高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 单元检测(A卷)
高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 2.4.1 Word版含答案
§ 2.4抛物线2.4.1 抛物线及其标准方程课时目标 1.掌握抛物线的定义、四种不同标准形式的抛物线方程、准线、焦点坐标及对应的几何图形.2.会利用定义求抛物线方程.1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F)距离________的点的轨迹叫做抛物线,点F 叫做抛物线的________,直线l 叫做抛物线的________. 2.抛物线的标准方程 (1)方程y 2=±2px ,x 2=±2py(p>0)叫做抛物线的________方程.(2)抛物线y 2=2px(p>0)的焦点坐标是________,准线方程是__________,开口方向_______.(3)抛物线y 2=-2px(p>0)的焦点坐标是____________,准线方程是__________,开口方向________.(4)抛物线x 2=2py(p>0)的焦点坐标是________,准线方程是__________,开口方向________.(5)抛物线x 2=-2py(p>0)的焦点坐标是______,准线方程是________,开口方向________.一、选择题1.抛物线y 2=ax(a ≠0)的焦点到其准线的距离是( ) A .|a|4 B .|a|2 C .|a| D .-a 22.已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24-y 22=1上,则抛物线方程为( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=±8x3.抛物线y 2=2px(p>0)上一点M 到焦点的距离是a(a>p2),则点M 的横坐标是( )A .a +p2 B .a -p2C .a +pD .a -p4.过点M(2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有( ) A .0条 B .1条 C .2条 D .3条5.已知抛物线y 2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .x =1 B .x =-1 C .x =2 D .x =-26.设抛物线y 2=2x 的焦点为F ,过点M(3,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于点C ,|BF|=2,则△BCF 与△ACF 的面积之比S △BCFS △ACF等于( )A .45B .23C .47D .1二、填空题7.抛物线x 2+12y =0的准线方程是__________.8.若动点P 在y =2x 2+1上,则点P 与点Q(0,-1)连线中点的轨迹方程是__________.9.已知抛物线x 2=y +1上一定点A(-1,0)和两动点P ,Q ,当PA ⊥PQ 时,点Q 的横坐标的取值范围是______________. 三、解答题10.已知抛物线的顶点在原点,对称轴为x 轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m 的值,并写出抛物线的焦点坐标和准线方程.11.求焦点在x 轴上且截直线2x -y +1=0所得弦长为15的抛物线的标准方程.能力提升12.已知抛物线y 2=2px(p>0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A .12B .1C .2D .4 13.已知抛物线y 2=2px (p>0)上的一点M 到定点A ⎝⎛⎭⎫72,4和焦点F 的距离之和的最小值等于5,求抛物线的方程.1.四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口方向为坐标轴的正方向;系数为负时,开口方向为坐标轴的负方向.2.焦点在y 轴上的抛物线的标准方程x 2=2py 通常又可以写成y =ax 2,这与以前学习的二次函数的解析式是完全一致的,但需要注意的是,由方程y =ax 2来求其焦点和准线时,必须先化成标准形式.§2.4 抛物线2.4.1 抛物线及其标准方程知识梳理1.相等 焦点 准线2.(1)标准 (2)(p 2,0) x =-p2向右(3)(-p 2,0) x =p 2 向左 (4)(0,p 2) y =-p 2 向上 (5)(0,-p 2) y =p2 向下作业设计1.B [因为y 2=ax ,所以p =|a |2,即该抛物线的焦点到其准线的距离为|a |2,故选B.]2.D [由题意知抛物线的焦点为双曲线x 24-y22=1的顶点,即为(-2,0)或(2,0),所以抛物线的方程为y 2=8x 或y 2=-8x .]3.B [由抛物线的定义知:点M 到焦点的距离a 等于点M 到抛物线的准线x =-p2的距离,所以点M 的横坐标即点M 到y 轴的距离为a -p2.]4.C [容易发现点M (2,4)在抛物线y 2=8x 上,这样l 过M 点且与x 轴平行时,或者l 在M 点处与抛物线相切时,l 与抛物线有一个公共点,故选C.]5.B [∵y 2=2px 的焦点坐标为(p2,0),∴过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p2,将其代入y 2=2px 得y 2=2py +p 2,即y 2-2py -p 2=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2p ,∴y 1+y 22=p =2,∴抛物线的方程为y 2=4x ,其准线方程为x =-1.]6.A [如图所示,设过点M (3,0)的直线方程为y =k (x -3),代入y 2=2x 并整理, 得k 2x 2-(23k 2+2)x +3k 2=0,则x 1+x 2=23k 2+2k 2.因为|BF |=2,所以|BB ′|=2.不妨设x 2=2-12=32是方程的一个根,可得k 2=3⎝⎛⎭⎫32-32,所以x 1=2.S △BCF S △ACF =12|BC |·d12|AC |·d =|BC ||AC |=|BB ′||AA ′|=22+12=45.]7.y =3解析 抛物线x 2+12y =0,即x 2=-12y ,故其准线方程是y =3. 8.y =4x 29.(-∞,-3]∪[1,+∞)解析 由题意知,设P (x 1,x 21-1),Q(x 2,x 22-1),即(-1-x 1,1-x 21)·(x 2-x 1,x 22-x 21)=0,也就是(-1-x 1)·(x 2-x 1)+(1-x 21)·(x 22-x 21)=0. ∵x 1≠x 2,且x 1≠-1,∴上式化简得x 2=11-x 1-x 1=11-x 1+(1-x 1)-1,由基本不等式可得x 2≥1或x 2≤-3.10.解 设抛物线方程为y 2=-2px (p >0),则焦点F ⎝⎛⎭⎫-p 2,0,由题意,得⎩⎪⎨⎪⎧m 2=6p ,m 2+⎝⎛⎭⎫3-p22=5,解得⎩⎨⎧ p =4,m =26,或⎩⎨⎧p =4,m =-2 6.故所求的抛物线方程为y 2=-8x ,m =±2 6. 抛物线的焦点坐标为(-2,0),准线方程为x =2. 11.解 设所求抛物线方程为y 2=ax (a ≠0).① 直线方程变形为y =2x +1,② 设抛物线截直线所得弦为AB .②代入①,整理得4x 2+(4-a )x +1=0,则|AB |=(1+22)⎣⎡⎦⎤⎝⎛⎭⎫a -442-4×14=15.解得a =12或a =-4.∴所求抛物线方程为y 2=12x 或y 2=-4x .12.C [本题考查抛物线的相关几何性质及直线与圆的位置关系.方法一 由抛物线的标准方程得准线方程为x =-p2.∵准线与圆相切,圆的方程为(x -3)2+y 2=16,∴3+p2=4,∴p =2.方法二 作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切于点(-1,0),所以-p2=-1,p =2.]13.解(1)当点A 在抛物线内部时,如图,42<2p ·72,即p >167时,|MF |+|MA |=|MA ′|+|MA |.当A ,M ,A ′共线时,(|MF |+|MA |)min =5,故p 2+72=5,∴p =3满足p >167,∴抛物线方程为y 2=6x .(2)当点A 在抛物线外部或在抛物线上时42≥2p ·72,即0<p ≤167时,连结AF 交抛物线于M ,此时(|MA |+|MF |)最小,即|AF |=5.即 ⎝⎛⎭⎫72-p 22+42=5,∴p =1或p =13(舍). ∴抛物线方程为y 2=2x .综上抛物线方程为y 2=6x 或y 2=2x .。
高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 2.1
第二章 圆锥曲线与方程§2.1 曲线与方程课时目标 1.结合实例,了解曲线与方程的对应关系.2.了解求曲线方程的步骤.3.会求简单曲线的方程.1.在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x ,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做______________;这条曲线叫做________________.2.如果曲线C 的方程是f(x ,y)=0,点P 的坐标是(x 0,y 0),则①点P 在曲线C 上⇔____________;②点P 不在曲线C 上⇔____________.3.求曲线方程的一般步骤(1)建立适当的坐标系,用有序实数对________表示曲线上任意一点M 的坐标;(2)写出适合条件p 的点M 的集合P =__________;(3)用________表示条件p(M),列出方程f(x ,y)=0;(4)化方程f(x ,y)=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.一、选择题1.方程x +|y -1|=0表示的曲线是( )2.已知直线l 的方程是f(x ,y)=0,点M(x 0,y 0)不在l 上,则方程f(x ,y)-f(x 0,y 0)=0表示的曲线是( )A .直线lB .与l 垂直的一条直线C .与l 平行的一条直线D .与l 平行的两条直线3.下列各对方程中,表示相同曲线的一对方程是( )A .y =x 与y 2=xB .y =x 与x y=1 C .y 2-x 2=0与|y|=|x|D .y =lg x 2与y =2lg x4.已知点A(-2,0),B(2,0),C(0,3),则△ABC 底边AB 的中线的方程是( )A .x =0B .x =0(0≤y ≤3)C .y =0D .y =0(0≤x ≤2)5.在第四象限内,到原点的距离等于2的点的轨迹方程是( )A .x 2+y 2=4B .x 2+y 2=4 (x>0)C .y =-4-x 2D .y =-4-x 2 (0<x<2)6.如果曲线C 上的点的坐标满足方程F(x ,y)=0,则下列说法正确的是( )A .曲线C 的方程是F(x ,y)=0B .方程F(x ,y)=0的曲线是CC .坐标不满足方程F(x ,y)=0的点都不在曲线C 上D .坐标满足方程二、填空题7.若方程ax 2+by =4的曲线经过点A(0,2)和B ⎝⎛⎭⎫12,3,则a =________,b =________.8.到直线4x +3y -5=0的距离为1的点的轨迹方程为______________________________.9.已知点O(0,0),A(1,-2),动点P 满足|PA|=3|PO|,则点P 的轨迹方程是________________.三、解答题10.已知平面上两个定点A ,B 之间的距离为2a ,点M 到A ,B 两点的距离之比为2∶1,求动点M 的轨迹方程.11.动点M 在曲线x 2+y 2=1上移动,M 和定点B(3,0)连线的中点为P ,求P 点的轨迹方程.能力提升12.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( )A .[]-1,1+22B .[]1-22,1+22C .[]1-22,3D .[]1-2,31.曲线C的方程是f(x,y)=0要具备两个条件:①曲线C上的点的坐标都是方程f(x,y)=0的解;②以方程f(x,y)=0的解为坐标的点都在曲线C上.2.求曲线的方程时,要将所求点的坐标设成(x,y),所得方程会随坐标系的不同而不同.3.方程化简过程中如果破坏了同解性,就需要剔除不属于轨迹上的点,找回属于轨迹而遗漏的点.求轨迹时需要说明所表示的是什么曲线,求轨迹方程则不必说明.第二章圆锥曲线与方程§2.1曲线与方程知识梳理1.(2)曲线的方程方程的曲线2.①f(x0,y0)=0②f(x0,y0)≠03.(1)(x,y)(2){M|p(M)}(3)坐标作业设计1.B[可以利用特殊值法来选出答案,如曲线过点(-1,0),(-1,2)两点.]2.C[方程f(x,y)-f(x0,y0)=0表示过点M(x0,y0)且和直线l平行的一条直线.故选C.]3.C[考虑x 、y 的范围.] 4.B[直接法求解,注意△ABC 底边AB 的中线是线段,而不是直线.] 5.D[注意所求轨迹在第四象限内.] 6.C [直接法:原说法写成命题形式即“若点M (x ,y )是曲线C 上的点,则M 点的坐标适合方程F (x ,y )=0”,其逆否命题是“若M 点的坐标不适合方程F (x ,y )=0,则M 点不在曲线C 上”,此即说法C.特值方法:作如图所示的曲线C ,考查C 与方程F (x ,y )=x 2-1=0的关系,显然A 、B 、D 中的说法都不正确.] 7.16-83 28.4x +3y -10=0和4x +3y =0解析 设动点坐标为(x ,y ),则|4x +3y -5|5=1, 即|4x +3y -5|=5.∴所求轨迹方程为4x +3y -10=0和4x +3y =0.9.8x 2+8y 2+2x -4y -5=010.解以两个定点A ,B 所在的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系(如图所示).由于|AB |=2a ,则设A (-a,0),B (a,0),动点M (x ,y ).因为|MA |∶|MB |=2∶1,所以(x +a )2+y 2∶(x -a )2+y 2=2∶1,即(x +a )2+y 2=2(x -a )2+y 2,化简得⎝⎛⎭⎫x -5a 32+y 2=169a 2. 所以所求动点M 的轨迹方程为⎝⎛⎭⎫x -5a 32+y 2=169a 2. 11.解 设P (x ,y ),M (x 0,y 0),∵P 为MB 的中点,∴⎩⎨⎧ x =x 0+32y =y 02,即⎩⎪⎨⎪⎧x 0=2x -3y 0=2y , 又∵M 在曲线x 2+y 2=1上,∴(2x -3)2+4y 2=1.∴点P 的轨迹方程为(2x -3)2+4y 2=1.12.C [曲线方程可化简为(x -2)2+(y -3)2=4 (1≤y ≤3),即表示圆心为(2,3),半径为2的半圆,依据数形结合,当直线y =x +b 与此半圆相切时须满足圆心(2,3)到直线y =x +b的距离等于2,解得b=1+22或b=1-22,因为是下半圆故可得b=1-22,当直线过(0,3)时,解得b=3,故1-22≤b≤3,所以C正确.]小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
选修2-1数学第2章_圆锥曲线与方程单元练习题含答案
选修2-1数学第2章圆锥曲线与方程单元练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某几何体是由直三棱柱与圆锥的组合体,起直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为()A.√2B.12C.√24D.√222. 如图,已知双曲线E:x2a2−y2b2=1(a>0,b>0),长方形ABCD的顶点A,B分别为双曲线E的左、右焦点,且点C,D在双曲线E上,若|AB|=6,|BC|=52,则此双曲线的离心率为()A.√2B.32C.52D.√53. 设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为B.若|BF2|=|F1F2|=2,则该椭圆的标准方程为()A.x24+y23=1 B.x23+y2=1 C.x22+y2=1 D.x24+y2=14. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的顶点和焦点到C的同一条渐近线的距离之比为12,则双曲线C的离心率是()A.√2B.2C.√3D.35. 已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,射线FA与抛物线相交于M,与其准线相交于点N,若|FM|:|MN|=2:√5,则a=()A.2B.4C.6D.86. 焦点为(0,2)的抛物线的标准方程是()A.x2=8yB.x2=4yC.y2=4xD.y2=8x7. 椭圆x2+4y2=1的离心率为()A.√32B.34C.√22D.238. 若双曲线x24−m +y2m−2=1的渐近线方程为y=±13x,则m的值为()A.1B.74C.114D.59. 抛物线y=2x2的通径长为( )A.2B.1C.12D.1410. 已知双曲线C:x24−y2=1,则C的渐近线方程为 ( )A.y=±14x B.y=±13x C.y=±12x D.y=±x11. 椭圆x24+y25=1的离心率是()A.3 5B.√55C.25D.1512. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为F,过F作直线l与两条渐近线交于A,B两点.若△OAB为等腰直角三角形(O为坐标原点)则△OAB的面积为( )A.a2B.2a3C.2a2或a2D.2a2或12a213. 已知椭圆x29+y25=1的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.14. 若直线y=x+b与曲线x=√1−y2恰有一个公共点,则b的取值范围是________.15. 与椭圆x25+y23=1共焦点的等轴双曲线的方程为________.16. 已知双曲线x2−y28=1上有三个点A,B,C,且AB,BC,AC的中点分别为D,E,F,用字母k表示斜率,若k OD+k OE+k OF=−8(点O为坐标原点,且k OD,k OE,k OF均不为零),则1k AB +1k BC+1k AC=________.17. 设命题p:方程x2a+6+y2a−7=1表示中心在原点,焦点在坐标轴上的双曲线;命题q:存在x∈R,使得x2−4x+a<0.若“p∧(¬q)”为真,求实数a的取值范围.18. 回答下列问题:(1)求过点(2,−2)且与双曲线x 22−y2=1有公共渐近线的双曲线的方程;(2)求双曲线x 24−y25=1的焦点到其渐近线的距离.19. 如图,已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点A为椭圆C上任意一点,A关于原点O的对称点为B,有|AF1|+|BF1|=4,且∠F1AF2的最大值为π3.(1)求椭圆C的标准方程;(2)若A′是A关于x轴的对称点,设点N(4,0),连接NA与椭圆C相交于点E,问直线A′E与x轴是否交于一定点,如果是,求出该定点坐标;如果不是,说明理由.20. 已知椭圆的焦点在α轴上,一个顶点为(0,1),离心率为e=√5,过椭圆的右焦点F的直线1与坐标轴不垂直,且交椭圆于A,B两点.(1)求椭圆的方程.(2)设点C是点A关于x轴的对称点,在α轴上是否存在一个定点N,使得C,B,N三点共线?若存在,求出定点N的坐标;若不存在,说明理由.21. 已知直线l:x−y+1=0与焦点为F的抛物线C:y2=2px(p>0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,离心率为12,点P(1, 32)为椭圆上一点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)如图,过点C(0, 1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM,BN的斜率分别为k1,k2,若k1=2k2,求直线l斜率的值.参考答案与试题解析选修2-1数学第2章 圆锥曲线与方程单元练习题含答案一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 ) 1.【答案】 D【考点】 椭圆的定义 【解析】根据三视图的性质得到俯视图中椭圆的短轴长和长周长,再根据椭圆的性质a 2−b 2=c 2,和离心率公式e =ca ,计算即可.【解答】解:设正视图正方形的边长为2,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b =2,俯视图的宽就是圆锥底面圆的直径2√2,得到俯视图中椭圆的长轴长2a =2√2, 则椭圆的半焦距c =√a 2−b 2=1, 根据离心率公式得,e =c a =√2=√22; 故选D . 2. 【答案】 B【考点】双曲线的标准方程 【解析】本题主要考查双曲线的几何性质. 【解答】解:因为2c =|AB|=6,所以c =3. 因为b 2a =|BC|=52,所以5a =2b 2. 又c 2=a 2+b 2,所以9=a 2+5a 2,解得a =2或a =−92(舍去),故该双曲线的离心率e =c a=32.故选B . 3. 【答案】 A【考点】椭圆的标准方程 【解析】由|BF 2|=|F 1F 2|=2,可得a =2c =2,即可求出a ,b ,从而可得椭圆的方程. 【解答】解:∵ |BF 2|=|F 1F 2|=2,∴a=2c=2,∴a=2,c=1,∴b=√3,∴椭圆的方程为x24+y23=1.故选A.4.【答案】B【考点】双曲线的离心率【解析】【解答】解:∵双曲线C的顶点和焦点到同一条渐近线的距离之比为12,由三角形相似得ac =12,∴e=ca=2.故选B.5.【答案】D【考点】斜率的计算公式抛物线的性质【解析】无【解答】解:依题意F点的坐标为(a4,0),作MK垂直于准线,垂足为K,由抛物线的定义知|MF|=|MK|,因为|FM|:|MN|=2:√5,则|KN|:|KM|=1:2.k FN =0−1a4−0=−4a ,k FN =−|KN||KM|=−12,所以−4a =−12,求得a =8. 故选D . 6. 【答案】 A【考点】抛物线的标准方程 【解析】 此题暂无解析 【解答】解:由题意得,抛物线的焦点为(0,2), 可得p =4.又抛物线的焦点在y 轴的正半轴, 所以抛物线的标准方程为x 2=8y . 故选A. 7. 【答案】 A【考点】 椭圆的离心率 【解析】 此题暂无解析 【解答】 此题暂无解答 8.【答案】 B【考点】 双曲线的定义 【解析】 此题暂无解析 【解答】 此题暂无解答 9.【答案】 C【考点】 抛物线的定义 抛物线的性质 【解析】抛物线y =−2x 2,即x 2=−12y ,可得2p .解:抛物线y=2x2,化为标准方程为x2=12y,可得2p=12,因此通径长为12.故选C.10.【答案】C【考点】双曲线的渐近线【解析】根据双曲线的方程求出双曲线的渐近线即可. 【解答】解:由题意可得,a=2,b=1,则双曲线的渐近线方程为y=±ba x=±12x.故选C.11.【答案】B【考点】椭圆的离心率椭圆的标准方程【解析】根据椭圆的标准方程求出a,b的值,根据椭圆中c2=a2−b2就可求出c,再利用离心率e=ca得到离心率.【解答】解:由椭圆方程为x 24+y25=1可知,a2=5,b2=4,∴c2=a2−b2=1,a=√5,∴c=1,∴椭圆的离心率e=ca =√55.故选B.12.【答案】D【考点】双曲线的简单几何性质双曲线中的平面几何问题本题主要考查双曲线的性质以及直线和双曲线的关系,联立方程组,求出点的坐标,再求出面积即可.【解答】解:①若∠AOB=90∘,则∠AOF=45∘,∴ba=1故c=√a2+b2=√2a,∴S△OAB=12⋅2c⋅c=c2=2a2;②若∠BAO=90∘,则l与y=bax垂直且过F点,垂足为A,∴ l的斜率为−ab,则直线l的方程为y=−ab(x−c),联立{y=−ab⋅(x−c),y=bax,解得x=a 2c ,y=abc,则点A为(a 2c ,ab c)∴ △OAB为等腰直角三角形,OB为斜边,∴ OA=AB,OA2=(a2c )2+(abc)2=a2,∴S△OAB=12OA⋅AB=12OA2=12a2.综上所述S△OAB=2a2或12a2.故选D.二、填空题(本题共计 4 小题,每题 5 分,共计20分)13.【答案】√15【考点】与椭圆有关的中点弦及弦长问题【解析】此题暂无解析【解答】解:由椭圆方程可知a=3,c=2,∴F(−2, 0),根据题意,画出图形:设线段PF中点为M,椭圆右焦点为F1,∵M在以O为圆心,|OF|为半径的圆上,∴F1也在圆上,连接OM, PF1, MF1,则∠FMF1=90∘,OM是△FPF1的中位线,∴|PF1|=2|OM|=2|OF|=2×2=4,由椭圆定义|PF|+|PF1|=2a=6,得|PF|=2,|MF|=|PF|2=1,又∵∠FMF1为直角,|MF1|2=|FF1|2−|MF|2=15,∴tan∠MFF1=|MF1||MF|=√151=√15,∴直线PF的斜率是√15.故答案为:√15.14.【答案】(−1,1]∪{−√2}【考点】曲线与方程直线与圆的位置关系【解析】此题暂无解析【解答】x=√1−y2⇔x2+y2=1(x≥0)方程x2+y2=1(x≥0)所表示的曲线为半圆(如图)当直线与圆相切时或在l2与l3之间时,适合题意.此时−1<b≤1或b=−√2,所以b的取值范围是(−1,1]∪{−√2}.15.【答案】x2−y2=1【考点】双曲线的标准方程圆锥曲线的共同特征【解析】利用椭圆的三参数的关系求出双曲线的焦点坐标;利用等轴双曲线的定义设出双曲线的方程,据双曲线中三参数的关系求出双曲线的方程.【解答】解:对于x 25+y23=1知半焦距为c=√5−3=√2所以双曲线的焦点为(±√2,0)设等轴双曲线的方程为x 2a2−y2a2=1据双曲线的三参数的关系得到2a2=2所以a2=1所以双曲线的方程为x2−y2=1.故答案为:x2−y2=116.【答案】−1【考点】斜率的计算公式中点坐标公式与双曲线有关的中点弦及弦长问题【解析】【解答】解:设A(x1,y1),B(x2,y2),D(x0,y0),则x1+x2=2x0,y1+y2=2y0,x12−y128=1,x22−y228=1,两式相减得(x1−x2)(x1+x2)=(y1+y2)(y1−y2)8,整理可得x1−x2y1−y2=y08x0,即1k AB=k OD8,同理得1k BC =k OE8,1k AC=k OF8.因为k OD+k OE+k OF=−8,所以1k AB +1k BC+1k AC=−1.故答案为:−1.三、解答题(本题共计 6 小题,每题 11 分,共计66分)17.【答案】解:命题p :(a +6)(a −7)<0,解得−6<a <7; 命题q :Δ=(−4)2−4a >0,解得a <4. ∴ ¬q :a ≥4.∵ “p ∧(¬q)”为真, ∴ p 为真且¬q 为真, ∴ 4≤a <7. 【考点】逻辑联结词“或”“且”“非” 双曲线的标准方程 一元二次不等式的解法【解析】 此题暂无解析 【解答】解:命题p :(a +6)(a −7)<0,解得−6<a <7; 命题q :Δ=(−4)2−4a >0,解得a <4. ∴ ¬q :a ≥4.∵ “p ∧(¬q)”为真, ∴ p 为真且¬q 为真, ∴ 4≤a <7. 18. 【答案】解:(1)因为所求双曲线与双曲线x 22−y 2=1有公共渐近线, 所以可设所求双曲线的方程为x 22−y 2=λ(λ≠0).因为所求双曲线过点(2,−2), 所以222−(−2)2=λ,得λ=−2,所以所求双曲线的方程为y 22−x 24=1. (2)因为双曲线的方程为x 24−y 25=1,所以双曲线的一条渐近线方程为y =√52x , 即√5x −2y =0.因为双曲线的左、右焦点到渐近线的距离相等, 且(3,0)为双曲线的一个焦点, 所以双曲线x 24−y 25=1的焦点到其渐近线的距离为|3√5−0|3=√5.【考点】双曲线的离心率 【解析】 此题暂无解析 【解答】解:(1)因为所求双曲线与双曲线x 22−y 2=1有公共渐近线,所以可设所求双曲线的方程为x 22−y 2=λ(λ≠0).因为所求双曲线过点(2,−2), 所以222−(−2)2=λ,得λ=−2, 所以所求双曲线的方程为y 22−x 24=1. (2)因为双曲线的方程为x 24−y 25=1,所以双曲线的一条渐近线方程为y =√52x , 即√5x −2y =0.因为双曲线的左、右焦点到渐近线的距离相等, 且(3,0)为双曲线的一个焦点, 所以双曲线x 24−y 25=1的焦点到其渐近线的距离为|3√5−0|3=√5.19.【答案】解:(1)点A 为椭圆C 上任意一点, A 关于原点O 的对称点为B , 由|AF 1|+|BF 1|=4知 2a =4, 得a =2.又∠F 1AF 2的最大值为π3,知当A 为上顶点时,∠F 1AF 2最大, 所以a =2c , 得c =1,所以b 2=a 2−c 2=3. 所以椭圆C 的标准方程为x 24+y 23=1.(2)由题知NA 的斜率存在,设NA 方程为 y =k(x −4),与椭圆联立,得(4k 2+3)x 2−32k 2x +64k 2−12=0.① 设点A (x 1,y 1),E (x 2,y 2), 则A ′(x 1,−y 1).直线A ′E 方程为y −y 2=y 2+y1x 2−x 1(x −x 2).令y =0得x =x 2+y 2(x 1−x 2)y 1+y 2,将y1=k(x1−4),y2=k(x2−4)代入,整理得,x=2x1x2−4(x1+x2)x1+x2−8.②x1+x2=32k24k2+3,x1x2=64k2−124k2+3.代入②整理,得x=1.所以直线A′E与x轴交于定点Q(1,0). 【考点】圆锥曲线中的定点与定值问题与直线关于点、直线对称的直线方程直线与椭圆结合的最值问题椭圆的标准方程椭圆的定义【解析】此题暂无解析【解答】解:(1)点A为椭圆C上任意一点,A关于原点O的对称点为B,由|AF1|+|BF1|=4知2a=4,得a=2.又∠F1AF2的最大值为π3,知当A为上顶点时,∠F1AF2最大,所以a=2c,得c=1,所以b2=a2−c2=3.所以椭圆C的标准方程为x 24+y23=1.(2)由题知NA的斜率存在,设NA方程为y=k(x−4),与椭圆联立,得(4k2+3)x2−32k2x+64k2−12=0.①设点A(x1,y1),E(x2,y2),则A′(x1,−y1).直线A′E方程为y−y2=y2+y1x2−x1(x−x2).令y =0得x =x 2+y 2(x 1−x 2)y 1+y 2,将y 1=k (x 1−4),y 2=k (x 2−4)代入, 整理得,x =2x 1x 2−4(x 1+x 2)x 1+x 2−8.②x 1+x 2=32k 24k 2+3, x 1x 2=64k 2−124k 2+3.代入②整理,得x =1.所以直线A ′E 与x 轴交于定点Q(1,0). 20. 【答案】(1)椭圆C 的标准方程为x 25+y 2=1.(2)存在定点N (52,0),使得C .B .N 三点共线. 【考点】直线与椭圆结合的最值问题 椭圆的标准方程【解析】 此题暂无解析 【解答】 解:(1)由椭圆的焦点在x 轴上, 设椭圆C 的方程为x 2a2+y 2b 2=1(ab >0),椭圆C 的一个顶点为(0,1),即b =1, 由e =ac √1−b 2a 2=√5解得a 2=5,∴ 椭圆C 的标准方程为x 25+y 2=1.(2)由得F (2,0),设A (x 1,y 1),B (x 2,y 2)设直线l 的方程为y =k (x −2)(k ≠0),代入椭圆方程,消去y 可得 (5k 2+1)x 2−20k 2x +20k 2−5=0, 则x 1+x 2=20k 25k 2+1,x 1x 2=20k 2−55k 2+1.∵ 点C 与点A 关于x 轴对称, ∴ C (x 1,−y 1) .假设存在N (t,0),使得C ,B ,N 三点共线, 则BN →=(t −x 2,−y 2),CN →=(t −x 1,y 1). ∵ C ,B ,N 三点共线,∴ BN →//CN →,∴ (t −x 2)y 1+(t −x 1)y 2=0, 即(y 1+y 2)t =x 2y 1+x 1y 2 ∴ t =k (x 1−2)x 2+k (x 2−2)x 1k (x 1−2)+k (x 2−2) =2⋅20k 2−55k 2+1−2⋅20k 25k 2+120k 25k 2+1−4=52∴ 存在定点N (52,0),使得C .B .N 三点共线.21.【答案】解:(1)∵ 直线l :x −y +1=0与抛物线C 相切. 由{x −y +1=0,y 2=2px ,得y 2−2py +2p =0,从而Δ=4p 2−8p =0, 解得p =2.∴ 抛物线C 的方程为y 2=4x . (2)由于直线m 的斜率不为0,所以可设直线m 的方程为ty =x −1,A(x 1,y 1),B(x 2,y 2), 由{ty =x −1,y 2=4x ,消去x 得y 2−4ty −4=0,∴ y 1+y 2=4t ,从而x 1+x 2=4t 2+2, ∴ 线段AB 的中点M 的坐标为(2t 2+1,2t). 设点A 到直线l 的距离为d A , 点B 到直线l 的距离为d B , 点M 到直线l 的距离为d , 则d A +d B =2d =2⋅2√2=2√2|t 2−t +1| =2√2|(t −12)2+34|,∴ 当t =12时,A ,B 两点到直线l 的距离之和最小,最小值为3√22. 【考点】直线与抛物线结合的最值问题 二次函数在闭区间上的最值 抛物线的标准方程 直线与圆的位置关系【解析】 此题暂无解析 【解答】解:(1)∵ 直线l :x −y +1=0与抛物线C 相切. 由{x −y +1=0,y 2=2px ,得y 2−2py +2p =0,从而Δ=4p 2−8p =0, 解得p =2.∴ 抛物线C 的方程为y 2=4x . (2)由于直线m 的斜率不为0,所以可设直线m 的方程为ty =x −1,A(x 1,y 1),B(x 2,y 2), 由{ty =x −1,y 2=4x ,消去x 得y 2−4ty −4=0,∴ y 1+y 2=4t ,从而x 1+x 2=4t 2+2, ∴ 线段AB 的中点M 的坐标为(2t 2+1,2t). 设点A 到直线l 的距离为d A , 点B 到直线l 的距离为d B , 点M 到直线l 的距离为d , 则d A +d B =2d =2⋅2√2=2√2|t 2−t +1| =2√2|(t −12)2+34|,∴ 当t =12时,A ,B 两点到直线l 的距离之和最小,最小值为3√22. 22. 【答案】(1)根据题意,椭圆的离心率为12,即e =ca =2,则a =2c . 又∵ a 2=b 2+c 2,∴ b =√3c . ∴ 椭圆的标准方程为:x 24c 2+y 23c 2=1. 又∵ 点P(1, 32)为椭圆上一点,∴ 14c 2+943c 2=1,解得:c =1.∴ 椭圆的标准方程为:x 24+y 23=1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1, y 1),N(x 2, y 2).联列方程组:{x 24+y 23=1y =kx +1 ,消去y 可得:(3+4k 2)x 2+8kx −8=0. ∴ 由韦达定理可知:x 1+x 2=−8k 3+4k2,x 1x 2=−83+4k 2.∵ k 1=y 1x 1+2,k 2=y 2x 1−2,且k 1=2k 2,∴y 1x 1+2=2y 2x 2−2,即y 12(x 1+2)2=4y 22(x 2−2)2.①又∵ M(x 1, y 1),N(x 2, y 2)在椭圆上, ∴ y 12=34(4−x 12),y 22=34(4−x 22).② 将②代入①可得:2−x 12+x 1=4(2+x 2)2−x 2,即3x 1x 2+10(x 1+x 2)+12=0.∴ 3(−83+4k 2)+10(−8k3+4k 2)+12=0,即12k 2−20k +3=0. 解得:k =16或k =32. 又由k >1,则k =32. 【考点】 椭圆的离心率 【解析】(1)根据题意,由椭圆离心率可得a =2c ,进而可得b =√3c ,则椭圆的标准方程为x 24c 2+y 23c 2=1,将P 的坐标代入计算可得c 的值,即可得答案; (2)根据题意,设直线l 的方程为y =kx +1,设M(x 1, y 1),N(x 2, y 2),将直线的方程与椭圆联立,可得(3+4k 2)x 2+8kx −8=0,由根与系数的关系分析,:x 1+x 2=−8k 3+4k 2,x 1x 2=−83+4k 2,结合椭圆的方程与直线的斜率公式可得3(−83+4k 2)+10(−8k3+4k 2)+12=0,即12k 2−20k +3=0,解可得k 的值,即可得答案. 【解答】(1)根据题意,椭圆的离心率为12,即e =c a=2,则a =2c .又∵ a 2=b 2+c 2,∴ b =√3c . ∴ 椭圆的标准方程为:x 24c 2+y 23c 2=1. 又∵ 点P(1, 32)为椭圆上一点,∴ 14c 2+943c 2=1,解得:c =1.∴ 椭圆的标准方程为:x 24+y 23=1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1, y 1),N(x 2, y 2).联列方程组:{x 24+y 23=1y =kx +1 ,消去y 可得:(3+4k 2)x 2+8kx −8=0.∴ 由韦达定理可知:x 1+x 2=−8k 3+4k 2,x 1x 2=−83+4k 2.∵ k 1=y 1x1+2,k 2=y 2x 1−2,且k 1=2k 2,∴ y 1x 1+2=2y 2x 2−2,即y 12(x 1+2)2=4y 22(x 2−2)2.①又∵ M(x 1, y 1),N(x 2, y 2)在椭圆上, ∴ y 12=34(4−x 12),y 22=34(4−x 22).② 将②代入①可得:2−x12+x 1=4(2+x 2)2−x 2,即3x 1x 2+10(x 1+x 2)+12=0.∴ 3(−83+4k 2)+10(−8k 3+4k 2)+12=0,即12k 2−20k +3=0.解得:k =16或k =32. 又由k >1,则k =32.。
高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 2.3.1 Word版含答案
§ 2.3双曲线2.3.1 双曲线及其标准方程课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题.1.双曲线的有关概念 (1)双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线.平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为________________________________________________________________________. 平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________. (2)双曲线的焦点和焦距双曲线定义中的两个定点F 1、F 2叫做__________________,两焦点间的距离叫做__________________. 2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程是______________________,焦点F 1__________,F 2__________.(2)焦点在y 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________.(3)双曲线中a 、b 、c 的关系是________________.一、选择题1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a(a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.若ax 2+by 2=b(ab<0),则这个曲线是( ) A .双曲线,焦点在x 轴上 B .双曲线,焦点在y 轴上C .椭圆,焦点在x 轴上D .椭圆,焦点在y 轴上3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1 B .x 23-y 2=1C .y 2-x 23=1 D .x 22-y 22=14.双曲线x 2m -y23+m=1的一个焦点为(2,0),则m 的值为( )A .12B .1或3C .1+22D .2-125.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( )A .抛物线B .圆C .双曲线的一支D .椭圆6.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( ) A .x 24-y 2=1 B .x 2-y 24=1 C .x 22-y 23=1 D .x 23-y22=1二、填空题8.已知方程x 21+k -y 21-k=1表示双曲线,则k 的取值范围是________.9.F 1、F 2是双曲线x 29-y 216=1的两个焦点,P 在双曲线上且满足|PF 1|·|PF 2|=32,则∠F 1PF 2=________________________________________________________________________. 三、解答题10.设双曲线与椭圆x 227+y 236=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,求此双曲线的标准方程.11.在△ABC 中,B(4,0)、C(-4,0),动点A 满足sin B -sin C =12sin A ,求动点A 的轨迹方程.能力提升A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞)13.已知双曲线的一个焦点为F(7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,求双曲线的标准方程.1.双曲线的标准方程可以通过待定系数法求得.2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相结合.3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决.§2.3 双曲线2.3.1 双曲线及其标准方程知识梳理1.(1)|F 1F 2| 以F 1,F 2为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距2.(1)x 2a 2-y 2b 2=1(a >0,b >0) (-c,0) (c,0)(2)y 2a 2-x 2b2=1(a >0,b >0) (0,-c ) (0,c ) (3)c 2=a 2+b 2 作业设计1.B [根据双曲线的定义,乙⇒甲,但甲 乙, 只有当2a <|F 1F 2|且a ≠0时,其轨迹才是双曲线.]2.B [原方程可化为x 2b a+y 2=1,因为ab <0,所以ba <0,所以曲线是焦点在y 轴上的双曲线,故选B.]3.A [∵双曲线的焦点在x 轴上,∴设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0).由题知c =2,∴a 2+b 2=4.①又点(2,3)在双曲线上,∴22a 2-32b2=1.②由①②解得a 2=1,b 2=3,∴所求双曲线的标准方程为x 2-y 23=1.] 4.A [∵双曲线的焦点为(2,0),在x 轴上且c =2,∴m +3+m =c 2=4.∴m =12.]5.C [由题意两定圆的圆心坐标为O 1(0,0),O 2(4,0),设动圆圆心为O ,动圆半径为r ,则|OO 1|=r +1,|OO 2|=r +2,∴|OO 2|-|OO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.]6.B [设双曲线方程为x 2a 2-y 2b 2=1,因为c =5,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a 2-y 25-a 2=1.由于线段PF 1的中点坐标为(0,2),则P 点的坐标为(5,4).代入双曲线方程得5a 2-165-a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线方程为x 2-y 24=1.故选B.]7.2解析 ∵||PF 1|-|PF 2||=4,又PF 1⊥PF 2,|F 1F 2|=25, ∴|PF 1|2+|PF 2|2=20,∴(|PF 1|-|PF 2|)2 =20-2|PF 1||PF 2|=16,∴|PF 1|·|PF 2|=2. 8.-1<k <1解析 因为方程x 21+k -y 21-k=1表示双曲线,所以(1+k )(1-k )>0.所以(k +1)(k -1)<0.所以-1<k <1. 9.90°解析 设∠F 1PF 2=α,|PF 1|=r 1,|PF 2|=r 2. 在△F 1PF 2中,由余弦定理,得(2c )2=r 21+r 22-2r 1r 2cos α,∴cos α=(r 1-r 2)2+2r 1r 2-4c 22r 1r 2=36+64-10064=0.∴α=90°.10.解 方法一 设双曲线的标准方程为y 2a 2-x 2b2=1 (a >0,b >0),由题意知c 2=36-27=9,c =3.又点A 的纵坐标为4,则横坐标为±15,于是有 ⎩⎪⎨⎪⎧42a 2-(±15)2b 2=1,a 2+b 2=9,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.所以双曲线的标准方程为y 24-x 25=1.方法二 将点A 的纵坐标代入椭圆方程得A (±15,4), 又两焦点分别为F 1(0,3),F 2(0,-3). 所以2a =|(±15-0)2+(4+3)2-(±15-0)2+(4-3)2|=4, 即a =2,b 2=c 2-a 2=9-4=5,所以双曲线的标准方程为y 24-x 25=1.11.解 设A 点的坐标为(x ,y ),在△ABC 中,由正弦定理,得a sin A =b sin B =c sin C =2R ,代入sin B -sin C =12sin A , 得|AC |2R -|AB |2R =12·|BC |2R ,又|BC |=8, 所以|AC |-|AB |=4.因此A 点的轨迹是以B 、C 为焦点的双曲线的右支(除去右顶点)且2a =4,2c =8,所以a =2,c =4,b 2=12.所以A 点的轨迹方程为x 24-y 212=1 (x >2).12.B[由c =2得a 2+1=4, ∴a 2=3,∴双曲线方程为x 23-y 2=1.设P (x ,y )(x ≥3),13.解 设双曲线的标准方程为x 2a 2-y2b2=1,且c =7,则a 2+b 2=7.①由MN 中点的横坐标为-23知,中点坐标为⎝⎛⎭⎫-23,-53. 设M (x 1,y 1),N (x 2,y 2),则由⎩⎨⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,得b 2(x 1+x 2)(x 1-x 2)-a 2(y 1+y 2)(y 1-y 2)=0.∵⎩⎨⎧x 1+x 2=-43y 1+y 2=-103,且y 1-y 2x 1-x 2=1,∴2b 2=5a 2.②由①,②求得a 2=2,b 2=5.∴所求双曲线的标准方程为x 22-y 25=1.。
2020高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 2.2.2 Word版含答案
2.2.2 椭圆的简单几何性质一、选择题1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( )A .5,3,45B .10,6,45C .5,3,35D .10,6,352.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A .x 236+y 216=1 B .x 216+y 236=1 C .x 26+y 24=1 D .y 26+x 24=1 3.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A . 3B .32C .83D .234.如图所示,A 、B 、C 分别为椭圆x 2a 2+y 2b 2=1 (a>b>0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为( )A .-1+52B .1-22C .2-1D .225.若直线mx +ny =4与圆O :x 2+y 2=4没有交点,则过点P(m ,n)的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .0A .(0,1)B .⎝⎛⎦⎤0,12C .⎝⎛⎭⎫0,22 D .⎣⎡⎫2,1二、填空题 7.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P(-5,4),则椭圆的方程为______________.8.直线x +2y -2=0经过椭圆x 2a 2+y 2b2=1 (a>b>0)的一个焦点和一个顶点,则该椭圆的离心率等于______.9.椭圆E :x 216+y 24=1内有一点P(2,1),则经过P 并且以P 为中点的弦所在直线方程为____________. 三、解答题 10.如图,已知P 是椭圆x 2a 2+y 2b2=1 (a>b>0)上且位于第一象限的一点,F 是椭圆的右焦点,O是椭圆中心,B 是椭圆的上顶点,H 是直线x =-a 2c(c 是椭圆的半焦距)与x 轴的交点,若PF ⊥OF ,HB ∥OP ,试求椭圆的离心率e.11.已知椭圆4x 2+y 2=1及直线y =x +m.(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.能力提升12.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A .45 B .35 C .25 D .1313.已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为F 1(-3,0),且右顶点为D(2,0).设点A 的坐标是⎝⎛⎭⎫1,12. (1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.2.2.2 椭圆的简单几何性质作业设计1.B [先将椭圆方程化为标准形式:x 29+y 225=1,其中b =3,a =5,c =4.] 2.A 3.B4.A [由(a +c )2=a 2+2b 2+c 2, ∵b 2=a 2-c 2,∴c 2+ac -a 2=0,∵e =ca ,∴e 2+e -1=0,∴e =-1+52.]5.B [∵4m 2+n2>2,∴m 2+n 2<4.∴点P (m ,n )在椭圆x 29+y 24=1的内部,∴过点P (m ,n )的直线与椭圆x 29+y 24=1有两个交点.]∴M 点轨迹方程为x 2+y 2=c 2,其中F 1F 2为直径, 由题意知椭圆上的点在圆x 2+y 2=c 2外部, 设点P 为椭圆上任意一点,则|OP |>c 恒成立, 由椭圆性质知|OP |≥b ,其中b 为椭圆短半轴长, ∴b >c ,∴c 2<b 2=a 2-c 2,∴a 2>2c 2, ∴⎝⎛⎭⎫c a 2<12,∴e =c a <22.又∵0<e <1,∴0<e <22.] 7.x 245+y 236=1 解析 设椭圆的方程为x 2a 2+y 2b 2=1 (a >b >0),将点(-5,4)代入得25a 2+16b2=1,又离心率e =c a =55,即e 2=c 2a 2=a 2-b 2a 2=15,解之得a 2=45,b 2=36,故椭圆的方程为x 245+y 236=1.8.255解析 由题意知椭圆的焦点在x 轴上,又直线x +2y -2=0与x 轴、y 轴的交点分别为(2,0)、(0,1),它们分别是椭圆的焦点与顶点,所以b =1,c =2,从而a =5,e =c a =255.9.x +2y -4=0解析 设弦的两个端点为M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧x 2116+y 214=1x 2216+y 224=1, 两式相减,得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.又x 1+x 2=4,y 1+y 2=2,k MN =y 1-y 2x 1-x 2,∴k MN =-12,由点斜式可得弦所在直线的方程为y =-12(x -2)+1,即x +2y -4=0.10.解 依题意知H ⎝⎛⎭⎫-a 2c ,0,F (c,0),B (0,b ).设P (x P ,y P ),且x P =c ,代入到椭圆的方程,得y P =b 2a.∴P ⎝⎛⎭⎫c ,b 2a . ∵HB ∥OP ,∴k HB =k OP ,即b -00+a 2c=b 2ac .∴ab =c 2.∴e =c a =b c ,∴e 2=a 2-c 2c 2=e -2-1.∴e 4+e 2-1=0.∵0<e <1,∴e =5-12. 11.解 (1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m ,得5x 2+2mx +m 2-1=0.因为直线与椭圆有公共点,所以Δ=4m 2-20(m 2-1)≥0.解得-52≤m ≤52.(2)设直线与椭圆交于A (x 1,y 1)、B (x 2,y 2), 由(1)知,5x 2+2mx +m 2-1=0,由根与系数的关系得x 1+x 2=-2m5,x 1x 2=15(m 2-1).设弦长为d ,且y 1-y 2=(x 1+m )-(x 2+m )=x 1-x 2, ∴d =(x 1-x 2)2+(y 1-y 2)2=2(x 1-x 2)2 =2[(x 1+x 2)2-4x 1x 2]=2⎣⎡⎦⎤4m 225-45(m 2-1) =2510-8m 2. ∴当m =0时,d 最大,此时直线方程为y =x . 12.B [由题意知2b =a +c ,又b 2=a 2-c 2, ∴4(a 2-c 2)=a 2+c 2+2ac .∴3a 2-2ac -5c 2=0.∴5c 2+2ac -3a 2=0.∴5e 2+2e -3=0.∴e =35或e =-1(舍去).]13.解 (1)∵a =2,c =3,∴b =a 2-c 2=1.∴椭圆的标准方程为x 24+y 2=1.(2)设P (x 0,y 0),M (x ,y ),由中点坐标公式, 得⎩⎪⎨⎪⎧x =x 0+12,y =y 0+122,∴⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -12.又∵x 204+y 20=1,∴(2x -1)24+⎝⎛⎭⎫2y -122=1 即为中点M 的轨迹方程.。
高二数学 (人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 2.4.2 Word版含答案
2.4.2 抛物线的简单几何性质1.抛物线的简单几何性质设抛物线的标准方程为y 2=2px(p>0)(1)范围:抛物线上的点(x ,y)的横坐标x 的取值范围是________,抛物线在y 轴的______侧,当x 的值增大时,|y|也________,抛物线向右上方和右下方无限延伸.(2)对称性:抛物线关于________对称,抛物线的对称轴叫做________________.(3)顶点:抛物线和它的轴的交点叫做抛物线的________.抛物线的顶点为____________. (4)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的__________,用e 表示,其值为______.(5)抛物线的焦点到其准线的距离为______,这就是p 的几何意义,顶点到准线的距离为p2,焦点到顶点的距离为________. 2.直线与抛物线的位置关系直线y =kx +b 与抛物线y 2=2px(p>0)的交点个数决定于关于x 的方程________________________的解的个数.当k ≠0时,若Δ>0,则直线与抛物线有______个不同的公共点;当Δ=0时,直线与抛物线有______个公共点;当Δ<0时,直线与抛物线________公共点.当k =0时,直线与抛物线的轴__________,此时直线与抛物线有______个公共点. 3.抛物线的焦点弦设抛物线y 2=2px(p>0),AB 为过焦点的一条弦,A(x 1,y 1),B(x 2,y 2),AB 的中点M(x 0,y 0),则有以下结论.(1)以AB 为直径的圆与准线________.(2)|AB|=________(焦点弦长与中点坐标的关系). (3)|AB|=x 1+x 2+______.(4)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1x 2=________,y 1y 2=________.一、选择题1.顶点在原点,对称轴为坐标轴的抛物线过点(-2,3),它的方程是( )A .x 2=-92y 或y 2=43xB .y 2=-92x 或x 2=43yC .y 2=-92xD .x 2=43y2.若抛物线y 2=2px (p>0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物线焦点F 的距离的关系是( ) A .成等差数列B .既成等差数列又成等比数列C .成等比数列D .既不成等比数列也不成等差数列 3.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .172B .3C . 5D .924.设斜率为2的直线l 过抛物线y 2=ax(a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2=±4x B .y 2=±8xC .y 2=4xD .y 2=8x5.设直线l 1:y =2x ,直线l 2经过点P(2,1),抛物线C :y 2=4x ,已知l 1、l 2与C 共有三个交点,则满足条件的直线l 2的条数为( )A .1B .2C .3D .46.过抛物线y 2=ax (a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若PF 与FQ 的长分别为p 、q ,则1p +1q 等于( )A .2aB .12aC .4aD .4a二、填空题7.已知抛物线C 的顶点为坐标原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为________.8.已知F 是抛物线C :y 2=4x 的焦点,A 、B 是抛物线C 上的两个点,线段AB 的中点为M(2,2),则△ABF的面积等于________.9.过抛物线x2=2py (p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴的左侧),则|AF||FB|=________.三、解答题10.设抛物线y=mx2 (m≠0)的准线与直线y=1的距离为3,求抛物线的标准方程.11.过点Q(4,1)作抛物线y2=8x的弦AB,恰被Q所平分,求AB所在的直线方程.能力提升12.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为-3,那么|PF|等于()A.4 3 B.8 C.8 3 D.1613.已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.(1)若|AF|=4,求点A的坐标;(2)求线段AB的长的最小值.1.抛物线上一点与焦点的距离问题,可转化为该点到准线的距离.2.直线与抛物线的位置关系,可利用直线方程与抛物线方程联立而成的方程组的解来判定;“中点弦”问题也可使用“点差法”.2.4.2 抛物线的简单几何性质知识梳理1.(1)x ≥0 右 增大 (2)x 轴 抛物线的轴 (3)顶点 坐标原点 (4)离心率 1 (5)p p 22.k 2x 2+2(kb -p )x +b 2=0 两 一 没有 平行或重合 一3.(1)相切 (2)2(x 0+p 2) (3)p (4)p 24-p 2作业设计1.B [由题意知所求抛物线开口向上或开口向左,利用待定系数法可求得方程.] 2.A [设三点为P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则y 21=2px 1,y 22=2px 2,y 23=2px 3,因为2y 22=y 21+y 23,所以x 1+x 3=2x 2, 即|P 1F |-p 2+|P 3F |-p2=2⎝⎛⎭⎫|P 2F |-p 2, 所以|P 1F |+|P 3F |=2|P 2F |.] 3.A [如图所示,由抛物线的定义知,点P 到准线x =-12的距离d 等于点P 到焦点的距离|PF |.因此点P 到点(0,2)的距离与点P 到准线的距离之和可转化为点P 到点(0,2)的距离与点P到点F 的距离之和,其最小值为点M (0,2)到点F ⎝⎛⎭⎫12,0的距离,则距离之和的最小值为4+14=172.] 4.B [y 2=ax 的焦点坐标为⎝⎛⎭⎫a 4,0,过焦点且斜率为2的直线方程为y =2⎝⎛⎭⎫x -a 4,令x =0得y =-a2.∴12×|a |4×|a |2=4,∴a 2=64,∴a =±8.] 5.C [∵点P (2,1)在抛物线内部,且直线l 1与抛物线C 相交于A ,B 两点,∴过点P 的直线l 2在过点A 或点B 或与x 轴平行时符合题意.∴满足条件的直线l 2共有3条.]6.D [可采用特殊值法,设PQ 过焦点F ⎝⎛⎭⎫a 4,0且垂直于x 轴,则|PF |=p =x P +a 4=a 4+a 4=a 2, |QF |=q =a 2,∴1p +1q =2a +2a =4a.]7.y 2=4x解析 设抛物线方程为y 2=ax .将y =x 代入y 2=ax ,得x =0或x =a ,∴a2=2.∴a =4.∴抛物线方程为y 2=4x . 8.2解析 设A (x 1,y 1),B (x 2,y 2),则y 21=4x 1,y 22=4x 2. ∴(y 1+y 2)(y 1-y 2)=4(x 1-x 2).∵x 1≠x 2,∴y 1-y 2x 1-x 2=4y 1+y 2=1.∴直线AB 的方程为y -2=x -2,即y =x . 将其代入y 2=4x ,得A (0,0)、B (4,4).∴|AB |=4 2.又F (1,0)到y =x 的距离为22,∴S △ABF =12×22×42=2.9.13解析 抛物线x 2=2py (p >0)的焦点为F ⎝⎛⎭⎫0,p 2,则直线AB 的方程为y =33x +p 2, 由⎩⎪⎨⎪⎧x 2=2py ,y =33x +p 2,消去x ,得12y 2-20py +3p 2=0, 解得y 1=p 6,y 2=3p2.由题意可设A (x 1,y 1),B (x 2,y 2),由抛物线的定义,可知|AF ||FB |=y 1+p 2y 2+p 2=p 6+p 23p 2+p 2=13.10.解 由y =mx 2 (m ≠0)可化为x 2=1my ,其准线方程为y =-14m.由题意知-14m =-2或-14m =4,解得m =18或m =-116.则所求抛物线的标准方程为x 2=8y 或x 2=-16y . 11.解 方法一 设以Q 为中点的弦AB 端点坐标为 A (x 1,y 1)、B (x 2,y 2), 则有y 21=8x 1,① y 22=8x 2,②∵Q (4,1)是AB 的中点, ∴x 1+x 2=8,y 1+y 2=2.③①-②,得(y 1+y 2)(y 1-y 2)=8(x 1-x 2).④ 将③代入④得y 1-y 2=4(x 1-x 2),即4=y 1-y 2x 1-x 2,∴k =4.∴所求弦AB 所在的直线方程为y -1=4(x -4),即4x -y -15=0. 方法二 设弦AB 所在直线方程为y =k (x -4)+1.由⎩⎪⎨⎪⎧y 2=8x ,y =k (x -4)+1,消去x , 得ky 2-8y -32k +8=0,此方程的两根就是线段端点A 、B 两点的纵坐标,由根与系数的关系和中点坐标公式,得y 1+y 2=8k,又y 1+y 2=2,∴k =4.∴所求弦AB 所在的直线方程为4x -y -15=0. 12.B [如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43). 设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6, ∴|PF |=x 0+2=8,选B.]13.解 由y 2=4x ,得p =2,其准线方程为x =-1,焦点F (1,0). 设A (x 1,y 1),B (x 2,y 2).分别过A 、B 作准线的垂线,垂足为A ′、B ′.(1)由抛物线的定义可知,|AF |=x 1+p2,从而x 1=4-1=3.代入y 2=4x ,解得y 1=±2 3. ∴点A 的坐标为(3,23)或(3,-23). (2)当直线l 的斜率存在时, 设直线l 的方程为y =k (x -1).与抛物线方程联立⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,消去y ,整理得k 2x 2-(2k 2+4)x +k 2=0, 因为直线与抛物线相交于A 、B 两点,则k≠0,并设其两根为x1,x2,则x1+x2=2+4k2. 由抛物线的定义可知,|AB|=x1+x2+p=4+4k2>4.当直线l的斜率不存在时,直线l的方程为x=1,与抛物线相交于A(1,2),B(1,-2),此时|AB|=4,所以,|AB|≥4,即线段AB的长的最小值为4.。
2021学年高中数学第二章圆锥曲线与方程单元质量评估二课时作业含解析人教A版选修2_1.doc
第二章单元质量评估(二)时限:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为( C ) A .4B .-4C .-14D.142.若椭圆x 23m +y 22m +1=1的焦点在y 轴上,则实数m 的取值范围是( B )A.⎝⎛⎭⎫-12,1 B .(0,1) C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-12,12 解析:本题主要考查椭圆的基本概念.由题意得3m >0,2m +1>0且2m +1>3m ,得0<m <1,故选B.3.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( C )A .y =±14xB .y =±13xC .y =±12x D .y =±x解析:本题主要考查有关双曲线基本概念的运算.∵e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=54,∴b 2a 2=14.又a >0,b >0,∴b a =12,∴C 的渐近线方程为y =±12x ,故选C. 4.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交椭圆C 于A ,B 两点,且|AB |=3,则C 的方程为( C )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1 解析:如图,|AF 2|=12|AB |=32,|F 1F 2|=2,由椭圆定义得|AF 1|=2a -32①.在Rt △AF 1F 2中,|AF 1|2=|AF 2|2+|F 1F 2|2=⎝⎛⎭⎫322+22②. 由①②得a =2,∴b 2=a 2-c 2=3. ∴椭圆C 的方程为x 24+y 23=1,应选C.5.已知双曲线y 2-x 2=1的离心率为e ,且抛物线y 2=2px 的焦点坐标为(e 2,0),则p 的值为( D )A .-2B .-4C .2D .4解析:由条件知,双曲线的离心率为e =2,所以抛物线焦点坐标为(2,0),所以p2=2,所以p =4.故选D.6.如图,过抛物线y 2=3x 的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则|AB |=( A )A .4B .6C .8D .10解析:本题主要考查抛物线的定义.如图,分别过点A ,B 作AA 1,BB 1垂直于准线l ,垂足分别为A 1,B 1,由抛物线的定义得|BF |=|BB 1|.∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴∠BCB 1=30°. 又|AA 1|=|AF |=3,∴|AC |=2|AA 1|=6,∴|CF |=|AC |-|AF |=6-3=3, ∴|BF |=1,|AB |=4,故选A.7.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若椭圆的离心率为23,则k 的值为( C )A .-13 B.13 C .±13 D .±12解析:本题主要考查椭圆的焦点、离心率等概念及斜率公式的应用.由题意知点B 的横坐标是c ,故点B 的坐标为⎝⎛⎭⎫c ,±b 2a ,则斜率k =±b 2ac +a =±b2ac +a 2=±a 2-c 2ac +a 2=±1-e 2e +1=±(1-e )=±13,故选C.8.已知双曲线x 2a 2-y 2b 2=1(a >b >0)的两焦点间的线段F 1F 2正好被椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点三等分,则该双曲线的渐近线方程为( B )A .y =±53xB .y =±255xC .y =±355x D .y =±5x解析:∵双曲线的焦距为2a 2+b 2,椭圆的焦距为2a 2-b 2,∴2a 2-b 2=13·2a 2+b 2,整理得4a 2=5b 2,则a =52b .代入双曲线的渐近线方程y =±b a x ,得y =±255x . 9.已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( A )A .m >n ,且e 1e 2>1B .m >n ,且e 1e 2<1C .m <n ,且e 1e 2>1D .m <n ,且e 1e 2<1解析:∵椭圆与双曲线的焦点重合,∴m 2-1=n 2+1.∴m 2-n 2=2,∴m >n . ∵e 1=1-1m2,e 2=1+1n2,∴e 1e 2=⎝⎛⎭⎫1-1m 2⎝⎛⎭⎫1+1n 2=1+1n 2-1m 2-1m 2n2=1+m 2-n 2-1m 2n 2=1+1m 2n2>1. 10.已知椭圆x 24+y 23=1的左、右顶点分别为A ,B ,在椭圆上有一个异于点A ,B 的动点P ,若直线P A 的斜率为k 0,则直线PB 的斜率为( B )A.34k 0 B .-34k 0 C .-34k 0 D .-32k 0 解析:本题主要考查斜率公式及椭圆方程的综合运算.由题设知A (-2,0),B (2,0).设P (x 0,y 0)(x 0≠±2),∴k P A =y 0x 0+2,k PB =y 0x 0-2.∵点P 在椭圆上,∴x 204+y 203=1,∴y 20=3⎝⎛⎭⎫1-x 204,∴k P A ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4=3⎝⎛⎭⎫1-x 204x 20-4=-34.∵k P A =k 0,∴k PB =-34k 0,故选B.。
高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 2.3.2 Word版含答案.docx
2.3.2双曲线的简单几何性质课时目标 1.掌握双曲线的简单几何性质.2.了解双曲线的渐近性及渐近线的概念.3.掌握直线与双曲线的位置关系.1.双曲线的几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质焦点焦距范围对称性顶点轴长实轴长=____,虚轴长=____离心率渐近线一般地,设直线l:y=kx+m (m≠0)①双曲线C:x2a2-y2b2=1 (a>0,b>0)②把①代入②得(b2-a2k2)x2-2a2mkx-a2m2-a2b2=0.(1)当b2-a2k2=0,即k=±ba时,直线l与双曲线的渐近线平行,直线与双曲线C相交于________.(2)当b2-a2k2≠0,即k≠±ba时,Δ=(-2a2mk)2-4(b2-a2k2)(-a2m2-a2b2).Δ>0⇒直线与双曲线有________公共点,此时称直线与双曲线相交;Δ=0⇒直线与双曲线有________公共点,此时称直线与双曲线相切;Δ<0⇒直线与双曲线________公共点,此时称直线与双曲线相离.一、选择题1.下列曲线中离心率为62的是()A.x22-y24=1 B.x24-y22=1C.x24-y26=1 D.x24-y210=12.双曲线x225-y24=1的渐近线方程是()A .y =±25xB .y =±52xC .y =±425xD .y =±254x3.双曲线与椭圆4x 2+y 2=1有相同的焦点,它的一条渐近线方程为y =2x ,则双曲线的方程为( )A .2x 2-4y 2=1B .2x 2-4y 2=2C .2y 2-4x 2=1D .2y 2-4x 2=34.设双曲线x 2a 2-y 2b2=1(a>0,b>0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A .y =±2xB .y =±2xC .y =±22xD .y =±12x5.直线l 过点(2,0)且与双曲线x 2-y 2=2仅有一个公共点,则这样的直线有( ) A .1条B .2条C .3条D .4条6.已知双曲线x 2a 2-y 2b2=1 (a>0,b>0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( ) A .43B 53C . 2 D .73二、填空题7.两个正数a 、b 的等差中项是52,一个等比中项是6,且a>b ,则双曲线x 2a 2-y 2b2=1的离心率e =______.8.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,且a =10,c -b =6,则顶点A 运动的轨迹方程是________________.9.与双曲线x 29-y 216=1有共同的渐近线,并且经过点(-3,23)的双曲线方程为__________. 三、解答题10.根据下列条件,求双曲线的标准方程.(1)经过点⎝⎛⎭⎫154,3,且一条渐近线为4x +3y =0;(2)P(0,6)与两个焦点连线互相垂直,与两个顶点连线的夹角为π3.11.设双曲线x 2-y 22=1上两点A 、B ,AB 中点M(1,2),求直线AB 的方程.能力提升12.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A .2B . 3C .3+12D .5+1213.设双曲线C :x 2a2-y 2=1 (a>0)与直线l :x +y =1相交于两个不同的点A 、B.(1)求双曲线C 的离心率e 的取值范围;1.双曲线x 2a 2-y 2b2=1 (a>0,b>0)既关于坐标轴对称,又关于坐标原点对称;其顶点为(±a ,0),实轴长为2a ,虚轴长为2b ;其上任一点P(x ,y)的横坐标均满足|x|≥a.2.双曲线的离心率e =c a 的取值范围是(1,+∞),其中c 2=a 2+b 2,且ba=e 2-1,离心率e 越大,双曲线的开口越大.可以通过a 、b 、c 的关系,列方程或不等式求离心率的值或范围.3.双曲线x 2a 2-y 2b 2=1 (a>0,b>0)的渐近线方程为y =±b a x ,也可记为x 2a 2-y 2b 2=0;与双曲线x 2a 2-y 2b 2=1具有相同渐近线的双曲线的方程可表示为x 2a 2-y2b2=λ (λ≠0). 2.3.2 双曲线的简单几何性质知识梳理 1. 标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形性质 焦点 F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )焦距 |F 1F 2|=2c范围 x ≥a 或x ≤-a ,y ∈R y ≥a 或y ≤-a ,x ∈R对称性 关于x 轴、y 轴和原点对称顶点 (-a,0),(a,0) (0,-a ),(0,a ) 轴长实轴长=2a ,虚轴长=2b离心率 e =ca(e >1)渐近线 y =±b a x y =±abx作业设计1.B [∵e =62,∴e 2=c 2a 2=32,∴b 2a 2=12,故选B.]2.A3.C [由于椭圆4x 2+y 2=1的焦点坐标为⎝⎛⎭⎫0,±32,则双曲线的焦点坐标为⎝⎛⎭⎫0,±32,又由渐近线方程为y =2x ,得a b =2,即a 2=2b 2,又由⎝⎛⎭⎫322=a 2+b 2,得a 2=12,b 2=14,又由于焦点在y 轴上,因此双曲线的方程为2y 2-4x 2=1.故选C.]4.C [由题意知,2b =2,2c =23,则b =1,c =3,a =2;双曲线的渐近线方程为y=±22x .]5.C [点(2,0)即为双曲线的右顶点,过该点有两条与双曲线渐近线平行的直线与双曲线仅有一个公共点,另过该点且与x 轴垂直的直线也与双曲线只有一个公共点.]6.B [||PF 1|-|PF 2||=2a ,即3|PF 2|=2a ,所以|PF 2|=2a3≥c -a ,即2a ≥3c -3a ,即5a ≥3c ,则c a ≤53.] 7.133解析 a +b =5,ab =6,解得a ,b 的值为2或3.又a >b ,∴a =3,b =2.∴c =13,从而e =c a =133.8.x 29-y 216=1(x >3) 解析 以BC 所在直线为x 轴,BC 的中点为原点建立直角坐标系,则B (-5,0),C (5,0),而|AB |-|AC |=6<10.故A 点的轨迹是双曲线的右支,其方程为x 29-y 216=1(x >3).9.x 294-y24=1 解析 ∵所求双曲线与双曲线x 29-y 216=1有相同的渐近线,∴可设所求双曲线的方程为x 29-y216=λ (λ≠0).∵点(-3,23)在双曲线上, ∴λ=(-3)29-(23)216=14.∴所求双曲线的方程为x 294-y 24=1.10.解 (1)因直线x =154与渐近线4x +3y =0的交点坐标为⎝⎛⎭⎫154,-5,而3<|-5|,故双曲线的焦点在x 轴上,设其方程为x 2a 2-y 2b2=1,由⎩⎪⎨⎪⎧⎝⎛⎭⎫1542a 2-32b2=1,b 2a 2=⎝⎛⎭⎫432,解得⎩⎪⎨⎪⎧a 2=9,b 2=16.故所求的双曲线方程为x 29-y 216=1.(2)设F 1、F 2为双曲线的两个焦点.依题意,它的焦点在x 轴上.因为PF 1⊥PF 2,且|OP |=6,所以2c =|F 1F 2|=2|OP |=12,所以c =6.又P 与两顶点连线夹角为π3,所以a =|OP |·tan π6=23,所以b 2=c 2-a 2=24.故所求的双曲线方程为x 212-y 224=1.11.解 方法一 (用韦达定理解决) 显然直线AB 的斜率存在.设直线AB 的方程为y -2=k (x -1), 即y =kx +2-k ,由⎩⎪⎨⎪⎧y =kx +2-k x 2-y 22=1得(2-k 2)x 2-2k (2-k )x -k 2+4k -6=0, 当Δ>0时,设A (x 1,y 1),B (x 2,y 2),则1=x 1+x 22=k (2-k )2-k 2,∴k =1,满足Δ>0,∴直线AB 的方程为y =x +1. 方法二 (用点差法解决)设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21-y 212=1x 22-y 222=1, 两式相减得(x 1-x 2)(x 1+x 2)=12(y 1-y 2)(y 1+y 2).∵x 1≠x 2,∴y 1-y 2x 1-x 2=2(x 1+x 2)y 1+y 2,∴k AB =2×1×22×2=1,∴直线AB 的方程为y =x +1,代入x 2-y 22=1满足Δ>0.∴直线AB 的方程为y =x +1. 12.D [设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),如图所示,双曲线的一条渐近线方程为y =bax ,而k BF =-b c ,∴b a ·(-bc)=-1,整理得b 2=ac .∴c 2-a 2-ac =0,两边同除以a 2,得e 2-e -1=0,解得e =1+52或e =1-52(舍去),故选D.]13.解 (1)由双曲线C 与直线l 相交于两个不同的点得⎩⎪⎨⎪⎧x 2a 2-y 2=1,x +y =1有两个不同的解,消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0,①∴⎩⎪⎨⎪⎧1-a 2≠0,Δ=4a 4+8a 2(1-a 2)>0, 解得-2<a <2且a ≠±1. 又∵a >0,∴0<a <2且a ≠1.∵双曲线的离心率e =1+a 2a =1a 2+1,∴0<a <2,且a ≠1,∴e >62且e ≠ 2.∴双曲线C 的离心率e 的取值范围是 ⎝⎛⎭⎫62,2∪(2,+∞). (2)设A (x 1,y 1),B (x 2,y 2),P (0,1).∴(x 1,y 1-1)=512(x 2,y 2-1), 由此可得x 1=512x 2.∵x 1,x 2都是方程①的根,且1-a 2≠0,∴x 1+x 2=1712x 2=-2a 21-a 2,x 1x 2=512x 22=-2a 21-a 2,消去x 2得-2a 21-a 2=28960,即a 2=289169.又∵a >0,∴a =1713.。
高二数学 人教版选修2-1习题 第2章 圆锥曲线与方程 2.4.1 Word版含答案
第二章 2.4 2.4.1一、选择题1.在平面直角坐标系内,到点(1,1)和直线x +2y =3的距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线[答案] A[解析] ∵点(1,1)在直线x +2y =3上,故所求点的轨迹是过点(1,1)且与直线x +2y =3垂直的直线.2.过点A (3,0)且与y 轴相切的圆的圆心的轨迹为( )A .圆B .椭圆C .直线D .抛物线[答案] D[解析] 如图,设点P 为满足条件的一点,不难得出结论:点P 到点A 的距离等于点P 到y 轴的距离,故点P 在以点A 为焦点,y 轴为准线的抛物线上,故点P 的轨迹为抛物线,因此选D.3.抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .5[答案] D[解析] 解法一:∵y =4,∴x 2=4·y =16,∴x =±4, ∴A (±4,4),焦点坐标为(0,1), ∴所求距离为42+(4-1)2=25=5.解法二:抛物线的准线为y =-1,∴A 到准线的距离为5,又∵A 到准线的距离与A 到焦点的距离相等.∴距离为5.4.抛物线y 2=mx 的焦点为F ,点P (2,22)在此抛物线上,M 为线段PF 的中点,则点M 到该抛物线准线的距离为( )A .1B .32 C .2D .52[答案] D[解析] ∵点P (2,22)在抛物线上,∴(22)2=2m ,∴m =4,P 到抛物线准线的距离为2-(-1)=3,F 到准线距离为2, ∴M 到抛物线准线的距离为d =3+22=52.5.已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )A.12 B .1 C .2 D .4[答案] C[解析] 抛物线的准线为x =-p2,将圆方程化简得到(x -3)2+y 2=16,准线与圆相切,则-p2=-1,∴p =2,故选C.6.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离为( )A .12B .8C .6D .4[答案] B[解析] ∵点P 到y 轴的距离为6,∴点P 到抛物线y 2=8x 的准线x =-2的距离d =6+2=8, 根据抛物线的定义知点P 到抛物线焦点的距离为8. 二、填空题7.抛物线y =ax 2的准线方程是y =2,则a 的值为________.[答案] -18[解析] 抛物线方程化为标准形式为x 2=1a y ,由题意得a <0,∴2p =-1a ,∴p =-12a ,∴准线方程为y =p 2=-14a =2,∴a =-18.8.沿直线y =-2发出的光线经抛物线y 2=ax 反射后,与x 轴相交于点A (2,0),则抛物线的准线方程为________(提示:抛物线的光学性质:从焦点发出的光线经抛物线反射后与轴平行).[答案] x =-2[解析] 由直线y =-2平行于抛物线的轴知A (2,0)为焦点,故准线方程为x =-2. 三、解答题9.若抛物线y 2=2px (p >0)上一点M 到准线及对称轴的距离分别为10和6,求M 点的横坐标及抛物线方程.[解析] ∵点M 到对称轴的距离为6, ∴设点M 的坐标为(x,6). 又∵点M 到准线的距离为10,∴⎩⎪⎨⎪⎧62=2px ,x +p 2=10.解得⎩⎪⎨⎪⎧ x =9,p =2,或⎩⎪⎨⎪⎧x =1,p =18.故当点M 的横坐标为9时,抛物线方程为y 2=4x . 当点M 的横坐标为1时,抛物线方程为y 2=36x .10.求顶点在坐标原点,对称轴为坐标轴,过点(-2,3)的抛物线的标准方程.[解析] ∵点(-2,3)在第二象限,∴设抛物线方程为y 2=-2px (p >0)或x 2=2p ′y (p ′>0), 又点(-2,3)在抛物线上,∴p =94,p ′=23,∴抛物线方程为y 2=-92x 或x 2=43y .一、选择题1.若动点M (x ,y )到点F (4,0)的距离比它到直线x +5=0的距离小1,则点M 的轨迹方程是( ) A .x +4=0 B .x -4=0 C .y 2=8xD .y 2=16x[答案] D[解析] 依题意可知M 点到点F 的距离等于M 点到直线x =-4的距离,因此其轨迹是抛物线,且p =8,顶点在原点,焦点在x 轴正半轴上,∴其方程为y 2=16x ,故答案是D.2.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .22C .2 3D .4[答案] C[解析] 抛物线C 的准线方程为x =-2,焦点F (2,0),由|PF |=42及抛物线的定义知,P 点的横坐标x P =32,从而y P =±26,∴S △POF =12|OF |·|y P |=12×2×26=2 3.3.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|P 1F |+|P 2F |=|FP 3|B .|P 1F |2+|P 2F |2=|P 3F |2C .2|P 2F |=|P 1F |+|P 3F |D .|P 2F |2=|P 1F |·|P 3F |[答案] C[解析] ∵点P 1、P 2、P 3在抛物线上,且2x 2=x 1+x 3,两边同时加上p , 得2(x 2+p 2)=x 1+p 2+x 3+p2,即2|P 2F |=|P 1F |+|P 3F |,故选C.4.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为( )A.522 B .522+1 C.522-2D .522-1[答案] D[解析] 设抛物线焦点为F ,过P 作P A 与准线垂直,垂足为A ,作PB 与l 垂直,垂足为B ,则d 1+d 2=|P A |+|PB |-1=|PF |+|PB |-1,显然当P 、F 、B 三点共线(即P 点在由F 向l 作垂线的垂线段上)时,d 1+d 2取到最小值,最小值为522-1.二、填空题5.已知点A (0,2),抛物线y 2=2px (p >0)的焦点为F ,准线为l ,线段F A 交抛物于点B ,过B 点作l 的垂线,垂足为M ,若AM ⊥MF ,则p =________.[答案]2[解析] 由抛物线的定义可得BM =BF ,F (P2,0),又AM ⊥MF ,故点B 为线段F A 中点,即B (p 4,1),所以1=2p ×p4⇒p = 2.6.在平面直角坐标系xOy 中,点B 与点A (-1,0)关于原点O 对称.点P (x 0,y 0)在抛物线y 2=4x 上,且直线AP 与BP 的斜率之积等于2,则x 0=________.[答案] 1+ 2[解析] ∵点B 与点A (-1,0)关于原点O 对称,∴B (1,0),根据题意,得y 20x 20-1=2,又y 20=4x 0,∴2x 0=x 20-1,即x 20-2x 0-1=0,解得x 0=2±82=1±2,舍去负值,得x 0=1+ 2. 三、解答题7.求适合下列条件的抛物线的标准方程:(1)过抛物线y 2=2mx 的焦点F 作x 轴的垂线交抛物线于A 、B 两点,且|AB |=6; (2)抛物线顶点在原点,对称轴是x 轴,点P (-5,25)到焦点的距离是6.[解析] (1)设抛物线的准线为l ,交x 轴于K 点,l 的方程为x =-m2,如图,作AA ′⊥l于A ′,BB ′⊥l 于B ′,则|AF |=|AA ′|=|FK |=|m |,同理|BF |=|m |.又|AB |=6,则2|m |=6. ∴m =±3,故所求抛物线方程为y 2=±6x .(2)设焦点F (a,0),|PF |=(a +5)2+20=6,即a 2+10a +9=0,解得a =-1或a =-9.当焦点为F (-1,0)时,p =2,抛物线开口方向向左,其方程为y 2=-4x ;当焦点为F (-9,0)时,p =18,抛物线开口方向向左,其方程为y 2=-36x .8.一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.[解析] 以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则B 点的坐标为(a2,-a 4),如图所示,设隧道所在抛物线方程为x 2=my ,则(a 2)2=m ·(-a 4),∴m =-a ,即抛物线方程为x 2=-ay . 将(0.8,y )代入抛物线方程,得 0.82=-ay , 即y =-0.82a.欲使卡车通过隧道,应有y -(-a 4)>3,即a 4-0.82a >3,由于a >0,得上述不等式的解为a >12.21,∴a 应取13.。
高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 章末总结
章末总结知识点一圆锥曲线的定义和性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用.例1已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=123,求双曲线的标准方程.知识点二直线与圆锥曲线的位置关系直线与圆锥曲线一般有三种位置关系:相交、相切、相离.在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的.例2如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.(1)求x1x2与y1y2的值;(2)求证:OM⊥ON.知识点三轨迹问题轨迹是解析几何的基本问题,求解的方法有以下几种:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x=φ(t),y=Φ(t),再通过一些条件消掉t就间接地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程.例3设点A、B是抛物线y2=4px (p>0)上除原点O以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线?知识点四圆锥曲线中的定点、定值问题圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值.化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.例4 若直线l :y =kx +m 与椭圆x 24+y 23=1相交于A 、B 两点(A 、B 不是左、右顶点),A 2为椭圆的右顶点且AA 2⊥BA 2,求证:直线l 过定点.知识点五 圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热点,主要有以下两种求解策略:(1)平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解.(2)目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.例5 已知A(4,0),B(2,2)是椭圆x 225+y 29=1内的两定点,点M 是椭圆上的动点,求|MA|+|MB|的最值.例6 已知F 1、F 2为椭圆x 2+y 22=1的上、下两个焦点,AB 是过焦点F 1的一条动弦,求△ABF 2面积的最大值.章末总结重点解读例1 解如图所示,设双曲线方程为x 2a 2-y 2b2=1 (a>0,b>0). ∵e =c a=2,∴c =2a. 由双曲线的定义,得||PF 1|-|PF 2||=2a =c ,在△PF 1F 2中,由余弦定理,得:|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=(|PF 1|-|PF 2|)2+2|PF 1||PF 2|(1-cos 60°),即4c 2=c 2+|PF 1||PF 2|.①又S △PF 1F 2=123,∴12|PF 1||PF 2|sin 60°=123, 即|PF 1||PF 2|=48.②由①②,得c 2=16,c =4,则a =2,b 2=c 2-a 2=12,∴所求的双曲线方程为x 24-y 212=1. 例2 (1)解 过点P(2,0)且斜率为k 的直线方程为:y =k(x -2).把y =k(x -2)代入y 2=2x ,消去y 得k 2x 2-(4k 2+2)x +4k 2=0,由于直线与抛物线交于不同两点,故k 2≠0且Δ=(4k 2+2)2-16k 4=16k 2+4>0,x 1x 2=4,x 1+x 2=4+2k2, ∵M 、N 两点在抛物线上,∴y 21·y 22=4x 1·x 2=16, 而y 1·y 2<0,∴y 1y 2=-4.例3 解 设直线OA 的方程为y =kx (k ≠±1,因为当k =±1时,直线AB 的斜率不存在),则直线OB 的方程为y =-x k,进而可求A ⎝⎛⎭⎫4p k 2,4p k 、 B(4pk 2,-4pk).于是直线AB的斜率为k AB=k 1-k2,从而k OM=k2-1k,∴直线OM的方程为y=k2-1k x,①直线AB的方程为y+4pk=-kk2-1(x-4pk2).②将①②相乘,得y2+4pky=-x(x-4pk2),即x2+y2=-4pky+4pk2x=4p(k2x-ky),③又k2x-ky=x,代入③式并化简,得(x-2p)2+y2=4p2.当k=±1时,易求得直线AB的方程为x=4p.故此时点M的坐标为(4p,0),也在(x-2p)2+y2=4p2 (x≠0)上.∴点M的轨迹方程为(x-2p)2+y2=4p2 (x≠0),∴其轨迹是以(2p,0)为圆心,半径为2p的圆,去掉坐标原点.例4证明设A(x1,y1),B(x2,y2),联立⎩⎪⎨⎪⎧y=kx+m,x24+y23=1,得(3+4k2)x2+8mkx+4(m2-3)=0,则⎩⎨⎧Δ=64m2k2-16(3+4k2)(m2-3)>0,x1+x2=-8mk3+4k2,x1x2=4(m2-3)3+4k2.即⎩⎨⎧3+4k2-m2>0,x1+x2=-8mk3+4k2,x1x2=4(m2-3)3+4k2.又y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2=3(m2-4k2)3+4k2.∵椭圆的右顶点为A2(2,0),AA2⊥BA2,∴(x1-2)(x2-2)+y1y2=0.∴y1y2+x1x2-2(x1+x2)+4=0.∴3(m2-4k2)3+4k2+4(m2-3)3+4k2+16mk3+4k2+4=0.∴7m2+16km+4k2=0,解得m 1=-2k ,m 2=-2k 7, 且均满足3+4k 2-m 2>0.当m 1=-2k 时,l 的方程为y =k(x -2),直线过定点(2,0),与已知矛盾.当m 2=-2k 7时,l 的方程为y =k ⎝⎛⎭⎫x -27,直线过定点⎝⎛⎭⎫27,0, ∴直线l 过定点.例5 解 因为A(4,0)是椭圆的右焦点,设A ′为椭圆的左焦点,则A ′(-4,0),由椭圆定义知|MA|+|MA ′|=10.如图所示,则|MA|+|MB|=|MA|+|MA ′|+|MB|-|MA ′|=10+|MB|-|MA ′|≤10+|A ′B|.当点M 在BA ′的延长线上时取等号.所以当M 为射线BA ′与椭圆的交点时,(|MA|+|MB|)max =10+|A ′B|=10+210.又如图所示,|MA|+|MB|=|MA|+|MA ′|-|MA ′|+|MB|=10-(|MA ′|-|MB|)≥10-|A ′B|, 当M 在A ′B 的延长线上时取等号.所以当M 为射线A ′B 与椭圆的交点时,(|MA|+|MB|)min =10-|A ′B|=10-210. 例6 解 由题意,|F 1F 2|=2.设直线AB 方程为y =kx +1,代入椭圆方程2x 2+y 2=2, 得(k 2+2)x 2+2kx -1=0,则x A +x B =-2k k 2+2,x A ·x B =-1k 2+2, ∴|x A -x B |=8(k 2+1)k 2+2. S △ABF 2=12|F 1F 2|·|x A -x B |=22×k 2+1k 2+2=22×1k 2+1+1k 2+1≤22×12= 2. 当k 2+1=1k 2+1,即k =0时, S △ABF 2有最大面积为 2.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)
12PF F S =解析:设P (x 0,y 0),PF 的中点为(x ,y ),则y 0=14x 20,又F (0,1),∴⎩⎪⎨⎪⎧x =x 02y =y 0+12,∴⎩⎨⎧x 0=2xy 0=2y -1,代入y 0=14x 20得2y -1=14(2x )2,化简得x 2=2y -1,故选A. 答案:A7.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1 D. 3 解析:由已知解出抛物线的焦点坐标和双曲线的渐近线方程,利用点到直线的距离公式求解.由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x -y =0或3x +y =0, 则焦点到渐近线的距离d 1=|3×1-0|32+-12=32或d 2=|3×1+0|32+12=32. 答案:B8.直线y =x +b 与抛物线x 2=2y 交于A 、B 两点,O 为坐标原点,且OA ⊥OB ,则b =( )A .2B .-2C .1D .-1解析:设A (x 1,y 1),B (x 2,y 2), 联立方程组⎩⎨⎧y =x +b ,x 2=2y ,消去y ,得x 2-2x -2b =0,所以x 1+x 2=2,x 1x 2=-2b ,y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2=b 2,∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴所求轨迹的方程为x 2=4y . (2)由题意易知直线l 2的斜率存在,又抛物线方程为x 2=4y ,当直线AB 斜率为0时|PQ |=4 2.当直线AB 斜率k 不为0时,设中点坐标为(t,2),P (x 1,y 1),Q (x 2,y 2),则有x 21=4y 1,x 22=4y 2,两式作差得x 21-x 22=4(y 1-y 2),即得k =x 1+x 24=t 2,则直线方程为y -2=t2(x -t ),与x 2=4y 联立得x 2-2tx +2t 2-8=0.由根与系数的关系得x 1+x 2=2t ,x 1x 2=2t 2-8, |PQ |=x 1-x 22+y 1-y 22=1+k 2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+t 24[4t 2-42t 2-8]=8-t 24+t 2≤6,即|PQ |的最大值为6.19.(本小题满分12分)已知双曲线的焦点在x 轴上,离心率为2,F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,12PF F S =123,求双曲线的标准方程.解析:如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∴所求k 的值为2.21.(本小题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),离心率为22,过点B (0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2.(1)求椭圆的方程; (2)求△CDF 2的面积. 解析:(1)由题意知b =1,c a =22,且c 2=a 2+b 2,解得a =2,c =1. 易得椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎨⎧y =-2x -2x22+y 2=1得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, 所以直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-169x 1·x 2=23∴|CD |=1+-22|x 1-x 2|=5·x 1+x 22-4x 1x 2=5·⎝ ⎛⎭⎪⎫-1692-4×23=1092,又点F 2到直线BF 1的距离d =455, 故CDF S2=12|CD |·d =4910. 22.(本小题满分12分)过点C (0,1)的椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为。
高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 2.2.2 Word版含答案
2.2.2 椭圆的简单几何性质课时目标 1.掌握椭圆的范围、对称性、顶点、离心率等几何性质.2.明确标准方程中a ,b 以及c ,e 的几何意义,a 、b 、c 、e 之间的相互关系.3.能利用椭圆的几何性质解决椭圆的简单问题.1.椭圆的简单几何性质直线y =kx +b 与椭圆x 2a 2+y 2b2=1 (a>b>0)的位置关系:直线与椭圆相切⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1有______组实数解,即Δ______0.直线与椭圆相交⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1有______组实数解,即Δ______0,直线与椭圆相离⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1________实数解,即Δ______0.一、选择题1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( )A .5,3,45B .10,6,45C .5,3,35D .10,6,352.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A .x 236+y 216=1 B .x 216+y 236=1 C .x 26+y 24=1 D .y 26+x 24=13.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A . 3B .32C .83D .234.如图所示,A 、B 、C 分别为椭圆x 2a 2+y 2b 2=1 (a>b>0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为( )A .-1+52B .1-22C .2-1D .225.若直线mx +ny =4与圆O :x 2+y 2=4没有交点,则过点P(m ,n)的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .0A .(0,1)B .⎝⎛⎦⎤0,12C .⎝⎛⎭⎫0,22 D .⎣⎡⎫2,1二、填空题 7.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P(-5,4),则椭圆的方程为______________.8.直线x +2y -2=0经过椭圆x 2a 2+y 2b2=1 (a>b>0)的一个焦点和一个顶点,则该椭圆的离心率等于______.9.椭圆E :x 216+y 24=1内有一点P(2,1),则经过P 并且以P 为中点的弦所在直线方程为____________. 三、解答题 10.如图,已知P 是椭圆x 2a 2+y 2b2=1 (a>b>0)上且位于第一象限的一点,F 是椭圆的右焦点,O是椭圆中心,B 是椭圆的上顶点,H 是直线x =-a 2c(c 是椭圆的半焦距)与x 轴的交点,若PF ⊥OF ,HB ∥OP ,试求椭圆的离心率e.11.已知椭圆4x 2+y 2=1及直线y =x +m.(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.能力提升12.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A .45 B .35 C .25 D .1313.已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为F 1(-3,0),且右顶点为D(2,0).设点A 的坐标是⎝⎛⎭⎫1,12. (1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.1.椭圆的范围实质就是椭圆上点的横坐标和纵坐标的取值范围,在求解一些存在性和判断性问题中有着重要的应用.2.椭圆既是一个轴对称图形,又是一个中心对称图形.椭圆的对称性在解决直线与椭圆的位置关系以及一些有关面积的计算问题时,往往能起到化繁为简的作用.3.椭圆的离心率是反映椭圆的扁平程度的一个量,通过解方程或不等式可以求得离心率的值或范围.4.在与椭圆有关的求轨迹方程的问题中要注意挖掘几何中的等量关系.2.2.2 椭圆的简单几何性质知识梳理 1.2.作业设计1.B [先将椭圆方程化为标准形式:x 29+y 225=1,其中b =3,a =5,c =4.] 2.A 3.B4.A [由(a +c )2=a 2+2b 2+c 2, ∵b 2=a 2-c 2,∴c 2+ac -a 2=0,∵e =ca ,∴e 2+e -1=0,∴e =-1+52.]5.B [∵4m 2+n2>2,∴m 2+n 2<4.∴点P (m ,n )在椭圆x 29+y 24=1的内部,∴过点P (m ,n )的直线与椭圆x 29+y 24=1有两个交点.]∴M 点轨迹方程为x 2+y 2=c 2,其中F 1F 2为直径, 由题意知椭圆上的点在圆x 2+y 2=c 2外部, 设点P 为椭圆上任意一点,则|OP |>c 恒成立, 由椭圆性质知|OP |≥b ,其中b 为椭圆短半轴长, ∴b >c ,∴c 2<b 2=a 2-c 2,∴a 2>2c 2, ∴⎝⎛⎭⎫c a 2<12,∴e =c a <22.又∵0<e <1,∴0<e <22.] 7.x 245+y 236=1 解析 设椭圆的方程为x 2a 2+y 2b 2=1 (a >b >0),将点(-5,4)代入得25a 2+16b2=1,又离心率e =c a =55,即e 2=c 2a 2=a 2-b 2a 2=15,解之得a 2=45,b 2=36,故椭圆的方程为x 245+y 236=1.8.255解析 由题意知椭圆的焦点在x 轴上,又直线x +2y -2=0与x 轴、y 轴的交点分别为(2,0)、(0,1),它们分别是椭圆的焦点与顶点,所以b =1,c =2,从而a =5,e =c a =255.9.x +2y -4=0解析 设弦的两个端点为M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧x 2116+y 214=1x 2216+y 224=1, 两式相减,得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.又x 1+x 2=4,y 1+y 2=2,k MN =y 1-y 2x 1-x 2,∴k MN =-12,由点斜式可得弦所在直线的方程为y =-12(x -2)+1,即x +2y -4=0.10.解 依题意知H ⎝⎛⎭⎫-a 2c ,0,F (c,0),B (0,b ).设P (x P ,y P ),且x P =c ,代入到椭圆的方程,得y P =b 2a.∴P ⎝⎛⎭⎫c ,b 2a .∵HB ∥OP ,∴k HB =k OP ,即b -00+a 2c=b 2a c.∴ab =c 2. ∴e =c a =b c ,∴e 2=a 2-c 2c 2=e -2-1.∴e 4+e 2-1=0.∵0<e <1,∴e =5-12. 11.解 (1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m ,得5x 2+2mx +m 2-1=0.因为直线与椭圆有公共点,所以Δ=4m 2-20(m 2-1)≥0.解得-52≤m ≤52.(2)设直线与椭圆交于A (x 1,y 1)、B (x 2,y 2), 由(1)知,5x 2+2mx +m 2-1=0,由根与系数的关系得x 1+x 2=-2m5,x 1x 2=15(m 2-1).设弦长为d ,且y 1-y 2=(x 1+m )-(x 2+m )=x 1-x 2, ∴d =(x 1-x 2)2+(y 1-y 2)2=2(x 1-x 2)2 =2[(x 1+x 2)2-4x 1x 2]=2⎣⎡⎦⎤4m 225-45(m 2-1)=2510-8m 2. ∴当m =0时,d 最大,此时直线方程为y =x . 12.B [由题意知2b =a +c ,又b 2=a 2-c 2, ∴4(a 2-c 2)=a 2+c 2+2ac .∴3a 2-2ac -5c 2=0.∴5c 2+2ac -3a 2=0.∴5e 2+2e -3=0.∴e =35或e =-1(舍去).]13.解 (1)∵a =2,c =3,∴b =a 2-c 2=1.∴椭圆的标准方程为x 24+y 2=1.(2)设P (x 0,y 0),M (x ,y ),由中点坐标公式,得⎩⎪⎨⎪⎧x =x 0+12,y =y 0+122,∴⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -12. 又∵x 204+y 20=1,∴(2x -1)24+⎝⎛⎭⎫2y -122=1 即为中点M 的轨迹方程.。
高二数学 人教版选修2-1习题 第2章 圆锥曲线与方程 2.2.2 第1课时 Word版含答案
第二章 2.2 2.2.2 第1课时一、选择题1.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .(3,+∞)B .(-∞,-2)C .(3,+∞)∪(-∞,-2)D .(3,+∞)∪(-6,-2)[答案] D[解析] 由于椭圆的焦点在x 轴上,所以⎩⎪⎨⎪⎧ a 2>a +6a +6>0,即⎩⎪⎨⎪⎧(a +2)(a -3)>0a >-6,解得a >3或-6<a <-2,故选D.2.椭圆的一个顶点与两焦点组成等边三角形,则它的离心率e 为( )A.12 B .13 C.14 D.22[答案] A[解析] 由题意,得a =2c ,∴e =c a =12.3.椭圆C 1:x 225+y 29=1和椭圆C 2:x 29-k +y 225-k=1 (0<k <9)有( )A .等长的长轴B .相等的焦距C .相等的离心率D .等长的短轴[答案] B[解析] 依题意知椭圆C 2的焦点在y 轴上,对于椭圆C 1:焦距=225-9=8,对于椭圆C 2:焦距=2(25-k )-(9-k )=8,故选B.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B .x 23+y 2=1 C.x 212+y 28=1 D .x 212+y 24=1 [答案] A[解析] 根据条件可知c a =33,且4a =43,∴a =3,c =1,b =2,椭圆的方程为x 23+y 22=1.5.已知椭圆的两个焦点和短轴的两个端点恰好为一个正方形的四个顶点,则该椭圆的离心率为( )A.13 B .12 C.33 D .22[答案] D[解析] 依题意椭圆的焦距和短轴长相等,故b =c ,a 2-c 2=c 2,∴e =22. 6.已知A ={1,2,4,5},a 、b ∈A ,则方程x 2a 2+y 2b2=1表示焦点在y 轴上的椭圆的概率为( )A.34 B .38 C.316 D .12[答案] B[解析] ∵a 、b ∈A ,∴不同的方程x 2a 2+y 2b 2=1共有16个.由题意a 2<b 2,∴a =1时,b =2、4、5;a =2时,b =4、5; a =4时,b =5,共6个,∴所求概率P =616=38.二、填空题7.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________.[答案] y 216+x 2=1[解析] 由已知,2a =8,2c =215,∴a =4,c =15,∴b 2=a 2-c 2=16-15=1, ∴椭圆的标准方程为y 216+x 2=1.8.已知椭圆的短半轴长为1,离心率0<e ≤32.则长轴长的取值范围为________. [答案] (2,4][解析] ∵b =1,∴c 2=a 2-1,又c 2a 2=a 2-1a 2=1-1a 2≤34,∴1a 2≥14,∴a 2≤4, 又∵a 2-1>0,∴a 2>1, ∴1<a ≤2,故长轴长2<2a ≤4. 三、解答题9.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.[解析] 椭圆方程可化为x 2m +y 2mm +3=1,∵m -m m +3=m (m +2)m +3>0,∴m >mm +3.即a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3.由e =32得,m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1,∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1(-32,0)、F 2(32,0);四个顶点分别为A 1(-1,0)、A 2(1,0)、B 1(0,-12)、B 2(0,12).10.已知椭圆上横坐标等于焦点横坐标的点,它到x 轴的距离等于短半轴长的23,求椭圆的离心率.[解析] 解法一:设焦点坐标为F 1(-c ,0)、F 2(c,0),M 是椭圆上一点,依题意设M 点坐标为(c ,23b ).在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2, 即4c 2+49b 2=|MF 1|2,而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理,得3c 2=3a 2-2ab . 又c 2=a 2-b 2,3b =2a .∴b 2a 2=49. ∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,∴e =53. 解法二:设M (c ,23b ),代入椭圆方程,得c 2a 2+4b 29b 2=1,∴c 2a 2=59,∴c a =53,即e =53.一、选择题1.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为( )A .8、6B .4、3C .2、3D .4、2 3[答案] B[解析] 椭圆过焦点的弦中最长的是长轴,最短的为垂直于长轴的弦(通径)是2b 2a .∴最长的弦为2a =4,最短的弦为2b 2a =2×32=3,故选B.2.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|︰|PF 2|=2︰1,则△F 1PF 2的面积等于( )A .5B .4C .3D .1[答案] B[解析] 由椭圆方程,得a =3,b =2,c =5,∴|PF 1|+|PF 2|=2a =6,又|PF 1|︰|PF 2|=2︰1,∴|PF 1|=4,|PF 2|=2,由22+42=(25)2可知,△F 1PF 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×4×2=4,故选B.3.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1、F 2.若|AF 1|、|F 1F 2|、|F 1B |成等比数列,则此椭圆的离心率为( )A.14 B .55 C.12 D .5-2 [答案] B[解析] ∵A 、B 分别为左右顶点,F 1、F 2分别为左右焦点,∴|AF 1|=a -c ,|F 1F 2|=2c ,|BF 1|=a +c ,又由|AF 1|、|F 1F 2|、|F 1B |成等比数列得(a -c )(a +c )=4c 2,即a 2=5c 2,所以离心率e =55. 4.焦点在y 轴上的椭圆mx 2+y 2=1的离心率为32,则m 的值为( ) A .1 B .2 C .3 D .4[答案] D[解析] 椭圆的方程mx 2+y 2=1化为标准方程为x 21m +y 2=1,由题意得,a 2=1,b 2=1m ,∴c 2=a 2-b 2=1-1m ,∴离心率e =ca =1-1m =32,∴m =4. 二、填空题5.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________.[答案] x 236+y 29=1[解析] 设椭圆G 的标准方程为x 2a 2+y 2b 2=1 (a >b >0),半焦距为c ,则⎩⎪⎨⎪⎧2a =12c a =32,∴⎩⎨⎧a =6c =33. ∴b 2=a 2-c 2=36-27=9, ∴椭圆G 的方程为x 236+y 29=1.6.椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B .当△F AB 的周长最大时,△F AB 的面积是________.[答案] 3[解析] 如图,当直线x =m ,过右焦点(1,0)时,△F AB 的周长最大, 由⎩⎪⎨⎪⎧x =1x 24+y 23=1,解得y =±32,∴|AB |=3∴S =12×3×2=3.三、解答题7.已知点P (x 0,y 0)是椭圆x 28+y 24=1上一点,A 点的坐标为(6,0),求线段P A 中点M 的轨迹方程.[解析] 设M (x ,y ),则⎩⎨⎧x 0+62=x y 0+02=y,∴⎩⎪⎨⎪⎧x 0=2x -6y 0=2y ,∵点P 在椭圆x 28+y 24=1上,∴x 208+y 204=1.把⎩⎪⎨⎪⎧x 0=2x -6y 0=2y ,代入x 208+y 204=1,得(2x -6)28+(2y )24=1,即(x -3)22+y 2=1为所求.8.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1和F 2,离心率e =22,连接椭圆的四个顶点所得四边形的面积为4 2.(1)求椭圆C 的标准方程;(2)设A 、B 是直线l :x =22上的不同两点,若AF 1→·BF 2→=0,求|AB |的最小值.[解析] (1)由题意得:⎩⎨⎧e =c a =22a 2=b 2+c2S =12×(2a )×(2b )=42,解得:⎩⎨⎧a =2b =2c =2.所以椭圆的标准方程为:x 24+y 22=1.(2)由(1)知,F 1、F 2的坐标分别为F 1(-2,0)、F 2(2,0),设直线l :x =22上的不同两点A 、B 的坐标分别为A (22,y 1)、B (22,y 2),则AF 1→=(-32,-y 1)、BF 2→=(-2,-y 2),由AF 1→·BF 2→=0得y 1y 2+6=0,即y 2=-6y 1,不妨设y 1>0,则|AB |=|y 1-y 2|=y 1+6y 1≥26,当y 1=6、y 2=-6时取等号,所以|AB |的最小值是2 6.。
【专业资料】新版高中数学人教A版选修2-1习题:第二章圆锥曲线与方程 2.4.1 含解析
2.4抛物线2.4.1抛物线及其标准方程课时过关·能力提升基础巩固1抛物线y2=20x的焦点坐标是()A.(10,0)B.(5,0)C.(0,10)D.(0,5)2抛物线x=-2y2的准线方程是()A.y=12B.y=18C.x=14D.x=183抛物线y=x2的准线方程是()A.2x+1=0B.4x+1=0C.2y+1=0D.4y+1=0y=x2的标准形式为x2=y,则p=12,且焦点在y轴正半轴上,故准线方程为y=-14,即4y+1=0.4已知抛物线的准线方程是x=-3,则抛物线的标准方程为() A.x2=-12y B.y2=12xC.y2=-12xD.x2=12yx=-3,所以焦点在x轴正半轴上,且p=3,故2p=12.5设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是() A.4 B.6 C.8 D.12P到抛物线准线的距离为4-(-2)=6,由抛物线的定义知,点P到抛物线焦点的距离也是6.6已知M是抛物线y2=2px(p>0)上的点,若M到此抛物线的准线和对称轴的距离分别为5和4,则点M的横坐标为()A.1B.1或4C.1或5D.4或57已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为.8已知动点P到定点(2,0)的距离和它到定直线l:x=-2的距离相等,则点P的轨迹方程为.2=8x9若点M到点F(0,-2)的距离比它到直线l:y-3=0的距离小1,则点M的轨迹方程是.,点M到点F(0,-2)的距离与它到直线l':y-2=0的距离相等,结合抛物线的定义可知,点M 的轨迹是以点F(0,-2)为焦点、y=2为准线的抛物线,即x2=-8y.2=-8y10若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9,它到焦点的距离为10,求抛物线的方程和点M的坐标.,焦点为F(-p2,0),则准线为x=p2.由题意,设点M到准线的距离为|MN|,则|MN|=|MF|=10,即p-(-9)=10,解得p=2.故抛物线的方程为y2=-4x,将M(-9,y)代入y2=-4x,解得y=±6,则M(-9,6)或(-9,-6).能力提升1设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是()A.y2=-8xB.y2=8xC.y2=-4xD.y2=4x准线方程为x=-2,∴结合题意可知抛物线的方程为y2=2px(p>0),且p=2.∴p=4.∴抛物线的方程为y2=8x.2已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()A.x=1B.x=-1C.x=2D.x=-2F (p 2,0)且斜率为1的直线方程为y=x-p 2,与抛物线方程联立可得y 2-2py-p 2=0,则y 1+y 2=2p=4.于是p=2,故准线方程为x=-1.3设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且与y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A.y 2=±4xB.y 2=±8xC.y 2=4xD.y 2=8xy 2=ax (a ≠0)的焦点F 的坐标为(a 4,0),则直线l 的方程为y=2(x -a 4),它与y 轴的交点为A (0,-a 2),故△OAF 的面积为12|a 4|·|a 2|=4,解得a=±8.于是抛物线的方程为y 2=±8x ,故选B.4若双曲线x 2m −y 23=1的右焦点与抛物线y 2=12x 的焦点重合,则m= .(3,0),则√m +3=3,且m>0,故m=6.5抛物线y=1a x 2(a ≠0)的焦点坐标为 .y=1a x 2的标准形式为x 2=ay ,故焦点在y 轴上,坐标为(0,a 4).,a 4)6如图是抛物线形拱桥,当水面到直线l 时,拱顶离水面2 m,水面宽为4 m .水位下降1 m 后,水面宽为 m ..设抛物线的方程为x 2=-2py (p>0),由点(2,-2)在抛物线上,可得p=1,则抛物线方程为x 2=-2y.当y=-3时,x=±√6,故水面宽为2√6 m .√67已知抛物线C 的顶点在原点,焦点F 在x 轴的正半轴上,设A ,B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求抛物线的方程.y 2=2px (p>0),则其准线为x=-p 2.设A (x 1,y 1),B (x 2,y 2), ∵|AF|+|BF|=8,∴x 1+p 2+x 2+p2=8,即x 1+x 2=8-p.∵Q (6,0)在线段AB 的垂直平分线上,∴|QA|=|QB|,即√(6-x 1)2+(-y 1)2=√(6-x 2)2+(-y 2)2.又y 12=2px 1,y 22=2px 2, ∴(x 1-x 2)(x 1+x 2-12+2p )=0.∵AB 与x 轴不垂直,∴x 1≠x 2.则x 1+x 2-12+2p=8-p-12+2p=0,即p=4.故抛物线方程为y 2=8x.8已知过抛物线y 2=2px (p>0)的焦点,斜率为2√2的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ ,求λ的值.直线AB 的方程是y=2√2(x -p2),与y 2=2px 联立,从而有4x 2-5px+p 2=0, 故x 1+x 2=5p 4.由抛物线定义,得|AB|=x 1+x 2+p=9,即p=4.故抛物线的方程为y 2=8x.(2)由(1),得p=4,代入4x 2-5px+p 2=0,得x 2-5x+4=0,解得x 1=1,x 2=4,则y 1=-2√2,y 2=4√2.故A (1,-2√2),B (4,4√2).设OC⃗⃗⃗⃗⃗ =(x 3,y 3)=(1,-2√2)+λ(4,4√2)=(1+4λ,-2√2+4√2λ), 又y 32=8x 3,即[2√2(2λ-1)]2=8(4λ+1),可得(2λ-1)2=4λ+1,解得λ=0或λ=2.★9学校科技小组在计算机上模拟航天器变轨返回试验,设计方案如右图.航天器运行(按顺时针方向)的轨迹方程为x 2100+y 225=1,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y 轴为对称轴、M (0,647)为顶点的抛物线的实线部分,降落点为D (8,0).观测点A (4,0),B (6,0)同时跟踪航天器. (1)求航天器变轨后的运行轨迹所在的曲线方程.(2)试问:当航天器在x 轴上方时,观测点A ,B 测得离航天器的距离分别为多少时,应向航天器发出变轨指令?设曲线方程为y=ax 2+647(a<0),由题意可知0=a ·64+647,即a=-17.故曲线方程为y=-17x 2+647.(2)设变轨点为C (x ,y ),根据题意可知{ x 2100+y 225=1,y =-17x 2+647,① ② 解得y=4或y=-94(不合题意,舍去),故y=4.当y=4时,x=6或x=-6(不合题意,舍去),则点C 的坐标为(6,4),|AC|=2√5,|BC|=4.故当观测点A ,B 测得离航天器的距离分别为2√5,4时,应向航天器发出变轨指令.。
人教A版高中数学选修2-1第二章 圆锥曲线与方程-圆锥曲线基本题型总结习题
圆锥曲线基本题型总结:提纲:一、定义的应用:1、定义法求标准方程:2、涉及到曲线上的点到焦点距离的问题:3、焦点三角形问题:二、圆锥曲线的标准方程:1、对方程的理解2、求圆锥曲线方程(已经性质求方程)3、各种圆锥曲线系的应用:三、圆锥曲线的性质:1、已知方程求性质:2、求离心率的取值或取值范围3、涉及性质的问题:四、直线与圆锥曲线的关系:1、位置关系的判定:2、弦长公式的应用:3、弦的中点问题:4、韦达定理的应用:一、定义的应用:1.定义法求标准方程:(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段【注:2a>|F1 F2|是椭圆,2a=|F1 F2|是线段】A.x 225+y 29=1 (y ≠0) B.y 225+x 29=1 (y ≠0) C.x 216+y 216=1 (y ≠0) D.y 216+x 29=1 (y ≠0) 【注:检验去点】3.已知A (0,-5)、B (0,5),|P A |-|PB |=2a ,当a =3或5时,P 点的轨迹为( ) A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线D.双曲线一支或一条射线 【注:2a<|F 1 F 2|是双曲线,2a=|F 1 F 2|是射线,注意一支与两支的判断】4.已知两定点F 1(-3,0),F 2(3,0),在满足下列条件的平面内动点P 的轨迹中,是双曲线的是( ) A.||PF 1|-|PF 2||=5 B.||PF 1|-|PF 2||=6 C.||PF 1|-|PF 2||=7D.||PF 1|-|PF 2||=0 【注:2a<|F 1 F 2|是双曲线】5.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( ) A.x 216-y 29=1(x ≤-4)B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4)D.x 29-y 216=1(x ≥3) 【注:双曲线的一支】 6.如图,P 为圆B :(x +2)2+y 2=36上一动点,点A 坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.7.已知点A(0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM|=|PA|,求动点P 的轨迹方程.(2)涉及圆的相切问题中的圆锥曲线:8.已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过B 且与圆A 内切,求圆心P 的轨迹方程. 已知动圆M 过定点B (-4,0),且和定圆(x -4)2+y 2=16相切,则动圆圆心M 的轨迹方程为( ) A.x 24-y 212=1 (x >0)B.x 24-y 212=1 (x <0) C.x 24-y 212=1D.y 24-x 212=1 【注:由题目判断是双曲线的一支还是两支】 9.若动圆P 过点N (-2,0),且与另一圆M :(x -2)2+y 2=8相外切,求动圆P 的圆心的轨迹方程. 【注:双曲线的一支,注意与上题区分】10.如图,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2-10x +9=0,动圆M 与定圆F 1、F 2都外切,求动圆圆心M 的轨迹方程.11.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是( ) A.椭圆 B.双曲线 C.双曲线的一支 D.抛物线12.已知动圆M 经过点A (3,0),且与直线l :x =-3相切,求动圆圆心M 的轨迹方程. 【注:同上题做比较,说法不一样,本质相同】13.已知点A (3,2),点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12.(M 的横坐标非负) (1)求点M 的轨迹方程; 【注:体现抛物线定义的灵活应用】(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由. 【注:抛物线定义的应用,涉及抛物线上的点到焦点的距离转化成到准线的距离】(3)其他问题中的圆锥曲线:14.已知A ,B 两地相距2 000 m ,在A 地听到炮弹爆炸声比在B 地晚4 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程. 【注:双曲线的一支】2.15.如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C . 双曲线D .抛物线【注:体现抛物线定义的灵活应用】2.涉及到曲线上的点到焦点距离的问题:16.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )A.22 B.12 C.2-12 D.3417.椭圆x 216+y 27=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( )A .32B .16C .8D .418.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m19.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若|AB |=5,则△AF 1B 的周长为________.20.设F 1、F 2是椭圆x 216+y 212=1的两个焦点,P 是椭圆上一点,且P 到两个焦点的距离之差为2,则△PF 1F 2是( )A .钝角三角形B .锐角三角形C .斜三角形D .直角三角形21.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.【注:椭圆上的点到焦点的距离,最小是a -c ,最大是a+c 】22.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________.【注:注意结果的取舍,双曲线上的点到焦点的距离最小为c -a 】23.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点). 【注:O 是两焦点的中点,注意中位线的体现】24.设F 1、F 2分别是双曲线x 25-y 24=1的左、右焦点.若点P 在双曲线上,且1PF u u u u r ·2PF u u u u r =0,则|1PF u u u u r +2PF u u u u r |等于( ) A .3 B .6 C .1 D .225.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值是( ) A.172B.3C. 5D.92【注:抛物线定义的应用,将抛物线上的点到焦点的距离转化成到准线的距离】26.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( ) A.125 B.65 C .2 D.55【注:抛物线定义的应用,将抛物线上的点到准线的距离转化成到焦点的距离】27.设点A 为抛物线y2=4x 上一点,点B(1,0),且|AB|=1,则A 的横坐标的值为( )A .-2B .0C .-2或0D .-2或2 【注:抛物线的焦半径,即定义的应用】3.焦点三角形问题:椭圆的焦点三角形周长2c 2a 2C PF PF C 21F PF 21+∆=++= 椭圆的焦点三角形面积:推导过程:2tan sin cos 121sin 21cos 1 -)cos (12 (1)-(2)(2)2a (1)COS 2-2 1 b 2b PFPF S 2bPFPF 4c 4a PFPF PF PF 4c PF PF PF PF 2221F PF 22122212212212221θθθθθθθ=+==+==+⎪⎩⎪⎨⎧=+=+∆得双曲线的焦点三角形面积:2tanbS 2F PF 21θ=∆28.设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.【注:小题中可以直接套用公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 圆锥曲线与方程(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2 D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x 212+y 216=1B.x 216+y 212=1 C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( )A .1B .a 2C .b 2D .c 25.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1 C.y 24-x 28=1 D.x 28-y 24=1 6.设a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( ) A .(2,2) B .(2,5)C .(2,5)D .(2,5)7.如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线8.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |等于( )A .9B .6C .4D .39.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)10.若动圆圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)11.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( )A.⎝⎛⎭⎫32,54 B .(1,1)C.⎝⎛⎭⎫32,94 D .(2,4)12.已知椭圆x 2sin α-y 2cos α=1 (0≤α<2π)的焦点在y 轴上,则α的取值范围是( ) A.⎝⎛⎭⎫34π,π B.⎝⎛⎭⎫π4,34π C.⎝⎛⎫π,π D.⎝⎛⎫π,3π 二、填空题(本大题共4小题,每小题5分,共20分)13.椭圆的两个焦点为F 1、F 2,短轴的一个端点为A ,且三角形F 1AF 2是顶角为120°的等腰三角形,则此椭圆的离心率为________.14.点P (8,1)平分双曲线x 2-4y 2=4的一条弦,则这条弦所在直线的方程是______________.15.设椭圆x 2a 2+y 2b2=1 (a >b >0)的左、右焦点分别是F 1、F 2,线段F 1F 2被点⎝⎛⎭⎫b 2,0分成3∶1的两段,则此椭圆的离心率为________.16.对于曲线C :x 24-k +y 2k -1=1,给出下面四个命题: ①曲线C 不可能表示椭圆;②当1<k <4时,曲线C 表示椭圆;③若曲线C 表示双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <52. 其中所有正确命题的序号为________.三、解答题(本大题共6小题,共70分)17.(10分)已知点M 在椭圆x 236+y 29=1上,MP ′垂直于椭圆焦点所在的直线,垂足为P ′,并且M 为线段PP ′的中点,求P 点的轨迹方程.18.(12分)双曲线C与椭圆x28+y24=1有相同的焦点,直线y=3x为C的一条渐近线.求双曲线C的方程.19.(12分)直线y=kx-2交抛物线y2=8x于A、B两点,若线段AB中点的横坐标等于2,求弦AB的长.20.(12分)已知点P (3,4)是椭圆x 2a 2+y 2b 2=1 (a >b >0)上的一点,F 1、F 2为椭圆的两焦点,若PF 1⊥PF 2,试求:(1)椭圆的方程;(2)△PF 1F 2的面积.21.(12分)已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,且|AB |=52p ,求AB 所在的直线方程.22.(12分)在直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C ,直线y =kx +1与C 交于A 、B 两点.(1)写出C 的方程;(2)若OA ⊥OB ,求k 的值.第二章 圆锥曲线与方程(A)1.A [由题意可得21m =2×2,解得m =14.] 2.B [∵y 2=8x 的焦点为(2,0),∴x 2m 2+y 2n2=1的右焦点为(2,0),∴m >n 且c =2. 又e =12=2m,∴m =4. ∵c 2=m 2-n 2=4,∴n 2=12.∴椭圆方程为x 216+y 212=1.] 3.B [抛物线y 2=24x 的准线方程为x =-6,故双曲线中c =6.①由双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =3x ,知b a=3,② 且c 2=a 2+b 2.③由①②③解得a 2=9,b 2=27.故双曲线的方程为x 29-y 227=1,故选B.] 4.D [由椭圆的几何性质得|PF 1|∈[a -c ,a +c ],|PF 1|+|PF 2|=2a ,所以|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=a 2,当且仅当|PF 1|=|PF 2|时取等号.|PF 1|·|PF 2|=|PF 1|(2a -|PF 1|)=-|PF 1|2+2a |PF 1|=-(|PF 1|-a )2+a 2≥-c 2+a 2=b 2,所以|PF 1|·|PF 2|的最大值与最小值之差为a 2-b 2=c 2.]5.B [由于双曲线的顶点坐标为(0,2),可知a =2,且双曲线的标准方程为y 24-x 2b2=1. 根据题意2a +2b =2·2c ,即a +b =2c .又a 2+b 2=c 2,且a =2,∴解上述两个方程,得b 2=4.∴符合题意的双曲线方程为y 24-x 24=1.] 6.B [∵双曲线方程为x 2a 2-y 2(a +1)2=1, ∴c = 2a 2+2a +1.∴e =c a = 2+1a 2+2a = ⎝⎛⎭⎫1a +12+1.又∵a >1,∴0<1a <1.∴1<1a+1<2. ∴1<⎝⎛⎭⎫1+1a 2<4.∴2<e < 5.] 7.D [∵ABCD —A 1B 1C 1D 1是正方体,∴D 1C 1⊥侧面BCC 1B 1.∴D 1C 1⊥PC 1.∴PC 1为P 到直线D 1C 1的距离.∵P 到直线BC 与到直线C 1D 1的距离相等,∴PC 1等于P 到直线BC 的距离.由圆锥曲线的定义知,动点P 的轨迹所在的曲线是抛物线.]8.B [设A 、B 、C 三点的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),F (1,0),∵FA +FB +FC =0,∴x 1+x 2+x 3=3.又由抛物线定义知|FA |+|FB |+|FC |=x 1+1+x 2+1+x 3+1=6.]9.C [如图所示,要使过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率小于等于渐近线的斜率b a, ∴b a ≥3,离心率e 2=c 2a 2=a 2+b 2a2≥4, ∴e ≥2.]10.B [根据抛物线的定义可得.]11.B [设与直线2x -y =4平行且与抛物线相切的直线为2x -y +c =0 (c ≠-4),由⎩⎪⎨⎪⎧2x -y +c =0y =x 2 得x 2-2x -c =0.①由Δ=4+4c =0得c =-1,代入①式得x =1.∴y =1,∴所求点的坐标为(1,1).]12.D [椭圆方程化为x 21sin α+y 2-1cos α=1. ∵椭圆焦点在y 轴上,∴-1cos α>1sin α>0. 又∵0≤α<2π,∴π2<α<3π4.] 13.32解析 由已知得∠AF 1F 2=30°,故cos 30°=c a ,从而e =32. 14.2x -y -15=0解析 设弦的两个端点分别为A (x 1,y 1),B (x 2,y 2),则x 21-4y 21=4,x 22-4y 22=4,两式相减得(x 1+x 2)(x 1-x 2)-4(y 1+y 2)(y 1-y 2)=0.因为线段AB 的中点为P (8,1),所以x 1+x 2=16,y 1+y 2=2.所以y 1-y 2x 1-x 2=x 1+x 24(y 1+y 2)=2.所以直线AB 的方程为y -1=2(x -8),代入x 2-4y 2=4满足Δ>0.即2x -y -15=0. 15.22解析 由题意,得b 2+c c -b 2=3⇒b 2+c =3c -32b ⇒b =c , 因此e =c a = c 2a 2= c 2b 2+c 2= 12=22. 16.③④解析 ①错误,当k =2时,方程表示椭圆;②错误,因为k =52时,方程表示圆;验证可得③④正确.17.解 设P 点的坐标为(x ,y ),M 点的坐标为(x 0,y 0).∵点M 在椭圆x 236+y 29=1上,∴x 2036+y 209=1. ∵M 是线段PP ′的中点,∴⎩⎪⎨⎪⎧ x 0=x ,y 0=y 2, 把⎩⎪⎨⎪⎧ x 0=x y 0=y 2代入x 2036+y 209=1, 得x 236+y 236=1,即x 2+y 2=36. ∴P 点的轨迹方程为x 2+y 2=36.18.解 设双曲线方程为x 2a 2-y 2b 2=1. 由椭圆x 28+y 24=1,求得两焦点为(-2,0),(2,0), ∴对于双曲线C :c =2.又y =3x 为双曲线C 的一条渐近线,∴b a=3,解得a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1. 19.解 将y =kx -2代入y 2=8x 中变形整理得:k 2x 2-(4k +8)x +4=0,由⎩⎪⎨⎪⎧k ≠0(4k +8)2-16k 2>0,得k >-1且k ≠0. 设A (x 1,y 1),B (x 2,y 2),由题意得:x 1+x 2=4k +8k2=4⇒k 2=k +2⇒k 2-k -2=0. 解得:k =2或k =-1(舍去), 由弦长公式得:|AB |=1+k 2·64k +64k 2=5×1924=215. 20.解 (1)令F 1(-c,0),F 2(c,0),则b 2=a 2-c 2.因为PF 1⊥PF 2,所以kPF 1·kPF 2=-1,即43+c ·43-c =-1,解得c =5,所以设椭圆方程为x 2a 2+y 2a 2-25=1. 因为点P (3,4)在椭圆上,所以9a 2+16a 2-25=1. 解得a 2=45或a 2=5.又因为a >c ,所以a 2=5舍去.故所求椭圆方程为x 245+y 220=1. (2)由椭圆定义知|PF 1|+|PF 2|=65,①又|PF 1|2+|PF 2|2=|F 1F 2|2=100,②①2-②得2|PF 1|·|PF 2|=80,所以S △PF 1F 2=12|PF 1|·|PF 2|=20. 21.解 焦点F (p 2,0),设A (x 1,y 1),B (x 2,y 2), 若AB ⊥Ox ,则|AB |=2p <52p ,不合题意. 所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p 2),k ≠0. 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px 消去x , 整理得ky 2-2py -kp 2=0.由韦达定理得,y 1+y 2=2p k,y 1y 2=-p 2. ∴|AB |=(x 1-x 2)2+(y 1-y 2)2= (1+1k2)·(y 1-y 2)2 = 1+1k2·(y 1+y 2)2-4y 1y 2 =2p (1+1k 2)=52p . 解得k =±2.∴AB 所在的直线方程为y =2(x -p 2)或y =-2(x -p 2). 22.解 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3)、(0,3)为焦点,长半轴为2的椭圆,它的短半轴b =22-(3)2=1,故曲线C 的方程为x 2+y 24=1. (2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1. 消去y 并整理得(k 2+4)x 2+2kx -3=0.其中Δ=4k 2+12(k 2+4)>0恒成立.故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. 若OA →⊥OB →,即x 1x 2+y 1y 2=0.而y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=0, 化简得-4k 2+1=0,所以k =±12.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。