 得()g x 0x ≥()()()()()()1,x g x g x g x g x g x ′′′′++++=⎡⎤⎣⎦令则原方程化为(),g x p ′=()()d 120,d px x p x +++=由条件所设即方程⑴()()001,g g ′=−=−01,x p ==−即2d ,1dp x x p x +=−+⑴()1e .1xg x p x −′==−+两端积分, 并由初始条件, 得⑵函数在上满足拉格郎日中值定理的条件, ()g x []0,x ()()()()()e 000,0,1g x g g x x x x ξξξξ−′−=−=−><<+从而有故当时, 又当()()01,g x g <=() 1.g x ≤0x ≥()()1ee e 0,1x x xf xg x x −−−′′=+=−≥+所以当时单调增加, 于是()f x 0x ≥因此时, 令则()()e ,xf xg x −=−()()()()e0010,x f x g x f g −=−≥=−=即综合以上得, 当时有,()e .x g x −≥0x ≥()e 1.x g x −≤≤例12 设()()()0sin d ,x f x x x t f t t =−−∫().f x 解因()()()00sin d d ,x xf x x xf t t tf t t =−+∫∫两边求导, 得()()()()0cos d xf x x f t t xf x xf x ′=−−+∫()0cos d ,xx f t t =−∫再次求导, 得()f x 其中为连续函数, 求()()sin ,f x x f x ′′=−−即()()sin .f x f x x ′′+=−并有初始条件对应的齐次方程的通()()00,0 1.f f ′==12sin cos .y C x C x =+设非齐次方程的特解是()*sin cos ,y x a x b x =+解是由待定系数法得10,.2a b ==121sin cos cos .2y C x C x x x =++由初始条件, 得121,0,2C C ==()11sin cos .22f x x x x =+即即原方程的通解为。
考研数学一(多元函数积分学)模拟试卷2(题后含答案及解析)
考研数学一(多元函数积分学)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.已知函数f(x,y)在点(0,0)某邻域内连续,且则A.点(0,0)不是.f(x,y)的极值点.B.点(0,0)是f(x,y)的极大值点.C.点(0,0)是f(x,y)的极小值点.D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点.正确答案:A 涉及知识点:多元函数积分学2.如图,正方形{(x,y)丨丨x丨≤1,丨y丨≤1}被其对角线划分为四个区域Dk(k=1,2,3,4),Ik={Ik} =A.I1B.I2C.I3D.I4正确答案:A 涉及知识点:多元函数积分学3.设,其中D=丨(x,y)丨x2+y2≤1},则A.I3>I2>I1.B.I1>I2>I3.C.I2>I1>I3.D.I3>I1>I2.正确答案:A 涉及知识点:多元函数积分学4.设S:x2+y2+z2=a2(z≥0),S1是S在第一卦限中的部分,则有A.B.C.D.正确答案:C 涉及知识点:多元函数积分学5.设有空间区域Ω1:x2+y2+z2≤R2,z≥0及Ω2:x2+y2+z2≤R2,x≥0,y≥0,z≥0,则正确的是A.B.C.D.正确答案:C 涉及知识点:多元函数积分学6.设f(x,y)为连续函数,则等于A.B.C.D.正确答案:C 涉及知识点:多元函数积分学7.设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是A.B.C.D.正确答案:B 涉及知识点:多元函数积分学填空题8.交换二次积分的积分次序:=_________.正确答案:涉及知识点:多元函数积分学9.设函数f(x)在[0,1]上连续且,则=_________.正确答案:1/2A2 涉及知识点:多元函数积分学10.计算二重积分=_________.正确答案:e-1. 涉及知识点:多元函数积分学11.设区域D={(x,y)丨x2+y2≤1,x≥0}二重积分=__________.正确答案:(π/2)ln2 涉及知识点:多元函数积分学12.设L为椭圆x2/4+y2/3=1,其周长为a,则(2xy+3x2+4y2)ds=__________.正确答案:12a解析:原式=(3x2+4y2)ds=12a. 知识模块:多元函数积分学13.其中a,b为正的常数,L为从点A(2a,0)沿曲线到点O(0,0)的弧I=___________.正确答案:(a2/2)[π(b-a)+4b]. 涉及知识点:多元函数积分学14.计算曲线积分+2(x2-1)ydy,L是曲线y=sinx上从点(0,0)到点(π,0)的一段I=___________..正确答案:-π2/2解析:知识模块:多元函数积分学15.已知曲线L的方程为y=1-丨x 丨(x∈[-1,1]),起点是(-1,0),终点为(1,0),则曲线积分+x2dy=_________.正确答案:0解析:知识模块:多元函数积分学16.已知L是第一象限中从点(0,0)沿圆周x2+y2=2x到点(2,0),再沿圆周x2+y2=4到点(0,2)的曲线段.计算曲线积分3x2ydx+(x3+x-2y)dy=_________.正确答案:(π/2)-4 涉及知识点:多元函数积分学解答题解答应写出文字说明、证明过程或演算步骤。
微积分第六章习题答案
证明: ,而 ,恰好
5.不用求出函数 的导数,说明方程 有几个实根,并指出它们所在的区间。
解: ,分别在区间 上应用罗尔定理得 在 上都有根,而 为三次多项式,所以恰有三个实根。
6.证明恒等式
证明:在 上, ,所以 为常数,令 得此常数为 。又显然 ,所以结论成立。
4.求下列函数的极值点与极值:
(1)
解: , 上 上 所以 为极大值点,极大值为 。 上 上 所以 为极小值点,极小值为 。
(2)
解: , 上 上 所以 为极大值点,极大值为 。
(3)
解: , 上 上 上 所以 为极小值点,极小值为 。 为极大值点,极大值为
5.确定下列函数的单调区间:
(1)
解: 。在 上 , 上 , 上 ,所以 , 为单增区间, 为单减区间。
7.讨论方程 有几个实根。
解:设 , ,在 上 , 单增,在 上 , 单减。所以 为最大值。又有 所以当 时没有实根,当 时有一个实根,当 时有两个实根。
8.判定下列曲线的凹凸性:
(1)
解: 所以函数是凸的。
(2)
解: 所以 上函数是凸的, 上函数是凹的。
(3)
解: 所以函数是凹的。
(4)
解: 所以函数是凹的。
16.设函数 ,求证:当 时, 当 时,有
。
证明:当 时, 所以
即 ,在其中取 即得
6.4函数的单调性与曲线的凹凸性
习题6.4
1.判定函数 的单调性。
解: 只在 处为零,所以函数单调下降。
2.判定函数 的单调性。
解: ,只在 处为零,所以函数单调上升。
3.求下列函数的单调性区间与极值点:
多元函数微分学习题及详细解答
C. 可能确定两个具有连续偏导数的隐函数 x x( y, z) 和 z z(x, y)
D. 可能确定两个具有连续偏导数的隐函数 x x( y, z) 和 y y(x, z)
3.证明:函数 f (x, y) xy 在点 O(0, 0) 处可微。
证明:由定义,
f
x
(0,
0)
lim
x0
(f x, 0) x
f
(0, 0)
0
4.设
z
xy+f
(u),
,u
y x
,f
(u)
为可微函数,求:
x
z x
y
z y
解: z x
y
xf
(u)
y x2
f (u)
f (u)
y
y x
f (u)
z x xf (u) 1 x f (u).
y
x
故
x
z x
y z y
x
f
(u)
y
f
(u) x
y
yx
f (u)
xf (u) xy yf (u) xy yf (u)
(3)如果函数 f (x, y) 在点 0, 0 处连续,那么下列命题正确的是( B )
A.若极限 lim f (x, y) 存在,则 f (x, y) 在点 0,0 处可微
x0 x y
y0
B.
若极限 lim x0
f (x, y) 存在,则 x2 y2
f (x, y) 在点 0, 0 处可微
y0
2 ,求
f
xx
(0,0,1),f
yz
(0,
1,0),f
zzx
(2,0,1)
多元函数微分学练习题及解答
是曲面在点 处的一个法向量,从而该点处曲面的切
平面方程为 又点 在曲面上,
故切平面方程可以化简为 。其在三坐标轴上的截距为 ,
,从而切平面与三坐标面围成的四面体体积为 。
2)当 最大时,体积就最小,又由于点 是椭球面的第一卦限部分曲面上任取一点,所以问题就化为求函数
在
条件 之下的最大值,为此作拉格朗日函数
1) ;
2)可能极值点唯一,因为由问题本身可知最小值一定存在,所以最小值一定在这唯一
可能的极值点处取到。
3)曲面上的点 与两定点P(1,0,1)和Q(2,0,1)的距离平方和为最小。
31、椭球面 的第一卦限部分曲面上的切平面与三坐标
面围成一四面体,试求这种四面体体积的最小值。
[解]:1)设点 是椭球面 的第一卦限部分曲面上的一点。
[Hale Waihona Puke ]:。13、设 ,,求 。
[解1]:由多元复合函数的求导公式知:
;
[解2]:将 代入方程 中,则函数化为 一元复合函数,
利用一元复合函数的求导公式知 。
14、设 而 ,求 。
[解]:由多元函数的求导公式: , 。
,
同理 。
15、 求
[解]:设 则
; ;
,由多元隐函数的求导公式:
;
。
16、设 ,其中 是可微函数,求 。
1)
函数 在点 处方向导数的最大值
2)相应的方向就是 方向,即向量 的方向。
33、求函数 在曲线 上点 处沿曲线在该点的切线正方向(对应
增大的方向)的方向导数
[解]: 对应于 ,
1)先求出满足题目要求的切线的方向向量
在 处切线的方向向量为
, ,
《高等数学一》第六章 多元函数微分学 历年试题模拟试题课后习题大汇总(含答案解析)
第六章多元函数微分学[单选题]1、设积分域在D由直线所围成,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]2、().A、9B、4C、3D、1【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]3、设,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】首先设出,然后求出最后结果中把用次方代换一下就可以得到结果.[单选题]4、设则().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题直接根据偏导数定义得到. [单选题]5、设,=().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】对x求导,将y看做常数,.[单选题]6、设,则= ().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]7、A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]8、函数的定义域为().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】,,综上满足:.[单选题]9、().A、0B、﹣1C、1D、∞【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]10、设,则().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】[单选题]11、函数的确定的隐函数,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】方程左右两边求导,,.[单选题]12、设,则在(0,0)处().A、取得极大值B、取得极小值C、无极值D、无法判定是否取得极值【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】故,故取得极小值[单选题]13、设,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】[单选题]14、设z=x^2/y,x=v-2u,y=u+2v,则().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]15、设函数z=ln(x2+y2),则=( )A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]16、设函数,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】参见教材P178~179。
成人高考《高等数学一》章节练习题答案及解析
成人高考《高等数学一》章节练习题答案及解析- 1 -2021 年专升本数学一习题第一章极限、连续1.已知f(x) = � 3x + 2,x ≥0x 2 −1,x < 0。
求f(0)=2. limx→∞sinxx=3. limx→2 (x −2)sin1x−2=4. limx→0xln(3x+1)=5. limx→0sin4xx=6. limx→∞�1 +5x �x =7. limx→0tan2x2x=8. limx→0 (1 −x)1x =9. limx→0 (1 + x)−1x =10. limx→∞�1 +1x �x+2 =11. limx→0x ⋅tanx= 12. limx→0sinxsin2x =13. limx→0ln (2x+1)sin3x14. limx→1x−1x 2 −1=15. limx→4x−4√x+5−3=- 2 -- 2 -16. limx→∞2x 3 +3x 2 +5 7x 3 +4x 2 −1 = 17.设f(x) = �x −1,x < 0 0,x = 0x + 1,x > 0,求limx→0f(x)18. limx→2x 2 +x−6x 2 −4=19. limx→0x−sinxx 2 +x=20.设函数f(x) = �√x3,x < 0,x 2 + 1,x ≥0, 则在点x=0 处是否连续。
21.函数f(x) =x 2 +1x−3的间断点是()。
22.设函数f(x) = �e x,x < 0x + a,x ≥0 在x=0 处连续,则a=()第二章一元函数微分学1.已知f ′(2) = 2,求limΔx→0f(2−3Δx)−f(2)Δx=2.已知f ′(4) = 1,求limΔx→0f(4+2Δx)−f(4)Δx=3x + lnx在点(1,0)处切线斜率K。
4lnx在点(1,0)处的切线方程和法线方程。
5x 2 上的一点,使该点处的切线与直线y = 2x + 2平行。
多元函数微积分+无穷级数习题附带答案
1. 设则=( )2(,)f x y x y xy y +-=+(,)f x y A .B .()2x x y -2xy y +C .D .()2x x y +2x xy-2. = ( )221cos lim 1x x y oe y x y →→++A . 0 B .1 C . D . 1e 2e 3.设在点处有偏导数存在,则=( )(,)f x y 00(,)x y 0000(2,)(,)limh o f x h y f x h y h →+--A .0B .'00(,)x f x yC .D .'002(,)x f x y '003(,)x f x y 4.偏导数存在是可微的( )(,)z f x y =(,)z f x y =A .充分条件 B .必要条件C .充分必要条件D .无关条件5.函数在点(1,1)的全微=( )xy z e =dz A . B .2()e dx dy +()xy e dx dy +C . D .()e dx dy +dx dy+6.已知且,则= ( )22(,)()x y x y y x ϕ=++(,1)z x x =z x ∂∂A .2 B .12xy x +-22x y+C .D .21x x -+-212xy x++7. 的定义域是 )z r R =<<8.设在点(1,1,)取得极值,则 22(,)2f x y x ax xy by =+++a =b =9.方程确定则2221x y z ++=(,)z z x y === 2z x y ∂∂∂2z y x∂∂∂10.设2sin(23)23x y z x y z+-=+-则= 2222z z x y+11.方程确定,则= 0z e xyz -=(,)z z xy =z x ∂∂12.交换积分次序后,()110,I dx f x y dy =⎰I =13.计算,其中D 由22Dx dxdy y ⎰⎰所围闭区域1,2,xy x y x ===14.计算,D 由2Dy d σ⎰⎰所围闭区域21,0,0,1y x x y y =-===15.交换积分次序()()12330010,,y y I dy f x y dx dyf x y dx -=+⎰⎰⎰⎰16.计算10I dx =⎰17.计算10I dx=⎰18.计算2222000y R y x y x I dy e dx dy dx ----=+⎰19.求在条件下的极值22z x y =+2x y +=20.函数z=z(x,y),由方程F(xy,z)=x 所确定,其中F(0,0)有连续一阶偏导数,求2222z z x y+21.设 其中可微,22()x z x y ϕ=-ϕ证明211z z z x x y y x∂∂+=∂∂22.设,证明ln()x y z e e =+222222()z z z x y x y∂∂∂⋅=∂∂∂∂23.计算22201ln ln ln e e x x e y x x I dy dx dy dx e e=+⎰⎰⎰⎰24.由圆及直线所围成第一象限的薄板,其密度,求该薄板的质量221x y +=0,0x y ==25.设为连续函数且(),f x y ,其中D :()(),,Df x y xy f u v d σ=+⎰⎰所围闭区域,证明:20,,1y y x x ===()1,8D f x y dxdy =⎰⎰1、解: (,)()f x y x y x y y+-=+ []1()()()2x y x y x y =++--(,)()2x f x y x y ∴=-2、解:在点(1,0)连续22cos (,)1x e y f x y x y =++ '221cos cos 0lim 11102x x y oe y e e x y →→∴==++++3、解:原式=0000(2,)(,)lim 22h of x h y f x y h→+-⋅0000(,)(,)lim h o f x h y f x y h→--+-='''0000002(,)(,)3(,)x x x f x y f x y f x y +=4、解:若可微,则存在,(,)z f x y =,z z x y∂∂∂∂反之成立,故偏导数存在是可微必要条件5、解:在(1,1) ()xy dz e ydx xdy =+'()dz e dx dy =+6、解:(1)2(,1)1()z x x x x ϕ=++= 2()1x x x ϕ∴=--(2)222(,)1z x y x y y x x =++--(3)212z xy x x∂=+-∂7、解: 22222200R x y x y r ⎧--≥⎪⎨+->⎪⎩ 定义域∴{}2222(,)R D x y r x y =<+<8、解:'2'4,2x y f x a y f xy b=++=+ 又,即 (1,1)0f ='(1,1)0y f =,410a ++=20b +=5,2a b ∴=-=-9、解:令222'1,2,x F x y z F x =++-=''2,2y z F y F z==(2),z x x z ∂=-∂z y y z ∂=-∂(3)22231(0z z xy z x x y z y z y x∂∂-∂=+==∂∂∂∂∂10、解:方程两边全微分:2cos(23)(23)23x y z dx dy dz dx dy dz+-+-=+-∴,,(23)[2cos(23)1]0dx dy dz x y z +-+--= 23dx dy dz +=2123z x =2223z y =故22122z z x y +=11、解:令'',,z z x z F e xyz F yz F e xy=-=-=-''2x z F z yz x F e xy∂=-=∂-12、解:(1)画出积分区域D(2)交换二次积分次序:原式=I=2100(,)y dy f x y dx⎰⎰13、解:(1)画出积分区域D(2)选择积分次序:为了不分片先对y 分积分,后对x 积分原式=221121()xdx x d y-⎰⎰=2211()1x x dx y x -⎰14、解:(1)画出积分区域D(2)为了不分片先对分积分,后对y 积分x 原式=2111222000(1)y dy y dx y y dy +=+⎰⎰⎰=11530011118535315y y +=+=⎰⎰15、解:(1)画出12D D D+=1:01,02D y x y≤≤≤≤2:13,03D y x y≤≤≤≤-(2)交换积分次序I =()2302x x dx f x y dy-⋅⋅⎰⎰16、解:(1)画出积分域D(2)交换积分次序I =21120sin sin yy o y y y dy dx x dy y y y =⋅⎰⎰⎰ =110sin cos o dy dy y +=⎰⎰111cos cos sin 000y y y y -+-1sin1=-17、解:(1)画出积分区域D(2)改用极坐标定限,计算2cos 3204cos sin r r I d rdr rπθπθθθ=⎰⎰22cos 204sin cos 2r d πθπθθθ=⋅⎰324sin cos 2d ππθθθ=⋅⎰3242cos cos d ππθθ=-⎰42411cos 28ππθ=-=18、解:(1)画出12D D D+=(2)改用极坐标定限,计算2204R r I d e rdr ππθ-=⋅⎰⎰201242rR e ππ-⎛⎫⎛⎫=-⋅- ⎪ ⎪⎝⎭⎝⎭()()22111428R Re e ππ--=⋅-=-19、解:(1)化为无条件极值一元函数的极值22()z x z x =+-(2), '22(2)0x z x x =--=440,1x x -==极小值''40xx z =>221(21)2z =+-=注:22'(2),20,x F x y x y F x λλ=+++-=+=代入约束条件'20y F y x y λ=+=→=得驻点。
专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)
专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.= ( )A.0B.C.一D.+∞正确答案:B解析:.知识模块:多元函数积分学2.关于函数f(x,y)=下列表述错误的是( ) A.f(x,y)在点(0,0)处连续B.fx(0,0)=0C.fy(0,0)=0D.f(x,y)在点(0,0)处不可微正确答案:A解析:,随k取不同数值而有不同的结果,所以不存在,从而f(x,y)在(0,0)点不连续,因此选项A是错误的,故选A.知识模块:多元函数积分学3.设函数z=3x2y,则= ( )A.6yB.6xyC.3xD.3x2正确答案:D解析:因为z=3x2y,则=3x2.知识模块:多元函数积分学4.设二元函数z== ( )A.1B.2C.x2+y2D.正确答案:A解析:因为z==1.知识模块:多元函数积分学5.已知f(xy,x-y)=x2+y2,则= ( )A.2B.2xC.2yD.2x+2y正确答案:A解析:因f(xy,x—y)=x2+y2=(x—y)2+2xy,故f(x,y)=y2+2x,从而=2.知识模块:多元函数积分学6.设z=f(x,y)=则下列四个结论中,①f(x,y)在(0,0)处连续;②fx’(0,0),fy’(0,0)存在;③fx’(x,y),fy’(x,y)在(0,0)处连续;④f(x,y)在(0,0)处可微.正确结论的个数为( ) A.1B.2C.3D.4正确答案:C解析:对于结论①,=0=f(0,0)f(x,y)在(0,0)处连续,所以①成立;对于结论②,用定义法求fx’(0,0)==0.同理可得fy’(0,0)=00②成立;对于结论③,当(x,y)≠(0,0)时,用公式法求因为当(x,y)→(0,0)时,不存在,所以fx’(x,y)在(0,0)处不连续.同理,fy’(x,y)在(0,0)处也不连续,所以③不成立;对于结论④,fx’(0,0)=0,fy’(0,0)=0,△z=f(0+△x,0+△y)-f(0,0)=((△x)2+(△y)2).sin=ρ2故f(x,y)在(0,0)处可微,所以④成立,故选C.知识模块:多元函数积分学7.设函数z=μ2lnν,而μ=,ν=3x一2y,则= ( )A.B.C.D.正确答案:A解析:知识模块:多元函数积分学8.曲面z=F(x,y,z)的一个法向量为( )A.(Fx,Fy,Fz一1)B.(Fx一1,Fy一1,Fz一1)C.(Fx,Fy,Fz)D.(一Fx,一Fy,1)正确答案:A解析:令G(x,y,z)=F(x,y,z)一z,则Gx=Fx,Gy=Fy,Gz=Fz一1,故法向量为(Fx,Fy,Fz一1).知识模块:多元函数积分学9.曲面z=x2+y2 在点(1,2,5)处的切平面方程为( )A.2x+4y—z=5B.4x+2y—z=5C.z+2y一4z=5D.2x一4y+z=5正确答案:A解析:令F(x,y,z)=x2+y2一z,Fx(1,2,5)=2,Fy(1,2,5)=4,Fz(1,2,5)=一1切平面方程为2(x一1)+4(y一2)一(z一5)=02x+4y—z=5,也可以把点(1,2,5)代入方程验证,故选A.知识模块:多元函数积分学10.函数f(x,y)=x2+xy+y2+x—y+1的极小值点是( )A.(1,一1)B.(一1,1)C.(一1,一1)D.(1,1)正确答案:B解析:∵f(x,y)=x2+xy+y2+x—y+1,∴fx(x,y)=2x+y+1,fy(x,y)=x+2y一1,∴令得驻点(-1,1).又A=fxx(x,y)=2,B=fxy=1,C=fyy=2,∴B2一AC=1—4=一3<0,又A=2>0,∴驻点(一1,1)是函数的极小值点.知识模块:多元函数积分学11.函数z=x2一xy+y2+9x一6y+20有( )A.极大值f(4,1)=63B.极大值f(0,0)=20C.极大值f(一4,1)=一1D.极小值f(一4,1)=一1正确答案:D解析:因z=x2-xy+y2+9x-6y+20,于是=一x+2y-6,令=0,得驻点(-4,1),又因=2,故对于点(-4,1),A=2,B=一1,C=2,B2一AC=-3<0,且A>0,因此z=f(x,y)在点(一4,1)处取得极小值,且极小值为f(一4,1)=一1.知识模块:多元函数积分学填空题12.已知函数f(x+y,ex-y)=4xyex-y,则函数f(x,y)=________.正确答案:(x2一ln2y)y解析:由于f(x+y,ex-y)=[(x+y)2一ln2ex-y].ex-y,所以f(x,y)=(x2一ln2y)y.知识模块:多元函数积分学13.设z=xy,则dz=________.正确答案:yxy-1dx+xylnxdy解析:z=xy,则=yxy-1,=xylnx,所以dz=yxy-1dx+xylnxdy.知识模块:多元函数积分学14.设f(x,y)=sin(xy2),则df(x,y)=________.正确答案:y2cos(xy2)dx+2xycos(xy2)dy解析:df(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy.知识模块:多元函数积分学15.已知z=(1+xy)y,则=________.正确答案:1+2ln2解析:由z=(1+xy)y,两边取对数得lnz=yln(1+xy),则,所以=1+2ln2.知识模块:多元函数积分学16.设f’’(x)连续,z=f(xy)+yf(x+y),则=________.正确答案:yf’’(xy)+f’(x+y)+yf’’(x+y)解析:f’(xy).y+yf’(x+y),f’f’’(xy).x+f’(x+y)+yf’’(x+y)=yf’’(xy)+f ’(x+y)+yf’’(x+y).知识模块:多元函数积分学17.设z==________.正确答案:解析:知识模块:多元函数积分学18.曲面x2+3z2=y在点(1,一2,2)的法线方程为________.正确答案:解析:记F(x,y,z)=x2+3z2一y,M0(1,一2,2),则取n=(2,一1,12),所求法线方程为.知识模块:多元函数积分学19.二元函数f(x,y)=x2(2+y2)+ylny的驻点为_______.正确答案:(0,)解析:fx’(x,y)=2x(2+y2),fy’(x,y)=2x2y+lny+1.令解得唯一驻点(0,).知识模块:多元函数积分学20.设f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处取得极值的必要条件是_______.正确答案:fx’(x0,y0)=fy’(x0,y0)=0解析:f(x,y)在点(x0,y0)处可微,则偏导数fx’(x0,y0),fy’(x0,y0)存在,f(x,y)在点(x0,y0)处取得极值,则有fx’(x0,y0)=fy’(x0,y0)=0;反之不成立.知识模块:多元函数积分学解答题21.求函数z=arcsin的定义域.正确答案:对于≤1,即x2+y2≤4;在中,应有x2+y2≥1,函数的定义域是以上两者的公共部分,即{(x,y)|1≤x2+y2≤4}.涉及知识点:多元函数积分学22.设函数z=x2siny+yex,求.正确答案:=2xsiny+yex,=2siny+yex,=2xcosy+ex.涉及知识点:多元函数积分学23.已知z=ylnxy,求.正确答案:涉及知识点:多元函数积分学24.设2sin(x+2y一3z)=x+2y一3z,确定了函数z=f(x,y),求.正确答案:在2sin(x+2y一3z)=x+2y一3z两边对x求导,则有2cos(x+2y —3z).,整理得.同理,由2cos(x+2y一3z),得=1.也可使用公式法求解:记F(x,y,z)=2sin(x+2y一3z)一x一2y+3z,则Fx=2cos(x+2y一3z).(一3)+3,Fy=2cos(x+2y一3z).2—2,Fx=2cos(x+2y一3z)一1,故=1.涉及知识点:多元函数积分学25.设μ=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ez一xz=0所确定,求.正确答案:.方程exy一y=0两边关于x求导,有exy,方程ez一xz=0两边关于x求导,有ez,由上式可得.涉及知识点:多元函数积分学26.设z=μ2ν一μν2,而μ=xcosy,ν=xsiny,求.正确答案:由于所以=(2μν一ν2)cosy+(μ2一2μν)siny=(2x2cosysiny—x2sin2y)cosy+(x2cos2y一2x2cosysiny)siny=2x2sinycos2y—x2sin2ycosy+x2sinycos2y一2x2sin2ycosy=3x2sinycosy(cosy—siny).=(2μν一ν2)(一xsiny)+(μ2一2μν)xcosy=(2x2cosysiny—x2sin2y)(一xsiny)+(x2cos2y一2x2cosysiny)xcosy=一2x3sinycosy(siny+cosy)+x3(siny+cosy)(sin2y—sinycosy+cos2y)=x3(siny+cosy)(1—3sinycosy).涉及知识点:多元函数积分学27.设f(x—y,x+y)=x2一y2,证明=x+y.正确答案:f(x—y,x+y)=x2一y2=(x+y)(x—y),故f(x,y)=xy.=x+y.涉及知识点:多元函数积分学28.设函数z(x,y)由方程=0所确定,证明:=z —xy.正确答案:涉及知识点:多元函数积分学29.求曲面ez一z+xy=3过点(2,1,0)的切平面及法线.正确答案:设F(x,y,z)=ez一z+xy一3则Fx=y,Fy=x,Fz=ez一1,所以切平面的法向量为n=(1,2,0).所求切平面为x一2+2(y一1)=0,即x+2y一4=0,法线为.涉及知识点:多元函数积分学30.求椭球面x2+2y2+3z2=21上某点M处的切平面π的方程,且π过已知直线L:.正确答案:令F(x,y,z)=x2+2y2+3z2一21,则Fx’=2x,Fy’=4y,Fz’=6z.椭球面的点M(x0,y0,z0)处的切平面π的方程为2x0(x—x0)+4y0(y—y0)+6z0(z—z0)=0,即x0x+2y0y+3z0z=21.因为平面π过直线L上任意两点,比如点应满足π的方程,代入有6x0+6y0+z0=21,z0=2.又因为x02+2y02+3z02=21,解上面方程有:x0=3,y0=0,z0=2及x0=1,y0=2,z0=2.故所求切平面的方程为x+2z=7和x+4y+6z=21.涉及知识点:多元函数积分学31.求旋转抛物面z=x2+y2一1在点(2,1,4)处的切平面及法线方程.正确答案:F(x,y,z)=x2+y2一z一1,n|(2,1,4)=(2x,2y,一1)|(2,1,4)=(4,2,一1).切平面方程为4(x一2)+2(y一1)一(z一4)=0,即4x+2y一z—6=0.法线方程为.涉及知识点:多元函数积分学32.确定函数f(x,y)=3axy—x3一y3(a>0)的极值点.正确答案:=0,联立有解得x=y=a或x=y=0,在(0,0)点,△>0,所以(0,0)不是极值点.在(a,a)点,△<0,且=-6a <0(a>0),故(a,a)是极大值点.涉及知识点:多元函数积分学33.某工厂建一排污无盖的长方体,其体积为V,底面每平方米造价为a 元,侧面每平方米造价为b元,为使其造价最低,其长、宽、高各应为多少?正确答案:设长方体的长、宽分别为x,y,则高为,又设造价为z,由题意可得z=axy+2b(x+y)(x>0,y>0),由于实际问题可知造价一定存在最小值,故x=y=就是使造价最小的取值,此时高为.所以,排污无盖的长方体的长、宽、高分别为时,工程造价最低.涉及知识点:多元函数积分学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章多元函数微分学[单选题]1、设积分域在D由直线所围成,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]2、().A、9B、4C、3D、1【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]3、设,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】首先设出,然后求出最后结果中把用次方代换一下就可以得到结果.[单选题]4、设则().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题直接根据偏导数定义得到. [单选题]5、设,=().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】对x求导,将y看做常数,.[单选题]6、设,则= ().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]7、A、B、C、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]8、函数的定义域为().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】,,综上满足:.[单选题]9、().A、0C、1D、∞【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]10、设,则().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】[单选题]11、函数的确定的隐函数,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】方程左右两边求导,,.[单选题]12、设,则在(0,0)处().A、取得极大值B、取得极小值C、无极值D、无法判定是否取得极值【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】故,故取得极小值[单选题]13、设,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】[单选题]14、设z=x^2/y,x=v-2u,y=u+2v,则().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]15、设函数z=ln(x2+y2),则=( )A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]16、设函数,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】参见教材P178~179。
(2014年4月真题)[单选题]17、设函数z=xe y,则全微分().A、edx+2edyB、2edx+edyC、edx+2dyD、2dx+edy【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】因此选择A.参见教材P190。
(2014年10月真题)[单选题]18、设函数,则偏导数()。
A、-1B、0C、1D、2【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】,因此可得。
参见教材P183。
[单选题]19、设函数则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】参见教材P178。
[单选题]20、设函数().A、4ln2+4B、4ln2-4C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】参见教材P182。
[解答题]21、设函数z=,则=_________.【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】[解答题]22、【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]23、设某企业生产一定量的某产品时可用两种原料,第一种为x(千吨),第二种为y(千吨),其电能消耗量N(万度)与两种原料使用量的关系为问如何使用两种原料方可使电能消耗达到最低,并求此时的最低能耗.【从题库收藏夹删除】【正确答案】令有,【您的答案】您未答题[解答题]24、设函数z=z(x,y)是由方程x+yz-ln(x+z)=0所确定的隐函数,求【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]25、计算二重积分【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]26、求函数在点(2,1)当=,△y=-时的全增量和全微分.【从题库收藏夹删除】【正确答案】z(2,1)=22×1+12=5当=,时,点(2,1)变为(,),,所以z的全增量为又有:所以.【您的答案】您未答题[解答题]27、某工厂生产两种产品的联合成本函数为,需求函数.其中分别是两种产品的价格和需求量,两种产品各生产多少时利润最大【从题库收藏夹删除】【正确答案】解析:令解得,由题意,最大利润一定存在,又函数在定义域内只有惟一驻点.因此,当,即生产2个单位A种产品3个单位B种产品时获利最大.【您的答案】您未答题[解答题]28、设隐函数z=z(x,y)由方程e x+y sin(x+z)=0确定,求dz.【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]29、计算其中D:y=x,y=1,y轴所围区域【从题库收藏夹删除】【正确答案】∵ D:0≤y≤1,0≤x≤y【您的答案】您未答题[解答题]30、设D为xoy平面上由x=0,所围成的平面区域,试求.【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]31、设z=ln(x+ ),则.【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]32、设D是由直线y=x, y=2x及y=2所围成的区域,试求【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]33、设z=z(x,y)是由方程所确定的隐函数,并设【从题库收藏夹删除】【正确答案】=2/3.【您的答案】您未答题[解答题]34、设D是由直线y=2,y=x及y=2x所围成的区域,计算二重积分.【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]35、设z=z(x,y)是由方程z3-3xyz-1=0所确定的隐函数,求偏导数.【从题库收藏夹删除】【正确答案】,,【您的答案】您未答题[解答题]36、计算二重积分I=,其中D是由直线y=2x,x=l及曲线y=x2围成的平面区域.【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]37、求函数的全微分d z.【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】参见教材P190.(2015年4月真题)[解答题]38、设z=z(x,y)是由方程z=e2x-3z+2y所确定的隐函数,求偏导数.【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】令F(x,y,z)=e2x-3z+2y-z,则从而参见教材P197~198.(2015年4月真题)[解答题]39、计算二重积分,其中D是由直线x=1、x=2及y=1、y=2所围成的平面区域.【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】由图可以看出x的取值范围为1≤x≤2;y的取值范围为1≤y≤2.二重积分可以化为参见教材P207~212.(2015年4月真题)[解答题]40、计算二重积分,其中D是由直线y=x,y=1及x=5所围成的平面区域,如图所示.【从题库收藏夹删除】【正确答案】 4【您的答案】您未答题【答案解析】由图可以看出x的取值范围为1≤x≤5二重积分可以化为参见教材P207~212。
(2014年4月真题)[解答题]41、设z=z(x,y)是由方程2sin(2x+3y-5z)=2x+3y-5z所确定的隐函数,求证.【从题库收藏夹删除】【正确答案】令F(x,y,z)=2x+3y-5z-2sin(2x+3y-5z),则从而原题得证.【您的答案】您未答题【答案解析】参见教材P183~185。
(2014年4月真题)[解答题]42、计算二重积分,其中D是由曲线y=x2和所围成的平面区域,如图所示.【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】由图可以看出x的取值范围为0≤x≤1二重积分可以化为参见教材P207~212。
(2014年10月真题)[解答题]43、设z=z(x,y)是由方程xyz-sin x+ln(l+y)=0所确定的隐函数,求偏导数.【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】令F(x,y,z)=xyz-sin x+ln(l+y),则从而参见教材P197~198。
(2014年10月真题)[解答题]44、设是由方程所确定的隐函数,求偏导数,。
【从题库收藏夹删除】【正确答案】,【您的答案】您未答题【答案解析】方程两边关于求导可得:因此有,同理方程两边关于求导可得:,因此有。
参见教材P183。
[解答题]45、计算二重积分,其中D是直线及所围成的平面区域,如图所示。
【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】参见教材P207。
[解答题]46、求函数的全微分.【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】参见教材P190。
[解答题]47、设函数,求偏导数.【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]48、设是由方程所确定的隐函数,求偏导数,.【从题库收藏夹删除】【正确答案】就是对x求导,把y看成常数就是对y求导,把x看成常数【您的答案】您未答题[解答题]49、计算二重积分,其中D是由曲线与直线x=1及x轴、y轴所围成的平面区域.【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]50、(6分)试判断点(0,1)及(1,1)是否为函数的极值点若是极值点,指出是极大值点还是极小值点。
【从题库收藏夹删除】【正确答案】所以,(0,1)不是函数的驻点,从而不是极值点,,所以,(1,1)是函数的驻点,可知(1,1)是函数的极小值点。
【您的答案】您未答题【答案解析】参见教材P200[解答题]51、(7分)计算二重积分其中D是由直线x=1,x=2,y=x,y=所围成的平面区域。
【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】参见教材P208。