轨迹方程问题专题-求轨迹方程

合集下载

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。

4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。

一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。

高中数学解题方法-----求轨迹方程的常用方法

高中数学解题方法-----求轨迹方程的常用方法

练习
1.一动圆与圆
外切,同时与圆 x2 + y2 − 6x − 91 = 0内切,求动圆圆心
M 的轨迹方程,并说明它是什么样的曲线。
2. 动圆 M 过定点 P(-4,0),且与圆 :C x2+ -y2 8x = 0 相切,求动圆圆心 M 的轨迹方程。 1.在∆ABC 中,B,C 坐标分别为(-3,0),(3,0),且三角形周长为 16,则点 A 的轨迹方 程是_______________________________.
高中数学解题方法
---求轨迹方程的常用方法
(一)求轨迹方程的一般方法: 物1线.)定的义定法义:,如则果可动先点设P出的轨运迹动方规程律,合再乎根我据们已已知知条的件某,种待曲定线方(程如中圆的、常椭数圆,即、可双得曲到线轨、迹抛 方程。 P 满2.足直的译等法量:关如系果易动于点建立P 的,运则动可规以律先是表否示合出乎点我P们所熟满知足的的某几些何曲上线的的等定量义关难系以,判再用断点,但P 点的 坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何 量y=tg,(以t)此,量进作而为通参过变消数参,化分为别轨建迹立的普P 点通坐方标程xF,(yx与,该y)参=数0。t 的函数关系 x=f(t), 4. 代入法(相关点法):如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的 运出动相规关律点已P'知的,坐(标该,点然坐后标把满P足'的某坐已标知代曲入线已方知程曲),线则方可程以,设即出可得P(到x动,点y),P 的用轨(迹x,方y程)。表示
题目 6:已知点 P 是圆(x +1)2 + y2 =16 上的动点,圆心为 B ,A(1,0) 是圆内的定点;PA 的中垂线交 BP 于点Q .(1)求点Q 的轨迹C 的方程;

求轨迹方程的方法

求轨迹方程的方法
方法1:定义法(也称待定系数法)
如果动点的轨迹满足已知曲线的定义,可 先设定方程,再确定其中的基本量。
方法2:直接法(也称直译法)
如果动点满足的几何条件本身就是一些 几何量的等量关系,或这些几何条件简 单明了易于表达,我们只需把这种关系 “翻译”成含x,y的等式就得到曲线的轨 迹方程。
方法3:相关点法(也称代入法)
方法5:交轨法(参数法的一种特例)
在求动点轨迹时,有时会出现求两动曲线 交点的轨迹问题,这类问题常常通过解方 程组得出含参数的交点坐标,再消去参数 求出所求轨迹的方程,该法经常与参数法 并用。
有些问题中,其动点满足的条件不便用 等式列出,但动点随着另一动点(称之 为相关点)运动的.如果相关点所满足的 条件是明显的,这时我们可以用动点坐 标表示相关点坐标,根据相关点所满足 的方程即可求得动点的轨迹方程。
方法4:参பைடு நூலகம்法(也称中间量法)
当动点坐标x,y之间的直接关系难以找到 时,往往先寻找x,y与某一参变量(即中 间量)的关系,再消去该参变量得到动点 轨迹的普通方程,参变量的选取要注意它 的取值范围对坐标取值范围的影响。

轨迹方程求轨迹方程的的基本方法

轨迹方程求轨迹方程的的基本方法

轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。

1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题含答案

轨迹方程的求法一、知识复习轨迹方程的求法常见的有1直接法;2定义法;3待定系数法4参数法5交轨法;6相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P-3,0是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程;例2、如图所示,已知P 4,0是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为x ,y ,则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-x 2+y 2 又|AR |=|PR |=22)4(y x +-所以有x -42+y 2=36-x 2+y 2,即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Qx ,y ,Rx 1,y 1,因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若∆AMN 为锐角三角形, |AM|= 错误!, |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点;依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点;设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中x A,x B 分别为A ,B 的横坐标,P=|MN|;)2(92)2()1(172)2(3||,17||)0,2(),0,2(22=+-=++==-A A A A px px px px AN AM p N p M 得由所以 由①,②两式联立解得p x A 4=;再将其代入①式并由p>0解得⎩⎨⎧⎩⎨⎧====2214A A x p x p 或 因为△AMN 是锐角三角形,所以Ax p >2,故舍去⎩⎨⎧==22A x p∴p=4,x A =1由点B 在曲线段C 上,得42||=-=pBN x B ;综上得曲线段C 的方程为)0,41(82>≤≤=y x x y解法二:如图建立坐标系,分别以l 1、l 2为作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2垂足分别为E 、D 、F 设Ax A , y A 、Bx B , y B 、Nx N , 0 依题意有)0,63)(2(8}0,,)(|),{(),(6||||4||||||||||22||||||3|||||22222222>≤≤-=>≤≤=+-====++=+=∆=+======y x x y C y x x x x y x x y x P C y x P NB BE x AE AM ME EN ME x AMN DA AM DM y AN DA ME x B A N B N A A 的方程故曲线段属于集合上任一点则由题意知是曲线段设点为锐角三角形故有由于例4、已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点Mx ,y 随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A , 则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x例5、设点A 和B 为抛物线 y 2=4pxp >0上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.解法一:设Mx ,y ,直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+2kb -4px +b 2=0 所以x 1x 2=22kb , y 1y 2=kpb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2所以k pk4=-22kb , b =-4kp故y =kx +b =kx -4p , 得x 2+y 2-4px =0x ≠0故动点M 的轨迹方程为x 2+y 2-4px =0x ≠0,它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设Ax 1,y 1,Bx 2,y 2,Mx ,y依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x yx y px y px y①-②得y 1-y 2y 1+y 2=4px 1-x 2 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥ ①×②,得y 12·y 22=16p 2x 1x 2 ③代入上式有y 1y 2=-16p 2⑦⑥代入④,得yxy y p -=+214 ⑧ ⑥代入⑤,得py x y y x x y y y y p442111121--=--=+所以211214)(44y px y y p y y p --=+ 即4px -y 12=yy 1+y 2-y 12-y 1y 2 ⑦、⑧代入上式,得x 2+y 2-4px =0x ≠0 当x 1=x 2时,AB ⊥x 轴,易得M 4p ,0仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0x ≠0它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.① ②③ ④ ⑤|轨 迹 方 程练习11.08、山东文22已知曲线1C :||||1(0)x y a b a b+=>>所围成的封闭图形的面积为 45,曲线1C 的内切圆半径为253,记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆.1求椭圆2C 的标准方程; 2设AB 是过椭圆2C 中心的任意弦,L 是线段AB 的 垂直平分线,M 是L 上异于椭圆中心的点.①若||MO =λ||OA O 为坐标原点,当点A 在椭圆2C 上运动时,求点M 的轨迹方程;②若M 是L 与椭圆2C 的交点,求AMB ∆的面积的最小值.解:1由题意得22245253ab ab a b⎧=⎪⎨=⎪+⎩⇒4522==b a ,⇒椭圆方程:2254x y +=1.2若AB 所在的斜率存在且不为零,设 AB 所在直线方程为y =kxk≠0,A A A y x ,.①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++, ⇒2222220(1)||45AAk OA x y k+=+=+. 设Mx,y,由|MO|=λ|OA|λ≠0⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y k λ++=+.因为L 是AB 的垂直平分线,所以直线L 的方程为y =1x k -⇒k =x y-,代入上式有:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒2225420x y λ+=, 当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为22245x y λ+=,λ≠0.②当k 存在且k ≠0时,2222220204545AA k x y k k ==++,⇒|OA|2=222220(1)45A A k x y k ++=+. 由221541x y y xk ⎧+=⎪⎪⎨⎪=-⎪⎩⇒2222220205454M M k x y k k ==++,⇒22220(1)||54k OM k +=+. ⇒222222111120(1)20(1)4554k k OAOMk k +=+++++=209. 222119||||20OA OB OA OM≤+=⨯⇒||||OB OA ⨯≥940.||||21OB OA S AMB ⨯⨯⨯=∆=||||OB OA ⨯≥40,当且仅当4+5k 2=5+4k 2时,即k =±1时等号成立.当1400229AMB k S ∆==⨯=>,; 当k 不存在时,140429AMB S ∆==>.综上所述,AMB ∆的面积的最小值为409.2.07、江西理21设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.1证明:动点P 的轨迹C 为双曲线,并求出C 的方程;2过点B 作直线与双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.解:1在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<常数,点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线,方程为:2211x y λλ-=-. 2设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111511012λλλλλ-±-=⇒+-=⇒=-, 因为01λ<<,所以512λ-=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得: 2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦ ⇒21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x kλλλλ--+=-- ⇒22212122(1)(1)(1)k y y k x x k λλλ=--=--. 由OM ·ON =0,且M N ,在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>-⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②知32215<≤-λ.3.09、海南已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.1求椭圆C 的方程;2若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,2OP e OMe 为椭圆C 的离心率,求点M 的轨迹方程,并说明轨迹是什么曲线.解:Ⅰ设椭圆长半轴长及分别为a,c .由已知得⎩⎨⎧=+=-71c a c a ⇒a =4,c =3⇒椭圆C 的方程为221167x y +=. 2设Mx,y,P 0x ,0y . 其中0x ∈-4,4,0x =x .有22001167x y +=……① 由OP e OM=得:2240022x y e x y +=+=169. 故22220016()9()x y x y +=+下面是寻找关系式0x =fx,y,0y =gx,y 的过程又⎪⎩⎪⎨⎧-==167112220220x y x x ……………………………………②②式代入①:22001167x y +=并整理得:47(44)3y x =±-≤≤,所以点M 的轨迹是两条平行于x 轴的线段.轨 迹 方 程练习24.09、重庆理已知以原点O 为中心的椭圆的一条准线方程为433y =,离心率32e =,M 是椭圆上的动点. 1若C 、D 的坐标分别是0,√3、0,-√3,求||MC ·||MD 的最大值;2如图,点A 的坐标为1,0,点B 是圆221x y +=上的点,点N 是点M 椭圆上的点在x 轴上的射影,点Q 满足条件:OQ =OM +ON ,QA ·BA =0.求线段QB 的中点P 的轨迹方程.解:1设椭圆方程为:22221x y a b +=a >b >0.准线方程3y ==c a 2,2e ==ac ⇒2=a ,32=c 1=⇒b ⇒椭圆方程为:2214y x +=.所以:C 、D 是椭圆2214y x +=的两个焦点⇒||MC +||MD =4.||MC ·||MD ≤4)2||||(2=+MD MC ,当且仅当||MC =||MD ,即点M 的坐标为(1,0)±时上式取等号⇒||MC ·||MD 的最大值为4.2设M(,),(,)m m B B x y B x y ,(,)Q Q Q x y ,N 0,m x ⇒4422=+m m y x ,122=+B B y x . 由OQ =OM +ON⇒m Q x x 2=,m Q y y =⇒4)2(2222=+=+m m Q Qy x y x ………①由QA ·BA =0 ⇒Q Q y x --,1·B B y x --,1=Q x -1B x -1+B Q y y =0 ⇒=+B Q B Q y y x x 1-+B Q x x …………②记P 点的坐标为P x ,P y ,因为P 是BQ 的中点⇒B Q P x x x +=2,B Q P y y y +=2⇒2222)2()2(BQ B Q P P y y x x y x +++=+=)22(412222B Q B Q B Q B Q y y x x y y x x +++++ =)]1(25[41-++B Q x x =)245(41-+P x ⇒P P P x y x +=+4322 ⇒动点P 的方程为:1)21(22=+-y x .5.09、安徽已知椭圆22a x +22by =1a >b >0的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切.1求a 与b 的值;2设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点p.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型解:1e =33⇒22a b =32.又圆心0,0到直线y =x +2的距离d =半径b =22112+, ∴2b =2,2a =3.12322=+y x 21F -1,0、2F 1,0,由题意可设P 1,tt ≠0.那么线段1PF 的中点为N0,2t . 2L 的方程为:y =t,设M M M y x ,是所求轨迹上的任意点.下面求直线MN 的方程,然后与直线2L 的方程联立,求交点M 的轨迹方程直线1PF 的斜率k =2t ,∴线段1PF 的中垂线MN 的斜率=-t2. 所以:直线MN 的方程为:y -2t =-t 2x .由⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42, 消去参数t 得:M M x y 42-=,即: x y 42-=,其轨迹为抛物线除原点.又解:由于MN =-x,2t -y,1PF =-x,2t -y .∵MN ·1PF =0, ∴⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,,消参数t 得:x y 42-=x ≠0,其轨迹为抛物线除原点.6.07湖南理20已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.直接法求轨迹1若动点M 满足1111F M F A F B FO =++其中O 为坐标原点,求点M 的轨迹方程;2在x 轴上是否存在定点C ,使CA ·CB 为常数 若存在,求出点C 的坐标;若不存在,请说明理由.解:1由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,,则1(2)F M x y =+,,111(2)F A x y =+,,1221(2)(20)F B x y FO =+=,,,, 由1111F M F A F B FO =++⇒121226x x x y y y +=++⎧⎨=+⎩ ⇒12124x x x y y y+=-⎧⎨+=⎩⇒AB 的中点坐标为422x y -⎛⎫ ⎪⎝⎭,. 当AB 不与x 轴垂直时,1212024822y y y y x x x x --==----, 即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=. 2假设在x 轴上存在定点(0)C m ,,使CA ·CB 为常数. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是CA ·CB 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA ·CB 是与k 无关的常数,所以440m -=,即1m =,此时CA ·CB =-1.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2,此时CA ·CB =1,√2·1,-√2=-1.故在x 轴上存在定点(10)C ,,使CA ·CB 为常数.。

轨迹方程的求法及典型例题(含答案)

轨迹方程的求法及典型例题(含答案)

轨迹方程的求法、知识复习轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法注意:求轨迹方程时注意去杂点,找漏点一、知识复习例1:点P(—3, 0)是圆x2+y2- 6x—55=0内的定点,动圆M与已知圆相切,且过点P, 求圆心M的轨迹方程。

例2、如图所示,已知P(4, 0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠解:设AB 的中点为 R 坐标为(x,y),则在Rt △ ABP 中,|ARl=IPR|.又因为R 是弦AB 的中点,依垂径定理:在Rt △ OAR 中,|AR|2=|AO|2—|OR|2=36 —(χ2+y 2) 又∣AR ∣=∣PR ∣= (χ^4)Ly 2所以有(x — 4)2+y 2=36 — (x 2+y 2),即 x 2+y 2— 4x —10=0设Q(x,y), R(x 1,y 1),因为R 是PQ 的中点,所以X i =宁,y 1=号, 代入方程x 2+y 2— 4x — 10=0,得整理得:x 2+y 2=56,这就是所求的轨迹方程.APB=90°,求矩形APBQ 的顶点Q 的轨迹方程・因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动・—10=0,X 4 -4例3、如图,直线L i和L2相交于点M, L-L2,点N ∙L i.以A, B为端点的曲线段C上的任一点到L2的距离与到点N的距离相等.若厶AMN为锐角三角形,∣AM∣= 17 , IANl = 3,且∣BN∣=6.建立适当的坐标系,求曲线段C的方程.∙∙. P=4,X A=1解法一:如图建立坐标系,以I i为X轴,MN的垂直平分线为y轴,点O为坐标原点依题意知:曲线段C是以点N为焦点,以∣2为准线的抛物线的一段,其中A,B分别为C的端点。

2设曲线段C的方程为y =2PX(P ∙0),(X Am XmX B,y ∙0),其中X A,X B分别为A,B的横坐标, P=IMNl所以M ^-,0), N(-,0)2 2由| AM I hf I7,∣ AN | = 3得(XA -p)2 2P X A =172(X A -夕)2 2PX A =92(1)由①,②两式联立解得4X A ZPO因为△ AMN是锐角三角形,所以再将其代入①式并由p>0解得「"P = 2I X A= 2P = 4或」X A =1P = 2JXA = 22 XA,故舍去XB =| BN I _E = 4由点B在曲线段C上,得 2 O2综上得曲线段C的方程为y =8x(仁X乞4,y∙°)解法二:如图建立坐标系,分别以l i、∣2为轴,M为坐标原点。

求轨迹方程题型全归纳

求轨迹方程题型全归纳

求轨迹方程的六种常用方法1. 直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

例1.已知线段AB =6,直线AM,BM相交于M,且它们的斜率之积是,求点M 的轨迹方程。

解:以AB所在直线为x轴,AB垂直平分线为y轴建立坐标系,则A(-3,0),B(3,0), 设点M的坐标为(x,y),则直线AM的斜率 ,直线B M 的斜由已知有化简,整理得点M的轨迹方程为练习:1. 平面内动点P到点F(10,0)的距离与到直线x=4的距离之比为2,则点P的轨迹方程是2. 设动直线I垂直于x轴,且与椭圆x²+2y²=4交于A、B两点,P是I上满足PA ·PB=1的点,求点P的轨迹方程。

3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A. 直线B. 椭圆C. 抛物线D. 双曲线2. 定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。

例2.若B(-8,0),C(8,0)为△ABC的两顶点, AC和AB两边上的中线长之和是 30,则△ABC的重心轨迹方程是。

解:设△ABC的重心为G(x,y),则由AC和AB两边上的中线长之和是 30可得,而点B(-8,0),C(8,0)为定点,所以点G的轨迹为以B,C 为焦点的椭圆。

所以由2a=20,c=8可得a=10,b=√ a² - c²=6故△ABC的重心轨迹方程是练习:4.方程2√(×-1)²+(y-1)²=1x+y+2)表示的曲线是()A. 椭圆B. 双曲线C. 线段D. 抛物线3. 点差法圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点A(x,y1),B(×,y2)的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得xi+×2,yi+y2,X1 - X2,yi - y2等关系式,由于弦AB 的中点P(x,y) 的坐标满足2x=x₁+×2, 2y=yi+y2且直线AB的斜率为,由此可求得弦AB中点的轨迹方程。

高中数学「求轨迹方程」知识点梳理+例题精练,建议收藏~

高中数学「求轨迹方程」知识点梳理+例题精练,建议收藏~

专题51曲线与方程-求轨迹方程【热点聚焦与扩展】纵观近几年的高考试题,高考对曲线与方程的考查,主要有以下两个方面:一是确定的轨迹的形式或特点;二是求动点的轨迹方程,同时考查到求轨迹方程的基本步骤和常用方法.一般地,命题作为解答题一问,小题则常常利用待定系数法求方程或利用方程判断曲线类别.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求点的轨迹方程问题的常见解法.1、求点轨迹方程的步骤:(1)建立直角坐标系(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘,x y 的关系,列出方程(4)化简:将方程进行变形化简,并求出,x y 的范围2、求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程.常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p .若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程.【经典例题】例1.(2020·四川内江·高三三模)已知点()2,0A -、()3,0B ,动点(),P x y 满足2PA PB x ⋅=,则点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线例2.(2020·广东深圳三模·)当点P 在圆221x y +=上变动时,它与定点()3,0Q -的连线PQ 的中点的轨迹方程是()A.()2234x y ++=B.()2231x y -+=C.()222341x y -+=D.()222341x y ++=例3.(2020·江西新余四中高三三模)如图:在正方体1111ABCD A B C D -中,点P 是1B C 的中点,动点M 在其表面上运动,且与平面11A DC 的距离保持不变,运行轨迹为S ,当M 从P 点出发,绕其轨迹运行一周的过程中,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图像大致是()A.B.C.D.例4.(2020·上海市嘉定区第一中学高三三模)如图所示,在正方体1111ABCD A B C D -中,点P 是平面11ADD A 上一点,且满足ADP △为正三角形.点M 为平面ABCD 内的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A.B.C.D.例5.(2020·辽宁高三三模)已知半径为r 的圆M 与x 轴交于,E F 两点,圆心M 到y 轴的距离为d .若d EF =,并规定当圆M 与x 轴相切时0EF =,则圆心M 的轨迹为()A.直线B.圆C.椭圆D.抛物线例6.(2020·安徽庐阳·合肥一中高三三模)已知点A ,B 关于坐标原点O 对称,1AB =,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切,若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为()A.104⎛⎫ ⎪⎝⎭,B.102⎛⎫ ⎪⎝⎭,C.14⎛⎫- ⎪⎝⎭0,D.102,⎛⎫- ⎪⎝⎭例7.(2020·东湖·江西师大附中高三三模)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = ,且1OQ AB ⋅= ,则点P的轨迹方程是()A.()223310,02x y x y +=>>B.()223310,02x y x y -=>>C.()223310,02x y x y -=>>D.()223310,02x y x y +=>>例8.(2016·山西运城·高三三模)已知为平面内两定点,过该平面内动点作直线的垂线,垂足为.若,其中为常数,则动点的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线【精选精练】1.(2020·广东普宁·高三三模)与圆及圆都外切的圆的圆心在()A.一个椭圆上B.双曲线的一支上C.一条抛物线D.一个圆上2.(2020·上海高三三模)在平面直角坐标系内,到点()1,2A 和直线l :30x y +-=距离相等的点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线3.(2020·全国高考真题)在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆B.椭圆C.抛物线D.直线4.(2020·辽宁沈阳·高三三模)已知椭圆22184x y +=,点A ,B 分别是它的左,右顶点.一条垂直于x 轴的动直线l 与椭圆相交于P ,Q 两点,又当直线l 与椭圆相切于点A 或点B 时,看作P ,Q 两点重合于点A 或点B ,则直线AP 与直线BQ 的交点M 的轨迹方程是()A.22184y x -=B.22184x y -=C.22148y x -=D.22148x y -=5.如图,在平面直角坐标系中,()1,0A 、()1,1B 、()0,1C ,映射将平面上的点(),P x y 对应到另一个平面直角坐标系上的点()222,P xy x y '-,则当点沿着折线运动时,在映射的作用下,动点P '的轨迹是()A.B.C.D.6.(2020·四川成都七中高三三模)正方形1111ABCD A B C D -中,若12CM MC =,P 在底面ABCD 内运动,且满足1DP CPD P MP=,则点P 的轨迹为()A.圆弧B.线段C.椭圆的一部分D.抛物线的一部分7.(2020·天水市第一中学高三三模)动点A 在圆221x y +=上移动时,它与定点()3,0B 连线的中点的轨迹方程是()A.22320x y x +++=B.22320x y x +-+=C.22320x y y +++=D.22320x y y +-+=8.(2020·北京市陈经纶中学高三三模)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A 、B 距离之比是常数λ(0,1)λλ>≠的点M 的轨迹是圆.若两定点A 、B 的距离为3,动点M 满足||2||MA MB =,则M 点的轨迹围成区域的面积为().A.πB.2πC.3πD.4π9.(2020·内蒙古包头·高三三模)已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是()A.圆,但要去掉两个点B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点D.抛物线,但要去掉两个点10.如图所示,已知12,F F 是椭圆()2222:10x y a b a b Γ+=>>的左,右焦点,P 是椭圆Γ上任意一点,过2F 作12F PF ∠的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A.直线B.圆C.椭圆D.双曲线11.(2020·北京房山·高三三模)如图,在正方体1111ABCD A B C D -中,M 为棱AB 的中点,动点P 在平面11BCC B 及其边界上运动,总有1AP D M ⊥,则动点P 的轨迹为()A.两个点B.线段C.圆的一部分D.抛物线的一部分12.(2020·四川内江·高三三模)已知平面内的一个动点P 到直线l :x =433的距离与到定点F0)的距离之比为3,点11,2A ⎛⎫ ⎪⎝⎭,设动点P 的轨迹为曲线C ,过原点O 且斜率为k (k <0)的直线l 与曲线C 交于M 、N 两点,则△MAN 面积的最大值为()C.22D.1。

求轨迹方程的方法

求轨迹方程的方法

求轨迹方程的方法轨迹方程是描述物体在运动过程中所遵循的路径的数学表达式。

轨迹方程的求解方法因物体的运动方式而异。

下面将介绍几种常见的物体运动方式,并讨论如何求解它们的轨迹方程。

1.直线运动:物体在直线上做匀速或变速直线运动时,其轨迹方程为y = mx + b,其中m为斜率,b为截距。

若已知起始点的坐标和运动速度,则可以通过这些参数来确定轨迹方程。

2.曲线运动:物体在空间中做曲线运动时,其轨迹方程一般无法用简单的直线方程表示。

这时需要通过其他方法来求解轨迹方程。

以下是几种常见的曲线运动例子:-圆周运动:若物体做匀速圆周运动,其轨迹方程可以用参数方程表示:x = r * cos(θ),y = r * sin(θ),其中r为圆的半径,θ为角度。

通过改变θ的取值范围,可以得到整个圆周的轨迹方程。

-椭圆运动:椭圆运动可以用参数方程表示:x = a * cos(θ),y = b * sin(θ),其中a和b分别为椭圆长轴和短轴的长度。

同样通过改变θ的取值范围,可以得到整个椭圆的轨迹方程。

-抛物线运动:物体做匀速或变速抛物线运动时,其轨迹方程可以用解析几何中的一般二次方程表示:y = ax^2 + bx + c,其中a、b和c为常数。

通过给定的起始点和速度,可以确定这些常数,从而求解轨迹方程。

-双曲线运动:物体做匀速或变速双曲线运动时,其轨迹方程可以用参数方程表示:x = a * sec(θ),y = b * tan(θ),其中a和b为常数。

同样通过改变θ的取值范围,可以得到整个双曲线的轨迹方程。

除了上述运动方式外,还存在许多其他复杂的运动形式,例如螺线、摆线等。

对于这些运动形式,求解轨迹方程的方法往往需要借助更高级的数学工具,如极坐标、参数方程、微分方程等。

总结起来,轨迹方程的求解方法因物体的运动方式而异。

对于直线运动,可以直接得到轨迹方程;对于曲线运动,常常需要借助参数方程、解析几何等数学工具来求解。

对于更加复杂的运动形式,可能需要借用更高级的数学方法来确定轨迹方程。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

求轨迹方程问题—6大常用方法

求轨迹方程问题—6大常用方法

求轨迹方程问题—6大常用方法知识梳理:(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。

4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。

来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。

高中数学 轨迹问题专题

高中数学 轨迹问题专题

轨迹问题专题一.综述(一)求动点的轨迹方程的基本步骤:⒈依据题目建立适当的坐标系,设出动点M (x ,y )的坐标.⒉写出点M 的集合(几何关系).⒊将几何关系转化为代数关系,列出方程f (x ,y )=0,化简方程为最简形式.4.检验特殊点,进行必要的文字说明.(二)高考中常见的求轨迹方程的方法有:1.直译法与定义法,2.相关点法;3.参数法;4.交轨法(三)求轨迹方程一般以解答题第一问的形式出现,偶尔也会在小题中考查.二.例题精讲 破解规律例1. 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明为定值,并写出点E 的轨迹方程.分析: 题目中要求证明为定值,容易知道, E 的轨迹是椭圆,根据条件求出相关的参数即可.222150x y x ++-=EA EB +EA EB+点评:平面几何相关知识是解决本题的关键,平时学习中要加以重视.规律总结: (1)直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简即可.(2)定义法求轨迹方程:轨迹方程问题中,若能得到与我们所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.(3)定义法求轨迹方程本质上还是直译法,只是我们利用了直译法得到的结论. 现学现用1:如图,矩形中, 且, 交于点.若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程.例2. 已知线段的端点的坐标是,端点在圆上运动.求线段的中点的轨迹的方程;规律总结:相关点法求轨迹方程: 题中涉及了两个动点N 、M ,且点N 的运动是有规律的(轨迹方程已知),而M 的运动是由N 的运动而引发的,这样的题目可采用相关点法求动点M 的轨迹方程.基本方法是设M 的坐标,再反解出N 的坐标,然后带入N 所在曲线的轨迹方程,整理即可.现学现用2: 设O 为坐标原点,动点M 在椭圆C :上,过M 做x 轴ABCD ()()()()2,0,2,0,2,2,2,2A B C D --,AM AD DN DC λλ==[]0,1,AN λ∈BM Q Q P P x y P AB B ()6,5A ()()221:434C x y -+-=AB P 2C 2212x y +=的垂线,垂足为N ,点P 满足.求点P 的轨迹方程;例3: 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.点评:本题考查抛物线定义与几何性质、直线与抛物线位置关系、轨迹求法规律总结: 当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变量(或多个)的关系,再消去参变量,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法现学现用3: 已知为椭圆的左、右焦点,点在椭圆上移动时, 的内心的轨迹方程为__________.三.课堂练习 强化技巧 2NP NM =C 22y x =F x 12,l l C A B ,C P Q ,F AB R PQ AR FQ ∥PQF △ABF △AB 12,F F 22:143x y C +=P C 12PF F ∆I1. 已知|| =3,A ,B 分别在x 轴和y 轴上运动,O 为原点, ,则点P 的轨迹方程为( ).A .B .C .D .2. 若动圆与圆和圆都外切,则动圆的圆心的轨迹( ) A . 是椭圆 B . 是一条直线 C . 是双曲线的一支 D . 与的值有关3. 已知直线过抛物线: 的焦点, 与交于, 两点,过点, 分别作的切线,且交于点,则点的轨迹方程为________.四.课后作业 巩固内化1. 设过点的直线分别与轴的正半轴和轴的正半轴交于、两点,点与点关于轴对称, 为原点,若为的中点,且,则点的轨迹方程为__________.2. 已知A(1,14),B(−1,14),直线AM ,BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的差是12,则点M 的轨迹C 的方程是___________.3. .点P 是圆C:(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q 的轨迹方程是___. AB 12OP OA OB 33=+22y x 14+=22x y 14+=22x y 19+=22y x 19+=P ()22:21M x y ++=()()22:314N x y λλ++=≤≤P λl C 24y x =l C A B A B C P P (),P x y x y A B Q P y O P AB 1OQ AB ⋅=P4. 如下图,在平面直角坐标系中,直线与直线之间的阴影部分即为,区域中动点到的距离之积为1.求点的轨迹的方程;5. 已知动圆过定点,且在轴上截得的弦长为.求动圆的圆心点的轨迹方程;6. 在平面直角坐标系中,设动点到两定点, 的距离的比值为的轨迹为曲线.求曲线的方程;7. 已知动点E 到点A 与点B 的直线斜率之积为,点E 的轨迹为曲线C .求C 的方程;8. 平面直角坐标系中,圆的圆心为.已知点,且为圆上的动点,线段的中垂线交于点.求点的轨迹方程;9. 设M,N,T 是椭圆x 216+y 212=1上三个点,M,N 在直线x =8上的射影分别为xOy 1:l y x =2:l y x =-W W (),P x y 12,l l PC G ()4,0F y 8G G xOy P ()2,0M -()1,0N 2C C ()2,0()2,0-14-xOy 222150x y x ++-=M ()1,0N T M TN TM P PM1,N1.(1)若直线MN过原点O,直线MT,NT斜率分别为k1,k2,求证:k1k2为定值;(2)若M,N不是椭圆长轴的端点,点L坐标为(3,0),ΔM1N1L与ΔMNL面积之比为5,求MN中点K的轨迹方程.10. 已知椭圆Γ:x2a2+y2b2=1(a>b>0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O为坐标原点.(1)求椭圆Γ的方程;(2)设点A在椭圆Γ上,点B在直线y=2上,且OA⊥OB,求证:1OA2+1OB2为定值;(3)设点C在椭圆Γ上运动,OC⊥OD,且点O到直线CD的距离为常数√3,求动点D 的轨迹方程.轨迹问题专题答案一.综述(一)求动点的轨迹方程的基本步骤:⒈依据题目建立适当的坐标系,设出动点M (x ,y )的坐标.⒉写出点M 的集合(几何关系).⒊将几何关系转化为代数关系,列出方程f (x ,y )=0,化简方程为最简形式.4.检验特殊点,进行必要的文字说明.(二)高考中常见的求轨迹方程的方法有:1.直译法与定义法,2.相关点法;3.参数法;4.交轨法(三)求轨迹方程一般以解答题第一问的形式出现,偶尔也会在小题中考查.二.例题精讲 破解规律例1. 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明为定值,并写出点E 的轨迹方程.分析: 题目中要求证明为定值,容易知道, E 的轨迹是椭圆,根据条件求出相关的参数即可.222150x y x ++-=EA EB +EA EB +答案:() 解析:因为,,故,所以,故.又圆的标准方程为,从而,所以. 由题设得,,,由椭圆定义可得点的轨迹方程为: (). 点评:平面几何相关知识是解决本题的关键,平时学习中要加以重视.规律总结: (1)直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简即可.(2)定义法求轨迹方程:轨迹方程问题中,若能得到与我们所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.(3)定义法求轨迹方程本质上还是直译法,只是我们利用了直译法得到的结论. 现学现用1:如图,矩形中, 且, 交于点.若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程.13422=+y x 0≠y ||||AC AD =AC EB //ADC ACD EBD ∠=∠=∠||||ED EB =||||||||||AD ED EA EB EA =+=+A 16)1(22=++y x 4||=AD 4||||=+EB EA )0,1(-A )0,1(B 2||=AB E 13422=+y x 0≠y ABCD ()()()()2,0,2,0,2,2,2,2A B C D --,AM AD DN DC λλ==[]0,1,AN λ∈BM Q Q P P x y P解析:设,由,求得, ∵,∴, ∴,整理得. 可知点的轨迹为第二象限的椭圆,由对称性可知曲线的轨迹方程为. 例2. 已知线段的端点的坐标是,端点在圆上运动.求线段的中点的轨迹的方程;分析:设点的坐标为,点的坐标为,根据点坐标,和点是线段的中点,得, ,再由点在圆上运动,求得点的轨迹方程,进而可求得点的轨迹的方程;答案:解析:设点的坐标为,点的坐标为,由于点的坐标为, 且点是线段的中点,所以, 于是有, ①因为点在圆上运动,所以点的坐标满足的方程 即: ②把①代入②,得整理,得所以点的轨迹的方程为.(),Q x y ,AM AD DN DC λλ==()()2,2,42,2M N λλ--1,22QA AN QB BM k k k k λλ====-11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭1224y y x x ⋅=-+-()22120,014x y x y +=-≤≤≤≤Q 14P 2214x y +=AB B ()6,5A ()()221:434C x y -+-=AB P 2C P (),x y A ()00,x y B P AB 026x x =-025y y =-A 1C A P 2C ()()22541x y -+-=P (),x y A ()00,x y B ()6,5P AB 062x x +=052y y +=026x x =-025y y =-A 1C A 1C ()()22434x y -+-=()()2200434x y -+-=()()222642534x y --+--=()()22541x y -+-=P 2C ()()22541x y -+-=规律总结:相关点法求轨迹方程: 题中涉及了两个动点N 、M ,且点N 的运动是有规律的(轨迹方程已知),而M 的运动是由N 的运动而引发的,这样的题目可采用相关点法求动点M 的轨迹方程.基本方法是设M 的坐标,再反解出N 的坐标,然后带入N 所在曲线的轨迹方程,整理即可.现学现用2: 设O 为坐标原点,动点M 在椭圆C :上,过M 做x 轴的垂线,垂足为N ,点P 满足.求点P 的轨迹方程;解析:设,,即 代入椭圆方程,得到 ∴点的轨迹方程。

如何求轨迹方程物理公式

如何求轨迹方程物理公式

如何求轨迹方程物理公式
要求轨迹方程,需要根据不同物理场景选择不同的公式,以下是一些常见的物理公式:
1. 自由落体运动:s = 1/2 gt^2,其中s是物体的位移,g是重力加速度,t是时间。

2. 斜抛运动:y = xtanθ - 1/2gx^2/(v0 cosθ)^2,其中y 是物体的竖直位移,x是物体的水平位移,θ是发射角度,g是重力加速度,v0是发射初速度。

3. 圆周运动:a = v^2/R,其中a是向心加速度,v是速度,R 是半径。

4. 匀速圆周运动:v = 2πR/T,其中v是速度,R是半径,T 是周期。

5. 匀变速圆周运动:a = (v^2 - u^2)/2R,其中a是向心加速度,v是末速度,u是初速度,R是半径。

以上是一些常见的物理公式,根据不同的物理场景选择合适的公式,便可求得轨迹方程。

- 1 -。

求轨迹方程的方法

求轨迹方程的方法

求轨迹方程的方法首先,我们来讨论一下在平面直角坐标系中,如何求解一个物体的轨迹方程。

假设一个物体在平面上运动,我们可以用参数方程的形式来描述它的轨迹。

设物体在时刻t的位置为(x(t), y(t)),那么轨迹方程可以表示为x=f(t), y=g(t),其中f(t)和g(t)分别是t的函数。

通过求解f(t)和g(t),我们就可以得到轨迹方程。

这种方法在实际问题中非常常见,特别是在描述曲线运动或者复杂轨迹的情况下。

其次,我们可以利用微积分的方法来求解轨迹方程。

假设我们已知一个物体在运动过程中的速度矢量v(t),我们可以通过积分的方法来求解它的轨迹方程。

设物体在时刻t的位置为(r(t), θ(t)),其中r(t)是物体到原点的距离,θ(t)是物体与x轴正方向的夹角。

那么我们可以通过积分v(t)来求解r(t)和θ(t),进而得到轨迹方程。

这种方法在描述极坐标系下的运动时非常有用。

另外,对于一些特定的运动问题,我们还可以利用动力学方程来求解轨迹方程。

动力学方程描述了物体在运动过程中受到的外力和运动状态之间的关系。

通过求解动力学方程,我们可以得到物体的运动规律,进而求解它的轨迹方程。

这种方法在描述复杂的力学系统或者非惯性系下的运动时非常有用。

除了上述方法外,还有一些其他的数学工具和方法可以用来求解轨迹方程,比如矩阵运算、微分方程、复变函数等。

不同的问题和情境可能需要不同的方法来求解轨迹方程,我们需要根据具体情况来选择合适的方法。

总之,求解轨迹方程是一个重要且常见的数学问题,在实际问题中有着广泛的应用。

本文介绍了几种常见的求解方法,希望能够对大家有所帮助。

在实际问题中,我们需要根据具体情况来选择合适的方法,灵活运用数学工具来求解轨迹方程,进而揭示物体运动的规律。

希望本文能够对大家有所启发,谢谢阅读!。

平面解析几何中的轨迹方程求解练习题

平面解析几何中的轨迹方程求解练习题

平面解析几何中的轨迹方程求解练习题1. 直线的轨迹方程求解1.1 已知两点P1(x1, y1)和P2(x2, y2),求过这两点的直线的轨迹方程设直线的斜率为k,根据直线的斜截式方程可得: y - y1 = k(x - x1) (1)将点P2(x2, y2)代入方程(1),得:y2 - y1 = k(x2 - x1) (2)整理方程(2)可得:y = kx - kx1 + y1 (3)所以轨迹方程为y = kx - kx1 + y11.2 已知直线方程Ax + By + C = 0,求直线的轨迹方程将直线方程改写为斜截式方程可得:y = -A/B * x - C/B (4)所以轨迹方程为y = -A/B * x - C/B2. 圆的轨迹方程求解2.1 已知圆的圆心坐标为O(a, b),半径为r,求圆的轨迹方程设圆上任意一点P(x, y),根据点到圆心的距离公式可得:OP² = (x - a)² + (y - b)² (5)OP² = r² (6)将方程(6)代入方程(5)可得:(x - a)² + (y - b)² = r² (7)所以轨迹方程为(x - a)² + (y - b)² = r²2.2 已知圆的直径的两个端点分别为P1(x1, y1)和P2(x2, y2),求圆的轨迹方程设圆的圆心为O(x, y),半径为r,根据圆心到直径的中点的距离等于半径可得:((x + x1)/2 - x)² + ((y + y1)/2 - y)² = r² (8)((x + x2)/2 - x)² + ((y + y2)/2 - y)² = r² (9)将方程(8)和方程(9)进行化简,可得:(x - (x1 + x2)/2)² + (y - (y1 + y2)/2)² = ((x2 - x1)² + (y2 - y1)²)/4 (10)所以轨迹方程为(x - (x1 + x2)/2)² + (y - (y1 + y2)/2)² = ((x2 - x1)² + (y2 - y1)²)/43. 抛物线的轨迹方程求解3.1 已知抛物线的焦点为F(p, q),准线为直线y = -p,且焦距为4a,求抛物线的轨迹方程设抛物线上任意一点P(x, y),根据焦点到准线的距离等于焦距可得:PF² = (x - p)² + (y - q)² (11)y + p = 2a (12)PF = 4a (13)将方程(12)代入方程(11)和方程(13),可得:(x - p)² + (y - q)² = (y + p - 2a)² (14)所以轨迹方程为(x - p)² + (y - q)² = (y + p - 2a)²3.2 已知抛物线的顶点为V(h, k),对称轴为直线x = h,求抛物线的轨迹方程设抛物线上任意一点P(x, y),根据顶点到抛物线上任意一点的距离公式可得:PV² = (x - h)² + (y - k)² (15)PX = PH (16)将方程(16)代入方程(15),可得:(x - h)² + (y - k)² = (x - h) (17)所以轨迹方程为(x - h)² + (y - k)² = x - h综上所述,平面解析几何中直线、圆和抛物线的轨迹方程求解方法分别为以上所示。

求轨迹方程的五种方法

求轨迹方程的五种方法

求轨迹方程的五种方法1.直线轨迹方程的求解方法:直线的轨迹方程可以通过以下五种方法求解。

1.1斜率截距法:当直线已知斜率m和截距b时,可以使用斜率截距法求解。

直线的轨迹方程为:y = mx + b。

1.2点斜式方法:当直线已知斜率m和通过的一点(x1,y1)时,可以使用点斜式方法求解。

直线的轨迹方程为:(y-y1)=m(x-x1)。

1.3两点式方法:当直线已知通过的两点(x1,y1)和(x2,y2)时,可以使用两点式方法求解。

直线的轨迹方程为:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。

1.4截距式方法:当直线已知x轴和y轴上的截距时,可以使用截距式方法求解。

直线的轨迹方程为:x/a+y/b=1,其中a和b分别为x轴和y轴上的截距。

1.5法向量法:当直线已知法向量n和通过的一点(x1,y1)时,可以使用法向量法求解。

直线的轨迹方程为:n·(r-r1)=0,其中n为法向量,r为直线上的任意一点的位置矢量,r1为通过的一点的位置矢量。

2.圆轨迹方程的求解方法:圆的轨迹方程可以通过以下五种方法求解。

2.1一般式方法:当圆的圆心为(h,k)且半径为r时,可以使用一般式方法求解。

圆的轨迹方程为:(x-h)²+(y-k)²=r²。

2.2标准式方法:当圆的圆心为(h,k)且半径为r时,可以使用标准式方法求解。

圆的轨迹方程为:(x-h)²+(y-k)²=r²。

2.3参数方程方法:当圆的圆心为(h,k)且半径为r时,可以使用参数方程方法求解。

圆的轨迹方程为:x = h + rcosθ,y = k + rsinθ,其中θ为参数。

2.4三点定圆方法:当圆已知经过三点(x1,y1),(x2,y2)和(x3,y3)时,可以使用三点定圆方法求解。

圆的轨迹方程为:(x-x1)(x-x2)(x-x3)+(y-y1)(y-y2)(y-y3)-r²(x+y+h)=0,其中h为x平方项和y平方项的系数之和。

轨迹方程求法及经典例题汇总

轨迹方程求法及经典例题汇总

轨迹方程求法及经典例题汇总一、轨迹为圆的例题:1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程:必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为21,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论)2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。

(2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。

(1)求圆心的P 的轨迹方程;(2)若P 点到直线x y =的距离为22,求圆P 的方程。

如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x-4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动.设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x ,代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程.在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程;(2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。

高三数学轨迹方程50题及答案

高三数学轨迹方程50题及答案

求轨迹方程求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法。

(1)直接法直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4)参数法若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.(5)交轨法 若动点是受某一参量影响的两动曲线的交点,我们可以以消去这个参量得到动点轨迹方程. (6)待定系数法求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.一、选择题:1、方程y=122+--x x 表示的曲线是: ( ) A 、双曲线 B 、半圆 C 、两条射线 D 、抛物线2、方程[(x -1)2+(y+2)2](x 2-y 2)=0表示的图形是: ( ) A 、两条相交直线 B 、两条直线与点(1,-2) C 、两条平行线 D 、四条直线3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( )A 、x 2+y 2=1B 、x 2+y 2=1(x ≠±1)C 、x 2+y 2=1(x ≠1)D 、y=21x -4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y) 5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆 B 、中心在(5,0)的椭圆C 、中点在原点的双曲线D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( ) A 、(x -2)2+y 2=4 B 、(x -2)2+y 2=4(0≤x <1) C 、(x -1)2+y 2=4 D 、(x -1)2+y 2=4(0≤x <1)7、已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是: ( ) A 、双曲线 B 、双曲线左支 C 、一条射线 D 、双曲线右支8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( ) A 、y 2=12x B 、y 2=12x(x>0) C 、y 2=6x D 、y 2=6x(x>0) 10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( ) A 、x 2+y 2=21 B 、x 2+y 2=41 C 、x 2+y 2=21(x<21) D 、x 2+y 2=41(x<41) 11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A 、(x -2)2+(y+4)2=16 (0)y ¹B 、(x -2)2+4(y+2)2=16 (0)y ¹C 、(x -2)2-(y+4)2=16D 、(x -2)2+4(y+4)2=1612、椭圆C 与椭圆14)2(9)3(22=-+-y x 关于直线x+y=0对称,椭圆C 的方程是( ) A 、22(2)(3)149x y +++= B 、22(2)(3)194x y --+= C 、22(2)(3)194x y +++= D 、22(2)(3)149x y --+= 13、设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为 ( )A.14922=+y xB.14922=+x y222214、中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 ( ) 12575 D. 17525C.1252752 B. 1752252A.22222222=+=+=+=+y x y x y x y x15、已知⊙O :x 2+y 2=a 2, A(-a, 0), B(a, 0), P 1, P 2为⊙O 上关于x 轴对称的两点,则直线AP 1与直线BP 2的交点P 的轨迹方程为 ( ) A 、x 2+y 2=2a 2 B 、x 2+y 2=4a 2 C 、x 2-y 2=4a 2 D 、x 2-y 2=a 2 二、填空题:16、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。

轨迹方程的五种求法

轨迹方程的五种求法

轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程 •uur uuu 例1 :已知点A( 2,0, B(3,0),动点P(x, y)满足PA-PB x 2,则点P 的轨迹是()A •圆B.椭圆C •双曲线D •抛物线uuu uuu uun UUJI 2222解析:由题知 PA ( 2 x, y) , PB (3 x, y),由 PA PB x ,得(2 x)(3 x) y x ,即 y x 6,••• P 点轨迹为抛物线•故选 D . 二、 定义法:运用有关曲线的定义求轨迹方程.例2 :在厶ABC 中,BC 24, AC, AB 上的两条中线长度之和为39,求△ ABC 的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为2 BM | |CM 39 26 . 3• M 点的轨迹是以B, C 为焦点的椭圆,其中 c 12, a 13 . • b . a 2—』5.y 轴建立直角坐标系,如图 1 , M 为重心,则有、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题 例3 :已知A ABC 的顶点B( 3,0) C(1,0),顶点A 在抛物线y又••• A(x ), y °)在抛物线 y x 2上, •四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量与AP 的交点M 的轨迹方程.解:如图2,以线段AA 所在直线为x 轴,以线段AA 的中垂线为y 轴建立直角坐•所求△ ABC 的重心的轨迹方程为169251(y0) •解:设G(x, y) , A(x 0, y °),由重心公式,3 1 x3 Y Q 3x 0 y。

3x 3y ・2,将①,②代入③,得3y (3x 2)2(y0),即所求曲线方程是3x 24x 3(y0)•例4 :已知线段AA 2a ,直线I 垂直平分AA 于O ,在I 上取两点P, P ,使其满足uuur , OP-OP 4 ,求直线AP UUU D上运动,求△ ABC 的重心G 的轨迹方程.y 0把x , y 联系起来标系.设点 P(0, t)(t 0), 则由题意,得P 0,,-t 4由点斜式得直线AP, A P 的方程分别为y —(x a), y — (x a). a ta 两式相乘,消去t ,得4x 2a 2y 24a 2(y 0) •这就是所求点 M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变五、待定系数法: 当曲线的形状已知时,一般可用待定系数法解决(1 )求E 点轨迹方程;与E 点的轨迹相切,求椭圆方程.uuu 1 uur uuir解:(1 )设 E(x, y),由 AE -(AB AD)知 E 为 BD 中点,易知 D(2x 2,2y) • 2例5 :已知A , B , D 三点不在一条直线上,且uurA( 2,0),B(2,0), AD uuu i uuu uuir 2, AE -(AB AD) •(2 )过A 作直线交以A B 为焦点的椭圆于 M ,N 两点,线段MN的中点到y 轴的距离为 4-,且直线MN5nnr 又AD 2 22,贝U (2x 2 2) (2 y) 即E 点轨迹方程为 i(y 0);(2 )设 M (X i, yj, N(X 2,y 2),中点(心y 。

专题:轨迹方程的求法

专题:轨迹方程的求法

专题 轨迹方程的求法例1、 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.例2、已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线例3、【2016高考新课标1卷】设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

M(x,y)B(a,0)A(-a,0)oyx例4、已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线.例5、【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

(1) 求点P 的轨迹方程;(2) 设点Q 在直线3x =-上,且1OP PQ ⋅=。

证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F 。

例6、过抛物线px y 22=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.122=+y x MQ ()0>λλ例7、设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线例8、[2016高考新课标Ⅲ文数]已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.例9、如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程例10、如图,从双曲线1:22=-y x C 上一点Q 引直线2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轨迹方程问题专题
常见的有六种求轨迹方程的方法:
①待定系数法:由几何量确定轨迹方程;
②定义法:根据曲线的定义,求轨迹方程;
③直接法:给出某些条件(几何、三角或向量表达式等)求轨迹方程;
④“代入法”求轨迹方程;
⑥参数法(包括解决中点弦问题的点差法)求轨迹方程.
⑤“交轨法”求轨迹方程;
一.直接法求轨迹方程.给出某种条件:平面几何、三角函数、解析几何、向量形式等.求解程序:①设动点P 的坐标为P(x ,y);②按题目的条件写出关系式;③整合关系式;④注明范围.
例1.设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+,向量(,1)b x y =-,a b ⊥,动点(,)M x y 的轨迹为E .求轨迹E 的方程,并说明该方程所表示曲线的形状;
二.根据圆锥曲线的定义,求轨迹方程
例2.已知圆
的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动
圆圆心P 的轨迹方程。

三.参数法求轨迹方程:
例3.动圆P 过点A (0,1)且与直线y=-1相切,O 是坐标原点,动圆P 的圆心轨迹是曲线C.
(1)求曲线C 的方程;
(2)过A 作直线l 交曲线C 于,D E 两点,求弦DE 的中点M 的轨迹方程;
(3)在(2)中求ODE ∆的重心G 的轨迹方程。

四.“代入法”求轨迹方程:设点M 是已知曲线F (x ,y )=0上的动点,点P 因点M 的运动而运动(即点P 是点M 的相关点),求点P 的轨迹方程.
①设点M 的坐标为M (0x ,0y ),则F (0x ,0y )=0;
②设点P 的坐标为P (x ,y );
③因为“点P 随点M 的运动而运动”,可以求得:0x =f (x ,y ),0y =g (x ,y );
④把0x =f (x ,y ),0y =g (x ,y )代入F (0x ,0y )=0,即得所求点P 的轨迹方程.
例 4.已知点为双曲线(为正常数)上任一点,为双曲线的右焦点,过作右准线的垂线,垂足为,连接并延长交轴于.求线段的中点
的轨迹的方程.
100(,)P x y 22
2218x y b b
-=b 2F 1P A 2F A y 2P 1P 2P P E 2F 1F O y x
A 2
P 1
P P
五.“交轨法”求轨迹方程:设动曲线F(x,y )=0和动曲线G(x ,y)=0相交于点P ,求点P 的轨迹方程.从理论上,其求解程序为:
①设动点P 的坐标为:),(P P y x ;②解方程组⎩
⎨⎧==0),(0),(y x G y x F ,求交点即得到. 其中一般会含有参数,有一个消除参数的难点.
例5.已知椭圆22a x +22b
y =1(a >b >0)的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切.
(1)求a 与b 的值;
(2)设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点P.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型.
例7.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个
顶点到两个焦点的距离分别是7和1.
(1)求椭圆C 的方程;
(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,
=λ,求点M 的轨迹方程,并说明轨迹是什么曲线.

8.已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.若动点M 满足1111FM F A F B FO =++(其中O 为坐标原点)
,求点M 的轨迹方程. 练习:
1.分别过12(1,0),(1,0)A A -作两条互相垂直的直线,则它们的交点M 的轨迹方程是_______.
2.已知点F 为抛物线22y x =的焦点,P 在抛物线上运动,则线段PF 的中点轨迹方程是 .
3.已知椭圆的焦点是1F 、2F ,P 是椭圆上的一个动点.如果延长P F 1到Q ,使得||||2PF PQ =,那么动点Q 的轨迹是 ( ),如果M 是线段1F P 的中点,则动点M 的轨迹是( ).
(A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线 4.设A ,B 分别是直线255y x =
和255
y x =-上的两个动点,并且||20AB =,动点P 满足OP OA OB =+.记动点P 的轨迹为C ,求轨迹C 的方程. 5.已知椭圆的中心在坐标原点,一个焦点为F(0,3),过点F 且垂直长轴的弦长为,
(1) 求椭圆的方程;
(2) 过椭圆上一动点M 作平行于y 轴的直线m ,设m 与x 轴的交点为N ,若向量OQ OM ON =+,求动点Q 的轨
迹方程,并说明此轨迹是什么曲线.
OP OM
1C 11C 1C。

相关文档
最新文档