专题05 平面向量第十二讲 向量的应用(解析版)
5.5平面向量应用

= .
A
B
解: = ∙ = ( + ) ∙ ( + ) = ∙ + ∙ + ∙ + ∙ =
同理:
=
− ∙ + ()
(1)+(2)得:
+
= (
涉及长度问题常常考虑向量的数量积,对 与 进行计算.
(1) , 分别对质点所做的功;
(2) , 的合力F对质点所做的功。
17.在风速为( − )/的西风中,飞机以150km/h的航速向西北方向飞行,求没有风时飞机的航速和航向。
作
业
答
案
(3)基底向量的夹角最好是明确的(直角最合适);
(4)尽量使基底向量和所涉及的向量共线或构成三角形或构成平行四边形.
3.用向量的坐标处理问题时,建立平面直角坐标系的基本原则:
选择坐标轴和原点不当会增加解题的运算量,也会带来不必要的麻烦.具有公共原点的两
条互相垂直的数轴构成了平面直角坐标系,因此在已知图形中,只要选择互相垂直的两条直
A
Q
B
P
C
课后作业:
4.在△ABC中,AB=AC,D为BC的中点,用向量方法证明 ⊥ .
5.如下图,在正方形ABCD中,E,F分别为AB,BC的中点。求证: ⊥ (利用向量证明).
D
C
F
A
E
B
6.如下图,在▱ABCD中,AB=3,AD=1,∠ = ,求对角线AC和BD的长.
又因为 = − = − ; 与共线,所以我们设: = = ( − )
平面向量的应用(教师版)

平面向量的应用1 平面几何中的向量方法① 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此平面几何中的许多问题都可用向量运算的方法加以解决.② 用向量方法解决平面几何问题的“三部曲”(1) 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2) 通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3) 把运算结果“翻译”成几何关系.Eg 点A 、B 、C 、D 不在同一直线上(1)证明直线平行或共线:AB//CD ⇔AB⃗⃗⃗⃗⃗ //CD ⃗⃗⃗⃗⃗ (2)证明直线垂直:AB ⊥CD ⟺AB⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =0 (3)求线段比值:AB CD =|λ|且AB//CD ⇔ AB⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ (4)证明线段相等: AB⃗⃗⃗⃗⃗ 2=CD ⃗⃗⃗⃗⃗ 2⇔AB =CD 2 向量在物理中的应用① 速度、力是向量,都可以转化为向量问题;② 力的合成与分解符合平行四边形法则.【题型一】平面向量在几何中的应用【典题1】证明:对角线互相平分的四边形是平行四边形.【证明】 设四边形ABCD 的对角线AC 、BD 交于点O ,且AO =OC ,BO =OD∵AB ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =12DB ⃗⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ =DC⃗⃗⃗⃗⃗ ,即AB =DC 且AB//DC 所以四边形ABCD 是平行四边形即对角线互相平分的四边形是平行四边形.【点拨】① 证明四边形是平行四边形⇔AB =DC 且AB//DC ⇔AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ . ② 证明几何中的平行和长度关系可以转化为向量的倍数关系.【典题2】 已知平行四边形ABCD 的对角线为AC 、BD ,求证AC 2+BD 2=2(AB 2+AD 2) (即对角线的平方和等于邻边平方和的2倍).【证明】由 |AC ⃗⃗⃗⃗⃗ |2=AC ⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗|DB⃗⃗⃗⃗⃗⃗ |2=DB ⃗⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2−2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ 两式相加得|AC⃗⃗⃗⃗⃗ |2+|DB ⃗⃗⃗⃗⃗⃗ |2=2(|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2) 即AC 2+BD 2=2(AB 2+AD 2)【点拨】利用|AB⃗⃗⃗⃗⃗ |2=|AB |2可证明线段长度关系.【典题3】 用向量方法证明:三角形三条高线交于一点.【证明】(分析 设H 是高线BE 、CF 的交点,再证明AH ⊥BC ,则三条高线就交于一点.)设H 是高线BE 、CF 的交点,则有BH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ∵BH ⃗⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ ∴(AH⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )⋅AC ⃗⃗⃗⃗⃗ =(AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =0 化简得AH⃗⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=0C∴AH⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0 则AH ⊥BC (向量中证明AB ⊥CD ,只需要证明AB ⃗⃗⃗⃗⃗⃗ ⋅CD⃗⃗⃗⃗⃗⃗ =0) 所以三角形三条高线交于一点.【典题4】证明三角形三条中线交于一点.【证明】(分析 设BE 、AF 交于O ,证明C 、O 、D 三点共线便可)AF 、CD 、BE 是三角形ABC 的三条中线设BE 、AF 交于点O ,∵点D 是中点,∴CD ⃗⃗⃗⃗⃗ =12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) 连接EF ,易证明∆AOB~∆FOE,且相似比是2:1,∴BO =23BE,∴CO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23BE ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23(BA ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ) =CB ⃗⃗⃗⃗⃗ +23(BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ )=13(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) ∴CO ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ 即C 、O 、D 三点共线, (向量中证明三点A 、B 、C 共线,只需证明AB⃗⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ) ∴AF 、CD 、BE 交于一点,即三角形三条中线交于一点.巩固练习1(★★) 如图,E ,F 分别是四边形ABCD 的边AD ,BC 的中点,AB =1,CD =2,∠ABC =75°,∠BCD =45°,则线段EF 的长是 .【答案】√72【解析】 由图象,得EF →=EA →+AB →+BF →,EF →=ED →+DC →+CF →.∵E ,F 分别是四边形ABCD 的边AD ,BC 的中点,∴2EF →=(EA →+ED →)+(AB →+DC →)+(BF →+CF →)=AB →+DC →.∵∠ABC =75°,∠BCD =45°,∴<AB →,DC →>=60°,∴|EF|→=12√(AB →+DC →)2=12√AB →2+DC →2+2|AB|→⋅|DC|→cos <AB →,DC →>=12√12+22+2×1×2×12=√72. ∴EF 的长为√72. 故答案为 √72. 2(★★) 证明勾股定理,在Rt∆ABC 中,AC ⊥BC ,AC =b ,BC =a ,AB =c ,则c 2=a 2+b 2.【证明】 由AB⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ,得AB ⃗⃗⃗⃗⃗ 2=(AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )2=AC ⃗⃗⃗⃗⃗ 2+2AC ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ 2 即|AB⃗⃗⃗⃗⃗ |2=|AC ⃗⃗⃗⃗⃗ |2+|CB ⃗⃗⃗⃗⃗ |2 故c 2=a 2+b 2.3(★★) 用向量方法证明 对角线互相垂直的平行四边形是菱形.【证明】如图平行四边形ABCD 对角线AC 、BD 交于点O ,∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ∴|AB ⃗⃗⃗⃗⃗ |2=(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )2=|AO ⃗⃗⃗⃗⃗ |2+2AO ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ +|OB⃗⃗⃗⃗⃗ |2=|AO ⃗⃗⃗⃗⃗ |2+|OB ⃗⃗⃗⃗⃗ |2|BC⃗⃗⃗⃗⃗ |2=(BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )2=|BO ⃗⃗⃗⃗⃗ |2+2BO ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ +|OC ⃗⃗⃗⃗⃗ |2=|BO ⃗⃗⃗⃗⃗ |2+|OC ⃗⃗⃗⃗⃗ |2 ∴|AB ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ | A BC∴四边形ABCD 是菱形.4(★★)用向量方法证明 设平面上A ,B ,C ,D 四点满足条件AD ⊥BC ,BD ⊥AC ,则AB ⊥CD .【证明】 因AD ⊥BC ,所以AD →⋅BC →=AD →⋅(AC →−AB →)=0,因BD ⊥AC ,所以AC →⋅BD →=AC →⋅(AD →−AB →)=0,于是AD →⋅AC →=AD →⋅AB →,AC →⋅AD →=AC →⋅AB →,所以AD →⋅AB →=AC →⋅AB →,(AD →−AC →)⋅AB →=0,即CD →⋅AB →=0,所以CD →⊥AB →,即AB ⊥CD .5(★★)用向量方法证明 对角线相等的平行四边形是矩形.【证明】如图,平行四边形ABCD 对角线AC 、BD 交于点O,设OA =a ,∵对角线相等 ∴OB =OD =a∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ ∙AD ⃗⃗⃗⃗⃗ =(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )(AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ )=AO ⃗⃗⃗⃗⃗ 2+AO ⃗⃗⃗⃗⃗ ∙OD ⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =a 2+AO ⃗⃗⃗⃗⃗ (OD⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )−a 2=0 ∴AB ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ 即AB ⊥AD∴四边形ABCD 是矩形.6(★★★) 已知向量OP 1→、OP 2→、OP 3→满足OP 1→+OP 2→+OP 3→=0,|OP 1→|=|OP 2→|=|OP 3→|=1.求证 △P 1P 2P 3是正三角形.【证明】法一 ∵OP 1→+OP 2→+OP 3→=0,∴OP 1→+OP 2→=−OP 3→.∴|OP 1→+OP 2→|=|−OP 3→|.∴|OP 1→|2+|OP 2→|2+2OP1→•OP 2→=|OP 3→|2. 又∵|OP 1→|=|OP 2→|=|OP 3→|=1,∴OP 1→•OP 2→=−12.∴|OP 1→||OP 2→|cos∠P 1OP 2=−12,即∠P 1OP 2=120°.B C同理∠P 1OP 3=∠P 2OP 3=120°.∴△P 1P 2P 3为等边三角形.法二 以O 点为坐标原点建立直角坐标系,设P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则OP 1→=(x 1,y 1),OP 2→=(x 2,y 2),OP 3→=(x 3,y 3).由OP 1→+OP 2→+OP 3→=0,得{x 1+x 2+x 3=0y 1+y 2+y 3=0.∴{x 1+x 2=−x 3y 1+y 2=−y 3., 由|OP 1→|=|OP 2→|=|OP 3→|=1,得x 12+y 12=x 22+y 22=x 32+y 32=1∴2+2(x 1x 2+y 1y 2)=1∴|P 1P 2→|=√(x 1−x 2)2+(y 1−y 2)2=√x 12+x 22+y 12+y 22−2x 1x 2−2y 1y 2=√2(1−x 1x 2−y 1y 2)=√3同理|P 1P 3→|=√3,|P 2P 3→|=√3∴△P 1P 2P 3为正三角形【题型二】平面向量在物理中的应用【典题1】 如图,已知河水自西向东流速为|v 0|=1m/s ,设某人在静水中游泳的速度为v 1,在流水中实际速度为v 2.(1)若此人朝正南方向游去,且|v 1|=√3m/s ,求他实际前进方向与水流方向的夹角α和v 2的大小;(2)若此人实际前进方向与水流垂直,且|v 2|=√3m/s ,求他游泳的方向与水流方向的夹角β和v 1的大小.【解析】如图,设OA ⃗⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ =v 1⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =v 2⃗⃗⃗⃗ ,则由题意知v 2⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ +v 1⃗⃗⃗⃗ ,|OA ⃗⃗⃗⃗⃗ |=1,根据向量加法的平行四边形法则得四边形OACB 为平行四边形.(1)由此人朝正南方向游去得四边形OACB 为矩形,且|OB⃗⃗⃗⃗⃗ |=AC =√3,如下图所示,则在直角△OAC中,|v2⃗⃗⃗⃗ |=OC=√OA2+AC2=2,tan∠AOC=√31=√3,又α=∠AOC∈(0 ,π2),所以α=π3;(2)由题意知α=∠OCB=π2,且|v2⃗⃗⃗⃗ |=|OC|=√3,BC=1,如下图所示,则在直角△OBC中,|v1⃗⃗⃗⃗ |=OB=√OC2+BC2=2,tan∠BOC=√3=√33,又∠AOC∈(0 ,π2),所以∠BOC=π6,则β=π2+π6=2π3,答(1)他实际前进方向与水流方向的夹角α为π3,v2的大小为2m/s;(2)他游泳的方向与水流方向的夹角β为2π3,v1的大小为2m/s.【点拨】注意平行四边形法则的使用!【典题2】在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为F1⃗⃗⃗ ,F2⃗⃗⃗⃗ ,且|F1⃗⃗⃗ |=|F2⃗⃗⃗⃗ |,F1⃗⃗⃗ 与F2⃗⃗⃗⃗ 的夹角为θ.给出以下结论①θ越大越费力,θ越小越省力;②θ的范围为[0 ,π];③当θ=π2时,|F1⃗⃗⃗ |=|G|;④当θ=2π3时,|F1⃗⃗⃗ |=|G|.其中正确结论的序号是.【解析】对于①,由|G|=|F1⃗⃗⃗ +F2⃗⃗⃗⃗ |为定值,所以G2=|F1⃗⃗⃗ |2+|F2⃗⃗⃗⃗ |2+2|F1⃗⃗⃗ |×|F2⃗⃗⃗⃗ |×cosθ=2|F1⃗⃗⃗ |2(1+cosθ),解得|F1⃗⃗⃗ |2=|G|22(1+cosθ);由题意知θ∈(0 ,π)时,y=cosθ单调递减,所以|F1⃗⃗⃗ |2单调递增,即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是(0 ,π),所以②错误.对于③,当θ=π2时,|F1⃗⃗⃗ |2=G22,所以|F1⃗⃗⃗ |=√22|G|,③错误.对于④,当θ=2π3时,|F1⃗⃗⃗ |2=|G|2,所以|F1⃗⃗⃗ |=|G|,④正确.综上知,正确结论的序号是①④.故答案为①④.【典题3】如图,重为10N的匀质球,半径R为6cm,放在墙与均匀的AB木板之间,A端锁定并能转动,B端用水平绳索BC拉住,板长AB=20cm,与墙夹角为α,如果不计木板的重量,则α为何值时,绳子拉力最小?最小值是多少?【解析】如图,设木板对球的支持力为N⃗,则N⃗=10sinα,设绳子的拉力为f.又AC=20cosα,AD=6tanα2,由动力矩等于阻力矩得|f|×20cosα=|N⃗|×6tanα2=60sinα⋅tanα2,∴|f|=6020cosα⋅sinα⋅tanα2=3cosα(1−cosα)≥3(cosα+1−cosα2)2=314=12,∴当且仅当 cosα=1−cosα 即cosα=12,亦即α=60°时,|f|有最小值12N.巩固练习1(★★) 一条渔船以6km/ℎ的速度向垂直于对岸的方向行驶,同时河水的流速为2km/ℎ,则这条渔船实际航行的速度大小为 .【答案】2√10km/ℎ【解析】如图所示,渔船实际航行的速度为v AC →=v 船→+v 水→;大小为|v AC →|=|v 船→+v 水→|=√62+22 =2√10km/ℎ.2(★★) 如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1 ,F 2,且F 1 ,F 2与水平夹角均为45°,|F 1⃗⃗⃗ |=|F 2⃗⃗⃗⃗ |=10√2N ,则物体的重力大小为 .【答案】20【解析】如图,∵|F 1→|=|F 2→|=10√2N ,∴|F 1→+F 2→|=10√2×√2N =20N ,∴物体的重力大小为20.故答案为 20.3(★★) 已知一艘船以5km/ℎ的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30°角,求水流速度和船实际速度.【答案】5√3km/ℎ【解析】如图,设AD →表示船垂直于对岸的速度,AB →表示水流的速度,以AD ,AB 为邻边作平行四边形ABCD ,则AC →就是船实际航行的速度.在Rt△ABC 中,∠CAB =30°,|AD →|=|BC →|=5,∴|AC →|=|BC →|sin30°=10,|AB →|=|BC →|tan30°=5√3.故船实际航行速度的大小为10km/ℎ,水流速度5√3km/ℎ.4 (★★)一个物体受到同一平面内三个力F 1、F 2、F 3的作用,沿北偏东45°的方向移动了8m .已知|F 1|=2N ,方向为北偏东30°;|F 2|=4N ,方向为东偏北30°;|F 3|=6N ,方向为西偏北60°,求这三个力的合力F 所做的功.【答案】24√6 J【解析】 以三个力的作用点为原点,正东方向为x 轴正半轴,建立直角坐标系. 则由已知可得OF 1→=(1,√3),OF 2→=(2√3,2),OF 3→=(﹣3,3√3).∴OF →=OF 1→+OF 2→+OF 3→=(2√3−2,4√3+2).又位移OS →=(4√2,4√2).∴OF →•OS →=(2√3−2)×4√2+(4√3+2)×4√2=24√6(J).。
专题05.平面向量(2005—2014十年高考理科数学新课标2教师版)

※知识点※1 等量代换
所以 CD b 2CD a , 所以 CD (b 2a) 0
※知识点※1 去分母 ※知识点※1 移项;2 提取公因式
1 2 1 2 2 2 2 4 1 2 A 选项 因为 CD a b ,所以 ( a b) (b 2a) 0 a b a b b a 0 3 3 3 3 3 3 3 3
C
4 AD AB 5
4 (CB CA) 5 4 4 a b 5 5
A
※知识点※1 共线定理
D
B
※知识点※1 向量的减法;2 向量的分解
二.能力题组 1 【2014 新课标,理 3】设向量 a, b 满足 | a b | 10 , | a b | 6 ,则 a b ( A1 【答案】A 【曹亚云·解析】 | a b | 10 a 2a b b 10 ,※知识点※1 模长公式;2 完全平方和公式
CD a , | CD |
,剩余部分读者自行解答 ,剩余部分读者自行解答 ,剩余部分读者自行解答
CD b CD CB CD CA , cos CD, CB 2 | CD | | CD | | CB | | CD | | CA |
※Байду номын сангаас识点※1 夹角公式
所以
CD b CD a , 2 | CD | | CD |
| b | 2 ,则 CD (
)
1 2 (A) a b 3 3 【答案】B;
2 1 (B) a b 3 3
3 4 (C) a b 5 5
4 3 (D) a b 5 5
第1页
共5页
【曹亚云·解析 1】特例法(特殊图形法) 在 Rt ABC 中,设 | a | 1 , | b | 2 , B 90 ,则 C 60 , AB 3 在 Rt CBD 中, BD BC tan 30
平面向量的应用PPT课件

| AB | | AC |
点 P 的轨迹一定通过△ABC 的( B )
A.垂心 B.内心 C.重心 D.外心
第10页/共29页
例3.
1)、在ABC中AB • BC 0,则ABC为
三角形
2)、在ABC中BC
• CA
2
BC
变式:若AC 10,求BD长度
第14页/共29页
3.(【093天】3.津()09在天四津边)形在A四BC边D形中A,BCADB 中= D,CA=B(=1D,C1)=,(1,1),
|
1 BA
|
BA
1
|
BB1CA|BC1
|
3
BDC
BD
|
,3则B四D边,形则AB四C边D 形
ABCD
| BA | 3 | BC | | BD |
的面积是
2
解:由题的知面四积边是形ABCD是菱形,其边长为 2,
A
D
B
C
第15页/共29页
平面向量的应用(3)
第16页/共29页
例 1.已知 ABC 中, AB 2, AC 3, (1)若O为 ABC 的垂心,求 AO BC ; (2)若O为 ABC 的重心,求 AO BC ; (3)若O为 ABC 的外心,求 AO BC .
9.(2013
浙江卷理
7)设
ABC,
P0
是边
AB
上一定点,满足
P0 B
1 4
AB
,
且对于边 AB 上任一点 P ,恒有 PB • PC P0B • P0C 。则
A. ABC 900 B. BAC 900 C. AB AC D. AC BC
2019高考数学专项讲解12:平面向量及应用

2019高考数学专项讲解12:平面向量及应用第十二讲 平面向量及应用★★★高考在考什么【考题回放】1、〔宁夏,海南〕平面向量(11)(11)==-,,,a b ,那么向量1322-=a b 〔 D 〕 A、(21)--,B、(21)-,C、(10)-, D、(12), A 、假设=0a b ,那么0a =或0b = B 、假设λ0a =,那么0λ=或=0aC 、假设22=a b ,那么=a b 或-a =bD 、假设∙∙a b =a c ,那么b =c 3、〔北京〕O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么〔A〕A、AO OD =B、2AO OD = C、3AO OD = D、2AO OD = 4、〔湖北〕将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,那么平移后所得图象的解析式为〔A〕 A、π2cos 234x y ⎛⎫=+- ⎪⎝⎭B、π2cos 234x y ⎛⎫=-+ ⎪⎝⎭ C、π2cos 2312x y ⎛⎫=-- ⎪⎝⎭ D、π2cos 2312x y ⎛⎫=++ ⎪⎝⎭ 5、〔江西文〕在平面直角坐标系中,正方形OABC 的对角线OB 的两端点分别为(00)O ,,(11)B ,,那么AB AC ∙= 1 、6、〔陕西〕如图,平面内有三个向量OA 、、,其中与OA 与的夹角为120°,与的夹角为30°,且||=||=1,||=32,假设=λ+μ〔λ,μ∈R 〕,那么λ+μ的值为6.7、〔全国Ⅱ〕在ABC △中,内角A π=3,边BC =、设内角B x =,周长为y 、〔1〕求函数()y f x =的解析式和定义域;〔2〕求y 的最大值、解:〔1〕ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3、应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3, 2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭、 因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭, 〔2〕因为14sin sin 2y x x x ⎛⎫=++ ⎪ ⎪⎝⎭5x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭, 所以,当x ππ+=62,即x π=3时,y取得最大值 ★★★高考要考什么【考点透视】本专题主要涉及向量的概念、几何表示、加法和减法,实数与向量的积、两个向量共线的充要条件、向量的坐标运算,以及平面向量的数量积及其几何意义、平面两点间的距离公式、线段的定比分点坐标公式和向量的平移公式.【热点透析】在高考试题中,主要考查有关的基础知识,突出向量的工具作用。
2014年高考数学(理)试题分项版解析:专题05 平面向量(分类汇编)Word版含解析

1. 【2014高考福建卷第8题】在下列向量组中,可以把向量()2,3=表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e2. 【2014高考广东卷理第5题】已知向量()1,0,1a =-,则下列向量中与a 成60的是( )A.()1,1,0-B. ()1,1,0-C.()0,1,1-D.()1,0,1-3. 【2014高考湖南卷第16题】在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD =1,则OA OB OD ++的最大值是_________.【答案】1【解析】因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程4. 【2014高考江苏卷第12题】如图在平行四边形ABCD 中,已知8,5AB AD ==,3,2CP PD AP BP =⋅=,则AB AD ⋅的值是 .5. 【2014陕西高考理第13题】设20πθ<<,向量()()1cos cos 2sin ,,,θθθb a =,若b a //,则=θtan _______.6. 【2014高考安徽卷理第10题】在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满足2()OQ a b =+.曲线{cos sin ,02}C P OP a b θθθπ==+≤≤,区域{0,}P r PQ R r R Ω=<≤≤<.若C Ω为两段分离的曲线,则( )A. 13r R <<<B.13r R <<≤C.13r R ≤<<D.13r R <<<考点:1.平面向量的应用;2.线性规划. 7. 【2014高考北京版理第10题】已知向量a 、b 满足1||=a ,)1,2(=b ,且0b a =+λ(R λ∈),则||λ= .8. 【2014高考湖北卷理第11题】设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ= .【答案】3±10. 【2014江西高考理第15题】已知单位向量1e 与2e 的夹角为α,且1cos 3α=,向量1232a e e =-与123b e e =-的夹角为β,则cos β= .11. 【2014辽宁高考理第5题】设,,a b c 是非零向量,已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝12. 【2014全国1高考理第15题】已知C B A ,,为圆O 上的三点,若()AC AB AO +=21,则与的夹角为_______.【考点定位】1、平面向量基本定理;2、圆的性质.13. 【2014全国2高考理第3题】设向量a,b 满足|a+b |a-b a ⋅b = ( )A. 1B. 2C. 3D. 514. 【2014高考安徽卷理第15题】已知两个不相等的非零向量,,b a 两组向量54321,,,,x x x x x 和54321,,,,y y y y y 均由2个a 和3个b 排列而成.记5544332211y x y x y x y x y x S ⋅+⋅+⋅+⋅+⋅=,min S 表示S 所有可能取值中的最小值.则下列命题的是_________(写出所有正确命题的编号).①S 有5个不同的值.②若,b a ⊥则min S .③若,∥则min S 无关.>,则0min >S .⑤若2min ||2||,8||b a S a ==,则与的夹角为4π2222min 34()8||cos 4||8||S S a b b a a a θ==⋅+=+=,∴2cos 1θ=,∴3πθ=,故⑤错误.所以正确的编号为②④.考点:1.平面向量的运算;2.平面向量的数量积.15. 【2014四川高考理第7题】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .2-B .1-C .1D .216. 【2014浙江高考理第8题】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+17. 【2014重庆高考理第4题】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数k =( ) 9.2A - .0B .C 3 D.15218. 【2014天津高考理第8题】已知菱形ABCD 的边长为2,120BAD ?,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF ?,23CE CF ?-,则l m += ( )(A )12 (B )23 (C )56 (D )71219. 【2014大纲高考理第4题】若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b = ( )A .2BC .1D .2。
高中数学《平面向量的应用》微课精讲+知识点+教案课件+习题

▼知识点:(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;(3)证明垂直问题,常用向量垂直的充要条件;1、向量在三角函数中的应用:(1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。
2、向量在物理学中的应用:由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。
3、向量在解析几何中的应用:(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。
平面向量在几何、物理中的应用1、用向量解决几何问题的步骤:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如:距离,夹角等;(3)把运算结果“翻译”成几何关系。
2、用向量中的有关知识研究物理中的相关问题,步骤如下:(1)问题的转化,即把物理问题转化为数学问题;(2)模型的建立,即建立以向量为主题的数学模型;(3)求出数学模型的有关解;(4)将问题的答案转化为相关的物理问题。
高中数学平面向量的应用知识点总结(二)1.向量的概念(1)定义:既有大小又有方向的量叫做向量,向量可以用字母a、b、c等表示,也可以用表示向量的有向线段的起点和终点字母表示,如(A为起点,B为终点)(2)向量的大小(或称模):也就是向量的长度,记作||(3)向量的两个要素:大小和方向(4)零向量:长度为零的向量,记作0(5)单位向量:长度等于一个长度单位的向量(6)平行向量:方向相同或相反的非零向量叫做平行向量(也叫共线向量)规定0与任何向量平行(7)相等向量:长度相等且方向相同的向量叫相等向量,记作a=b(8)相反向量:长度相等且方向相反的向量叫相反向量2.向量的运算(1)向量的加法(3)实数与向量的积(4)平面向量基本定律:如果e1和e2是同一平面内的两个不共线向量,那么该平面内任一向量a,有且只有一对实数我们把不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底教案:教材分析向量概念有明确的几何背景:有向线段,可以说向量概念是从几何背景中抽象而来的,正因为如此,运用向量可以解决一些几何问题,例如利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。
平面向量的应用

平面向量的应用平面向量是解决平面几何问题的重要工具之一。
它可以用于求解平面上的距离、角度、垂直、平行等关系,为各种几何问题的解决提供了方便和简洁的方法。
本文将介绍平面向量在几种常见问题中的应用,包括向量的加减法、向量共线垂直性质、向量的数量积和向量的模、方向投影等内容。
一、向量的加减法向量的加减法是平面向量最基本的操作。
当我们要求两个向量的和或差时,可以通过将它们的对应分量相加或相减来得到结果。
例如,有向量 $\overrightarrow{AB} = \langle x_1, y_1 \rangle$ 和$\overrightarrow{CD} = \langle x_2, y_2 \rangle$,它们的和为$\overrightarrow{AB} + \overrightarrow{CD} = \langle x_1 + x_2, y_1 +y_2 \rangle$,差为 $\overrightarrow{AB} - \overrightarrow{CD} = \langle x_1 - x_2, y_1 - y_2 \rangle$。
二、向量共线与垂直性质对于两个非零向量 $\overrightarrow{AB}$ 和 $\overrightarrow{CD}$,如果它们的方向相同或相反,则称这两个向量共线。
向量共线的判断可以通过它们的方向比较或通过计算它们的比值来得到。
如果两个向量的方向垂直,则称这两个向量垂直。
两个向量垂直的判断可以通过它们的数量积的结果是否为零来确定。
三、向量的数量积向量的数量积也称为点积或内积,用符号 $\cdot$ 表示。
对于向量$\overrightarrow{AB} = \langle x_1, y_1 \rangle$ 和 $\overrightarrow{CD} = \langle x_2, y_2 \rangle$,它们的数量积为 $x_1 \cdot x_2 + y_1 \cdot y_2$。
专题05 平面向量 (解析版)

专题05 平面向量易错点1 忽略了零向量的特殊性给出下列命题:①向量AB 的长度与向量BA 的长度相等. ②向量a 与b 平行,则a 与b 的方向相同或相反. ③两个有共同起点而且相等的向量,其终点必相同. ④零向量与任意数的乘积都为零.其中不正确命题的序号是 . 【错解】④【错因分析】解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.【试题解析】①AB 与BA 是相反向量、模相等,正确;②由零向量的方向是任意的且与任意向量平行,不正确;③相等向量大小相等、方向相同,又起点相同,则终点相同,正确;④零向量与任意数的乘积都为零向量,不正确,故不正确命题的序号是②④. 【参考答案】②④解决向量的概念问题应关注六点:(1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即平行向量,它们均与起点无关.相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量则未必是相等向量.(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈. (5)非零向量a 与||a a 的关系:||a a 是a 方向上的单位向量.(6)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小.1.下列说法正确的是A .若a 与b 都是单位向量,则a =bB .若a =b ,则|a |=|b |且a 与b 的方向相同C .若a +b =0,则|a |=|b |D .若a -b =0,则a 与b 是相反向量 【答案】C【解析】因为向量相等必须满足模相等且方向相同,所以A 不正确;因为0的方向是任意的,当0==a b 时,B 不正确;因为0+=a b ,所以=-a b ,所以=-=a b b ,故C 正确;因为0-=a b ,所以=a b ,a 与b 不是相反向量,故D 不正确.所以选C.【名师点睛】本小题主要考查两个向量相等的充要条件,即大小和方向均相同.还考查了零向量的概念,零向量长度为零,方向任意.属于基础题.易错点2 忽视平行四边形的多样性失误已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.【错解】设A (-1,0),B (3,0),C (1,-5),D (x ,y ),∵四边形ABCD 为平行四边形,∴AB =DC ,又∵AB =(4,0),DC =(1-x ,-5-y ),∴145=0x y -=--⎧⎨⎩,解得x =-3,y =-5,∴第四个顶点的坐标为(-3,-5).【错因分析】此题的错解原因为思维定势,错误的认为平行四边形只有一种情形,在解题思路中出现了漏解.实际上,题目的条件中只给出了平行四边形的三个顶点,并没有给出相应的顺序,故可能有三种不同的情形.【试题解析】如图所示,设A (-1,0),B (3,0),C (1,-5),D (x ,y ).① 若四边形ABCD 1为平行四边形,则1AD =BC ,而1AD =(x +1,y ),BC =(-2,-5).由1AD =BC ,得+2=51y x =--⎧⎨⎩,∴=53x y =--⎧⎨⎩,∴D 1(-3,-5).② 若四边形ACD 2B 为平行四边形,则AB =2CD .而AB =(4,0),2CD =(x -1,y +5). ∴+=1+045x y -=⎧⎨⎩,∴=55x y =-⎧⎨⎩,∴D 2(5,-5).③若四边形ACBD 3为平行四边形,则3AD =CB .而3AD =(x +1,y ),CB =(2,5),∴1+=52y x =⎧⎨⎩,∴=51y x =⎧⎨⎩,∴D 3(1,5).综上所述,平行四边形第四个顶点的坐标为(-3,-5)或(5,-5)或(1,5).1.要注意点的坐标和向量的坐标之间的关系,向量的终点坐标减去起点坐标就是向量坐标,当向量的起点是原点时,其终点坐标就是向量坐标.2.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.2.已知O 为四边形ABCD 所在的平面内的一点,且向量OA ,OB ,OC ,OD 满足等式OA OC OB OD +=+,若点E 为AC 的中点,则EABBCDS S =△△A .14B .12C .13D .23【答案】B【解析】∵向量OA ,OB ,OC ,OD 满足等式OA OC OB OD +=+, ∴OA OB OD OC -=-,即BA CD =,则四边形ABCD 为平行四边形,∵E 为AC 的中点,∴E 为对角线AC 与BD 的交点, 则EAB ECD ADE BCE S S S S ===△△△△,则12EAB BCD S S =△△,故选:B .错点3 忽视两向量夹角的范围已知向量(1,2),(,1)x ==a b(1)若,<>a b 为锐角,求x 的取值范围; (2)当(2)(2)+-⊥a b a b 时,求x 的值.【错解】(1)若,<>a b 为锐角,则0⋅>a b 且,a b 不同向.20x ⋅=+>a b ,∴2x >-.(2)由题意,可得2(12,4),(2)(2,3)x x +=+-=-a b a b , 又(2)(2)+-⊥a b a b ,(21)(2)340x x +-+⨯=,即223140x x -++=,解得72x =或2x =-. 【错因分析】(1)利用向量夹角公式即可得出,注意去掉同方向情况; (2)利用向量垂直与数量积的关系即可得出..【试题解析】(1)若,<>a b 为锐角,则0⋅>a b 且,a b 不同向.20x ⋅=+>a b ,∴2x >-.当12x =时,,a b 同向,122x x ∴>-≠且. 即若,<>a b 为锐角,的取值范围是{x |2x >-且12x ≠}. (2)由题意,可得2(12,4),(2)(2,3)x x +=+-=-a b a b ,又(2)(2)+-⊥a b a b ,(21)(2)340x x +-+⨯=,即223140x x -++=, 解得72x =或2x =-. 【参考答案】(1){x |2x >-且12x ≠};(2)72x =或2x =-.1.两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角,若起点不同,应通过移动,使其起点相同,再观察夹角.2.两向量夹角的范围为[0,π],特别地当两向量共线且同向时,其夹角为0,共线且反向时,其夹角为π.3.在利用向量的数量积求两向量的夹角时,一定要注意两向量夹角的范围.3.已知向量(,6)x =a ,(3,4)=b ,且a 与b 的夹角为锐角,则实数x 的取值范围为 A .[8,)-+∞B .998,,22⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭C .998,,22⎡⎫⎛⎫-+∞⎪ ⎪⎢⎣⎭⎝⎭D .(8,)-+∞【答案】Bx【解析】若∥a b ,则418x =,解得92x =. 因为a 与b 的夹角为锐角,∴92x ≠. 又324x ⋅=+a b ,由a 与b 的夹角为锐角, ∴0⋅>a b ,即3240x +>,解得8x >-. 又∵92x ≠,所以998,,22x ⎛⎫⎛⎫∈-+∞ ⎪ ⎪⎝⎭⎝⎭.故选B.【名师点睛】本题主要考查由向量夹角为锐角求参数的问题,熟记向量数量积的运算,以及向量共线的坐标表示即可,属于常考题型.易错点4 三角形的“四心”的概念混淆不清已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足+(+)OP OA AB AC λ=,λ∈(0,+∞),则点P 的轨迹一定通过ABC △的 A .内心 B .外心 C .重心D .垂心【错解】A【错因分析】对三角形“四心”的意义不明,向量关系式的变换出错,向量关系式表达的向量之间的相互位置关系判断错误等.【试题解析】由原等式,得OP OA -=(+)AB AC λ,即AP =(+)AB AC λ,根据平行四边形法则,知+AB AC 是ABC △的中线AD (D 为BC 的中点)所对应向量AD 的2倍, 所以点P 的轨迹必过ABC △的重心,故选C.【参考答案】C三角形的“四心”与平面向量1. 重心. 若点G 是ABC △的重心,则+=GA GB GC +0或1(+)3PG PA PB PC =+(其中P 为平面内任意一点).反之,若+=GA GB GC +0,则点G 是ABC △的重心.2. 垂心. 若H 是ABC △的垂心,则==HA HB HB HC HA HC ⋅⋅⋅或222222==HA BC HB AC HC AB +++.反之,若==HA HB HB HC HA HC ⋅⋅⋅,则点H 是ABC △的垂心.3. 内心. 若点I 是ABC △的内心,则有||+||+||BC IA AC IB AB IC ⋅⋅⋅=0.反之,若||+||+||BC IA AC IB AB IC ⋅⋅⋅=0,则点I 是ABC △的内心.4. 外心. 若点O 是ABC △的外心,则()()()OA OB AB OB OC BC OA OC AC +⋅=+⋅=+⋅=0或||||||OA OB OC ==.反之,若||||||OA OB OC ==,则点O 是ABC △的外心.4.G 是ABC △的重心,a 、b 、c 分别是角A 、B 、C 的对边,若33aGA bGB cGC ++=0,则角A = A .90° B .60° C .45° D .30°【答案】D【解析】因为G 是ABC △的重心,所以有GA GB GC ++=0.又3aGA bGB cGC ++=0,所以a ∶b ∶33c =1∶1∶1,设c =3,则有a =b =1,由余弦定理可得,cos A =1+3-123=32,所以A =30°,故选D.向量与三角形的交汇是高考常见题型,解题思路是用向量运算进行转化,化归为三角函数问题或三角恒等变形问题或解三角形问题.一、平面向量的概念及线性运算1.向量的有关概念2.向量的线性运算3.共线向量定理及其应用向量a(a≠0)与b共线,当且仅当有唯一的一个实数λ,使得b=λa.[提醒]限定a≠0的目的是保证实数λ的存在性和唯一性.二、平面向量基本定理及坐标表示1.平面向量的基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底;把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.2.平面向量的坐标表示在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,对于平面内的一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=x i+y j,这样,平面内的任一向量a 都可由x、y唯一确定,我们把(x,y)叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.3.平面向量的坐标运算(1)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则AB=(x2-x1,y2-y1).(2)向量加法、减法、数乘向量及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x2+x1,y2+y1),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=,|a+b(3)平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0.(4)向量的夹角已知两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.如果向量a与b的夹角是90°,我们说a与b垂直,记作a⊥b.三、平面向量的数量积1.平面向量的数量积(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos θ,规定零向量与任一向量的数量积为0,即0·a=0.(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积.2.平面向量数量积的运算律(1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律). 3.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a. (3)设A (x 1,y 1),B (x 2,y 2),则A ,B 两点间的距离|AB |=||AB. (4)夹角:cos θ=||||⋅⋅a b a b.(5)已知两非零向量a 与b ,a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,a ∥b ⇔a ·b =±|a ||b |. (6)|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|a|=,|a +b四、平面向量的应用 1.向量在平面几何中的应用 若a =(x 1,y 1),b =(x 2,y 2),(1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. (3)cos θ=||||⋅⋅a b a b.2.向量在三角函数中的应用向量与三角的交汇是高考常见题型,解题思路是用向量运算进行转化,化归为三角函数问题或三角恒等变形问题或解三角形问题. 3.向量在解析几何中的应用向量在解析几何中的应用,主要是以解析几何中的坐标为背景的一种向量描述.进而利用直线和圆锥曲线的位置关系的相关知识来解答. 4.向量在物理中的应用物理学中的力、速度、位移都是矢量,它们的分解、合成与向量的加减法相似,因此可以用向量的知识来解决某些物理问题.1.设,a b 是非零向量,则2=a b 是=a ba b成立的 A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B【解析】由2=a b 可知:,a b 方向相同,,a b a b 表示,a b 方向上的单位向量,所以=a ba b成立;反之不成立. 故选B.【名师点睛】本题考查了向量相等、单位向量以及充分、必要条件的判断.判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想求解外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题来解决.2.已知向量()(),,1,2x y ==-a b ,且()1,3+=a b ,则2-a b 等于 A .1 B .3 C .4D .5【答案】D【解析】由向量()(),,1,2x y ==-a b ,且()1,3+=a b ,则()()1,21,3x y +=-+=a b ,解得2,1x y ==,所以()()2,1,1,2==-a b ,所以()()()22,121,24,3-=--=-a b ,所以25-==a b .故答案为D.【名师点睛】本题主要考查向量的坐标运算和向量的模的计算,意在考查学生对这些知识的掌握水平和分析推理能力.先根据已知求出x ,y 的值,再求出2-a b 的坐标和2-a b 的值.3.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B . 【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.4.【2019年高考全国II 卷理数】已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .−3 B .−2 C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.5.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,即22||||AB AC AC AB +>-,因为AC AB BC -=,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C . 【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归数学思想.6.【2018年高考全国I 卷理数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+,所以3144EB AB AC =-. 故选A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算. 7.如图所示,点,,A B C 是圆O 上的三点,线段OC 与线段AB 交于圆内一点P ,若,3AP AB OC OA OB λμμ==+,则λ的值为A .56 B .45 C .34D .25【答案】C【解析】∵AP OP OA =-,OP 和OC 共线, ∴存在实数m ,使3OP mOC m OA m OB μμ==+,∴3AP m OA m OB OA μμ=+-=()13m OA m OB OA OB μμλλ-+=-+. ∴13m m μλμλ-=-⎧⎨=⎩,解得34λ=.故选C .【名师点睛】本题考查向量的减法运算,共线向量基本定理,共面向量基本定理.根据向量的减法运算及共线向量基本定理,可以用向量OAOB,表示向量AP =()13m OA m OB μμ-+,并根据已知条件AP AB OA OB λλλ==-+,这样即可建立关于λ的方程,解方程即可得到λ.向量的主要应用体现在以下几方面:(1)向量的运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题;(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法; (3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题; ②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 8.已知向量,a b 满足0,m ⋅=+=a b a b a ,若+a b 与-a b 的夹角为2π3,则m 的值为A .2BC .1D .12【答案】A 【解析】0,0m m +=>∴>a b a ,又0,,m ⋅=∴⊥-=+=a b a b a b a b a ,22222m ∴+⋅+=a a b b a ,()2221m =-b a ,()()2cos π3+⋅-=+-⨯a b a b a b a b 222cos π3⇒-=+-⨯a b a b a b , 12m m ⎛⎫⇒⨯⨯- ⎪⎝⎭a a ()2211m ⎡⎤=--⎣⎦a ,即22122m m -=-,得24,2m m ==或2m =-(舍去),故m 的值为2. 故选A.【名师点睛】(1)本题主要考查向量的模及平面向量数量积公式,属于中档题,由0,m ⋅=+=a b a b a 求得m -=+=a b a b a ,()2221m =-b a ,结合+a b 与-a b 的夹角为2π3,可得22122m m -=-,从而可得结果.(2)平面向量数量积的公式有两种形式: 一是cos θ⋅=a b a b ; 二是1212x x y y ⋅=+a b .(3)平面向量数量积的公式的主要应用有以下几个方面: ①求向量的夹角,·cos ·θ=a ba b (此时·a b 往往用坐标形式求解); ②求投影,a 在b 上的投影是⋅a bb; ③若向量,a b 垂直,则0⋅=a b ;④求向量m n +a b 的模(平方后需求⋅a b ).9.已知P 是ABC △所在平面内一点,2PB PC PA ++=0,现将一粒黄豆随机撒在ABC △内,则黄豆落在PBC △内的概率是A .23 B .12 C .13D .14【答案】B【解析】以PB 、PC 为邻边作平行四边形PBDC ,则2PB PC PD PB PC PA +++0=,=,∴2PB PC PA +-=,得:2PD PA -=,由此可得,P 是△ABC 边BC 上的中线AO 的中点,所以点P 到BC 的距离等于A 到BC 的距离的12,∴12PBC ABC S S =△△ . 将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为12PBC ABC S P S ==△△. 故选B.【名师点睛】本题给出点P 满足的条件,求P 点落在△PBC 内的概率,着重考查了平面向量加法法则、向量共线的充要条件和几何概型等知识,属于基础题.根据向量加法的平行四边形法则,结合共线向量充要条件,得点P 是△ABC 边BC 上的中线AO 的中点.再根据几何概型公式,将△PBC 的面积与△ABC 的面积相除可得本题的答案.10.在ABC △中,∠ABC =120°,BA =2,BC =3,D ,E 是线段AC 的三等分点,则BD ⃗⃗⃗⃗⃗⃗ ⋅BE⃗⃗⃗⃗⃗ 的值为 A .659B .119 C .419D .−139【答案】B【解析】因为D ,E 是线段AC 的三等分点,所以BD ⃗⃗⃗⃗⃗⃗ =23BA ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ , BE ⃗⃗⃗⃗⃗ =13BA ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ ;所以BD ⃗⃗⃗⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗ =(23BA ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ )⋅(13BA ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ )=29BA ⃗⃗⃗⃗⃗ 2+29BC ⃗⃗⃗⃗⃗ 2+59BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =89+2+59×2×3cos120°=89+2−159=119. 故选B.11.如图,在ABC △中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 表示CE⃗⃗⃗⃗⃗ 为A .CE ⃗⃗⃗⃗⃗ =29AB ⃗⃗⃗⃗⃗ +89AC ⃗⃗⃗⃗⃗ B . CE ⃗⃗⃗⃗⃗ =29AB ⃗⃗⃗⃗⃗ −89AC ⃗⃗⃗⃗⃗ C . CE⃗⃗⃗⃗⃗ =29AB ⃗⃗⃗⃗⃗ +79AC ⃗⃗⃗⃗⃗D . CE⃗⃗⃗⃗⃗ =29AB ⃗⃗⃗⃗⃗ −79AC ⃗⃗⃗⃗⃗ 【答案】B【解析】由题意可得,CE ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ =−AC ⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗ =−AC ⃗⃗⃗⃗⃗ +13(AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ )=−AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ +13BD ⃗⃗⃗⃗⃗⃗ =−AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ +19BC ⃗⃗⃗⃗⃗ =−AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ +19AC ⃗⃗⃗⃗⃗ −19AB ⃗⃗⃗⃗⃗ =29AB⃗⃗⃗⃗⃗ −89AC ⃗⃗⃗⃗⃗ .故选B . 12.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OAOB =,2·I OB OC =,3·I OC OD =,则A .123I I I <<B .132I I I <<C .312I I I <<D .213I I I <<【答案】C【解析】因为90AOB COD ∠=∠>,OA OC <,OB OD <,所以0OB OC OA OB OC OD ⋅>>⋅>⋅, 故选C .【名师点睛】平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.本题通过所给条件结合数量积运算,易得90AOB COD ∠=∠>,由AB =BC =AD =2,CD =3,可求得OA OC <,OB OD <,进而得到312I I I <<. 13.已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是A .2-B .32-C . 43-D .1-【答案】B【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-,(1,)PB x y =---,(1,)PC x y =--,所以(2,2)PB PC x y +=--,22()22)22(PA PB PC x y y x y ⋅+=-=+-23322-≥-,当P 时,所求的最小值为32-,故选B .【名师点睛】平面向量中有关最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.14.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为A .3B .CD .2【答案】A【解析】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+, 则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤≤13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A.【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若2=-c a ,则cos ,=a c ___________. 【答案】23【解析】因为2=c a ,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c . 【名师点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.16.【2019年高考天津卷理数】在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=___________. 【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则0)B,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BEy x =-, 直线AE的斜率为-y x =.由3y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -.所以35(,)(3,1)122BD AE =-=-.【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.17.已知向量a =(cos(π3+α),1),b =(1,4),如果∥a b ,那么cos(π3−2α)的值为___________.【答案】78【解析】由∥a b ,得4cos(π3+α)−1=0,cos(π3+α)=14,故cos(π3−2α)=cos(2α−π3)=cos[2(α+π3)−π]=−cos2(α+π3)=−[2cos 2(α+π3)−1]=−[2×(14)2−1]=78,故填78. 18.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________.【答案】【解析】方法一:222|2|||44||4421cos 60412+=+⋅+=+⨯⨯⨯+=a b a a b b ,所以|2|+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.19.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是___________.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.20.在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,AE AC λ=-()AB λ∈R ,且4AD AE ⋅=-,则λ的值为___________.【答案】311【解析】由题可得1232cos603,33AB AC AD AB AC ⋅=⨯⨯︒==+,则12()33AD AE AB AC ⋅=+2123()34934333311AC AB λλλλ-=⨯+⨯-⨯-⨯=-⇒=.【名师点睛】根据平面向量基本定理,利用表示平面向量的一组基底可以表示平面内的任一向量,利用向量的定比分点公式表示向量,则可获解.本题中,AB AC 已知模和夹角,作为基底易于计算数量积.21.在Rt ABC △中,∠A =π2,AB =1,AC =2,M 是ABC △内一点,且AM =12,若AM ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,则λ+2μ的最大值为___________.【答案】√22【解析】由题意,得(λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ )2=AM ⃗⃗⃗⃗⃗⃗ 2=14,即λ2+4μ2=14,且λ>0,μ>0,则λ+2μ=√(λ+2μ)2=√λ2+4μ2+4λμ≤√2(λ2+4μ2)=√22(当且仅当=2λμ时取等号);故填√22.22.已知12,e e 是互相垂直的单位向量,与的夹角为60︒,则实数的值是___________.【解析】∵221212112122)()λλλλ-⋅+=⋅-⋅-=e e e e e e e ,12||2-===e ,12||λ+===e ecos60λ=︒=λ=【名师点睛】(1)平面向量a 与b 的数量积为||||cos θ⋅=a b a b ,其中是a 与b 的夹角,要注意夹角的定义和它的取值范围:. (2)由向量的数量积的性质有||=a cos ||||θ⋅=a ba b ,0⋅=⇔⊥a b a b ,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(3)本题主要利用向量的模与向量运算的灵活转换,应用平面向量的夹角公式,建立关于的方程求解.23.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是___________;最大值是___________.【答案】0;12-e 12λ+e e λ∴θ0180θ︒≤≤︒λ, AB AD则(1,0),(0,1),(1,0),(0,1),(1,1),(1,1)AB BC CD DA AC BD ===-=-==-()21234561356AB BC CD DA AC BD λλλλλλλλλλ=+++++=-+-≥(1,2,3,4,5,6)i i λ=可取遍1±,所以当1256341,1λλλλλλ======-时,有最大值max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________。
微专题5数学工具——平面向量在解题中的应用

设 =e,=a,=b,=3e,=2e,则⊥,
∴点 B 在以 M 为圆心,1 为半径的圆上运动.
∵|a-b|=||,∴|a-b|的最小值即点 B 到射线 OA 的距离的最小值,为
圆心 M 到射线 OA 的距离减去圆的半径.
值为-3,则此双曲线的焦距为( D ).
A.2
C.2 5
B.4
D.2 7
14
目录
【解析】设 P(x0,y0),F1(-c,0),F2(c,0),则
1 ·2 =(-c-x0,-y0)·(c-x0,-y0)=(-c-x0)(c-x0)+02 =02 +02 -c2,
02 +02 表示点 P 到原点距离的平方,当点 P 为双曲线顶点时取得最小
所以 f(x)=a·(b+c)=(cos 2x,cos x)·(1,-2 3)
=cos 2x-2 3cosx=2cos2x-2 3cosx-1=2 cosxπ
3
1
2
3 2 5
- .
2
2
又 x∈ 0, ,所以 cosx∈ ,1 ,
3
π
5
所以当 cosx= ,即 x= 时,f(x)取到最小值,最小值为- .
4 2
B.
8
目录
二、平面向量与解析几何的综合
学 基础知识
9
目录
例 2 (一题多解)(2018 年浙江卷)已知 a,b,e 是平面向量,e 是单位向
量.若非零向量 a 与 e
π
的夹角为 ,向量
3
b 满足 b2-4e·b+3=0,则|a-b|的
最小值是( A ).
平面向量的应用(重难点突破)解析版

专题03 平面向量的应用一、考情分析高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用.1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换.二、经验分享1.向量的有关概念2.向量的线性运算三角形法则(1)|λa|=|λ||a|;3.如果有一个实数λ,使b=λa(a≠0),那么b与a是共线向量;反之,如果b与a(a≠0)是共线向量,那么有且只有一个实数λ,使b=λa.4、平面向量基本定理(1)平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键.(2)平面向量共线的坐标表示两向量平行的充要条件若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是a=λb,这与x1y2-x2y1=0在本质上是没有差异的,只是形式上不同.(3)三点共线的判断方法:判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定. 失误与防范要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0. 5、平面向量的数量积已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做向量a 和b 的数量积(或内积),记作a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a 与b 垂直的充要条件是a·b =0,两个非零向量a 与b 平行的充要条件是a·b =±|a||b|. 6、平面向量数量积的几何意义数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 7、平面向量数量积的重要性质 (1)e·a =a·e =|a |cos θ;(2)非零向量a ,b ,a ⊥b ⇔a·b =0; (3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|,a·a =a 2,|a |=a·a ; (4)cos θ=a·b |a||b|;(5)|a·b |≤|a||b|.8、平面向量数量积满足的运算律 (1)a·b =b·a (交换律);(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c .9、平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. 10、主要问题归类与方法:1)几何图形中的向量关系与计算问题方法1:基底法,选择适当的基底,把所研究的向量用基底表示;方法2:坐标法,建立适当的坐标系,找到图形中各点的坐标,从而求出各向量的坐标. 2)方法选择与优化建议:解决这类问题的基本方法是:(1)基底法;(2)坐标法.第(1)题用基底法,方便,第(2)题的两种解法总体难度相当,坐标法相对比较好想一点.三、题型分析(一)平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来. (2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系; ④化简结果.例1.(1)【四川省2020届高三适应性考试数学试题】在平面四边形中,满足,则四边形是( )A .矩形B .正方形C .菱形D .梯形【答案】C 【解析】因为,所以,所以四边形是平行四边形,又,所以四边形的对角线互相垂直,所以四边形是菱形.(2).【广东省2019届高三适应性考试数学试题】已知ABC △中,点M 是边BC 的中点,若点O 满足23OA OB OC ++=0,则ABCD 0,()0AB CD AB AD AC +=-⋅=ABCD 0AB CD +=AB CD DC =-=ABCD ()0AB AD AC DB AC -⋅=⋅=ABCDA .0OM BC ⋅=B .0OM AB ⋅=C .OM BC ∥D .OM AB ∥【答案】D【解析】由点M 是边BC 的中点,可得2OM OB OC =+,由23OA OB OC ++=0,可得OA OC ++2(OB OC +)23OA OB OA +=-+4OM =0, 即2(OA OB -)+12OM =0,可得AB =6OM ,即OM ∥AB , 故选D .【名师点睛】本题考查向量的中点表示,以及向量的加减运算和向量共线定理的运用,考查化简运算能力,属于基础题.解答时,由向量的中点表示和加减运算、以及向量的共线定理,即可得到结论. 【变式训练1】.【湖师范大学附属中学2020届高三数学试题】如图所示,在正方形ABCD 中,E 为AB 的 中点,F 为CE 的中点,则AF =A .3144AB AD + B .1344AB AD +C .12AB AD + D .3142AB AD + 【答案】D【解析】根据题意得:1()2AF AC AE =+,又AC AB AD =+,12AE AB =,所以1131()2242AF AB AD AB AB AD =++=+.故选D.【名师点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.【变式训练2】..(2020·北京高二学业考试)如果正的边长为1,那么等于A .B .C .1D .2【答案】B 【解析】 正的边长为1,,故选:B .(二)平面向量的坐标运算(平行与垂直):例2.【福建省宁德市2020届高三毕业班第二次(5月)质量检查考试数学试题】若已知向量()1,2=-a ,()1,m =-b ,若//a b ,则⋅a b 的值为A .5B .4C .4-D .5-【答案】D【解析】∵向量()1,2=-a ,()1,m =-b ,且//a b , ∴20m -=,即()1,2=-b ,∴145⋅=--=-a b ,故选D.【名师点睛】本题考查平面向量的坐标运算,涉及向量平行的充要条件,数量积坐标运算,考查计算能 【变式训练1】.(2020·上海外国语大学附属大境中学高二期末)已知为两个单位向量,那么下列四个命题中正确的是( ) A . B .若,则C .D .【答案】D 【解析】若,则,且方向相同中,方向未规定;中,方向相同或相反,均不能得到,则错误; 中,,错误;中,, ,正确.故选:【变式训练2】.(2019·河南高三月考)设向量,,且,则实数的值为( ) A . B .C .D .【答案】D 【解析】,解得:本题正确选项:【变式训练3】.(2020·浙江高三月考)设向量,若向量与向量垂直,则实数的值为( ),a b a b =//a b a b =1a b ⋅=22a b =a b =a b =,a b A ,a b B ,a b a b =,A B C []cos ,cos ,1,1a b a b a b a b ⋅=<>=<>∈-C D 221a a ==221b b==22a b ∴=D D ()4,2a =()2,1b k k =--a b ⊥k 1-123a b ⊥()()4221260a b k k k ∴⋅=-+-=-+=3k =D (1,2),(1,1)a b ==-a λb +a λA .B .1C .D .【答案】D【解析】由已知得,向量与向量垂直,.即,解得.故选D.(三)平面向量数量积的类型及求法:(1)平面向量数量积有两种计算公式:一是夹角公式⋅=a b ||||cos θa b ;二是坐标公式⋅=a b 1212x x y y +.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. (3)两个应用:①求夹角的大小:若a ,b 为非零向量,则由平面向量的数量积公式得cos θ=||||⋅a ba b (夹角公式),所以平面向量的数量积可以用来解决有关角度的问题.②确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.例3.(1).【2019年高考天津卷理数】在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.例3.(1)(2020·河南高三月考)已知的重心恰好在以边为直径的圆上,若,则( )A .1B .2C .3D .4【答案】B431-5-(1,2)a b λλλ+=-+a λb +a ()0a b a λ∴+⋅=(1)1(2)20λλ-⨯++⨯=5λ=-ABC ∆G AB 8AC CB ⋅=-AB =【解析】设的中点为,则.因为的重心恰好在以边为直径的圆上,所以且,解得.(2).【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在矩形ABCD 中,4AB ,2AD =.若点M ,N 分别是CD ,BC 的中点,则AM MN ⋅= A .4 B .3C .2D .1【答案】C【解析】由题意作出图形,如图所示:由图及题意,可得:12AM AD DM AD AB =+=+, 1122MN CN CM CB CD =-=-11112222BC DC AD AB =-+=-+.AB M 2GA GB GM +=ABC ∆G AB 0GA GB ⋅=2.GC GM AC CB =-⋅()()AG GC CG GB =+⋅+2AG CG GC AG GB GC GB =⋅-+⋅+⋅2()GC GA GB GC =⋅+-2222GC GM GC GC =⋅-=-22||8AB =-=-||2AB=∴111222AM MN AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭221111||||41622424AD AB =-⋅+⋅=-⋅+⋅=. 故选:C .【名师点睛】本题主要考查基底向量的设立,以及向量数量积的运算,属基础题.【变式训练1】.(2020·黑龙江大庆一中高考模拟)已知向量,,且,则实数_____. 【答案】1 【解析】;故答案为:.【变式训练2】(2020·陕西省黄陵县中学高一期末)已知向量,,则与的夹角等于_______. 【答案】【解析】cos θ=1||||2a b a b ⋅-==又由两向量夹角的范围是0[0,180]0150θ∴=.(四)平面向量的模及其应用的类型与解题策略:(1)求向量的模.解决此类问题应注意模的计算公式||==a,或坐标公式||=a,8a m =()3,2b -=()()a b b +⊥m =()3,6;a b m +=+()a b b +⊥()()•33120;a b b m ∴+=+-=1.m ∴=1(1,3a =-()3,1b =-a b 150(2)求模的最值或取值范围.解决此类问题通常有以下两种方法:①几何法:利用向量加减法的平行四边形法则或三角形法则,结合模的几何意义求模的最值或取值范围;②代数法:利用向量的数量积及运算法则转化为不等式或函数求模的最值或取值范围. (3)由向量的模求夹角.对于此类问题的求解,其实质是求向量模方法的逆运用.例4.(山东省安丘市、诸城市、五莲县、兰山区2020届高三5月校际联合考试数学试题)已知1=a ,=b ,且()⊥-a a b ,则向量a 在b 方向上的投影的数量为A .1BC .12D 【答案】D【解析】由()⊥-a a b 得()0⋅-=a a b ,所以1⋅=⋅=a b a a ,所以向量a 在b 方向上的投影的数量为cos ,2⋅===a b a a b b , 故选D.【名师点睛】本题主要考查向量的投影,熟记向量数量积的几何意义即可,属于常考题型.求解时,先由()⊥-a a b 求出⋅a b ,再由cos ,a a b 即可求出结果.【变式训练1】已知向量,a b 满足2(1,2),(1,)m m +==a b b ,且a 在b ,则实数m =A .2±B .2C .D【答案】A【解析】因为向量,a b 满足2(1,2),(1,)m m +==a b b ,22(0,)m =+-=a a b b ,所以20,,22m m ⎛⎫=⋅= ⎪⎝⎭a ab ,设向量,a b 的夹角为θ,则2||(||cos )2m==⋅=θb a a b , 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选A.【名师点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是cos ⋅=θa b a b ,二是1212x x y y ⋅=+a b ,主要应用以下几个方面:(1)求向量的夹角,cos ⋅=⋅θa ba b (此时⋅a b 往往用坐标形式求解); (2)求投影,a 在b 上的投影是⋅a bb; (3)若向量,a b 垂直,则0⋅=a b ;(4)求向量m n +a b 的模(平方后需求⋅a b ). 【变式训练2】已知向量,a b 满足1=a ,,2t t b,-a b 与a 垂直,则-a b 的最小值为A .2B .1CD .2【答案】B【解析】由题意知-a b 与a 垂直,则()0-⋅=a b a ,可得21⋅==a b a .又由-=a b 所以当1t =时,-a b 取得最小值1. 故选B .【名师点睛】本题主要考查了向量的数量积的运算及其应用,以及向量的垂直条件和向量的模的计算,其中解答中熟记向量的模、数量积和向量的坐标运算,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.求解时,根据向量的模与数量积的运算,求得-=a b(五)向量与平面几何综合问题的解法:(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.例5、已知向量a ,b ,c 是同一平面内的三个向量,其中a ,b 是夹角为60°的两个单位向量.若向量c 满足c ·(a +2b )=-5,则|c |的最小值为 .【答案】.577【解析】解法1(基向量和定义法):因为2|2|(2)a b a b +=+=2244a b ab ++==,设c 与a +2b 的夹角为θ,由c ·(a +2b )=-5得:|||2|cos c a b θ⨯+=-5,即||c =1cos 0θ-≤<,所以,当cos 1θ=-时,|c |的最小值为577.解法2(坐标法):建立平面直角坐标系,设 a (1,0)=,b 1,22⎛= ⎝⎭,c (,)x y =,因为c ·(a +2b )=-5,所以(,)5x y ⋅=-,即250x ++=,所以点(,)C x y 为直线250x ++=上的动点,又|c |OP == (O 为坐标原点),所以|c |的最小值即为坐标原点到直线250x ++=的距离,即|c |min ==. 【变式训练1】在△ABC 中,AB =3,AC =2,∠BAC =120°,BM →=λBC →.若AM →·BC →=-173,则实数λ的值为________. 【答案】13【解析】解法1(基底法) 因为AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=λAC →+(1-λ)AB →,所以AM →·BC →=[λAC →+(1-λ)AB →]·(AC →-AB →)=λ|AC →|2+(λ-1)|AB →|2+(1-2λ)AB →·AC →=4λ+9(λ-1)+(1-2λ)×2×3×cos 120°=19λ-12=-173,解得λ=13.解法2(坐标运算法) 建立如图所示的平面直角坐标系,由题意有,A(0,0),B(3,0),C(-1,3),设点M 的坐标为(x ,y),则(x -3,y)=λ(-1-3,3),即⎩⎨⎧x =3-4λ,y =3λ,故AM →·BC →=(3-4λ,3λ)·(-4,3)=19λ-12=-173,解得λ=13.(六) 平面向量数量积中的隐圆问题通过建系运用相关点法即可求得点的轨迹方程,通过点的轨迹方程发现其轨迹是一个圆,接下来问题就转化为定点与圆上的动点的距离的最小值问题,那就简单了.一般与动点有关的最值问题,往往运用轨迹思想,首先探求动点的轨迹,在了解其轨迹的基础上一般可将问题转化为点与圆的关系或直线与圆的关系或两圆之间的关系.例6、已知△ABC 是边长为3的等边三角形,点P 是以A 为圆心的单位圆上一动点,点Q 满足AQ →=23AP →+13AC →,则|BQ →|的最小值是________. 【答案】 7-23【解析】解法1 以A 为原点,AB 为x 轴建立平面直角坐标系,则AB →=(3,0),AC →=⎝⎛⎭⎫32,332,设Q (x ,y ),P (x ′,y ′),由AQ →=23AP →+13AC →,得AQ →=⎝⎛⎭⎫23x ′+12,23y ′+32,即⎩⎨⎧x =23x ′+12,y =23y ′+32,所以⎩⎨⎧23x ′=x -12,23y ′=y -32,两式平方相加得⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -322=49(x ′2+y ′2),因为点P (x ′,y ′)在以A 为圆心的单位圆上,所以x ′2+y ′2=1,从而有⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -322=49,所以点Q 是以M ⎝⎛⎭⎫12,32为圆心,R =23的圆上的动点,因此BQ min =BM -R =⎝⎛⎭⎫3-122+⎝⎛⎭⎫0-322-23=7-23.【变式训练1】 已知|OA →|=|OB →|=2,且OA →·OB →=1.若点C 满足|OA →+CB →|=1,则|OC →|的取值范围是________. 【答案】[6-1,6+1]【解析】如图,以OA ,OB 为邻边作平行四边形OADB ,则OD →=OA →+OB →,因为|OA →|=|OB →|=2,OA →·OB →=1,所以|OD →|=|OA →+OB →|=()2OA OB+=222OA OA OB OB ++=6,由|OA →+CB →|=1得|OA →+CB →|=|OA →+OB →-OC →|=|OD →-OC →|=|CD →|=1,所以点C 在以点D 为圆心,1为半径的圆上,而|OC →|表示点C 到点O 的距离,从而|OD →|-1≤|OC →|≤|OD →|+1,即6-1≤|OC →|≤6+1,即|OC →|的取值范围是[6-1,6+1].【变式训练2】已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,AB =8,CD =6,则MA →·MB →的取值范围是________. 【答案】[-9,0]【解析】思路分析1 注意到圆是中心对称图形,因此,利用圆心来将所研究的向量关系进行转化,进而将问题转化为研究MO →的模的问题来进行求解.思路分析2 注意到这是与圆有关的问题,而研究与圆有关的问题在坐标系中研究较为方便,因此,通过建立直角坐标系,将问题转化为向量的坐标来进行求解.解法1 因为MA →=MO →+OA →,MB →=MO →+OB →,又OB →=-OA →,因此MA →·MB →=MO →2+MO →·(OA →+OB →)+OA →·OB →=MO →2-OA →2=MO →2-16.因为M 是弦CD 上的动点,所以MO max =4,此时点M 在圆上,MO min =16-9=7,此时点M 为弦CD 的中点,故MA →·MB →∈[-9,0].解法2 以AB 所在的直线为x 轴,它的垂直平分线为y 轴,建立平面直角坐标系,设M (x ,y ),则A (4,0),B (-4,0),从而MA →=(4-x ,-y ),MB →=(-4-x ,-y ),故MA →·MB →=x 2+y 2-16.又因为点M 为弦CD 上的动点,且CD =6,所以7=16-9≤x 2+y 2≤16,其中最小值在CD 的中点时取得,所以MA →·MB →的取值范围是[-9,0].。
《平面向量的应用》课件

向量的模表示向量的长度,可以通过坐标表示计算得出。具体计算公式为$sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,其中$(x_1, y_1)$和$(x_2, y_2)$分别是向量的起点和终点的坐标。
向量加法和数乘可以通过坐标表示进行计算,遵循平行四边形法则和数乘的分配律。
详细描述
总结词
向量的大小或模定义为向量起点到终点的距离。
总结词
向量的模是表示向量大小的数值,可以通过勾股定理计算得到。向量的模具有几何意义,表示向量起点到终点的距离。
详细描述
向量小。
总结词
向量的加法是将两个有向线段首尾相接,形成一个新的有向线段。数乘则是将一个向量放大或缩小,保持方向不变。通过向量的加法和数乘,可以组合多个向量,形成复杂的向量关系。
平面向量的应用实例
03
速度和加速度
在匀速圆周运动和平抛运动等物理问题中,可以利用平面向量表示速度和加速度,进而分析运动规律。
力的合成与分解
通过向量加法、数乘和向量的数量积、向量的向量积等运算,可以方便地表示出力的合成与分解过程,进而分析物体的运动状态。
力的矩
矩是一个向量,可以利用平面向量表示力矩,进而分析转动效果。
总结词:平面向量在解决几何问题中具有广泛的应用,如向量的加法、减法、数乘等运算可以用于解决长度、角度、平行、垂直等问题。
总结词:平面向量在解决代数问题中具有广泛的应用,如向量的模长、向量的数量积、向量的向量积等运算可以用于解决方程组、不等式等问题。
总结词
通过平面直角坐标系,可以将向量表示为有序实数对。
详细描述
在平面直角坐标系中,任意一个向量可以由其起点和终点的坐标确定,并表示为有序实数对。例如,向量$overset{longrightarrow}{AB}$可以表示为$(x_2 - x_1, y_2 - y_1)$。
平面向量的应用与解析方法总结

平面向量的应用与解析方法总结平面向量是数学中重要且广泛应用的概念。
它是一种具有大小和方向的量,常用于描述平面上的运动、力学和几何等问题。
通过对平面向量的应用和解析方法的研究,我们可以更好地理解和解决与平面向量相关的问题。
本文将对平面向量的应用以及解析方法进行总结和探讨。
一、平面向量的应用1. 平面运动学平面向量在运动学中有着广泛的应用。
我们可以用平面向量来描述物体在平面上的位移、速度和加速度等概念。
通过计算位移向量、速度向量和加速度向量,我们可以更准确地描述物体在平面上的运动状态,并解决与平面运动相关的问题。
2. 平面力学平面向量在力学中也有重要的应用。
我们可以将力看作是一种平面向量,通过对多个力的叠加,可以求解物体所受合力的大小和方向。
同时,平面向量也可以应用于解决平衡力的问题,通过将各个力的合力等于零,可以求解物体所处的平衡状态。
3. 平面几何平面向量在几何中也有着广泛的应用。
我们可以用向量表示线段、三角形、四边形等几何图形,通过向量的运算和性质,可以更方便地证明和推导相关的几何定理。
同时,平面向量还可以应用于解决几何问题,如判断点是否在直线上、判断线段是否相交等。
二、平面向量的解析方法平面向量的解析方法是一种通过坐标表示向量的方法,可以将向量问题转化为代数问题,从而更好地解决与平面向量相关的计算和推导。
平面向量的解析方法主要包括向量的表示、向量的运算和向量的性质。
1. 向量的表示在平面直角坐标系中,任意向量都可以表示为一个有序数对。
如向量→AB可以表示为(ABx, ABy),其中ABx和ABy分别表示向量在x轴和y轴上的投影长度。
利用向量的表示,我们可以将向量问题转化为坐标计算问题,更方便地进行分析和解决。
2. 向量的运算平面向量的运算包括加法、减法、数量乘法和点乘法。
向量的加法和减法分别是将对应坐标相加和相减,得到新向量的坐标表示。
数量乘法是将向量的每个坐标都乘以一个实数,得到新向量的坐标表示。
平面向量的应用(解析版)

平面向量的应用(解析版)平面向量的应用(解析版)平面向量是数学中一个重要的概念,它在现实生活中有着广泛的应用。
本文将通过解析的方式介绍平面向量的应用。
以下是几个实际问题,通过解析平面向量可以得到解决。
1. 物体运动的描述在物理学中,我们经常需要描述物体的运动。
平面向量可以用来描述物体在平面上的位置和运动情况。
我们可以用一个有向线段来表示一个物体的位移,该有向线段的长度表示位移的大小,而箭头的指向表示位移的方向。
通过将位移向量进行相加、相减和缩放等运算,可以得到物体相对于某一初始位置的位置矢量,从而描述物体的运动轨迹和速度等信息。
2. 力的合成和分解在力学中,我们经常需要计算合力和分力的情况。
平面向量可以用来描述物体受到的力以及力的作用方向。
对于多个力的合力,我们可以通过将这些力的向量相加得到。
同样地,对于一个力的分解,我们可以将该力的向量按照一定比例分解为多个力的向量。
通过使用平面向量,我们可以更加方便地计算合力和分力的大小和方向。
3. 平面图形的性质在几何学中,平面向量可以用来描述和证明平面图形的性质。
例如,通过向量的加法可以证明平行四边形的对角线互相平分;通过向量的减法可以证明平行四边形的对边相等;通过向量的数量积可以计算平面图形的面积;通过向量的夹角可以判断平面图形是否垂直或平行等等。
平面向量在解析几何中起到了重要的作用,使得我们能够更加简单地研究平面图形的性质。
4. 导航和地图定位在导航和地图定位中,平面向量可以用来表示位置和方向。
我们可以将某一固定点作为原点,建立一个坐标系,通过向量来表示目标位置相对于原点的位置矢量。
同时,我们也可以通过向量的加法和缩放来表示导航的方向和距离。
通过平面向量,我们可以更加准确地确定目标位置,并指导我们的行进方向。
总结:平面向量的应用涉及到物理学、力学、几何学、导航和地图等多个领域。
通过解析平面向量,我们可以更加方便地描述物体的运动,计算合力和分力,研究平面图形的性质,以及进行导航和地图定位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题05 平面向量第十二讲 向量的应用答案部分2019年1.3 【解析】设()2AD AB A AO C λλ==+,1()(1)3AO AE EO AE EC AE AC AE AE AC AB AC μμμμμμ-=+=+=+-=-+=+,所以1232λμλμ-⎧=⎪⎪⎨⎪=⎪⎩,解得1214λμ⎧=⎪⎪⎨⎪=⎪⎩,所以11()24AO AD AB AC ==+,13EC AC AE AB AC =-=-+, 221131266()()()43233AO EC AB AC AB AC AB AB AC AC ⋅=⨯+⨯-+=-+⋅+=221322AB AB AC AC -+⋅+, 因为221322AB AC AB AB AC AC ⋅=-+⋅+,所以221322AB AC =,所以223AB AC=,所以3ABAC=. 2.0 25 【解析】正方形ABCD 的边长为1,可得AB AD AC +=,BD AD AB =-,0AB AD ⋅=,123456||AB BC CD DA AC BD λλλλλλ+++++12345566||AB AD AB AD AB AD AD AB λλλλλλλλ=+--+++- 13562456|()()|AB AD λλλλλλλλ=-+-+-++ 2213562456()()λλλλλλλλ=-+-+-++,由于(1,2,3,4,5,6)i i λ=2,3,4,5,取遍1±,可得13560λλλλ-+-=,24560λλλλ-++=,可取5613241,1,1,1λλλλλλ=====-=,可得所求最小值为0;由13564λλλλ-+-=,24564λλλλ-++=,可取2456131,1,1,1,1,λλλλλλ==-====-可得所求最大值为3.-1 【解析】因为AB BE =,//AD BC ,30A ∠=,所以在等腰三角形ABE 中,120BEA ∠=,又AB =,所以25BE AD =-. 因为AE AB BE =+,所以25AE AB AD =-. 又BD BA AD AB AD =+=-+, 所以()22272555BD AE AB AD AB AD AB AB AD AD ⎛⎫⋅=-+⋅-=-+⋅-= ⎪⎝⎭2272cos 55AB AB AD A AD -+⋅-=7212525155-+⨯⨯-⨯=-. 2015-2018年1.A 【解析】以A 为坐标原点,AB 所在直线为x 轴,建立如图的平面直角坐标系,因为在平面四边形ABCD 中,1AB AD ==,120BAD ∠=︒, 所以(0,0)A ,(1,0)B,1(,22D -,设(1,)C m ,(,)E x y , 所以3(,2DC m=,1(2AD =-, 因为AD CD ⊥,所以31(,(022m ⋅-=,即31()02222m ⨯-+-=,解得m =C , 因为E 在CD上,所以2y ≤,由CE CD k k =,2112=+,即2x =-, 因为(,)AE x y =,(1,)BE x y =-,所以2222(,)(1,)2)2AE BE x y x y x x y y ⋅=⋅-=-+=--++246y =-+,令2()46f y y =-+,y ∈.因为函数2()46f y y =-+在上单调递减,在上单调递增,所以2min 21()4(68816f y =⨯-+=. 所以⋅AE BE 的最小值为2116,故选A . 2.A 【解析】解法一 设O 为坐标原点,OA =a ,(,)OB x y ==b ,=(1,0)e ,由2430-⋅+=b e b 得22430x y x +-+=,即22(2)1x y -+=,所以点B 的轨迹是以(2,0)C 为圆心,l 为半径的圆.因为a 与e 的夹角为3π,所以不妨令点A在射线y =(0x >)上,如图,数形结合可知min ||||||31CA CB -=-=-a b .故选A .解法二 由2430-⋅+=b e b 得2243()(3)0-⋅+=-⋅-=b e b e b e b e .设OB =b ,OE =e ,3OF =e ,所以EB -=b e ,3FB -b e =,所以0EB FB ⋅=,取EF 的中点为C .则B 在以C 为圆心,EF 为直径的圆上,如图.设OA =a ,作射线OA ,使得3AOE π∠=,所以|||(2)(2)|-=-+-≥a b a e e b|(2)||(2)|||||31CA BC ---=-≥a e e b .故选A .3.A 【解析】如图建立直角坐标系,则(0,1)A ,(0,0)B ,(2,1)D ,(,)P x y 所以圆的方程为224(2)5x y -+=, 所以(,1)AP x y =-,(0,1)AB =-,(2,0)AD =, 由AP AB AD λμ=+,得21x y μλ=⎧⎨-=-⎩,所以λμ+=12xy -+,设12x z y =-+,即102xy z -+-=, 点(,)P x y 在圆上,所以圆心到直线102xy z -+-=的距离小于半径,≤,解得13z ≤≤,所以z 的最大值为3, 即λμ+的最大值为3,选A .4.B 【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则 (0,3)A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以 (,3)PA x y =--,(1,)PB x y =---,(1,)PC x y =--, 所以 (2,2)PB PC x y +=--,22()22)22(PA PB PC x y y x y ⋅+=-=+-23322--≥, 当P 时,所求的最小值为32-,故选B . 5.C 【解析】如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO AF <,而90AFB ∠=,∴AOB ∠与COD ∠为钝角,AOD ∠与BOC ∠为锐角.根据题意12()I I OA OB OB OC OB OA OC OB CA -=⋅-⋅=⋅-=⋅=||||cos 0OB CA AOB ∠<,∴12I I <,同理23I I >.做AG BD ⊥于G ,又AB AD =.∴OB BG GD OD <=<,而OA AF FC OC <=<,∴||||||||OA OB OC OD ⋅<⋅,而cos cos 0AOB COD ∠=∠<, ∴OA OB OC OD ⋅>⋅,即13I I >, ∴312I I I <<,选C .G FEOABCD6.B【解析】由2DA DB DC ===知,D 为ABC ∆的外心.由DA DB ⋅=DB DC ⋅=DC DA ⋅ 知D 为ABC ∆的内心,所以ABC ∆为正三角形,易知其边长为23, 取AC 的中点E ,因为M 是PC 的中点,所以1122EM AP ==, 所以max 17||||22BM BE =+=,则2max49||4BM =.故选B . 7.D 【解析】由菱形ABCD 的边长为a ,60ABC ∠=可知18060120BAD ∠=-=,2223()()cos1202BD CD AD AB AB AB AD AB a a a a ⋅=-⋅-=-⋅+=-⋅+=.8.A 【解析】由题意得111333=+=+=+-AD AC CD AC BC AC AC AB1433=-+AB AC .9.A 【解析】以题意,以点A 为坐标原点,以AB 所在的直线为x 轴,AC 所在的直线为y 轴建立如图所示的平面直角坐标系,所以点(1,4)P ,1(,0)B t,(0,)C t ,所以11(1,4)(1,4)(1)(1)4(4)PB PC t t t t⋅=----=-⨯--⨯-=1174t t --117413t t -⨯=≤(当且仅当14t t =,即12t 时取等号), 所以PB PC ⋅的最大值为13.故选A .10.C 【解析】311,443AM AB AD NM CM CN AD AB =+=-=-+,所以 11(43)(43)412AM NM AB AD AB AD ⋅=+⋅-2211(169)(1636916)94848AB AD =-=⨯-⨯=,选C . 11.B 【解析】由题意得,AC 为圆的直径,故可设),(n m A ,),(n m C --,),(y x B ,∴(6,)PA PB PC x y ++=-,而491237)6(22≤-=+-x y x ,∴PA PB PC ++的最大值为7,故选B .12.3-【解析】设(0,)E t ,(0,2)±F t ,所以(1,)(2,2)⋅=⋅-±AE BF t t222(2)22(1)3=-+±=±-=±-t t t t t ,当1=±t 时,AE BF ⋅取得最小值3-.13.[-【解析】设(,)P x y ,由20PA PB ⋅≤,得250x y -+≤,x如图由250x y -+≤可知,P 在MN 上, 由2225050x y x y -+=⎧⎨+=⎩,解得(1,7)M ,(5,5)N --, 所以P 点横坐标的取值范围为[-. 14.311【解析】032cos603AB AC ⋅=⨯⨯=,1233AD AB AC =+,则12212()()34934333333AD AE AB AC AC AB λλλ⋅=+-=⨯+⨯-⨯-⨯=-,311λ=. 15.12【解析】由题意令(1,0)=e ,(cos ,sin )αα=a ,(2cos ,2sin )ββ=b , 则由||||6+ae be 可得|cos |2|cos |6αβ+ ①,令sin 2sin m αβ+= ②22①+②得24[|cos cos |sin sin ]1m αβαβ++对一切实数,αβ恒成立,所以4[|cos cos |sin sin ]1αβαβ+.故12(cos cos sin sin )2[|cos cos |sin sin ]2αβαβαβαβ⋅=++a b . 故最大值为12. 16.12 16 【解析】由1111()3232MN MC CN AC CB AC AB AC =+=+=+- 1126AB AC xAB y AC =-=+.所以12x,16y . 17.2918 【解析】 因为19DF DC λ=,12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==,AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+, ()1918AE AF AB BC AB BC λλλ+⎛⎫⋅=+⋅+ ⎪⎝⎭22191911818AB BC AB BC λλλλλλ++⎛⎫=+++⋅ ⎪⎝⎭19199421cos1201818λλλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥= 当且仅当2192λλ=即23λ=时的最小值为2918.BA18.1(1)(1)(cos,sin cos )(cos ,sin 66666k k k k k k k a a πππππ+++⋅=+⋅+(1)cos )6k π+2(1)2cos sincos cos sin 66666k k k k πππππππ+++=+++1(21)cos26k π+,因此11103312k k k a a +=⋅==∑。