基于空间域的图像增强方法的研究与实现

合集下载

遥感图像增强实验报告

遥感图像增强实验报告

遥感图像增强实验报告1. 实验目的和内容实验目的:(1)遥感图像的空间域增强:通过直接改变图像中的单个像元及相邻像元的灰度值来增强图像,是图像增强技术的基本组成部分,包括点运算和邻域运算。

(2)遥感图像的频率域增强:通过对频率域的调整对遥感图像进行平滑和锐化,平滑主要是保留图像的低频部分抑制高频部分,锐化则保留图像的高频部分而削弱低频部分。

(3)遥感图像的彩色增强:将黑白图像转换成彩色图像,使地物的差别易于分辨,突出图像的有用信息,从而提高对图像的解译和分析能力。

实验内容:(1)遥感图像的空间域增强:点运算—直方图均衡化、灰度拉伸、任意拉伸,邻域运算—图像平滑、图像锐化。

(2)遥感图像的频率域增强:定义FFT,反向FFT,再进行对比。

(3)遥感图像的彩色增强:多波段影像—彩色合成、单波段影像—伪彩色增强、色彩空间变换、遥感数据融合。

2. 图像处理方法和流程A.遥感图像的空间域增强1.直方图均衡化(1)在主窗口中打开can_tmr.img文件。

(2)以gray形式显示一个波段。

(3)Display窗口>enhance>equalization2.灰度拉伸(1)Display窗口>enhance>interactive stretching(2)弹出的对话框>stretch_type>linear(3)在STRETCH对应的两个文本框中输入需要拉伸的范围,然后单击对话框上的APPLY按钮,图像显示为线性拉伸后的效果。

3.任意拉伸(1)弹出的对话框>stretch_type>Arbitary,在output histogram中单击绘制直方图,右键结束(2)点击apply,结果如图所示4.图像平滑(1)均值平滑,在主窗口中打开can_tmr.img文件。

主窗口>enhance>filter>smooth[3*3]。

结果如图所示(2)中值平滑,在主窗口中打开can_tmr.img文件。

国家开放大学《数字与图形处理》形考任务1-4参考答案

国家开放大学《数字与图形处理》形考任务1-4参考答案

国家开放大学《数字与图形处理》形考任务1-4参考答案形考任务11.下面说法正确的是()A. 基于频域的图像增强方法比基于空域的图像增强方法的增强效果好B. 基于像素的图像增强方法是基于空间域的图像增强方法的一种C. 基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高D. 基于像素的图像增强方法是一种线性灰度变换2.采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对如下哪一类图像进行增强。

A. 图像整体偏暗B. 图像细节淹没在暗背景中C. 图像同时存在过亮和过暗背景D. 图像整体偏亮3.计算机显示器主要采用哪一种彩色模型A. HISB. HSVC. RGBD. CMY或CMYK4.图像灰度方差说明了图像哪一个属性。

A. 图像细节B. 图像整体亮度C. 平均灰度D. 图像对比度5.维纳滤波器通常用于()A. 复原图像B. 去噪C. 减小图像动态范围D. 平滑图6.高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以便引入一些低频分量。

这样的滤波器叫()A. 巴特沃斯高通滤波器B. 高频加强滤波器C. 理想高通滤波器D. 高频提升滤波器7.彩色图像增强时,()处理可以采用RGB彩色模型。

A. 中值滤波B. 同态滤波C. 加权均值滤波D. 直方图均衡化8.()滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。

A. 约束最小二乘滤波B. 同态滤波C. 维纳滤波D. 逆滤波9.下列算法中属于图象锐化处理的是:()A. 低通滤波B. 中值滤波C. 高通滤波D. 加权平均法10.采用模板[-1 1]T主要检测()方向的边缘。

A. 垂直B. 135oC. 水平D. 45o11.中值滤波器()A. 和中点滤波器不可能有相同的滤波结果B. 和中点滤波器可能有相同的滤波结果C. 和最大值滤波器不可能有相同的滤波结果D. 和最大值滤波器可能有相同的滤波结果12.要把图像中某个频率范围中的成分除去,除可以使用带阻滤波器外,还可以使用()A. 低通滤波器和高通滤波器B. 低通滤波器C. 高通滤波器D. 带通滤波器13.磁共振信号()A. 可以用帮助确定物体内质子的密度B. 可用来帮助重建问题的物体内的自旋密度分布函数C. 取决于物体内中子的密度D. 仅与空间有关而与时间无关14.梯度算子:()A. 总需要两个模板B. 可以检测阶梯状边缘C. 总产生双像素宽边缘D. 可以消除随机噪声15.为利用断层重建实现3-D 重建,一定要()A. 使用多个发射源B. 使用多个接收器C. 使用锥束扫描投影D. 使用扇束扫描投影16.拉普拉斯算子:()A. 包括一个模板B. 是二阶微分算子C. 包括两个模板D. 是一阶微分算子17.噪声对利用直方图取阈值分割算法的影响源于:()A. 噪声会填满直方图的谷B. 噪声会使得直方图产生新的峰C. 噪声会减小直方图的峰间距离D. 噪声会使得直方图不平衡18.算术编码()A. 的硬件实现比哈夫曼编码的硬件实现要复杂B. 在JPEG的扩展系统中被推荐来代替哈夫曼编码C. 中不存在源符号和码字间一一对应关系D. 在信源符号概率接近时,比哈夫曼编码效率高19.在对图像编码前,常将2-D像素矩阵表达形式进行转换(映射)以获得更有效的表达形式,这种转换:()A. 压缩了图像的动态范围B. 这种映射与电视广播中隔行扫描消除的是同一种数据冗余C. 可反转,也可能不可反转D. 减少了像素间冗余20.以下分割方法中属于区域算法的是:()A. 哈夫变换B. 阈值分割C. 边缘检测D. 分裂合并21.直方图均衡是一种点运算,图像的二值化则是一种局部运算。

第8章_图像增强

第8章_图像增强
[ f x 1, y f x, y 1]
32
一、空间域图像增强(29)
对角线方向边缘增强示意图
33
一、空间域图像增强(30)
单方向一阶微分算子图像增强效果
34
一、空间域图像增强(31)
Roberts交叉微分算子
g x, y f x 1, y 1 f x, y f x 1, y f x, y 1
f
G x x
f
f
G

y
y
27
一、空间域图像增强(24)
一阶微分算子
单方向微分算子
(1)水平方向微分算子
Dlevel
1 2 1
0 0 0
1 2 1
g ( x, y ) [ f x 1, y 1 f x 1, y 1] 2[ f x 1, y f x 1, y ]
遥感数字图像处理
第8章
图像增强
背景知识
图像增强是通过一定手段对原图像进行变换或附加一些信息
,有选择地突出图像中感兴趣的特征或者抑制图像中某些不
需要的特征,使图像与视觉响应特性相匹配,从而加强图像
判读和识别效果,以满足某些特殊分析的需要。
目的:改善图像的视觉效果,帮助我们更好地发现或识别图
像中的某些特征。
作用:调整两幅图像的色调差异,使图像重叠区域的色调过渡柔和,改
善图像融合和图像镶嵌效果。
14
一、空间域图像增强(12)
直方图匹配的思想:
原图像中的任意一个灰度值ai 都可
以在参考图像上找到一个与之对应
的灰度值bi ,使得原图的灰度概率

空间域图像增强

空间域图像增强
67
局部平滑法
• 例如,对图像采用3×3的邻域平均法,对 于像素(m,n),其邻域像素如下:
则有:
(m-1,n1)
(m,n-1)
(m-1,n) (m,n)
(m+1,n- (m+1,n) 1)
(m1,n+1)
(m,n+1)
(m+1,n+ 1)
g(m ,n)1 9 f(m i,nj) i Zj Z
68
1
1
64
空间域平滑
• 本节介绍空间域的几种平滑法
– 局部平滑法 – 超限像素平滑法 – 灰度最相近的K个邻点平均法 – 梯度倒数加权平滑法 – 最大均匀性平滑 – 有选择保持边缘平滑法 – 空间低通滤波法 – 多幅图像平均法 – 中值滤波
65
局部平滑法
• 局部平滑法是一种直接在空间域上进行平 滑处理的技术
38
直方图处理 • 基于局部统计量的增强
– 像素均值:对应局部的像素亮度 – 像素方差:对应局部的亮度对比
方案:增强较暗的区域, 保持具有适当对比度的像 素,同时保持亮的区域
39
Ef(x,y) if g(x,y) f(x,y)
mSxy k0MG
k1DG Sxy k2DG
40
增强图像-代数运算
















图 像 的 代 数 运 算
空间域增强
• 空间域增强是指增强构成图像的像素
– 空间域方法直接进行像素操作,输入一幅或多 幅图像,然后输出处理的结果(图像)
– g(x,y) = T[ f(x,y) ] – g(x,y) = T[ f1(x,y),f2(x,y), f3(x,y)... ]

数字图像处理冈萨雷斯空间域图像增强(共104张PPT)

数字图像处理冈萨雷斯空间域图像增强(共104张PPT)

例如每个象素点的灰度值用8bit表示,假设某像素点的灰度值为00100010,分解处理 如下 :
00100010
00000000(0) 00000010(2)
00000000(0)
00000000(0) 00000000(0)
001000(0302) 00000000(0)
这样这个位置的像素,就分解 成了8局部,各局部的值转成
1时 , 该 变 换 将
低 灰 度 值 ( 暗 值 ) 进 行 拉 伸
例 : 0.4时 , 该 变 换 将 动 态 范 围
从 [0,L5]扩 展 到 [0,L2]
1时 , 该 变 换 将
L5
高 灰 度 值 ( 亮 值 ) 进 行 拉 伸
3.2 根本灰度变换
幂次变换应用 (伽马)校正 s cr
00000000(0)
十进制就是该点在该位平面上
的灰度值。
④分段线性变换函数
3.2 根本灰度变换
位图切割
位图切割例如
位图切割在图像压缩和重建中的应用
重建:
①第n个bit平面的每个像素 2 n1 ;
②所有bit平面相加;
MATLAB 例子:线性变换
I=imread('pout.tif');
pout=double(I);
随机变量:不一定是均匀分布的
根据该方程可以由原图像的各像素灰度值直接得到直方图 均衡化后各灰度级所占的百分比
➢直方图均衡化处理的计算步骤如下:
(1)统计原始图象的直方图
是rk 输入图象灰度级; (2)计算直方图累积分布曲线
pr
rk
nk n
3.3 直方图处理
sk T(rk)j k0pr(rj)j k0nnj

空间域图像增强

空间域图像增强

定义一个二阶微分的离散公式,然后构造基于此式的滤波器。
添加标题
各向同性滤波器
添加标题
03
滤波器的响应与滤波器作用的图像突变的方向无关。
添加标题
04
是旋转不变的,即将原图旋转后的滤波结果与先滤波再旋转的结果一样。
添加标题
1、基于二阶微分的图像增强 拉普拉斯算子
二元图像函数 拉普拉斯变换定义为
1、基于二阶微分的图像增强 拉普拉斯算子
差值图像的标定:
每个像素值加255,然后除以2。 求差值图像的最小值Min,最大值Max
2、图像平均处理
01
带有噪声的图像:
02
K幅噪声图像取平均:
03
注意:图像配准
01
图像平均处理
02
星系图:NGC3314
03

04
64
05
16
06
128
A
图像平均处理
均值、方差
B

空间滤波基础(邻域处理)
4
5
6
6
6
1
4
6
6
2
3
1
3
6
4
6
6
1
2
3
4
5
6
5
4
5
6
2
14
灰度直方图 1.所有的空间信息全部丢失。 2.每一灰度级的像素个数可直接得到。
h
0
3
1
2
2
4
3
4
4
1
5
1
6
4
7
1
8
2
9
3
P
0
0.12

第5章 图像的增强与变换

第5章 图像的增强与变换

第五章图像的增强与变换§5.1 图像增强与变换§5.2 光谱增强§5.3 空间增强§5.4 多源信息的复合§5.1 图像增强与变换图像增强和变换为了突出相关的专题信息,提高图像的视觉效果,使分析者能更容易地识别图像内容,从图像中提取更有用的定量化信息。

按其作用的空间可分两种:光谱增强空间增强§5.2 光谱增强光谱增强对应于每个像元,与像元的空间排列和结构无关。

因此又叫点操作。

1. 彩色合成2. 对比度增强(直方图增强)3. 图像间运算为了充分利用色彩在遥感图像判读和信息提取中的优势,常常利用彩色合成的方法对多光谱图像进行处理,以得到彩色图像。

单波段彩色变换(密度分割)多波段彩色变换(真彩色,假彩色)HLS变换:色调(hue)、明度(lightness)和饱和度(saturation)的色彩模式。

即RGB模式ÆHLS模式。

1. 彩色合成单波段彩色变换(密度分割)(1)求图像的极大值dmax 和极小值d min ;(2)求图像的密度区间ΔD=dmax -d min +1;(3)求分割层的密度差Δd=ΔD/n,其中n为需分割的层数;(4)求各层的密度区间;(5)定出各密度层灰度值或颜色。

1.彩色合成1.彩色合成多波段彩色变换真彩色合成真彩色图像上影像的颜色与地物颜色基本一致。

把红色波段的影像作为合成图像中的红色分量、把绿色波段的影像作为合成图像中的绿色分量、把蓝色波段的影像作为合成图像中的蓝色分量进行合成的结果。

如TM321分别用RGB合成的图像。

假彩色合成假彩色图像是指图像上影像的色调与实际地物色调不一致的图像。

遥感中最常见的假彩色图像是彩色红外合成的标准假彩色图像。

它是在彩色合成时,把近红外波段的影像作为合成图像中的红色分量、把红色波段的影像作为合成图像中的绿色分量、把绿色波段的影像作为合成图像中的蓝色分量进行合成的结果。

如TM432用RGB合成的图像为标准假彩色图像。

医学影像处理中的图像增强技术研究探讨

医学影像处理中的图像增强技术研究探讨

医学影像处理中的图像增强技术研究探讨医学影像在现代医疗诊断中扮演着至关重要的角色,它能够帮助医生直观地观察人体内部的结构和病变情况。

然而,由于各种因素的影响,原始的医学影像可能存在清晰度不高、对比度不足等问题,这就需要运用图像增强技术来改善影像质量,以便更准确地进行诊断和治疗。

图像增强技术的目的是通过一系列的处理方法,突出影像中的有用信息,抑制无用信息,从而提高图像的可读性和可理解性。

在医学影像处理中,常用的图像增强技术包括灰度变换、直方图均衡化、空间滤波、频率滤波等。

灰度变换是一种简单而有效的图像增强方法。

它通过改变图像中像素的灰度值来调整图像的对比度。

例如,线性灰度变换可以将灰度范围拉伸或压缩,从而增强图像的对比度。

而非线性灰度变换,如对数变换和指数变换,则可以根据图像的特点对不同灰度区域进行有针对性的调整,使得原本较暗或较亮的区域能够更清晰地显示出来。

直方图均衡化是另一种常见的图像增强技术。

它通过重新分布图像的灰度值,使得直方图更加均匀,从而增强图像的对比度。

直方图均衡化的优点是计算简单,效果明显,但有时可能会导致图像的细节丢失。

为了克服这一缺点,人们提出了局部直方图均衡化方法,它只对图像的局部区域进行直方图均衡化处理,从而更好地保留图像的细节。

空间滤波是基于像素及其邻域的运算。

常见的空间滤波器有平滑滤波器和锐化滤波器。

平滑滤波器可以去除图像中的噪声,使图像变得更加平滑。

均值滤波器和中值滤波器是两种常用的平滑滤波器。

均值滤波器通过计算邻域像素的平均值来替代中心像素的值,从而减少噪声的影响。

中值滤波器则是将邻域像素的值进行排序,取中间值作为中心像素的值,对于去除椒盐噪声等效果显著。

锐化滤波器则用于增强图像的边缘和细节,常用的有拉普拉斯算子和索贝尔算子。

频率滤波是基于傅里叶变换的图像增强方法。

通过将图像从空间域转换到频率域,对不同频率成分进行处理,然后再转换回空间域,实现图像增强的目的。

低通滤波器可以去除高频噪声,使图像变得更加平滑;高通滤波器则可以增强图像的边缘和细节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档