七年级数学第二章2.2.2整式的加减
2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版
1.提供与本节课内容相关的拓展阅读材料:
《代数运算指南》:这本书详细介绍了代数的基本概念和运算方法,包括整式的加减、乘除等。通过阅读这本书,学生可以进一步加深对整式加减的理解和掌握。
《数学问题解决策略》:这本书提供了一系列的数学问题解决方法,包括代数问题的解决方法。学生可以通过阅读这本书,学习到更多的数学问题解决策略,提高解决问题的能力。
九.重点题型整理
1. 去括号
(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
例题:去括号:-(a + b)= -a - b
(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例题:去括号:-(a - b)= a - b
2. 合并同类项
(1)找出整式中的同类项,即具有相同字母和相同指数的项。
(2)解决实际问题,如计算购物找零、面积计算等。
例题:综合应用:计算购物找零:28 - 5(3 + 2) - 1 = 28 - 5*5 - 1 = 28 - 25 - 1 = 2
5. 整式加减的实际应用
(1)将整式加减应用于实际问题,如购物找零、计算面积等。
例题:实际应用:计算购物找零:32 - 5(4 + 2) = 32 - 5*6 = 32 - 30 = 2
在教学过程中,我发现学生们对去括号和合并同类项这两个重点内容的理解存在一定的困难。因此,我特别强调了这两个重点,并通过举例和比较来帮助学生理解。通过小组讨论和实践活动,学生们能够更好地将理论知识应用到实际问题中,提高了解决问题的能力。
在教学过程中,我也注意到了学生的参与度和互动情况。通过鼓励学生提问和参与小组讨论,我能够及时解答学生的疑问,帮助学生克服难点,提高学习效果。
人教版七年级数学上册整式的加减(第3课时)
2.2 整式的加减(第3课时)
1.能运用运算律探究去括号法则,并且利用去括号法则 将整式化简.
2.经过类比带有括号的有理数的运算,发现去括号时的符号 变化规律,归纳出去括号法则,培养视察、分析与归纳能力.
回顾 & 思考
• 整式加减运算的最后结果也是一个整式,一般地, 要求这个结果是最简的. 一个最简的整式中不应再有同类项; 但合并同类项之前可能含有括号.
小明和小红一共花费(3x+2y)+ (4x+3y) =3x+2y+4x+3y =7x+5 y .
解法二:小红和小明买笔记本共花费(3x+4x)元, 买圆珠笔共花费(2y+3y)元. 小明和小红一共花费 (3x+4x) + (2y+3y)
=7x+5y .
这节课我们学习了
小结
1.去括号的根据—乘法分配律. 2.去括号的方法—去括号法则. 3.化简整式的一般步骤:去括号,合并同类项.
4
4
号前是 “ - ”
,则去掉括号后原括号内
每项都要变号.
例3:一种笔记本的单价是x元,圆珠笔的单价是y元.小红 买3本笔记本,2支圆珠笔;小明买4本笔记本 ,3支圆珠笔. 买这些笔记本和圆珠笔,小红和小明一共花了多少钱?
解法一:小红买笔记本和圆珠笔共花费(3x+2y)元,小 明买笔记本和圆珠笔共花费(4x+3y)元.
加法交换律
=7x+y
合并同类项
(2)(8a-7b)-(4a-5b) 去括号,括号前是负号,
=8a-7b-4a+5b
括号内的各项变号
你能说出每 步运算的根 据吗?
七年级数学第2章整式的加减2.2整式的加减课时2去括号教案
第二章整式的加减2。
2 整式的加减课时2 去括号【知识与技能】能运用运算律探究去括号法则,并能运用去括号法则将整式化简.【过程与方法】经过类比带括号的有理数的运算,发现去括号时的符号变化的规律,归纳去括号法则,培养学生观察、分析、归纳的能力。
【情感态度与价值观】让学生逐渐养成运用旧知识探索新知识的习惯,培养学生独立思考、勇于探索的精神。
去括号法则,运用法则将整式化简.括号前是“—”的去括号法则.多媒体课件情境(投影仪展示)如图2—2.2-1,要计算这个图形的面积.你有几种不同的方法?请计算结果,分小组讨论.总结出两个结果:3(x+3)和3x+9。
问题:一个图形的面积怎么会有两个结果呢?你们从中发现了什么?小组继续讨论,得出两个结果实际上是一样的,即3(x+3)=3x+9。
那分配律是否同样适用于整式的运算呢?(引入新课,板书课题)一、思考探究,获取新知问题:在格尔木到拉萨路段,如果列车通过冻土地段要t (1<t<3)h,那么它通过非冻土地段的时间为(t—0。
5)h,列车在冻土地段、非冻土地段的行驶速度分别是100 km/h和120 km/h。
于是,冻土地段的路程为100t km,非冻土地段的路程为120(t-0.5) km.因此,这段铁路的全长为[100t+120(t—0.5)] km①,冻土地段与非冻土地段相差[100t—120(t—0.5)]km②.上面的①②式子都带有括号,它们应如何化简?100t+120(t-0.5)=100t+=;100t—120(t—0.5)=100t+=。
我们知道,化简带有括号的整式,应先去括号.上面两个式子去括号部分的变形分别为+120(t—0。
5)=120t—60;③-120(t—0。
5)=—120t+60。
④比较③④两式,你能发现去括号时符号变化的规律吗?教师引导学生总结去括号法则:法则1:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;法则2:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,形如+(x—3)与—(x—3)可以分别看作1乘(x—3)与-1乘(x-3)。
人教版七年级数学教案:2.2.2整数的加减:去括号、添括号
三、教学难点与重点
1.教学重点
-理解并掌握去括号法则:正号括号去掉后,括号内各项符号不变;负号括号去掉后,括号内各项符号改变。
-熟练运用添括号法则:在整式中添加括号,保持整式的值不变,注意添括号时符号的变化。
-难点二:在复杂整式中准确添加括号,特别是在多项式相减时添加括号。
-解释:在多项式相减时添加括号,需要将减号变为加号,并将括号内的每一项符号改变,如4x - 3y - 2z转化为4x + (-3y) + (-2z)。
-难点三:在实际问题中识别何时需要去括号或添括号,以及如何应用这些法则。
-解释:通过具体例题,如购物时计算总价,让学生理解在计算过程中,可能会遇到需要合并同类项的情况,此时就需要运用去括号或添括号法则。
其次,在实践活动环节,分组讨论和实验操作部分同学们表现得非常积极。他们能够将所学的去括号、添括号法则应用到实际问题中,这让我感到很欣慰。但同时我也注意到,部分学生在讨论过程中较为沉默,可能是因为他们还没有完全消化吸收所学知识。在今后的教学中,我会更加关注这部分学生,鼓励他们多发言、多提问,提高课堂参与度。
2.培养学生的数学运算能力:让学生在实际操作中,熟练运用去括号和添括号法则,提高整式加减运算的速度和准确性。
3.培养学生的数学建模能力:通过解决实际生活中的问题,让学生学会将现实问题转化为数学模型,运用所学的去括号和添括号法则进行求解。
4.培养学生的直观想象能力:借助数轴等工具,帮助学生形象地理解去括号、添括号过程中整式值的变化,提高直观想象能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
2.2.2整式的加减-去括号法则教学设计人教版数学七年级上册
整式的加减去括号法则教学设计一、案例背景七年级数学二章第二节第2课时“整式的加减去括号法则”二、教学设计(一)教学目标(基于学科核心素养的教学目标)1.知识与技能:能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力3.情感态度与价值观:培养学生主动探究、由生活中的实例体会数学来源于生活又高于生活.(二)内容分析1.教材分析:本节课的教学内容《去括号》是中学数学部分的一个基础知识点,是在前面学习了有理数、单项式、多项式、同类项、合并同类项的基础上来学习的,它是整式的化简和整式的加减的基础,为进一步学习下一章一元一次方程等后续数学知识做好准备,同时也是是以后分解因式、解方程(组)与不等式(组)、函数等知识点当中的重要环节之一,对于七年级学生来说接受这个知识点存在一个思维上的转换过程,同时它也是一个难点,因此去括号在初中数学教材中有其特殊地位和重要作用。
2.学生分析:七年级的学生在前面已经学习了有理数的运算、单项式、多项式、整式、合并同类项,而且在小学就学习了乘法分配律并用其进行简便运算,已经积累了一定的学习经验,但是对于七年级的学生用字母表示数以及式的运算还不太熟悉,前面学生已经学习了“字母表示数”的问题,接下来要让学生理解字母可以像数一样进行计算,所以本节课类比数学习式,数的运算性质和运算律在式的运算中仍然成立,让学生通过类比学习充分体会“数式通性”,为学习整式的加减运算打好基础,从而实现数到式的飞跃。
3.教学重点、难点:教学重点:去括号法则,准确应用法则将整式化简.教学难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。
(三)教学策略设计1.教学方法设计:根据七年级学生的思维所呈现出的具体、直观、形象之特点,为突破本节课的难点,我选用“类比——探索——发现”的教学模式。
人教版七年级数学上册整式的加减(第一课时)课件
• 练习2 下列各组中的两项是不是同类项?说明理由。
1) ab与2ac
2)a2bc与ab2c 3)8xy2与 1 xy2; √
2
4)3ab与-ba ; √ 5) 0.5与9 √ 6)abm与abn
7)43 与 32 √
注:同类项与系数无关,与字母的排列顺序无关。
动脑想一想
• 化简多项式的一般步骤是什么呢?
③
3ab2 4ab2
解:①-152t ②5x2
③-ab2
交流与讨论
100t 252t 100t 252t 3x2 2x2 3ab2 4ab2
• 视察多项式 , , ,
(1)上述各多项式的项有什么共同特点? ①每个式子的项含有相同的字母; ②并且相同字母的指数也相同。
(2)上述多项式的运算有什么共同特点? 你能从中得出什么规律?
c
2-3a+
1
c
2
a -1
3
3
b 2 c -3
6
(1)解:化简多项式 2 x 2-5 x+x 2+4 x-3 x 2-2
当 x= 1 时, 2
原式
(2)解:化简多项式
3a+abc- 1 c2-3a+ 1 c2
3
3
先化简, 再代入!
当a -1 , b 2 , c -3 时,
6 原式
>>课堂小结
>>整式化简归纳步骤
• 找出同类项并做标记; • 运用交换律、结合律将多项式的同类项结合; • 合并同类项; • 按同一个字母的降幂(或升幂排列)。
动笔练一练
• 练习3 2x2-5x+x2+4x-3x2-2
(1)求多项式 (2)求多项式
x= 1
的值,其中 。 的值,其中 , ,
2.2.2去括号 课件 2023—-2024学年人教版数学七年级上册
学习探究
特别地: x 3 x 3 ; x 3 x 3 .
x 3 与 x 3 可以分别看作1与-1乘 x 3 .
利用分配律,可以将式子中的括号去掉,得:
x 3 x 3, x 3 x 3.
注意各项 符号和项数
学以致用
1. 填空:
(1) a b c a b c ; (2) a b c a b c; (3) a b c a b c ; (4) a b c d a b c d ; (5) a b c d a b c d .
这段铁路的全长可以怎样表示?冻土地段与非冻土地段相差多少km? 追问1:上面的式子①②都带有括号,类比数的运算,它们应如何化 简? 追问2:比较上面两式,你能发现去括号时符号变化的规律吗? 归纳:
学习探究
➢【互学】(2分钟)(组长主持,主动参与,分工合作) ①有序交流:C2先说,其余补充;②汇总意见:组长汇总,作好记 录;③准备展示:任务分工,全员展示.
号和括号后每一项都不变号.
去括号时要注意: 去括号时对括号的每一项的符号都要考虑,做到要变都变,要不变都不变;
另外,括号内原来有几项,去掉括号后仍然有几项.
学以致用 任务二 准确应用去括号法则将整式化简 ➢【自学】 完成《学习任务单》例1(3分钟).
例1:化简下列各式:
(1) 8a 2b 5a b;
2.不改变代数式的值,把代数式括号前的“-”号变成“+”号, a-(b-3c)结果应是( D )
A. a+(b-3c) C. a+(b+3c)
B. a+(-b-3c) D. a+(-b+3c)
学习测评
3. 已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为( B )
七年级数学上册第二章整式的加减2.2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版
七年级数学上册第二章整式的加减2. 2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版一、教学目标(-)学习目标1 .熟练掌握整式的加减运算法则,并能准确化简求值.2 .体会整体代入法的作用.3 .准确的运用去括号法则、合并同类项法则进行整式的化简求值.(二)学习重点熟练掌握整式的加减运算法则,并能化简求值.(三)学习难点准确的运用整体代入的方法化简求值.体会整体的代入方法的作用.二、教学设计(-)课前设计1 .预习任务整式的化简求值一般先一化简,再求值 .2 .预习自测(1)化简:-(a -h)2+\ 3(a - b)2 - 8(« - b)2 + 7(a - b)2. 2【知识点】合并同类项.【数学思想】整体思想.1 25【解题过程】解:原式=(一 + 13-8 + 7)(0-。
)2 二一(々一。
)2. 2 2【思路点拨】根据同类项,把同类项结合到一起,根据合并同类项,可得答案.9S【答案】—(a-b)2. 2(2)化简:6x2y + 2xy^-3x2y2 -7x-5yx-4y2x2 -6x2y .【知识点】合并同类项.【解题过程】解:原式二—7/),2—3邛—7-【思路点拨】根据合并同类项的法则求解即可.【答案】-7x2r-3^-7x.(3)化简求值:(7〃?。
-4〃?〃 -4,/)一(2"/ 一+ 2/J);其中/7? = ■!■ ; // =-- 22【知识点】去括号、合并同类项.【解题过程】解:原式=7〃/一4〃〃?一4/一2〃72+〃〃?一2万=5m2 -3//Z/Z-6/?2当〃2 =—, 〃 = 一工时,5m2 -36〃-6/ =5x(—)2 - 3x — x(--)-6x(--)2 =— 2 2 2 2 22 2【思路点拨】先化简再代入求值,可以简化计算.【答案】2(4)化简求值:(1〃2_2〃-6)-1(!〃2-4a-7),其中〃=2.3 2 2【知识点】化简求值【解题过程】解:(L『-2«-6)--(—i/2-4a-7) =-a2 -2a-6- — a2+2a + — = — a2-- 3 2 2 3 4 2 12 2i 5 i Q当a = 2时,原式二上x2?—二二一上.12 2 6【思路点拨】先化简再代入求值,可以简化计算.13【答案】—上6(二)课堂设计1 .知识回顾(1)去括号法则是.注意:①去括号,看符号,是“+”不变号,是“一”全变号.②括号前的因数分配到括号内不要漏乘项.③去括号前后项数一致.(2)合并同类项的法则:系数相加,字母和字母的指数不变.(3)整式加减运算实际是,2 .问题探究探究一•活动①(整合旧知,探究整式的化简求值)化简求值:4x?),一[6个一3(4\y-2)-x1] + l,其中x = 2,2学生独立自主的解决,老师巡视,发现学生在解题过程中的不同方法.抽两个不同方法的学生板书(一个是直接代入求值,另一个先化简再求值)师问:比较两解法,哪种方法更简单?生答:先化简再求值更简单一些.师问:你们能总结整式的化简求值的方法步骤吗?生答:先化简,再求值【设计意图】使学生进一步理解掌握整式的加减法则,熟练进行整式的化简求值,掌握化简求值的格式要求.探究二•活动①(大胆操作,探究整体思想代入求值)已知代数式2/+3y + l的值是2,求6r+9)、-7的值.师问:题目没有直接告知x和y的值,如何求值呢?引导学生观察与思考.【设计意图】让学生初步认识整体思想的作用.・活动②(集思广益,证明整体代入的方法)师问:注意观察条件和结论中含字母的部分的系数有何特征?生答:成倍数关系师问:这类型的题目用什么方法求值呢?法一、由条件向结果转化V 2x2+3y + \ = 2,则3(2x2+3y + l) = 3x2,则6』+9y + 3 = 6, A 6x2+9y = 3. ・•.把6/ + 9 y作为整体带入6/ + 9 y - 7得值是-4法二、由结果向条件转化6/+9),一7:3(2/+3乃一7,再由2丁+3y + l = 2得2/+3y = 1,・••原式二—4 【设计意图】让学生认识到整体带入的数学思想使运算化简更简便.探究三运用整式的加减化简求值・活动①i i 3 1 ?例L 求Lx — 2(x —:y2) +(—, x + =),2)的值,其中工=—2,),=二.2 3 2 3 3【知识点】整式的化简求值.1 1 3 1【解题过程】解:ix-2(x-ir)+(--x+ir)2 3 2 31 个2)3 1 ,=—x-2x + — ~ — x + - y2 3, 2 3.= -3x+y2当x = -2, y = g时,原式二(一3)乂(一2) + ($2=6 + [=62.【思路点拨】先化简,再求值.4【答案】6-.9练习:先化简,再求值:12(。
人教版数学七年级上册2.2.2整式的加减去括号法则教学设计
1.通过小组合作、讨论交流等方式,让学生在自主探究中发现整式的加减运算规律,培养学生独立思考、合作解决问题的能力。
2.通过实际例子的讲解,让学生理解整式的加减运算在实际问题中的应用,提高学以致用的能力。
3.引导学生总结和归纳整式的加减运算方法,培养学生的逻辑思维和概括能力。
4.设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题技巧。
在教学过程中,教师应关注学生的情感态度,激发学生的学习兴趣,鼓励学生积极参与课堂讨论,培养良好的数学思维习惯。同时,注重课后辅导,针对学生的薄弱环节进行有针对性的指导,提高学生的学习效果。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握去括号法则,能够灵活运用到整式的加减运算中。
-能够正确识别和合并同类项,提高整式运算的速度和准确性。
3.实际应用题:布置2道与生活实际相关的问题,要求学生将问题转化为整式加减运算。这类题目旨在让学生体会数学知识在实际生活中的应用,培养学生的应用意识和创新精神。
4.思考总结题:要求学生撰写一篇关于本节课学习心得的短文,内容包括对去括号法则的理解、操作步骤、注意事项等。这有助于学生对自己的学习过程进行反思,提高自我学习能力。
-评价内容不仅包括整式加减运算的正确性和速度,还包括学生在解决问题时的思维过程和方法运用。
-鼓励学生自我评价和同伴评价,培养学生的自我反思和批判性思维能力。
4.教学拓展:
-结合本章节内容,引导学生探索整式加减运算在实际问题中的更广泛应用。
-开展数学活动,如数学竞赛、数学游戏等,激发学生的学习兴趣,提高学生的数学素养。
人教版数学七年级上册2.2.2整式的加减去括号法则教学设计
一、教学目标
2.2.2 整式的加减——去括号 说课稿 2022—2023学年人教版数学七年级上册
2.2.2 整式的加减——去括号说课稿一、教材分析1. 教材内容本课时是数学七年级上册的第2单元第2节课,主要内容是整式的加减——去括号。
本节课的教学目标是让学生能够理解整式的加减法则,掌握去括号的方法,培养学生运算能力和思维能力。
2. 教学重点和难点本节课的教学重点是引导学生掌握整式的加减法则和去括号的方法。
教学难点在于让学生理解去括号的原理和运用去括号方法解决问题。
3. 教学准备为了能够有效地教授本节课,我准备了以下教学准备:•教案和课件•学生的课本和作业本•黑板和粉笔•各种整式的例题和练习题二、教学过程1. 导入新课通过提问学生已学过的内容,引导学生回忆整式的定义和加减法则,为本节课的学习做铺垫。
2. 介绍整式的去括号方法通过一个简单的例子,向学生展示括号中的项如何进入的去括号过程,引导学生理解去括号的原理和规则。
3. 整式的加减法则结合具体例子,向学生展示整式的加减法则,包括同类项相加减和不同类项相加减的步骤和规则。
4. 练习与巩固让学生在黑板上完成一些练习题,巩固整式的加减法则和去括号的方法。
5. 拓展思考提出一些拓展问题,让学生思考整式的运算性质和应用。
三、教学方法1. 案例教学法通过具体的案例和例题,引导学生理解整式的加减法则和去括号的方法。
2. 合作学习法在练习与巩固环节,鼓励学生进行小组合作,互相讨论和解决问题,提高学生的思维能力和合作能力。
3. 智慧板教学法结合智慧教育技术,使用智慧板进行教学,可以更加直观地展示各种整式的加减过程和去括号的方法。
四、教学评估1. 自我评估通过观察学生的表现和听取学生的回答、解题过程,评估学生是否掌握了整式的加减法则和去括号的方法。
2. 学生评估通过给学生一些作业题目,让他们在课后完成,再进行评估。
可以通过作业的完成情况和成绩来评估学生的学习效果。
五、板书设计去括号公式:(a + b) + c = a + b + c(a + b) - c = a + b - ca - (b + c) = a - b - c六、教学反思本节课的教学目标是引导学生理解整式的加减法则和去括号的方法。
人教版数学七年级上册第二章2.2整式的加减
=2x2+x-(x2+x)
=2x2+x-x2-x
=x2.
要点归纳:1.当括号前面有数字因数时,可应用乘法分 配律将这个数字因数乘以括号内的每一项,切勿漏乘.
2.当含有多重括号时,可以由内向外逐层去括号,也可 以由外向内逐层去括号.每去掉一层括号,若有同类项可 随时合并,这样可使下一步运算简化,减少差错.
4.合并同类项: (1)-a-a-2a=___-_4_a___; (2)-xy-5xy+6yx=___0___; (3)0.8ab2-a2b+0.2ab2=_a_b_2_-a_2_b_; (4)3a2b-4ab2-4+5a2b+2ab2+7=_8_a_2_b_-2_a_b_2_+_3_.
5.三角形三边长分别为 5x,12x,13x,则这个三角
2.先化简,再求值:2(a+8a2+1-3a3)-3(-a +7a2-2a3),其中a=-2.
解:原式=-5a2+5a+2. 当a=-2时,原式=-28.
小结
(1)去括号时要将括号前的符号和括号一起去掉; (2)去括号时首先弄清括号前是“+”还是“-”; (3)去括号时当括号前有数字因数应用乘法分配律,
二 合并同类项及应用 周末,小明一家要外出游玩,爸爸、妈妈和 小明各自选了他们要吃的东西:
买的时候,小明怎么说? __4__个面包__3__个苹果__8__个草莓__3___瓶饮料 2个面包+1个面包+1个面包= 4 个面包 2个草莓+3个草莓+3个草莓= 8 个草莓
2 x +3x =5x
3a2bc- 2a2bc = a2bc
化简: (1)3(a2-4a+3)-5(5a2-a+2); (2)3(x2-5xy)-4(x2+2xy-y2)-5(y2-3xy); (3)abc-[2ab-(3abc-ab)+4abc]
人教版七年级数学上册:2.2《整式的加减》教学设计
人教版七年级数学上册:2.2《整式的加减》教学设计一. 教材分析《整式的加减》是人教版七年级数学上册第二章第二节的内容,本节课主要让学生掌握整式的加减运算法则,培养学生运用数学知识解决实际问题的能力。
教材通过简单的实际问题引入整式加减的概念,然后引导学生总结整式加减的法则,最后通过大量的练习让学生熟练掌握整式加减的运算技巧。
二. 学情分析七年级的学生已经掌握了整数和分数的加减法,对于代数式有一定的认识。
但是,对于整式的加减运算,学生可能还存在一定的困难。
因此,在教学过程中,教师需要耐心引导学生,让学生逐步理解和掌握整式的加减法则。
三. 教学目标1.知识与技能目标:使学生掌握整式的加减运算法则,能熟练地进行整式的加减运算。
2.过程与方法目标:通过观察、分析、归纳、总结等方法,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:整式的加减运算法则。
2.难点:整式加减在实际问题中的应用。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过实际问题引入概念,引导学生观察、分析、归纳、总结,激发学生的学习兴趣,培养学生的动手能力和合作精神。
六. 教学准备1.教师准备:熟练掌握整式的加减运算,了解学生的学习情况,准备相关教学素材。
2.学生准备:预习整式的加减内容,了解基本概念。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式加减的概念,例如:“某商店同时卖苹果和香蕉,苹果每千克3元,香蕉每千克2元,某顾客买了2.5千克的苹果和1.5千克的香蕉,一共花了多少钱?”让学生列出代数式,并进行计算。
2.呈现(10分钟)教师引导学生观察、分析上述问题,总结整式加减的法则。
例如:同底数相加(减)时,只需将系数相加(减)即可。
3.操练(15分钟)教师给出一些整式加减的题目,让学生在小组内进行讨论、解答。
人教版七年级数学上册:2.2《整式的加减—— 合并同类项》教学设计
人教版七年级数学上册:2.2《整式的加减——合并同类项》教学设计一. 教材分析《人教版七年级数学上册》第二章第二节《整式的加减——合并同类项》是学生在学习了整式的加减法法则后,进一步深入研究整式加减的运算方法。
通过这一节的学习,学生能够理解同类项的概念,掌握合并同类项的方法,提高解决实际问题的能力。
二. 学情分析七年级的学生已经掌握了整数和分数的加减法运算,具备了一定的数学基础。
但是,对于整式加减的运算规则和同类项的概念可能还不够清晰,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.知识与技能:理解同类项的概念,学会合并同类项的方法。
2.过程与方法:通过实例分析和练习,培养学生的数学思维能力和解决问题的能力。
3.情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的决心。
四. 教学重难点1.重点:同类项的概念和合并同类项的方法。
2.难点:理解同类项的定义,以及如何在实际问题中正确合并同类项。
五. 教学方法1.采用问题驱动的教学方法,通过实例和练习引导学生主动探索和解决问题。
2.利用多媒体和板书辅助教学,直观展示整式加减的过程,帮助学生理解和记忆。
3.分组讨论和合作学习,培养学生的团队合作意识和交流沟通能力。
六. 教学准备1.多媒体教学设备和相关软件。
2.教学PPT和教案。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,如:“小明有2个苹果,妈妈给了他3个苹果,小明现在有多少个苹果?”引导学生思考和讨论如何解决这个问题。
2.呈现(10分钟)通过PPT展示整式加减的例子,如:3x + 2x = ?,引导学生观察和分析,引出同类项的概念和合并同类项的方法。
3.操练(10分钟)让学生分组进行练习,给出一些简单的整式加减问题,让学生运用所学的方法进行解决。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)针对学生练习中出现的问题,进行讲解和总结,再次强调同类项的概念和合并同类项的方法。
人教版七年级上册数学第2节《整式的加减》参考课件(共16张PPT)
的值. 的值.
的值,
第一天水位的变化量为-2acm, 上的数交换位置,计算所得数与原数的和,所得
进货后这个商店有大米多少千克? 例5 已知m是绝对值最小的有理数,且
第二天水位的变化量为0.5acm. 其中
,
,
(1)水库中水位第一天连续下降了a 小时,每小时平均
问题.本节课设计了大量的实际问题,可以让学生
2
求:
的值.
例6 若
,
8x 3xy 将整式化简求值,运2用整式的加法解决简单的实际
86
2
例6 若 a2a b2 0 ,a bb 2 1 3 ,
求:a22abb2的值.
例6 若 a2a b2 0 ,a bb 2 1 3,
求:a22abb2的值.
解:a2 ab20 ①
abb2 13②
①+②得:a2ababb27
10a b 10b a
11a 11b
11(a b)
∴所得数与原数的和能被11整除.
例5 已知m是绝对值最小的有理数,且am1by1 与 3 a x b 3 是同类项, 求 :2 x 2 3 x y 6 x 2 3 m x 2 m x y 9 m y 2的值
例5 已知m是绝对值最小的有理数,且am1by1与
例3(2)某商店原有5袋大米,每袋大米为x千克.
解: 例1 下列各题计算的结果对不对?如果不对
将整式化简求值,运用整式的加法解决简单的实际
例1 下列各题计算的结果对不对?如果不对
把下降的水位变化量记为负, 答:这两天水位总的变化情况为下降了1.
(2)某商店原有5袋大米,每袋大米为x千克.
把上升的水位变化量记为正. 求:
人教版七年级上册数学《整式的加减》说课教学复习课件(第二课时去括号)
, , ,···称为正分数.
3 5 4
那么在以上这些正数的前面添上“-”号后,
-1,-2,-3,···称为负整数;
正数
负数
2
4
1
− ,- ,- ,···称为负分数.
3
5
4
0既不是正数,也不是负数!
0
1.整数:正整数、0、负整数统称为整数,如-3, -2,
0 , 1 , 2 , 3等.
1
2.分数:正分数、负分数统称为分数,如2
A. 正有理数和负有理数统称为有理数
B. 3. 14是小数,所以不是有理数
C. 正整数和负整数统称为整数
D. 整数和分数统称为有理数
2.在下列各数中:
−3, −2.5, +2.25, 0, +0.1,
1
+3 , π,
2
整数的个数是 2 .
非负整数包括0和正整数.
1
−4 ,
3
10,非负
3.填一填:
Concise And Concise Do Not Need Too Much Text
课件
前言
学习目标
1、能运用运算律探究去括号法则。
2、利用去括号法则会进行整式的化简。
重点难点
重点:去括号法则及其应用。
难点:括号前是“-”号,去括号时应该如何处理。
思考
在格尔木到拉萨路段,如果列车通过冻土地段要u小时,那么它通过非冻土地段的时间为
负分数
(1) 既是分数又是负数的数是________;
正数
0
(2) 非负数包括________和_______;
负数
(3) 非正数包括________和_______;
人教版七年级数学上册第3课时整式的加减课件
新课讲授
有括号要先去括号
4 5x2 3x 2x 7x2 3 有同类项再合并同类项 (5x2 7x2 ) (3x 2x) (4 3)
2x2 x 1.
结果中不能再有同类项
练一练:求上述两多项式的差.
答案: − 12x2+5x+7
新课讲授
任意写一个三位数
交换它的百位数 字与个位数字, 又得到一个数
两个数相减 你又发现什么了规律?
新课讲授
举例: 原三位数728,百位与个位交换后的数为
827,由728 -827= -99.你能看出什么规律并
验证它吗?
任意一个三位 数可以表示成 100a+10b+c
新课讲授
验证: 设原三位数为100a+10b+c,百位与个
却都一样,你知道这是怎么回事吗?说明理由.
解:将原多项式化简后,得-b2+b+3.
因为这个式子的值与a的取值无关,所以
即使把a抄错,最后的结果都会一样.
1.已知一个多项式与 则这个多项式是(A )
的和等于
随堂即练
,
2.长方形的一边长等于3a+2b,另一边比它大a-b,那么 这个长方形的周长是( A ) A.14a+6b B.7a+3b C.10a+10b D.12a+8b
1 整式的加减
新课讲授
如果用a,b分别表示一个两位数 的十位数字和个位数字,那么这个两 位数可以表示为: 10a+b .交换这个 两位数的十位数字和个位数字,得到 的数是: 10b+a .将这两个数相加:
结论:
这些和都是 11的倍数.
人教版七年级数学上册2.2整式的加减合并同类项优秀教学案例
4.教师通过典型题目讲解合并同类项的应用,让学生在实践中感受合并同类项的重要性。
(三)学生小组讨论
1.教师布置讨论任务:以小组为单位,探讨如何合并同类项,并总结合并同类项的方法;
2.学生分组讨论,共同探索合并同类项的方法,分享各自的思路和解题经验;
3.各小组派代表进行成果展示,分享本小组的探索过程和合并同类项的方法。
人教版七年级数学上册2.2整式的加减合并同类项优秀教学案例
一、案例背景
本节课为人教版七年级数学上册第二章第二节“整式的加减——合并同类项”,是在学生已经掌握了整式的概念、加减法原则的基础上进行学习的。通过前面的学习,学生已经能够进行简单的整式加减运算,但对于如何合并同类项,还缺乏清晰的认识和方法。本节课的主要内容是让学生掌握合并同类项的方法,提高他们解决实际问题的能力。
3.小组合作的教学方式:通过小组讨论、成果展示等形式,充分调动了学生的积极性和主动性,使学生在交流中学习,在学习中成长,有效提高了学生的表达能力和创新能力。
4.反思与评价的环节:教师引导学生进行自我反思和同伴评价,使学生在总结经验的同时,也能够发现自己的不足,明确今后的学习方向。此外,教师的评价具有针对性和指导性,能够帮助学生更好地理解知识,提高解题能力。
2.学生完成作业,教师及时批改并给予反馈,帮助学生提高解题能力;
3.教师根据学生的作业情况,对课堂教学进行反思,为下一节课的教学做购物场景的展示,使学生能够直观地理解整式加减在实际生活中的应用,提高了学生的学习兴趣,增加了学习的趣味性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.2整式的加减
◆随堂检测
1、 判断正误:
(1)z y x z y x -+-=-+-2)2( ( )
(2)z y x z y x 36)33(2-+-=+-- ( )
(3)c b a c b a 22)(2+-=+-+ ( )
2、去括号 :
(1))(d c b a +--+; (2))42(32z y x -+;
(3))4(2
15c b a --; (4))]3(2[32z y x y x ----. 3、计算:
(1))54()23(y x y x ++-;(2))102()65(b a b a ---;
(3))5(32ab ab ab ---; (4))()3(42222mn n m mn n m ---.
4、一个多项式加上1452-+x x 得2862
+-x x ,则这个多项式是 . ◆典例分析
计算:)2
1(6)3212(22+--+-x x x x 分析:本题有两个地方易错:① 6和括号里的每一项都要相乘,部分学生往往只和第一项相乘;②去括号时,不知道什么时候要变号什么时候不变号,这就说明去括号的法则没有理解. 解:原式=)2
1(6)3212(22+--+-x x x x 273836632
12)366(32
1222222--=-+-+-=+--+-
=x x x x x x x x x x ◆课下作业
●拓展提高
1、计算:
(1))(2
1)(31
2222xy y x x x xy y x ++---; (2))2(2)2(232222b a a b b a +---+-;
(3))22(3)642(3b c c b a a --+---;
(4)]2)34(7[322x x x x ----.
2、若多项式18223-+-x x x 与多项式352323+-+x mx x 相加后不含二次项,则m= .
3、(1)已知:2,622=-=-b ab ab a ,求2222,2b a b ab a -+-的值.
(2)已知6063)2(5,522-+--=-x y x y y x 求的值.
4、已知22228,8y x xy B xy y x A +-=+-=,当3
1,21-=-=y x 时,求B A +2的值. 5、求代数式中的值:
{})]24(3[2522222b a ab ab b a ab ----,其中5.0,3=-=b a
6、若)1532()2(22-+--+-+y x bx b y ax x 的值与字母x 的取值无关,试求a,b 的值. ●体验中招
1、(2009年,太原)已知一个多项式与x x 932+的和等于1432
-+x x ,
则这个多项式是( )
A 、15--x
B 、15+x
C 、113--x
D 、113+x
2、(2009年,江西)化简)12(2-+-a a 的结果是( )
A 、14--a
B 、14-a
C 、1
D 、1-
参考答案
随堂检测
1、 错,错,对
2、 (1)原式=d c b a +--; (2)原式=z y x 1262-+;
(3)原式=c b a 22
15+-;(4)原式=z y x y x z y x y x -++-=+---323232)32( 3、(1)原式=y x y x y x 375423+=++-
(2)原式=b a b a b a 4310265+=+--
(3)原式=ab ab ab ab 4532=+-
(4)原式=2222412mn n m mn n m +--22311mn n m -=
4、32132++-x x
拓展提高
1、(1)原式=xy x y x xy y x x x xy y x 6
56561212121313131222222---=----- (2)原式=b a b a a b b a -=-+-+-3422432222
(3)原式=b a b c c b a a 2666423-=--++-
(4)原式335)233(3)2347(322222--=-+-=-+--=x x x x x x x x x
2、由题意得,24)82(5)3523(18223323+--+=+-++-+-x x m x x mx x x x x ∵多项式24)82(523+--+x x m x 不含2
x 项
∴4082=∴=-m m
3、(1)∵2,622=-=-b ab ab a
∴8)()(,4)()(2222=-+-=---b ab ab a b ab ab a
∴8,422222=-=+-b a b ab a 80
60
535560)2(3)2(560
63)2(5,
52)2(222=-⨯+⨯=--+-=-+--∴=-y x y x x y x y y x
4、∵2
2228,8y x xy B xy y x A +-=+-=
∴B A +22222222481622y xy x y x xy xy y x -+=+-++-= 当31,21-=-=y x 时,原式=36
149)31()31()21(24)21(22=---⨯-⨯+-.
5、{
})]24(3[2522222b a ab ab b a ab ---- 2
2
22222245)]
243(2[5ab ab ab b a ab ab b a ab =-=+---=
当5.0,3=-=b a 时,原式=35.0)3(42-=⨯-⨯
6、∵)1532()2(22-+--+-+y x bx b y ax x 16)3()22(1
5322222++-++-=+-+-+-+=b y x a x b y x bx b y ax x
又)1532()2(22-+--+-+y x bx b y ax x 的值与字母x 的取值无关 ∴⎩⎨⎧=-=∴⎩⎨⎧=+=-1
303022b a a b 体验中招
1、A
2、D。