图像增强方法的研究
EPID图像增强方法研究的开题报告

EPID图像增强方法研究的开题报告一、选题背景随着医学图像技术的发展,EPID(电子门诊图像装置)成为临床放射治疗的重要工具。
然而,EPID图像存在稳定性和对比度不足等问题,这导致医学图像的分析和处理变得困难。
因此,研究EPID图像增强方法,提高图像的质量和准确度,对于临床放射治疗的准确性和效果评估具有重要意义。
二、研究目的本研究旨在探究EPID图像增强方法,提高图像的清晰度和对比度,并探讨增强方法的优劣比较,为临床放射治疗提供数据支持。
三、研究内容1. EPID图像增强方法的研究现状和应用价值分析2. EPID图像中常见的噪声和对比度问题分析3. 常见的EPID图像增强方法,包括直方图均衡、小波变换和自适应滤波等4. 不同方法的性能分析和实验结果5. EPID图像增强方法的优化和改进四、研究方法1. 文献调研和分析,获得EPID图像增强方法的研究现状和应用价值2. 对EPID图像的噪声和对比度问题进行分析,并确定几种常见的增强方法3. 采用Matlab等数学软件,对EPID图像进行增强实验,对不同方法进行性能分析4. 针对实验结果,对方法进行优化和改进,提高图像的质量和可靠性五、研究意义1. 提高EPID图像的清晰度和对比度,为临床放射治疗提供更准确的数据支持2. 探讨不同EPID图像增强方法的优缺点,为医学图像处理提供参考3. 让临床医生更好地理解和解读EPID图像,提高放射治疗的效果和质量六、研究进度1. 文献调研和分析:已完成2. EPID图像的噪声和对比度问题分析:进行中3. 常见的EPID图像增强方法研究和实验:未开始4. 不同方法的性能分析和实验结果:未开始5. EPID图像增强方法的优化和改进:未开始七、预期成果1. 发表研究论文1-2篇2. 研究报告1份3. 为临床放射治疗提供EPID图像增强方法参考和支持。
基于深度学习技术的图像增强算法研究

基于深度学习技术的图像增强算法研究随着数字摄影技术的发展,人们拍摄出的照片越来越多,但是很多人会发现,照片的质量并不能够满足想要印出来做成相册或是安放在家中展示的需求。
这时候图像增强算法就能够发挥作用了,通过计算机技术对照片进行处理,使得画面更加鲜明、清晰。
而近年来,深度学习技术的出现,为图像处理领域带来了更加强大的工具,各种基于深度学习的图像增强算法应运而生。
那么,何为图像增强?简单来说,图像增强就是对图片进行质量提升的过程。
常见的图像增强方法有灰度变换、直方图均衡化、空间域滤波等。
这些方法通过改变像素的灰度值或是结构,以达到改善图像品质的目的。
但使用这些方法也存在一些问题,例如可能出现过度增强、失真等情况。
相比之下,基于深度学习的图像增强算法在一定程度上可以缓解这些问题,其背后的原理是通过大量数据训练神经网络来优化图像增强处理。
在基于深度学习的图像增强算法中,常用的神经网络有CNN、GAN等。
CNN 是卷积神经网络的缩写,主要针对数据类型为图像的情况。
它通过学习图片上的特征后,能够用于图像分类、目标检测、特征提取等应用。
而GAN是生成式对抗网络的缩写,它由生成器与判别器两个部分组成,经过多次迭代后,能够生成最佳的结果。
在图像增强方面,GAN能够模拟出更多的数据,使得处理后的图片更加自然。
近年来,基于深度学习的图像增强算法在各个领域中得到了广泛的应用。
例如在医学影像处理中,基于深度学习的算法能够帮助医生更好地诊断病情;在自动驾驶中,通过算法对图像进行处理,车辆能够更好地感知路况;在安防领域中,图像增强算法能够帮助人们更好地辨认画面中的人脸等。
这些应用的背后都离不开深度学习技术的支持。
总之,基于深度学习的图像增强算法是近年来发展起来的一种新技术,在各行各业中都有广泛的应用。
它通过神经网络的学习,能够对图像进行更加准确、自然的处理,使得人们能够看到更好的画面效果。
当然,也有需要改进的方面,例如对于大规模数据的处理速度等问题,需要我们继续努力去完善。
图像处理中的图像增强算法比较研究

图像处理中的图像增强算法比较研究引言:图像增强是图像处理领域的重要任务之一。
图像增强旨在提升图像的视觉质量和可读性。
随着科技的进步,图像增强算法得到了广泛的应用。
本文将比较几种常见的图像增强算法,分析其优缺点,并探讨其在不同应用场景中的适用性。
一、直方图均衡化算法直方图均衡化是一种常用的图像增强方法,通过对图像的像素强度进行转换,使得像素的直方图分布更均匀。
该算法可以扩展图像的动态范围,增强图像的对比度。
优点:1. 简单易实现:直方图均衡化算法的原理简单,易于实现。
2. 高效性:直方图均衡化可以快速地对图像进行处理,适用于实时应用。
3. 对细节增强效果好:直方图均衡化算法能够增强图像的对比度,使得图像细节更加清晰。
缺点:1. 无法保持局部对比度:直方图均衡化算法是全局算法,无法保持图像的局部对比度。
2. 易产生过增强现象:在某些情况下,直方图均衡化算法容易使得图像的背景过亮或过暗。
3. 非线性处理:直方图均衡化是一种非线性处理方法,可能对图像的灰度分布造成较大的变化。
适用场景:1. 增强图像对比度:直方图均衡化算法可以有效增强图像的对比度,使得图像更加清晰。
2. 实时图像处理:由于直方图均衡化算法的高效性,适用于实时图像处理应用。
3. 对细节要求不高的图像:直方图均衡化算法具有一定的局限性,适用于对细节要求不高的图像。
二、拉普拉斯金字塔增强算法拉普拉斯金字塔增强算法是一种基于金字塔理论的图像增强方法。
该算法通过构建图像的拉普拉斯金字塔,对不同层次的图像进行增强处理,最后再重建原始图像。
优点:1. 保留了图像的细节:拉普拉斯金字塔增强算法通过在不同层次上增强图像,可以有效地保留图像的细节。
2. 自适应性:该算法可以根据不同图像的特点自适应地进行增强处理。
3. 对边缘提取效果好:拉普拉斯金字塔增强算法对于边缘的提取有良好的效果。
缺点:1. 计算复杂度高:拉普拉斯金字塔增强算法需要构建金字塔结构,并进行多次图像卷积操作,计算复杂度较高。
图像增强方法的研究

图像增强方法的研究
图像增强方法是指利用图像处理技术对图像进行处理,以提高图像的质量、增强图像的细节、改善图像的对比度和增加图像的可视化效果。
目前,图像增强方法的研究主要集中在以下几个方面:
1. 空域方法:空域图像增强方法是在图像的原始空间进行处理,常见的方法有直方图均衡化、灰度拉伸、局部对比度增强等。
这些方法主要通过调整图像的亮度、对比度和颜色分布来增强图像的视觉效果。
2. 频域方法:频域图像增强方法是将图像转换到频域进行处理,然后再将处理结果逆变换回到原始图像空间。
常见的方法有傅里叶变换、小波变换等。
这些方法主要通过增强图像的频率信息来改善图像的细节和清晰度。
3. 图像复原方法:图像复原方法主要用于恢复由于噪声污染、模糊等原因而失真的图像。
常见的方法有最小二乘法、滤波器等。
这些方法主要通过建立图像的数学模型,对图像进行复原和重建。
4. 深度学习方法:随着深度学习的快速发展,越来越多的研究开始将深度学习技术应用于图像增强领域。
通过利用大量的图像数据进行训练,深度学习方法可以学习到更准确的图像增强模型,并实现更好的图像增强效果。
总之,图像增强方法的研究旨在提高图像的视觉效果和质量,以满足人类视觉系统的需求。
随着技术的不断发展,未来还有很多新的图像增强方法将被提出和研究。
图像增强算法研究的开题报告

图像增强算法研究的开题报告一、选题背景随着数字图像技术的发展,图像处理已经成为了一个热门领域,具有非常广泛的应用。
图像增强算法是其中最为基础的技术之一,其目的是通过对图像中的噪声、模糊、低对比度等影响进行消除或者减弱,从而让图像更加清晰、细节更加明显。
目前图像增强算法的研究主要分为两个方面,一个方面是单幅图像的增强,另一个方面是多幅图像的复合增强。
随着图像处理技术的不断发展,各种算法不断涌现,但是各种算法都具有一定的优点和缺点,如何寻找到一种更为优良的增强算法一直是研究者们所关注的问题。
二、研究意义随着图像数据的不断增多,对图像质量的要求也越来越高。
在很多应用中,如医学图像分析、地理信息系统等领域,图像的质量对分析结果甚至决策结果有着重要的影响。
因此,图像增强算法的研究具有非常重要的实际意义。
同时,在图像增强算法的研究中,还可以涉及到多种数学方法和技术,如图像处理、数字信号处理、机器学习等,这些知识不仅可以为图像增强算法的优化提供支持,同时还可以在其他领域产生广泛的应用。
三、研究内容本研究将主要基于单幅图像的增强算法,通过对不同算法的综合比较,寻找到一种更为优良的增强算法。
具体研究内容包括:1. 收集现有的图像增强算法,包括基于滤波、直方图均衡化、小波变换等,对各种算法的原理和特点进行分析。
2. 建立不同算法的模型,并使用MATLAB等相关软件进行算法实现和模拟。
3. 通过对经典图像库的图像样本进行比较分析,定量比较不同算法之间的优缺点。
4. 结合图像处理的相关技术,如变换域滤波、非线性滤波、边缘提取等,进行增强算法的优化。
四、研究方法本研究主要采用以下方法:1. 综合收集各种图像增强算法的相关文献,并对相关算法的原理、特点、优缺点进行分析。
2. 建立不同算法的数学模型,并使用MATLAB等相关软件进行算法的实现和模拟。
3. 通过对经典图像库的图像样本进行比较分析,定量比较不同算法之间的优缺点。
人工智能图像处理中的图像增强方法研究

人工智能图像处理中的图像增强方法研究随着人工智能技术的迅速发展,图像处理逐渐成为重要的领域之一。
在图像处理中,图像增强是一项重要的任务,旨在改善图像的质量,提升可视化效果。
人工智能技术的广泛应用为图像增强提供了更多的可能性。
本文将介绍人工智能图像处理中的一些常见的图像增强方法。
1.基于深度学习的图像增强方法深度学习技术的兴起为图像增强领域带来了显著的改变。
卷积神经网络(CNN)被广泛应用于图像增强中。
通过使用大量的图像数据集训练深度神经网络,可以学习到图像的特征,并通过该网络对图像进行增强。
通过将损失函数与图像重建误差相结合,可以实现图像增强的目标。
2.对比度增强方法对比度是图像中不同像素之间亮度差异的度量。
对比度增强方法旨在增加图像中不同区域之间的亮度差异,从而提高图像的可视化效果。
常见的对比度增强方法包括直方图均衡化、对比度拉伸和非线性增强等。
直方图均衡化通过调整图像的像素值分布来增强对比度。
对比度拉伸通过线性缩放像素值的动态范围来增强对比度。
非线性增强方法则根据像素值和周围像素的关系来调整图像的对比度。
3.去噪方法图像中常常存在着各种噪声,噪声会影响图像的质量和可视化效果。
因此,在图像增强中,去除噪声是一个重要的环节。
常见的去噪方法包括均值滤波、中值滤波和小波去噪等。
均值滤波通过计算像素周围区域的平均值来去除噪声。
中值滤波则通过计算像素周围区域的中值来去除噪声。
小波去噪方法则利用小波变换对图像进行分析,并通过对小波系数进行阈值处理来去除噪声。
4.超分辨率重建方法超分辨率重建是图像增强的一种重要方法,旨在通过增加像素的数量或改变像素的分辨率来提高图像的清晰度。
超分辨率重建方法可以基于单一图像进行重建,也可以基于多幅图像进行重建。
常见的超分辨率重建方法包括插值法、基于学习的方法和基于稀疏表示的方法等。
插值法通过对像素进行插值来增加图像的像素数量。
基于学习的方法通过训练模型来预测高分辨率图像中的像素。
基于深度学习的图像增强技术研究

基于深度学习的图像增强技术研究摘要:图像增强技术是数字图像处理领域的一个重要研究方向。
随着深度学习的发展,基于深度学习的图像增强技术成为当前研究的热点。
本文将探讨基于深度学习的图像增强技术的研究现状、方法和应用,并对其未来发展进行展望。
1. 引言图像增强技术的任务是改善图像的质量和视觉效果。
传统的图像增强方法通常基于经验规则和数学模型,但这些方法往往难以处理复杂的场景和具有多种图像质量问题的图像。
而基于深度学习的图像增强技术通过从大量图像数据中学习图像的高级语义特征,能够更好地处理复杂图像并获得更好的增强效果。
2. 基于深度学习的图像增强技术方法2.1 卷积神经网络(CNN)卷积神经网络是深度学习中常用的模型,可以用于图像增强任务。
通过建立多层卷积层、池化层和全连接层,CNN能够自动从图像数据中学习特征表示,并生成增强后的图像。
CNN在解决图像质量问题方面取得了令人瞩目的进展。
2.2 对抗生成网络(GAN)对抗生成网络是一种包含生成器和判别器的网络结构,可以用于生成逼真的图像样本。
在图像增强任务中,生成器学习将原始图像映射到更高质量的域中,而判别器则学习区分生成的图像和真实图像。
通过对抗生成网络的训练,可以产生更真实、细节更丰富的增强图像。
2.3 自编码器(Autoencoder)自编码器是一种将输入图像压缩到低维表示并进行重构的网络结构。
通过自编码器的训练,可以学习到输入图像的潜在表示,从而实现图像增强的效果。
自编码器在图像降噪、超分辨率重建等任务中表现出色,可以用于图像增强任务。
3. 基于深度学习的图像增强技术应用3.1 图像降噪图像降噪是图像增强中的一个重要任务,深度学习方法在图像降噪方面取得了显著的性能提升。
通过训练深度神经网络,可以对有噪声的图像进行复原,重建出更加清晰的图像。
3.2 图像超分辨率重建图像超分辨率重建是将低分辨率图像转换为高分辨率图像的任务。
基于深度学习的图像超分辨率重建方法通过学习大量图像对之间的映射关系,能够生成逼真且细节丰富的高分辨率图像。
基于卷积神经网络的图像增强方法研究与应用

基于卷积神经网络的图像增强方法研究与应用近年来,随着图像处理技术的不断发展与创新,基于卷积神经网络的图像增强方法逐渐受到广泛关注。
图像增强是通过提高图像的质量,使其更易于观察、分析和理解的一种技术。
本文将探讨和研究基于卷积神经网络的图像增强方法,并探讨其在实际应用中的价值和意义。
首先,我们需要了解卷积神经网络(CNN)的基本原理。
CNN是一种深度学习模型,通过多层卷积与池化操作来提取图像中的局部特征,并通过全连接层进行分类或回归。
由于CNN具有较强的特征提取能力和泛化能力,因此广泛应用于图像处理领域。
基于卷积神经网络的图像增强方法主要有以下几种:超分辨率重建、图像去噪和图像增加对比度。
首先,超分辨率重建是指通过采用卷积神经网络来提高图像的分辨率。
传统的超分辨率重建方法主要是通过插值算法进行图像放大,容易导致图像模糊。
而基于卷积神经网络的超分辨率方法,如SRCNN、VDSR和ESPCN等,可以通过学习高分辨率图像与低分辨率图像之间的映射关系,从而有效地提升图像的细节和清晰度。
其次,图像去噪是指通过卷积神经网络来去除图像中的噪声。
传统的图像去噪方法主要是基于图像统计学原理来估计和消除噪声。
然而,在复杂的图像噪声情况下,传统方法的效果有限。
而基于卷积神经网络的图像去噪方法,如DnCNN、FDnCNN和FFDNet等,通过学习图像的噪声分布和噪声特征,可以更准确地去除图像中的噪声,从而提高图像的清晰度和可视化效果。
最后,图像增加对比度是指通过卷积神经网络来提高图像的对比度和亮度。
图像对比度是图像中灰度差异的相对程度,是评估图像质量的一个重要指标。
传统的图像对比度增强方法主要是通过直方图均衡化或Retinex算法来提高图像的对比度。
然而,这些方法对于复杂图像和低对比度图像效果较差。
基于卷积神经网络的图像增加对比度方法,如CLAHE-CNN和HDRNet等,通过学习图像的对比度映射关系,可以更准确地提高图像的对比度和亮度,使图像更加鲜明和有吸引力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像增强方法的研究摘要数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。
在图像处理中,图像增强技术对于提高图像的质量起着重要的作用。
本文先对图像增强的原理以及各种增强方法进行概述,然后着重对灰度变换、直方图均衡化、平滑和锐化等几种常用的增强方法进行了深入的研究,在学习数字图像的基本表示与处理方法的基础上,针对图像增强的普遍性问题,研究和实现常用的图像增强方法及其算法,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的适用场合,并对其图像增强方法进行性能评价。
如何选择合适的方法对图像进行增强处理,是本文的主要工作,为了突出每种增强方法的差异,本文在Matlab的GUI图形操作界面中集合了四种常用算法的程序,以达到对各种算法的对比更直观和鲜明的效果。
关键词:图像增强直方图均衡化灰度变换平滑锐化目录1 图像增强的基本理论 (3)1.1 课题背景及意义 (3)1.2 课题的主要内容 (4)1.3 数字图像基本概念 (5)1.3.1数字图像的表示 (5)1.3.2 图像的灰度 (5)1.3.3灰度直方图 (5)1.4 图像增强概述 (6)1.5图像增强概述 (8)1.5.1图像增强的定义 (8)1.5.2常用的图像增强方法 (8)1.5.3图像增强的现状与应用 (9)2 图像增强方法与原理 (10)2.1 图像变换 (10)2.1.1 离散图像变换的一般表达式 (10)2.1.2 离散沃尔什变换 (11)2.2 灰度变换 (12)2.2.1 线性变换 (12)2.2.2 分段线性变换 (13)2.2.3 非线性变换 (13)2.3 直方图变换 (14)2.3.1 直方图修正基础 (14)2.3.2 直方图均衡化 (16)2.3.3 直方图规定化 (17)2.4 图像平滑与锐化 (18)2.4.1 平滑 (18)2.4.2 锐化 (19)3 图像增强算法与实现 (20)3.1 灰度变换 (20)3.2 直方图均衡化 (23)3.3 平滑算法 (24)3.4 锐化 (26)274 结论 (28)致谢 (29)参考文献 (30)附录源程序代码 (31)1 图像增强的基本理论1.1 课题背景及意义随着电子计算机技术的进步,计算机图像处理近年来得到飞跃的发展,已经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。
它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。
对图像进行处理时,经常运用图像增强技术以改善图像的质量。
在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降。
在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。
总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。
尽管由于目的、观点、爱好等的不同,图像质量很难有统一的定义和标准,但是根据应用要求改善图像质量却是一个共同的目标。
图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。
从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像,有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣的区域,从而更加容易对图像中感兴趣的目标进行检测和测量[1]。
处理后的图像是否保持原状已经是无关紧要的了,不会因为考虑到图像的一些理想形式而去有意识的努力重现图像的真实度。
图像增强的目的是增强图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机分析处理的形式。
它一般要借助人眼的视觉特性,以取得看起来较好地视觉效果,很少涉及客观和统一的评价标准。
增强的效果通常都与具体的图像有关系,靠人的主观感觉加以评价。
目前图像增强处理的应用已经渗透到医学诊断、航空航天、军事侦察、指纹识别、无损探伤、卫星图片的处理等领域。
如对x射线图片、CT影像、内窥镜图像进行增强,使医生更容易从中确定病变区域,从图像细节区域中发现问题;对不同时间拍摄的同一地区的遥感图片进行增强处理,侦查是否有敌人军事调动或军事装备及建筑出现;在煤矿工业电视系统中采用增强处理来提高工业电视图像的清晰度,克服因光线不足、灰尘等原因带来的图像模糊、偏差等现象,减少电视系统维护的工作量。
图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用[2]。
在图像处理过程中,图像增强是十分重要的一个环节。
本文的主要内容就是围绕图像增强部分的一些基本理论和算法而展开。
1.2 课题的主要内容图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。
但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的。
传统的图像增强算法在确定转换函数时常是图像变换、灰度变换、直方图变换、图像平滑与锐化、色彩增强等。
常用的一些图像增强方法是学习图像增强的基础,至今它们对于改善图像质量仍发挥着重要的作用。
本文着重研究了这些增强方法对图像进行增强处理,针对图像增强的普遍性问题,研究和实现常用的图像增强方法及其算法,讨论不同的增强算法的适用场合,并对其图像增强方法进行性能评价。
全文共分四章,具体安排如下。
第一章图像增强的基本理论。
介绍图像增强技术的课题背景和意义、本文的研究内容。
阐述图像增强中用到的有关数字图像的一些基本概念;概述常用的一些图像增强方法及其特点,如灰度变换、直方图均衡化。
第二章图像增强方法与原理。
针对图像增强过程中遇到的问题,提出相应的解决方法。
第三章图像增强算法与实现。
第四章结论。
最后是致谢,论文的结尾附有源程序代码。
1.3 数字图像基本概念1.3.1 数字图像的表示图像并不能直接用计算机来处理,处理前必须先转化成数字图像。
早期一般用picture 代表图像,随着数字技术的发展,现在都用image 代表离散化了的数字图像。
由于从外界得到的图像多是二维(2-D )的,一幅图像可以用一个2-D 数组),(y x f 表示。
这里x 和y 表示二维空间XY 中一个坐标点的位置,而f 则代表图像在点),(y x 的某种性质数值。
为了能够用计算机对图像进行处理,需要坐标空间和性质空间都离散化。
这种离散化了的图像都是数字图像,即),(y x f 都在整数集合中取值。
图像中的每个基本单元称为图像的元素,简称像素[3]。
1.3.2 图像的灰度常用的图像一般是灰度图,这时f 表示灰度值,反映了图像上对应点的亮度。
亮度是观察者对所看到的物体表面反射光强的量度。
作为图像灰度的量度函数),(y x f 应大于零。
人们日常看到的图像一般是从目标上反射出来的光组成的,所以),(y x f 可看成由两部分构成:入射到可见场景上光的量;场景中目标对反射光反射的比率。
确切地说它们分别称为照度成分),(y x i 和反射成分),(y x r 。
),(y x f 与),(y x i 和),(y x r 都成正比,可表示成),(y x f =),(y x i ×),(y x r 。
将二维坐标位置函数),(y x f 称为灰度。
入射光照射到物体表面的能量是有限的,并且它永远为正,即0<),(y x i < ;反射系数为0时,表示光全部被物体吸收,反射系数为1时,表示光全部被物体反射,反射系数在全吸收和全反射之间,即0<),(y x r <1。
因此图像的灰度值也是非负有界的。
1.3.3 灰度直方图灰度直方图是数字图像处理中一个最简单、最有用的工具,它反映了数字图像中每一灰度级与其出现频率之间的统计关系。
可以有针对性地通过改变直方图的灰度分布状况,使灰度均匀地或按预期目标分布于整个灰度范围空间,从而达到图像增强的效果。
灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,如图2.1所示,(b)为图像(a)的灰度直方图,其横坐标表示像素的灰度级别,纵坐标表示该灰度出现的频率(像素的个数)。
(a) (b)图2.1 a为原图像 b为a的灰度直方图1.4 图像增强概述随着数字技术的不断发展和应用,现实生活中的许多信息都可以用数字形式的数据进行处理和存储,数字图像就是这种以数字形式进行存储和处理的图像。
利用计算机可以对它进行常现图像处理技术所不能实现的加工处理,还可以将它在网上传输,可以多次拷贝而不失真。
数字图像处理亦称为计算机图像处理,指将图像信号转换成数字格式并利用计算机对其进行处理的过程。
这项技术最早出现于20世纪50年代,当时的数字计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理成为一门独立的学科可追溯到20世纪60年代初期。
1964年,美国喷气推进实验室利用计算机对太空船发回的月球图像信息进行处理,收到明显的效果,不久,一门称为数字图像处理的新学科便诞生了,而且很快便对通讯、电视传输、医学、印染工业、工业检测及科学研究领域产生了重大影响[4]。
数字图像处理系统主要由图像采集系统、数字计算机及输出设备组成。
如图2.2所示[5]。
图1.1 数字图像处理系统图2.2仅仅是图像处理的硬件设备构成,图中并没有显示出软件系统,在图像处理系统中软件系统同样是非常重要的。
在图像获取的过程中,由于设备的不完善及光照等条件的影响,不可避免地会产生图像降质现象。
影响图像质量的几个主要因素是:(1)随机噪声,主要是高斯噪声和椒盐噪声,可以是由于相机或数字化设备产生,也可以是在图像传输;(2)系统噪声,由系统产生,具有可预测性质;(3)畸变,主要是由于相机与物体相对位置、光学透镜曲率等原因造成的,可以看作是真实图像的几何变换。
数字图像处理流程如图2.3所示,从一幅或是一批图像的最简单的处理,如特征增强、去噪、平滑等基本的图像处理技术,到图像的特征分析和提取,进而产生对图像的正确理解或者遥感图像的解译,最后的步骤可以是通过专家的视觉解译,也可以是在图像处理系统中通过一些知识库而产生的对图像的理解。
图1.2 图像处理流程图数字图像处理技术起源比较早,但真正发展是在八十年代后,随着计算机技术的高速发展而迅猛发展起来。
到目前为止,图像处理在图像通讯、办公自动化系统、地理信息系统、医疗设备、卫星照片传输及分析和工业自动化领域的应用越来越多。
但就国内的情况而言,应用还是很不普遍,人们主要忙于从事于理论研究,诸如探索图像压缩编码等,而对于将成熟技术转化为生产力方面认识还远远不够。