集合及其运算

合集下载

第一讲 集合的概念和运算

第一讲 集合的概念和运算


解析:对于新定义题,关键是读懂题目, 弄清概念的含义,准确运用。 ∵n=4, ∴ Sn {1, 2,3, 4}, ,则X可取 ,{1}, {2}, {3},
{4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {2,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}.不是偶子集有{1},
A B 0,1,2,4,16
则a的值为( A. 0 答案:D. B. 1
) C. 2 D. 4
a4 解析:抓住并集中的元素,由此知 a 2 16 2
a 4 或 ,∴选D。 a 16
变式题:含有三个实数的集合可表示为{a,b,lg(ab)},也可 表示为{|a|,b,0},则 a 2015 b2015 的值等于 。
7.特别提醒的几点:
①.注意区分几种常见集合
研究一个集合,首先要看集合中的代表元素,然 后再看元素的限制条件,当集合用描述法表示时,注 意弄清其元素表示的意义是什么.
集合 {x|f(x)=0} {x|f(x)>0} {x|y=f(x)} {y|y=f(x)} {(x,y)|y=f(x)}
集合的意义 方程f(x)=0的解源自 不等式f(x)>0的解集 函数y=f(x)的定义域 函数y=f(x)的值域 函数y=f(x)图象上的点集

无序性

5.集合中元素和集合、集合与集合的关系: ⑴元素和集合的关系:若元素a 是集合A的元素, A”。 记作:a A ,否则“a
⑵集合与集合的关系:包含和不包含关系。包含关系又 分为真包含和相等关系。符号为“ ”,“=”, ”,“ “ ”,“ ” .

特别提醒:规定空集是 空集是

第一章 集合的概念及运算(集合论讲义)

第一章 集合的概念及运算(集合论讲义)
(4) 分配律 A ∪ (B ∩ C) = ( A ∪ B) ∩ ( A ∪ C) , A ∩ (B ∪ C) = ( A ∩ B) ∪ ( A ∩ C)
(5) 德·摩根律 A ∪ B = A ∩ B , A ∩ B = A ∪ B
A − (B ∪ C) = (A − B) ∩ (A − C) , A − (B ∩ C) = (A − B) ∪ (A − C)
4
|
A1
|=
⎢ 250 ⎥ ⎢⎣ 2 ⎥⎦
=
125
,|
A2
|=
⎢ 250 ⎢⎣ 3
⎥ ⎥⎦
=
83
,|
A3
|=
⎢ 250 ⎥ ⎢⎣ 5 ⎥⎦
=
50
,|
A4
|=
⎢ ⎢⎣
250 ⎥ 7 ⎥⎦
=
35

|
A1

A2
|=
⎢ ⎢⎣
250 ⎥ 2× 3⎥⎦
=
41
,|
A1

A3
|=
⎢ 250 ⎥ ⎢⎣2× 5⎥⎦
=
(6) 吸收律 A ∪ ( A ∩ B) = A , A ∩ ( A ∪ B) = A (7) 零律 A ∪ E = E , A ∩ ∅ = ∅ (8) 同一律 A ∪ ∅ = A , A ∩ E = A (9) 排中律 A ∪ A = E
5
(10) 矛盾律 A ∩ A = ∅ (11) 全补律 ∅ = E , E = ∅ (12) 双重否定律 A = A (13) 补交转换律 A − B = A ∩ B
3
还可以将交,并运算推广到集族上。
∪ 定义 2.3 设 A 为一个集族,称由 A 中全体集合的元素组成的集合为 A 的广义并集,记作 A , ∪ 称 ∪ 为广义并运算符, A 可描述为

集合及其运算

集合及其运算

集合的含义与表示集合间的基本关系集合的基本运算理解命题的概念.了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题, 理解必要条件、充分条件与充要条件的含义.了解逻辑联结词“或”“且”“非”的含义. 理解全称量词和存在量词的意义. 能正确地对含有一个量词的命题进行否定.1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法A B (或B A )判断正误(正确的打“√”,错误的打“×”)(1)若集合A ={x |y =x 2},B ={y |y =x 2},C ={(x ,y )|y =x 2},则A ,B ,C 表示同一个集合.( ) (2)若a 在集合A 中,则可用符号表示为a ⊆A .( ) (3)若A B ,则A ⊆B 且A ≠B .( ) (4)N *NZ .( )(5)若A ∩B =A ∩C ,则B =C .( )答案:(1)×(2)×(3)√(4)√(5)×(教材习题改编)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆B B.C⊆BC.D⊆C D.A⊆D答案:B(教材习题改编)设集合A={x|2≤x<5},B={x∈Z|3x-7≥8-2x},则A∩B=()A.{x|3≤x<5} B.{x|2≤x≤3}C.{3,4} D.{3,4,5}解析:选C.因为A={x|2≤x<5},B={x∈Z|3x-7≥8-2x}={x∈Z|x≥3},所以A∩B={3,4}.(2017·高考江苏卷)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为________.解析:因为a2+3≥3,所以由A∩B={1}得a=1,即实数a的值为1.答案:1(教材习题改编)已知集合A={x|3≤x<7},B={x|2<x<10},则(∁A)∩B=________.解析:因为∁R A={x|x<3或x≥7},所以(∁R A)∩B={x|2<x<3或7≤x<10}.答案:{x|2<x<3或7≤x<10}集合的概念[典例引领](1)已知集合A={0,1,2},则集合B={(x,y)|x≥y,x∈A,y∈A}中元素的个数是() A.1B.3C.6 D.9(2)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.【解析】(1)当x=0时,y=0;当x=1时,y=0或y=1;当x=2时,y=0,1,2.故集合B={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B中有6个元素.(2)因为3∈A,所以m+2=3或2m2+m=3.当m+2=3,即m=1时,2m2+m=3,此时集合A 中有重复元素3, 所以m =1不符合题意,舍去; 当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.【答案】 (1)C (2)-32[通关练习]1.已知集合A ={x |x ∈Z ,且32-x∈Z },则集合A 中的元素个数为( ) A .2 B .3 C .4D .5解析:选C.因为32-x∈Z ,所以2-x 的取值有-3,-1,1,3,又因为x ∈Z ,所以x 值分别为5,3,1,-1,故集合A 中的元素个数为4. 2.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:选C.因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba =-1,所以a =-1,b =1.所以b -a =2.3.设集合A ={x |(x -a )2<1},且2∈A ,3∉A ,则实数a 的取值范围为________.解析:由题意得⎩⎪⎨(3-a )2≥1即⎩⎪⎨⎪⎧1<a <3,a ≤2或a ≥4,所以1<a ≤2. 答案:1<a ≤2集合间的基本关系[典例引领](1)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( ) A .A B B .B A C .A =BD .A ∩B =∅(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.【解析】 (1)由题意知A ={x |-1<x <2},B ={x |-1<x <1},则B A . (2)因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. 【答案】 (1)B (2)(-∞,3]1.在本例(2)中,若A ⊆B ,如何求解?解:若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎨⎧m ≤-3,m ≥3.所以m 的取值范围为∅.2.若将本例(2)中的集合A 改为:A ={x |x <-2或x >5},如何求解? 解:因为B ⊆A ,所以①当B =∅时,即2m -1<m +1时,m <2,符合题意.②当B ≠∅时,⎩⎪⎨m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得⎩⎨⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12.即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞).[通关练习]1.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3D .4解析:选D.因为A ={1,2},B ={1,2,3,4},A ⊆C ⊆B ,则集合C 可以为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个.2.已知集合A ={x |x 2-2x -3<0},B ={x |-m <x <m }.若B ⊆A ,则m 的范围为________. 解析:当m ≤0时,B =∅,显然B ⊆A .当m >0时,因为A ={x |x 2-2x -3<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述m 的范围为m ≤1. 答案:m ≤1集合的基本运算集合的基本运算是历年高考的热点,每年必考,常和不等式的解集、函数的定义域、值域相结合命题,主要以选择题的形式出现.试题多为低档题.高考对集合运算的考查主要有以下两个命题角度:(1)集合间的交、并、补运算;(2)已知集合的运算结果求参数的值(范围).[典例引领]角度一 集合间的交、并、补运算(1)(2017·高考天津卷)设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C =( ) A .{2} B .{1,2,4} C .{1,2,4,6}D .{x ∈R |-1≤x ≤5}(2)(2018·南昌市第一次模拟)已知全集U =R ,集合A ={x |y =lg x },集合B ={y |y =x +1},那么A ∩(∁U B )=( ) A .∅ B .(0,1] C .(0,1)D .(1,+∞)【解析】 (1)A ∪B ={1,2,4,6},(A ∪B )∩C ={1,2,4},选项B 符合.(2)由题知,A ={x |y =lg x }={x |x >0}=(0,+∞),B ={y |y =x +1}={y |y ≥1}=[1,+∞),所以A ∩(∁U B )=(0,+∞)∩(-∞,1)=(0,1). 【答案】 (1)B(2)C角度二 已知集合的运算结果求参数的值(范围)(1)(2017·高考全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( ) A .{1,-3}B .{1,0}C .{1,3}D .{1,5}(2)(2018·合肥市第二次教学质量检测)已知集合A =[1,+∞),B ={x ∈R |12a ≤x ≤2a -1},若A ∩B ≠∅,则实数a 的取值范围是( ) A .[1,+∞) B .[12,1]C .[23,+∞)D .(1,+∞)【解析】 (1)因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3},选择C.(2)因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥12a -1≥12a ,解得a ≥1,故选A.【答案】 (1)C (2)A(1)集合基本运算的求解策略①当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn 图运算.②当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验. ③根据集合运算结果求参数,先把符号语言译成文字语言,然后适时应用数形结合求解. (2)集合的交、并、补运算口诀交集元素仔细找,属于A 且属于B ;并集元素勿遗漏,切记重复仅取一;全集U 是大范围,去掉U 中A 元素,剩余元素成补集.[通关练习]1.(2016·高考全国卷Ⅱ)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( ) A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}解析:选C.由已知可得B ={x |(x +1)(x -2)<0,x ∈Z }={x |-1<x <2,x ∈Z }={0,1},所以A ∪B ={0,1,2,3},故选C.2.(2018·洛阳市第一次统一考试)已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},则如图所示阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}解析:选D.依题意得A ={x |x <-1或x >4},因此∁R A ={x |-1≤x ≤4},题中的阴影部分所表示的集合为(∁R A )∩B ={x |-1≤x ≤2},选D.3.(2018·河北衡水中学第七次调研)已知集合A ={x |log 2x <1},B ={x |0<x <c },若A ∪B =B ,则c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,2]D .[2,+∞)解析:选D.A ={x |log 2x <1}={x |0<x <2},因为A ∪B =B ,所以A ⊆B ,所以c ≥2,所以c ∈[2,+∞),故选D.集合中的创新问题[典例引领](1)定义集合的商集运算为A B ={x |x =mn ,m ∈A ,n ∈B }.已知集合A ={2,4,6},B ={x |x =k 2-1,k ∈A },则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9(2)如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x ,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =________.【解析】 (1)由题意知,B ={0,1,2},B A ={0,12,14,16,1,13},则B A ∪B ={0,12,14,16,1,13,2},共有7个元素,故选B. (2)由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}. 【答案】 (1)B (2){0,6}解决集合创新型问题的方法(1)要分析新定义的特点和本质,认清新定义对集合元素的要求,结合题目要求进行转化,并将其运用到具体的解题过程中.(2)要充分应用集合的有关性质及一些特殊方法(如特值法、排除法、数形结合法等),将新定义问题转化到已学的知识中进行求解.[通关练习]1.设A,B是非空集合,定义A⊗B={x|x∈A∪B且x∉A∩B}.已知集合A={x|0<x<2},B ={y|y≥0},则A⊗B=________.解析:由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).答案:{0}∪[2,+∞)2.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“单一元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“单一元”的集合共有________个.解析:符合题意的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.答案:6集合运算的性质(1)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.(2)A∩A=A,A∩∅=∅.(3)A∪A=A,A∪∅=A.(4)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.(5)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.(6)若集合A中含有n个元素,则它的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.易错防范(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.1.(2017·高考北京卷)已知全集U =R ,集合A ={x |x <-2或x >2},则∁U A =( ) A .(-2,2) B .(-∞,-2)∪(2,+∞) C .[-2,2]D .(-∞,-2]∪[2,+∞)解析:选C.由已知可得,集合A 的补集∁U A =[-2,2].2.(2017·高考全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x <1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅解析:选A.集合A ={x |x <1},B ={x |x <0},所以A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. 3.已知集合A ={x ∈R |x -1x =0},则满足A ∪B ={-1,0,1}的集合B 的个数是( )A .2B .3C .4D .9解析:选C.解方程x -1x =0,得x =1或x =-1,所以A ={1,-1},又A ∪B ={-1,0,1},所以B ={0}或{0,1}或{0,-1}或{0,1,-1},集合B 共有4个.4.已知集合A ={0,1,2,3,4},B ={x |x =n ,n ∈A },则A ∩B 的真子集个数为( ) A .5 B .6 C .7D .8解析:选C.由题意,得B ={0,1,2,3,2},所以A ∩B ={0,1,2},所以A ∩B 的真子集个数为23-1=7.故选C.5.(2018·云南省第一次统一检测)设集合A ={x |-x 2-x +2<0},B ={x |2x -5>0},则集合A 与集合B 的关系是( ) A .B ⊆A B .B ⊇A C .B ∈AD .A ∈B解析:选A.因为A ={x |-x 2-x +2<0}={x |x >1或x <-2},B ={x |2x -5>0}={x |x >52},所以B ⊆A ,故选A.6.(2018·陕西西安模拟)已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M ,且a ≠b },则集合M 与集合N 的关系是( ) A .M =NB .M ∩N =NC .M ∪N =ND .M ∩N =∅解析:选B.因为集合M ={-1,0,1}.N ={x |x =ab ,a ,b ∈M ,且a ≠b },所以N ={-1,0},所以集合M ∩N =N .故选B.7.(2018·河南百校联盟联考)若集合A ={x |y =lg(3x -x 2)},B ={y |y =1+4x +1,x ∈A },则A ∩∁R B 等于( ) A .(0,2] B .(2,3) C .(3,5)D .(-2,-1)解析:选A.因为A =(0,3),所以B =(2,5),所以A ∩∁R B =(0,2].故选A.8.(2018·湖北武昌模拟)设A ,B 是两个非空集合,定义集合A -B ={x |x ∈A ,且x ∉B }.若A ={x ∈N |0≤x ≤5},B ={x |x 2-7x +10<0},则A -B =( ) A .{0,1} B .{1,2} C .{0,1,2}D .{0,1,2,5}解析:选D.因为 A ={x ∈N |0≤x ≤5}={0,1,2,3,4,5},B ={x |x 2-7x +10<0}={x |2<x <5},A -B ={x |x ∈A 且x ∉B },所以A -B ={0,1,2,5}.故选D.9.(2018·长沙市统一模拟考试)已知集合A ={1,2,3},B ={x |x 2-3x +a =0,a ∈A },若A ∩B ≠∅,则a 的值为( ) A .1 B .2 C .3D .1或2解析:选B.当a =1时,B 中元素均为无理数 ,A ∩B =∅;当a =2时,B ={1,2},A ∩B ={1,2}≠∅;当a =3时,B =∅,则A ∩B =∅.故a 的值为2,选B.10.(2018·安徽省两校阶段性测试)设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A .(-∞,32)B .(1,32)C .[1,32)D .(32,3]解析:选 B.A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}={x |1<x <32},图中阴影部分表示的集合为A ∩B ={x |1<x <32}.故选B.11.(2018·安徽淮北第二次模拟)已知全集U =R ,集合M ={x |x +2a ≥0},N ={x |log 2(x -1)<1},若集合M ∩(∁U N )={x |x =1或x ≥3},那么a 的取值为( ) A .a =12B .a ≤12C .a =-12D .a ≥12解析:选C.因为log 2(x -1)<1,所以x -1>0且x -1<2,即1<x <3,则N ={x |1<x <3},因为U =R ,所以∁U N ={x |x ≤1或x ≥3},又因为M ={x |x +2a ≥0}={x |x ≥-2a },M ∩∁U N ={x |x =1或x ≥3},所以-2a =1,得a =-12.故选C.12.(2018·豫北名校联考)设P ,Q 为两个非空实数集合,定义集合P ⊗Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P ⊗Q 中元素的个数是( ) A .2 B .3 C .4D .5解析:选B.当a =0时,无论b 取何值,z =a ÷b =0; 当a =-1,b =-2时,z =12;当a =-1,b =2时,z =-12;当a =1,b =-2时,z =-12;当a =1,b =2时,z =12.故P ⊗Q ={0,-12,12},该集合中共有3个元素,所以选B.13.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=________. 解析:由于A ∪B ={x |x ≤0,或x ≥1},结合数轴,∁U (A ∪B )={x |0<x <1}. 答案:{x |0<x <1}14.设全集S ={1,2,3,4},且A ={x ∈S |x 2-5x +m =0},若∁S A ={2,3},则m =________. 解析:因为S ={1,2,3,4},∁S A ={2,3}, 所以A ={1,4},即1,4是方程x 2-5x +m =0的两根,由根与系数的关系可得m =1×4=4. 答案:415.设集合I ={x |-3<x <3,x ∈Z },A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________. 解析:因为集合I ={x |-3<x <3,x ∈Z }={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},所以∁I B ={0,1},则A ∩(∁I B )={1}. 答案:{1}16.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________. 解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2. 答案:[2,+∞)1.(2018·山东烟台调研)已知集合M ={x |x =k π4+π4,k ∈Z },集合N =⎩⎨⎧⎭⎬⎫x |x =k π8-π4,k ∈Z ,则( ) A .M ∩N =∅ B .M ⊆N C .N ⊆MD .M ∪N =M解析:选B.由题意可知,M ={x |x =(2k +4)8π-π4,k ∈Z }=⎩⎨⎧⎭⎬⎫x |x =2n π8-π4,n ∈Z ,N ={x |x=2k π8-π4或x =(2k -1)8π-π4,k ∈Z },所以M ⊆N ,故选B. 2.(2018·宁夏银川二中考试)已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,1)D .(1,+∞)解析:选B.法一:由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.法二:因为A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),取c =1,则B =(0,1),所以A ⊆B 成立,可排除C ,D ;取c =2,则B =(0,2),所以A ⊆B 成立,可排除A.3.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为________.解析:因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1).答案:(-∞,-1]∪(0,1) 4.若集合A 具有以下性质:(1)0∈A ,1∈A ;(2)x ,y ∈A ,则x -y ∈A ,且x ≠0时,1x ∈A ,则称集合A 是“完美集”,给出以下结论:①集合B ={-1,0,1}是“完美集”; ②有理数集Q 是“完美集”;③设集合A 是“完美集”,若x ,y ∈A ,则x +y ∈A ; ④设集合A 是“完美集”,若x ,y ∈A ,则xy ∈A ;⑤对任意的一个“完美集”A ,若x ,y ∈A ,且x ≠0,则yx ∈A .其中正确结论的序号是________.解析:①-1∈B ,1∈B ,但是-1-1=-2∉B ,B 不是“完美集”; ②有理数集满足“完美集”的定义;③0∈A ,x ,y ∈A ,0-y =-y ∈A ,那么x -(-y )=x +y ∈A ;④对任意一个“完美集”A ,任取x ,y ∈A ,若x ,y 中有0或1时,显然xy ∈A ,若x ,y 均不为0,1,而1xy =12xy +12xy =1(x +y )2-x 2-y 2+1(x +y )2-x 2-y 2,x ,x -1∈A ,那么1x -1-1x =1x (x -1)∈A ,所以x (x -1)∈A ,进而x (x -1)+x =x 2∈A .结合前面的算式,知xy ∈A ; ⑤x ,y ∈A ,若x ≠0,那么1x ∈A ,那么由④得yx ∈A .故填②③④⑤. 答案:②③④⑤5.已知集合A ={x ∈R |x 2-ax +b =0},B ={x ∈R |x 2+cx +15=0},A ∩B ={3},A ∪B ={3,5}.(1)求实数a ,b ,c 的值;(2)设集合P ={x ∈R |ax 2+bx +c ≤7},求集合P ∩Z .解:(1)因为A ∩B ={3},所以3∈B ,所以32+c ×3+15=0,c =-8, 所以B ={x ∈R |x 2-8x +15=0}={3,5},又因为A ∩B ={3},A ∪B ={3,5},所以A ={3},所以方程x 2-ax +b =0有两个相等的实数根都是3,所以a =6,b =9,所以a =6,b =9,c =-8.(2)不等式ax 2+bx +c ≤7即6x 2+9x -8≤7,所以2x 2+3x -5≤0,所以-52≤x ≤1,所以P ={x |-52≤x ≤1},所以P ∩Z ={x |-52≤x ≤1}∩Z ={-2,-1,0,1}.6.(2018·徐州模拟)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围. 解:(1)当m =-1时,B ={x |-2<x <2}, 则A ∪B ={x |-2<x <3}. (2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2]. (3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).。

01集合的概念及运算

01集合的概念及运算
211 1, 221 2, 231 4, 241 8,
251 16, 261 32, 271 64, 281 128,
且1 4 16 64 128 211,
i1 1, i2 2, i3 5, i4 7, i5 8.
走进高考
综上知,当A⊆B时,a<-8或a≥2.
(2)当 a=0 时,显然 B ⊆A;
当 则 又当∵ 当a则则 又则又<a- 4aaa∵<0≤∵<>1a0-4a-0时 0a4a-- 时4aa≤, 时<≤1a≥>1a<, 0≤1a2,-20∴ ,,2->,若-12>2∴- 若若12212∴, B-12BB⊆ ,<-⊆⊆∴ 12a,,<∴AA1<2a∴,,<0<∴- - .a0- -如如如 <.00128<<1208≤ <--图图图 <≤aa. a≤ ≤a128a,,a<,<<≤<22<0000aa.<<0.0.
走进高考
【2】(10 湖南文 15)若规定 E={a1,a2 ,..., a10}的子集{ai1 ai2 ,..., ain }
为 E 的第 k 个子集,其中 k 2i11 2i2 1 2in 1 ,则
(1){a1, a3} 是 E 的第_____5____个子集;
(2)E 的第 211 个子集是_{__a_1_,__a_2_,__a_5_,__a_7__,_a_8_}___.
(4)常用数集的记法
数集
自然 数集
正整数集
整数 集
有理 数集
实数 集
复数 集
记法 N N(或N ) Z Q R C

第1讲集合的概念和运算

第1讲集合的概念和运算

第1讲 集合的概念和运算必记考点1.集合的基本概念(1)集合元素的三个特征: 、 、 . (2)元素与集合的关系是属于或不属于关系,用符号 或 表示. (3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集: N ; N *(或N +) ; Z ;Q ; R . (5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、 . 2.集合间的基本关系(1)子集: ,则A ⊆B (或B ⊇A ). (2)真子集: 则A B (或B A ).若集合A 中含有n 个元素,则A 的子集有2n 个,A 的真子集有2n -1个.(3)空集:空集是 的子集,是 的真子集.即∅⊆A ,∅B (B ≠∅).(4)集合相等:若 ,则A =B . 3.集合的基本运算及其性质(1)并集:A ∪B = . (2)交集:A ∩B = .(3)补集:∁U A = ,U 为全集,∁U A 表示A 相对于全集U 的补集. (4)集合的运算性质①A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B ; ②A ∩A =A ,A ∩∅=∅; ③A ∪A =A ,A ∪∅=A ;④A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .考向一 集合的基本概念【例1】►已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 014+b 2 014=________.【训练1】集合⎩⎨⎧⎭⎬⎫x ∈N *⎪⎪12x∈Z 中含有的元素个数为( ).考向二 集合间的基本关系【例2】已知集合A ={x |0<x ≤4},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是________.【训练2】已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.考向三 集合的基本运算【例3】►(1)(2012·安徽)设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( ).A .(1,2)B .[1,2]C .[1,2)D .(1,2](2)(2012·山东)已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ). A .{1,2,4} B .{2,3,4} C .{0,2,4}D .{0,2,3,4}(3)设全集U ={1,2,3,4,5,6},集合A ={1,2,4},B ={3,4,5},则图中的阴影部分表示的集合为( ).A .{5}B .{4}C.{1,2} D.{3,5}基础演练1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则().A.A B B.B AC.A=B D.A∩B=∅2.设全集U={1,2,3,4,5,6},集合P={1,2,3,4},Q={3,4,5},则P∩(∁U Q)=().A.{1,2,3,4,6} B.{1,2,3,4,5}C.{1,2,5} D.{1,2}3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=().A.{1,4} B.{1,5}C.{2,3} D.{3,4}4.若集合A={x||x|>1,x∈R},B={y|y=2x2,x∈R},则(∁R A)∩B=().A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅5.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 6.集合A={x∈R||x-2|≤5}中的最小整数为________.7.若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a,b.第2讲函数及其表示必记考点1.函数的概念一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A到集合B 的一个函数.记作.2.函数的三要素函数由、、三个要素构成,对函数y=f(x),x∈A,其中(1)定义域:.(2)值域:.(3)两个函数就相同: .3.函数的表示方法表示函数的常用方法有:解析法、图象法、列表法.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.考向一函数的定义【例1】(1)下列各图形中是函数图象的是().2.下列各组函数表示相同函数的是().A.f(x)=x2,g(x)=(x)2B.f(x)=1,g(x)=x2C.f(x)=⎩⎪⎨⎪⎧x,x≥0,-x,x<0,g(t)=|t|D.f(x)=x+1,g(x)=x2-1x-1考向二 求函数的定义域、值域【例2】►(1) 函数y =x +1x 的定义域为________.(2)函数y =x -3x +1的值域为________.(3) 设函数f (x )=41-x ,若f (a )=2,实数a =________.考向三 分段函数及其应用【例3】(1) 设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( ).A.15 B .3 C.23D.139(2)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( ).A .1B .0C .-1D .π(3)已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ).A.12 B.45 C .2 D .9基础演练1.函数f (x )=11-x +lg(1+x )的定义域是( ).A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)2.下列各组函数中,表示同一函数的是( ). A .f (x )=x ,g (x )=(x )2 B .f (x )=x 2,g (x )=(x +1)2 C .f (x )=x 2,g (x )=|x |D .f (x )=0,g (x )=x -1+1-x3.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( ).A .-3B .±3C .-1D .±14.函数f (x )=lg 1-x 2的定义域为________.5.(2013·皖南八校联考)已知f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,log 2x ,x >0,则f ⎣⎡⎦⎤f ⎝⎛⎭⎫-12=________. 6.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式.第3讲 函数的性质必记考点 1.函数的单调性 (1)单调函数的定义设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,①若 ,则f (x )在区间D 上是增函数;②若 ,则f (x )在区间D 上是减函数.(2)单调区间的定义若函数f (x )在区间D 上是 或 ,则区间D 叫做f (x )的单调区间.(3)用定义判断函数单调性的步骤: . 2. 函数的奇偶性(1)定义:如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做偶函数.如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做奇函数.(2)性质:奇函数的图象关于 对称;偶函数的图象关于 对称.考向一 确定函数的单调性或单调区间【例1】(1)下列函数中,在区间(0,+∞)上为增函数的是( ).A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x(2)函数y =-x 2+2x -3(x <0)的单调增区间是( ).A .(0,+∞)B .(-∞,1]C .(-∞,0)D .(-∞,-1]考向二 函数单调性的应用【例2】(1)若函数f (x )=4x 2-mx +5在[-2,+∞)上递增,在(-∞,-2]上递减,则f (1)=________. (2) 函数y =f(x)在R 上为增函数,且f(2m)>f(-m +9),则实数m 的取值范围是 .考向三 求函数的最值【例3】函数f (x )=2xx +1在[1,2]上的最大值和最小值分别是________.考向四 判断函数的奇偶性【例4】判断下列函数的奇偶性: (1)f (x )=x 3-2x ;(2)f (x )=x 2-1+1-x 2;(3)f (x )=(x -1)- 1+x1-x.考向五 函数奇偶性的应用【例5】(1)函数f (x )=(x +a )(x -4)为偶函数,则实数a =________.(2) 设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________. (3) 设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)= .基础演练1.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b>0,则必有( ).A .函数f (x )先增后减B .f (x )是R 上的增函数C .函数f (x )先减后增D .函数f (x )是R 上的减函数2.函数y =f (x )在R 上为减函数,且f (2m )>f (-m +9),则实数m 的取值范围是 .3.下列函数中,在(0,+∞)上单调递增的函数是( ).A .y =1xB .y =|x |+1C .y =-x 2+1D .y =-2x +14.已知f (x )=x 2-2mx +6在(-∞,-1]上是减函数,则m 的范围为________.5.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝⎛⎭⎫12的实数x 的取值范围为________. 6.下列函数是偶函数的是( ).A .y =xB .y =2x 2-3C .y =1xD .y =x 2,x ∈[0,1]7. 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是 .8. 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=________.9.已知函数y =f (x )是偶函数,其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和是________. 10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0.(1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数.第4讲 指数与指数函数必记考点1.指数与指数运算 (1)根式的概念若x n =a ,则x 叫 ,.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.即x n=a ⇒⎩⎨⎧x =n a (当n 为奇数且n ∈N *时),x =±n a (当n 为偶数且n ∈N *时).(2)根式的性质①(na )n = .②当n 为奇数时,na n= ;当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0).(3)分数指数幂的含义正分数指数幂a m n =na m (a >0,m ,n ∈N *,n >1).负分数指数幂a -m n =1a m n =1na m (a >0,m ,n ∈N *,n >1).(4)幂指数的运算性质a r ·a s = rs aa= (a r )s = (ab )r =2.指数函数的图象与性质考向一 指数幂的化简与求值【例1】化简下列各式: (1)[(0.06415)-2.5]23- 3338-π0;(2) 2132a b ·(-31132a b )÷156613a b(3)a ·3a 25a ·3a考向二 指数函数的性质【例2】(1)方程2x -2+x =0的解的个数是________. (2) 下列各式比较大小正确的是( ). A .1.72.5>1.73 B .0.6-1>0.62C .0.8-0.1>1.250.2 D .1.70.3<0.93.1(3)已知函数f (x )=2x -12x +1,①讨论f (x )的奇偶性;②讨论f (x )的单调性.⎝⎛⎭⎫21412-⎝⎛⎭⎫-350-⎝⎛⎭⎫827-13=________. 已知函数f (x )=4+a x -1(a >0且a ≠1)的图象恒过定点P ,则点P 的坐标是( ).函数y =1-3x 的定义域为________。

集合及其运算

集合及其运算

《计算机数学基础》辅导(3)⎯⎯集合及其运算本章重点:集合概念,集合的运算,集合恒等式的证明,笛卡儿积.一、重点内容 1. 集合的概念h 集合与元素,具有确定的,可以区分的若干事物的全体称为集合,其中的事物叫元素. 集合A 中所含元素的个数记作A . 集合中的元素不能重复出现,集合中的元素无序之分. 集合与其元素之间有属于“∈”或不属于“∉”之分.h 集合的表示方法:列举法和描述法.2. 特殊集合:全集、空集和幂集h 全集合E ,在一个具体问题中,所涉及的集合都是某个集合的子集,该集合为全集; h 空集∅,不含任何元素的集合为空集. 空集是惟一的,它是任何集合的子集.h 集合A 的幂集P (A ),有集合A 的所有子集构成的集合. 若⏐A ⏐=n , 则⏐P (A )⏐=2n .3. 集合的关系:包含,子集,集合相等.h 包含(子集),若,则B 包含A (或A 包含于B ),A 是B 的子集,记又A ≠B ,则A 是B 的真子集,记A ⊂B.B a A a ∈⇒∈∀,B A ⊆ h 集合相等,若A ⊆B ,B ⊆A ,则A =B.注意:在集合概念部分要特别注意:元素与集合,集合与子集,子集与幂集,∈与⊂(⊆),空集∅与所有集合等的关系.4. 集合的运算h 集合A 和B 的并,由集合A 和B 的所有元素组成的集合,A ∪Bh 集合A 和B 的交,由集合A 和B 的公共元素组成的集合,A ∩Bh 集合A 的补集∼A ,由不属于集合A 的元素组成的集合,∼A. 补集总相对于一个全集. h 集合A 与B 的差集,由属于A ,而不属于B 的所有元素组成的集合,A -B.h 集合A 与B 的对称差,A ⊕B =(A -B )∪(B -A ),也有A ⊕B =)A ∪B 〕-(A ∩B )应该很好地掌握10条运算律(运算的性质),即交换律、结合律、分配律、幂等律、同一律、零律、补余律、吸收律、摩根律和双补律等.5. 恒等式证明集合的运算部分有三个方面的问题:其一是进行集合的运算;其二是集合运算式的化简;其三是集合恒等式的推理证明.集合恒等式的证明方法通常有二:其一,要证明A =B ,只需要证明A ⊆B ,又A ⊇B ; 其二,通过运算律进行等式推导.6. 有序对与笛卡儿积h 有序对,就是有顺序的数组,如<x ,y >,x ,y 的位置是确定的,不能随意放置.注意:有序对<a ,b >≠<b ,a >,以a ,b 为元素的集合{a ,b }={b ,a };有序对(a ,a )有意义,而集合{a ,a }不成立,因为它只是单元素集合,应记作{a }.h 笛卡儿积,是一种集合合成的方法,把集合A ,B 合成集合A ×B ,规定A ×B ={<x ,y >⏐x ∈A ,y ∈B }由于有序对<x ,y >中x ,y 的位置是确定的,因此A ×B 的记法也是确定的,不能写成B ×A.笛卡儿积也可以多个集合合成,A 1×A 2×…×A n .笛卡儿积的运算性质.二、实例 例3.1 已知S ={2,a ,{3},4},R ={{a },3,4,1},指出下列命题的真值.(1) {a }∈S ; (2) {a }∈R ;(3) {a ,4,{3}}⊆S ; (4) {{a },1,3,4}⊆R ;(5) R =S ; (6) {a }⊆S(7) {a }⊆R (8) ∅⊂R(9) ∅⊆{{a }}⊆R (10) {∅}⊆S(11) ∅∈R (12) ∅⊆{{3},4}解 集合S 有四个元素组成:2,a ,{3},4,而元素{3}又是集合. 集合R 类似.(1) {a },这是单元素的集合,{a }不是集合S 的元素. 故命题A :{a }∈S 的真值为0;(2) {a }是R 的元素,故命题B :{a }∈R 的真值为1.(3) a ,4,{3}都是集合S 的元素,它们可以构成S 的子集. 故命题C :{a ,4,{3}}⊆S 的真值为1(4) {a },1,3,4都是R 的元素,它们可以构成R 的子集,故命题D :{{a },1,3,4}⊆R 的真值为1.(6)和(8),(9)和(12)相应题号的命题,其真值为1;而(5),(7),(10)相应题号的命题,其真值为0.例3.2 设A ={=,∈,∉,⊂, ⊃}选择适当的符号填在各小题的横线上.(1) (1,2,3,4) N ; (2) Z Q Q ,2 (3) },056{}5,1{2R x x x x ∈=+−∅(4) },3{},2{22R y y R x x ∈<∈< (5)}},{{}{a a a (6) {正方形} {菱形} {四边形}(7) {(1,2,3)} {1,2,3,{(1,2,3)}} 解 (1) ⊂ (2) ∉, ⊃ (3) ⊂ , = (4) ⊂ (5) ∈或⊂(6) ⊂ ⊂ (7) ∈例3.3 写出下列集合的子集:(1) A ={a ,{b },c }(2) B ={∅}(3) C =∅解 (1)因为∅是任何集合的子集,所以∅是集合A 的子集;由A 的任何一个元素构成的集合,都是A 的子集,所以{a },{{b }},{c }是A 的子集;由A 的任何两个元素构成的集合,都是A 的子集,所以{a ,{b }},{{b },{c }},{a , c }是A 的子集;由A 的任何三个元素构成的集合,也是A 的子集,所以{a ,{b },c }=A 是A 的子集;于是集合A 的所有子集为 ∅,{a },{{b }},{c },{a ,{b }},{{b },{c }},{a , c },{a ,{b },c }=A(2) 同(1),B 的子集有:∅,{∅}.(3) 因为∅是任何集合的子集,故∅也是C 的子集. 因为C 中没有元素,因此C 就没有其它子集,所以C 的子集只有:∅.说明:(1) 以集合A 的8个子集为元素的集合,就是集合A 的幂集,即P (A )={ ∅,{a },{{b }},{c },{a ,{b }},{{b },{c }},{a , c },{a ,{b },c }}那么集合B 的幂集为;P (B )={∅,{∅}};集合C 的幂集:P (C )={∅}.一般地,如果集合A ,有,n A =那么P (A )有2n 个元素.(2) 根据真子集的定义,对于任何集合A ,除了集合A 本身不是A 的真子集外,其它子集均是A 的真子集. 于是本例集合A 有7个真子集:∅,{a },{{b }},{c },{a ,{b }},{{b },{c }},{a , c }集合B 只有1个真子集:∅集合C 没有真子集.例3.4设集合A ={1,2,3,4},B ={2,3,5},求B A A B B A B A B A ⊕−−∩∪,,,,. 解};5,4,3,2,1{=∪B A}5,4,1{}5{}4,1{)()(}5{};4,1{};3,2{=∪=−∪−=⊕=−=−=∩A B B A B A A B B A B A例3.5 试证A -(B -C )=(A -B )∪(A ∩C ) 证明 [方法1] 对任意x ,)()()()()()()()()~()(C A B A C B A C A B A x C x A x B x A x C x B x A x C B x A x C B A x ∩∪−⊆−−∴∩∪−∈⇒∈∧∈∨∉∧∈⇒∈∨∉∧∈⇒∩∉∧∈⇒−−∈同理,有 )()()(C B A x C A B A x −−∈⇒∩∪−∈所以,A -(B -C )=(A -B )∪(A ∩C )说明:事实上,方法1的证明,完全是等值过程,可以写作)()()()()()~()(C A B A x C x A x B x A x C x B x A x C B x A x C B A x ∩∪−∈⇔∈∧∈∨∉∧∈⇔∈∨∉∧∈⇔∩∉∧∈⇔−−∈[方法2] 进行恒等推导. A -(B -C )=)~(~C B A ∩∩ (分配律)摩根律)()~()()(~C A B A C B A ∩∪∩=∪∩= =(A -B )∪(A ∩C )例3.6 化简))(()))(((A B B A C B A −−∪∩−∪解 ))(()))(((A B B A C B A −−∪∩−∪= ))~())(((A B B C B E A ∪∪∪−∪∩)= A A E A =∪∩(例3.7 设集合 A ={a ,b },B ={1,2,3},C ={d },求A ×B ×C ,B ×A.解 先计算A ×B ={<a ,1>,<a ,2>,<a ,3>,<b ,1>,<b ,2>,<b ,3>}A ×B ×C ={<a ,1>,<a ,2>,<a ,3>,<b ,1>,<b ,2>,<b ,3>}×{d } ={<<a ,1>,d >,<<a ,2>,d >,<<a ,3>,d >,<<b ,1>,d >,<<b ,2>,d >,<<b ,3>,d >}B ×A ={<1,a >,<2,a >,<3,a >,<1,b >,<2,b >,<3,b >}例3.8 设集合A ={1,2},求A ×P (A ).解 P (A )={∅,{1},{2},{1,2}}A ×P (A )={1,2}×{∅,{1},}{2},{1,2}={<1,∅>,<2,∅>,<1,{1}>,<2,{1}>,<1,{2}>,<2,{2}>,<1,{1,2}>,<2,{1,2}>} 例3.9 单项选择题1. 若集合A ={a ,b ,c },∅为空集合,则下列表示正确的是( )(A) {a }∈A (B){a }⊂A (C) a ⊂A (D) ∅∈A答案:(B)解答:由集合A 的元素构成的集合是A 的子集,{a }是A 的子集,故选择(B )正确.2. 对任意集合S ,S ∪∅=S ,满足( )(A) 幂等律 (B) 零一律 (C) 同一律 (D) 互补律答案:{C}解答:见集合的运算性质,A ∪∅=A 和E ∩A =A 称为同一律.例3.10 填空题1 设全集合E ={1,2,3,4,5},A ={1,2,3},B ={2,5},A ∩B = ,~B = . ~A ∪~B =答案:{2},{1,3,4},{1,3,4,5}解答:A ∩B 是由集合A ,B 的公共元素构成的新集合. 此处A ,B 公共元素只有2,故A ∩B ={2},~B 是全集合中除去B 的元素所剩余元素构成的新集合,全集合E 有1,2,3,4,5,除去B 的元素2,5,余下有1,3,4. 故~B ={1,3,4}. ~A ={4,5},于是~A ∪~B ={1,3,4,5}2. 设集合A ={a ,b ,c },B ={a ,b },那么P (A )-P (B )= P (B )-P (A )=答案:{c },{a ,c },{b ,c },{a ,b ,c };∅解答:P (A )={∅,{a },{b },{c },{a ,b },{b ,c },{a ,c },{a ,b ,c }}P (B )={∅,{a },{b },{a ,b }}所以 P (A )-P (B )={ {c },{a ,c },{b ,c },{a ,b ,c }}.∵P (A ) ⊂P (B ),∴ P (B )-P (A )=∅三、练习题1.设S ,T ,M 为任意集合,判定下列命题的真假:(1) ∅是∅的子集;(2) 如果S ∪T =S ∪M ,则T =M ;(3) 如果S -T = ∅,则S =T ;(4) 如果∼S ∪T =E ,则S ⊆T ;(5) S ⊕S =S2. 用列举法表示以下集合: (1) }7{2≤∧∈=x N x x A (2) }33{<−∧∈=x N x x A (3) }0)1({2≤+∧∈=x R x x A3. 求使得下列集合等式成立时,a , b , c , d 应该满足的条件:(1) {a , b }={a , b , c }(2) {a , b , a }={a ,b }(3) {{a , ∅}, b , {c }}={{∅}}4. 求幂集P (A ),设集合A 为(1) A ={{1, 1 }, {2, 1 },{1, 2, 1} };(2) A =P (A )5. 设A ,B 为任意集合,试证明B A A B B A =⇔−=−6 设集合A ={1,2,{1,2},∅}, 试求:(1) A -{1,2};(2) A -∅;(3)A -{∅};(4){{1,2}}-A ;(5)∅-A ;(6) {∅}-A7. 试证对任意集合A ,B ,C ,等式(A -B )∪(A -C )=A 成立的充分必要条件是A ∩B ∩C =∅四、练习题答案1. (1),(4)为真,其余为假.2. (1) A ={0,1,2}(2) A ={1,2,3,4,5}(3) A ={-1}3. (1) a =c 或c =b(2) 任意a , b(3) a =c =∅,且b ={∅}4. (1) P (A )={∅, {{1}}, {{1,2}}, {{1}, {1, 2}}}先将集合A 化简为{{1},{1,2}},再求幂集.(2) P (A )={∅, {∅}, {{1}}, {{2}}, {{1, 2}},{∅,{1}}, {∅, {2}}, {∅, {1,2}},{{1}, {2}}, {{1}, {1, 2}}, {{2}, {1,2}}, {∅, {1}, {2} }, {∅, {1},{1,2}}, {∅, {2}, {1,2 }}, {{1}, {2}, {1, 2 }}, {∅, {1}, {2}, {1,2}}}先求P (A ),再求幂集.5. 当A =B 时,必有A -B =B -A ;反之,由A -B =B -A ,得到B A B B B A ∩−=∩−)()(化简后得到∅=−A B ,即;A B ⊆同理,由A -B =B -A ,得到A AB A B A ∩−=∩−)()(化简后得到∅=−B A ,即.B A ⊆ A =B 6.(1) {{1,2},∅}. (2) A ; (3) {1,2,{1,2}};(4) ∅; (5) ∅; (6)∅提示:(1)此处{1,2}是以1,2为元素的A 的子集. 属于A ,而不属于{1,2}的元素有{1,2}和∅,故A -{1,2}={{1,2},∅}.此处把{1,2}理解为A 的元素,所求集合A 减去一个元素是无意义的. 也就是说,集合之间可以进行并、交、补、差等运算,一个集合与一个元素之间不能进行运算.(2) 此处的∅是空集合,不能理解为集合A 的元素. 从集合A 减去一个没有元素的集合,结果还是A.注意:A 中有元素∅,如果理解为元素∅,也就出现了集合减元素的错误.(3) 此处{∅}是A 的子集,结果为从A 中除去元素∅,为{1,2,{1,2}}(4) 集合{1,2}是集合A 的以1,2为元素的子集,属于{1,2}而不属于A 是不可能的,故其结果为∅.(5) 属于空集合∅而不属于A 这是不可能的,故结果为∅.(6)以A 的元素∅为元素的A 的子集{∅}减去A ,结果为∅.7. 必要性设(A -B )∪(A -C )=A ,因为(A -B )∪(A -C )=)~()~(C A B A ∩∩U)()(~)~(~(C B A C B A C B A I I I U −==∩= 所以 A C B A =−)(I 于是对于任意必有,而必有,A x ∈)(C B A x I −∈C B x I ∉,故有ΦC B A =)(I I 充分性设ΦC B A =)(I I ,则对于任意A x ∈,必有C B x I ∉,即)(~C B x I ∈,因此)~C B A I ⊆于是,A CB AC B A C A B A C A B A =∩===−−)(~)~(~)~()~()()(I U I I U I U。

集合论第1章集合及其运算

集合论第1章集合及其运算

集合论与图论以前学习的高等数学(数学分析)都是连续函数,而计算机是离散型结构,所以它所研究的对象应是离散型的。

因此,做为计算机理论的核心课程《离散数学》就显然非常重要,计算机专业学生必须开设此课程。

目的:培养学生抽象思维和逻辑思维的能力要求:概念第一,正确使用概念进行正确的推理。

特点:抽象,概念多;与其它课程不同,不是以计算为主,而是以推理论证为主;比较难。

内容:⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎩集合映射集合论关系无穷集合图的基本概念树和割集离散数学图 论 连通度和匹配平面图的欧拉公式和图的着色有向图近世代数数理逻辑形式语言与自动机可计算理论等等离散:不考虑实数的性质,只考虑有限或可数的整数。

因此可用归纳法。

第一篇集合论集合论是德国数学家康托(Cantor)在1874年建立的,它是现代数学的基础,在当今数学中每个对象本质上都是集合。

有时我们说:“数学能嵌套在集合论中”其含义就是指数学的一些对象如:数、函数、线、面等都可以用集合来定义。

换句话说,数学的各个分支在本质上都是研究这种或那种对象的集合。

例如:几何学——研究点、线、面的集合;数学分析——连续函数的集合;代数——研究数的集合以及在此集合上定义有关运算的集合等等。

因此,把集合论作为现代各种数学的基础是有道理的,也是合适的。

集合论的特点:(1)研究的对象十分广泛:数、图形或其它任何客体都可以作为研究的对象。

(2)因为它研究的对象是如此广泛,为了便于研究必须寻找对象的共性,而要做到这一点,就必须进行抽象。

(3)在抽象化的基础上,可用统一的方法来研究和处理集合论的各类问题。

第一章 集合及其运算§1集合的基本概念在日常生活中,经常会遇到“集合”的概念,例如:所有中国人的组成的集合;坐标面上的有点的集合,自然数集,实数集,全世界无产者等等。

集合是集合论中最基本的概念,所以很难给出精确的定义。

因此,我们把“集合”作为原始的概念给出非形式定义,只给予一种描述说明这个概念的含义。

集合的概念与运算

集合的概念与运算

集合的概念与运算(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除01集合的概念知识梳理1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或?表示.(3)集合的表示法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集A中任意一个元素均为B中的元素A?B 真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B 空集空集是任何集合的子集,是任何非空集合的真子集集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}?U A={x|x∈U,且x?A}并集的性质:A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A?B?A.交集的性质:A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A?A?B.补集的性质:A∪(?U A)=U;A∩(?U A)=?;?U(?U A)=A.题型一.集合例1. (1)已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( ) A .1 B .3 C .5 D .9(2)已知集合A ={m +2,2m 2+m},若3∈A ,则m 的值为________. 答案 (1)C (2)-32(2)由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.【感悟提升】(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.变式1.设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中的元素个数为( )A .3B .4C .5D .6 变式2.设a ,b ∈R ,集合{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.答案 1.B 2.2解析 1.因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4时,a =1,2,3,此时x =5,6,7.当b =5时,a =1,2,3,此时x =6,7,8. 所以根据集合元素的互异性可知,x =5,6,7,8. 即M ={5,6,7,8},共有4个元素.2.因为{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,ba ,b ,a ≠0, 所以a +b =0,得ba =-1,所以a=-1,b=1,所以b-a=2.题型二. 集合间的基本关系例2.(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A?C?B的集合C的个数为()A.1 B.2 C.3 D.4B⊆,则实数m的最大值为(2)已知集合},xm-≤≤xA若A=xBx=m|{121},7≤≤{-|2+_____.答案(1)D(2)4 注:若B是A的真子集,则m的最大值为什么?【感悟提升】(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解;(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.常用数轴、Venn图等来直观解决这类问题.变式1.已知集合A={x|y=ln(x+3)},B={x|x≥2},则下列结论正确的是()A.A=B B.A∩B=?C.A?B D.B?A变式2.已知集合A={x|log2x≤2},B={x|x<a},若A?B,则实数a的取值范围是________.答案 1.D 2.(4,+∞)解析 1.A={x|x>-3},B={x|x≥2},结合数轴可得:B?A.2.由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B={x|x<a},由于A ?B ,如图所示,则a>4. 题型三. 集合的基本运算例3.(1)已知}2|1||{<-=x x A ,}06|{2<-+=ax x x B ,}0152|{2<--=x x x C , ① ,B B A =⋃求a 的范围;② 是否存在a 的值使C B B A ⋂=⋃,若存在,求出a 的值,若不存在,说明理由. (2)设集合U =R ,A ={x|2x(x -2)<1},B ={x|y =ln(1-x)},则图中阴影部分表示的集合为( )A .{x|x ≥1}B .{x|1≤x<2}C .{x|0<x ≤1}D .{x|x ≤1}答案 (1)✍(-5≤a ≤-1);✍1519,-≤≤-⊆⊆a C B A (2)B变式1.已知集合A ={1,3,m},B ={1,m},A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3D .1或3变式2.}32|{+≤≤=a x a x A ,}51|{>-<=x x x B 或,∅≠⋂B A ,则a 的取值范围为_______.答案1.B 2.]3,2()21,(⋃--∞【感悟提升】1.一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.2.运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.变式3.(2015·天津)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩(?UB)等于( )A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}变式4.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(?UA)∩B =?,则m的值是__________.答案 3.A 4.1或2解析 3.由题意知,?UB={2,5,8},则A∩(?UB)={2,5},选A.4.A={-2,-1},由(?UA)∩B=?,得B?A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠?.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或2.题型四. 集合的新定义问题例4.若集合A具有以下性质:(Ⅰ)0∈A,1∈A;(Ⅱ)若x∈A,y∈A,则x-y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题正确的个数是()(1)集合B={-1,0,1}是“好集”;(2)有理数集Q是“好集”;(3)设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A. A .0 B .1 C .2 D .3 答案 C变式: (2015·湖北)已知集合A ={(x ,y)|x 2+y 2≤1,x ,y ∈Z},B ={(x ,y)||x|≤2,|y|≤2,x ,y ∈Z},定义集合A*B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B},则A*B 中元素的个数为( )A .77B .49C .45D .30 答案 C解析 如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合A*B 显然是集合{(x ,y)||x|≤3,|y|≤3,x ,y ∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A*B 表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A*B 中元素的个数为45.故选C. 【真题演练】1.【2016高考新课标1理数】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭【答案】D【解析】因为23{|430}={|13},={|},2A x x x x xB x x =+<<<>-所以33={|13}{|}={|3},22A B x x x x x x <<><<故选D.2.【2016高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞)【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥或,故选D .3.【2016年高考四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )6【答案】C 【解析】由题意,{2,1,0,1,2}A Z =--,故其中的元素个数为5,选C. 4.【2016高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( ) (A )(1,1)-(B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C 【解析】}0|{>=y y A ,}11|{<<-=x x B ,则A B =∞(-1,+),选C. 5.【2016高考新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12},(C ){0123},,, (D ){10123}-,,,, 【答案】C【解析】集合{|12,}{0,1}B x x x =-<<∈=Z ,而{1,2,3}A =,所以{0,1,2,3}A B =,故选C.6.【2016高考浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞ 【答案】B 【解析】根据补集的运算得.故选B .7.【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N =,故选A .8.【2015高考福建,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ 【答案】C【解析】由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .。

集合的概念与运算

集合的概念与运算

集合的概念与运算在我们的数学世界中,集合是一个非常基础且重要的概念。

它就像是一个容器,把具有某种共同属性的对象放在一起。

先来说说集合的概念。

集合,简单来说,就是一堆确定的、互不相同的对象的总体。

这些对象可以是数字、字母、人、物品等等。

比如说,“我们班所有同学”就可以构成一个集合,“小于 10 的正整数”也能组成一个集合。

集合中的每个对象都叫做这个集合的元素。

一个元素要么属于某个集合,要么不属于,没有模棱两可的情况。

比如在集合{1, 2, 3}中,4 就不属于这个集合,而 1 就属于。

集合的表示方法有好几种。

一种是列举法,就是把集合中的元素一个一个地列出来,像{1, 2, 3}这样。

但如果集合中的元素很多,或者有无穷多个,列举法就不太方便了,这时候就可以用描述法。

比如,{x | x 是小于 10 的正整数},意思就是“由所有小于 10 的正整数组成的集合”。

了解了集合的概念,接下来咱们说说集合的运算。

集合的运算就像是对集合进行各种操作,从而得到新的集合。

第一个要讲的运算是并集。

两个集合的并集,就是把这两个集合中的所有元素放在一起组成的新集合。

比如集合 A ={1, 2, 3},集合 B ={3, 4, 5},那么 A 和 B 的并集就是{1, 2, 3, 4, 5}。

然后是交集。

两个集合的交集,就是由同时属于这两个集合的元素组成的集合。

还是上面的例子,A 和 B 的交集就是{3}。

还有差集。

集合 A 与集合 B 的差集,就是由属于 A 但不属于 B 的元素组成的集合。

假设集合 A ={1, 2, 3},集合 B ={2, 3, 4},那么A 减 B 就是{1}。

集合的运算有很多实际的应用。

比如说,在调查人们的兴趣爱好时,如果把喜欢音乐的人看作一个集合,喜欢运动的人看作另一个集合,那么既喜欢音乐又喜欢运动的人就是这两个集合的交集。

再比如,在安排工作任务时,如果把擅长文案的员工组成一个集合,擅长设计的员工组成另一个集合,那么为了完成一个既需要文案又需要设计的项目,就需要从这两个集合的并集中挑选人员。

集合论

集合论

第一篇集合论第一章集合及其运算1.1 集合的概念1.2 子集、集合的相等1.3 集合的基本运算1.4 余集、De Morgan公式1.5 笛卡尔乘积1.6 有穷集合的基数第二章映射2.1 函数的一般概念——映射定义::映射(法则),映射(笛卡尔乘积),限制和扩张,部分映射,映射相等,单射,满射,双射,恒等映射2.2 抽屉原理2.3 映射的一般性质定义::象f(A),原象f-1(A)[定理2.3.1](1)f-1(C∪D)=f-1(C)∪f-1(D);(2)f-1(C∩D)=f-1(C)∪f-1(D);(3)f-1(CΔD)=f-1(C)Δf-1(D);(4)f-1(C C)=(f-1(C))C⊆⊇⊇[定理2.3.2]∪∪(5)f(A B)=f(A)f(B);(6)f(A∩B)f(A)∩f(B);(7) f(AΔB)f(A)Δf(B);(8) f(A\B)f(A)\f(B)2.4 映射的合成定义::映射的合成[定理2.4.1]合成符合结合律,但不符合交换律[定理2.4.2]设f:X→Y,则f∘I X=I Y∘f =f[定理2.4.3]设f:X→Y,g:Y→Z, 则(1)若f与g都是单射,则g∘f也是单射:f是单射,∀x1x2且x1≠x2 y1=f(x1),y2=f(x2)且y1≠y2有g(f(x1))≠g(f(x2))(2)若f与g都是满射,则g∘f也是满射:f满射,∀y必有x∈X使f(x)=y.∀z∈Z必有y∈Y使g(y)=z.则∀z∈Z必有x∈X使g(f(x))=z.(3)若f与g都是双射,则g∘f也是双射[定理2.4.4]设f:X→Y,g:Y→Z, 则(1)若g∘f是单射,则f是单射;∀x1,x2∈X且x1≠x2有g(f(x1)) ≠g(f(x2))(2)若g∘f是满射,则g是满射;反证:∃z∈Z使∀y∈Y,g(y)≠z则有∀x∈X有g(f(x)) ≠z推出矛盾(3)若g∘f是双射,则f是单射且g是满射[定理2.4.5]设f与g都是X到X的映射,则I m (f)⊆I m(g)的充分必要条件是存在一个映射h:X→X使得f=g∘h2.5 逆映射定义::逆映射,左逆映射,右逆映射[定理2.5.1]逆映射存在的充要条件是f是双射::⇒ Ix,Iy+定理2.4.4⇐构造g(y)=x当且仅当f(x)=y[定理2.5.2]逆映射唯一::假设不唯一,推出g=I x°g=(h°f)°g=h°(f°g)=h°I x=h[定理2.5.3] (gf)-1=f-1g-1,(f-1)-1=f:(gf)(f-1g-1)=g(ff-1) g-1= gg-1=I z, (f-1g-1) (gf)=f(gg-1)f-1= ff-1=I x[定理2.5.4](1)f是左可逆的充分必要条件是f为单射:⇒定义+定理⇐f:X→I m(f)的双射,建立g:I m(f)→X双射,在扩充到Y上,y∉I m(x)随便映射一个(2)f是右可逆的充分必要条件是f为满射:⇒定义+定理⇐构造2.6 置换定义::n次置换,k-循环置换,对换,奇置换,偶置换[定理2.6.1][定理2.6.2][定理2.6.3]置换α,β没有共同数字时可以交换[定理2.6.4]置换可进行唯一循环分解[定理2.6.5]置换分解成若干对换的乘积,分解个数的奇偶性不变[定理2.6.6]奇偶置换个数相等,都等于n!/22.7 二元和n元运算定义::有限序列,无限序列,子序列,二元运算,一元运算,n元运算,交换律,结合律,代数系的同构2.8 集合的特征函数定义::集合的特征函数第三章关系3.1 关系的概念定义::关系(映射),关系(笛卡尔乘积),定义域,值域,多部映射,关系(多部映射),多值二元关系3.2 关系的性质定义::自反,反自反,对称(R对称⟺R=R-1),反对称,传递,相容,逆3.3 关系的合成运算定义::关系的合成,[定理3.3.1]关系的合成不符合交换律,但符合结合律[定理3.3.2](1)R1°(R2∪ R3 )=(R1°R2)∪(R1°R3);(2)R1° (R2∩ R3 )⊆(R1°R2)∩(R1°R3);(3)(R2∪R3 )°R4 = (R2°R4) ∪(R3°R4);(4)(R2∩R3 ) °R4⊆(R2°R4) ∩(R3°R4) [定理3.3.3](1)(R∘S)-1 = S-1∘R-1:(2)R∘R-1 是对称的[定理3.3.4]R是传递关系⟺R°R⊆R[定理3.3.5]R0=I x;R1=R;R n+1=R n°R;R m°R n=R m+n;(R m)n=R mn[定理3.3.6]设X是一个有限集合且|X|=n,R为X上的任一二元关系,则存在非负整数s,t,使得0≤s<t≤2n^2且R s= R t[定理3.3.7]设R是X上的二元关系,若存在非负整数s,t,s<t,使得且R s= R t ,则(1)R s+k= R t+k ,k为非负整数(2)R s+kp+i= R s+i ,其中p=t-s,而k,i为非负整数(3)令S={R0,R,R2 ,…,R t-1},则对任意的非负的整数q,有R q ∈S[定理3.3.8]R对称且传递⟺R=R°R-13.4 关系的闭包定义::传递闭包(所有包含R的传递关系的交,可以类似定义自反传递闭包等),自反传递闭包,自反闭包,对称闭包[定理3.4.1]关系R的传递闭包是传递关系(如果R是传递关系,R+=R):[定理3.4.2]R+=∪R i=R∪R2∪R3∪…:: R+⊆∪R i只要证明∪R i是包含R的传递关系, ∪R⊆R+只要证明(a,b)∈R m,(b,c)∈R n.(a,c)∈R m+n,(a,c) ∈R+[定理3.4.3]R+=∪R n=R∪R2∪R3∪…R n::证明R k⊆∪R i,如果k>n,x仅有n个元素,由抽屉原理得存在b i=b j重复以上过程证明.[定理3.4.5]R*=R0∪R+3.5 关系矩阵和关系图定义:: (1)R是自反的,当且仅当B的对角线上的全部元素都为1;(2) R是反自反的当且仅当B的对角线上的全部元素都为0;(3) R是对称的当且仅当B是对称矩阵;(4) R是反对称的当且仅当b i j与b j i不同时为1,i≠j;(5) R是传递的当且仅当若b i j=1且b j k=1,则b i k=1; (6) R-1的矩阵是B T3.6 等价关系和集合划分定义::等价关系(1.自反2.对称3.传递),等价类,商集[定理3.6.3]3.7 映射按等价关系划分3.8 偏序关系和偏序集定义::偏序关系(自反,反对称,传递),偏序集,全序集,Hasse图,上下界,最大最小元素,链与反链第四章无穷集合及其基数4.1可数集定义::可数集(从自然数集N到集合A有一一映射),无限集(能与自身的真子集对等的集合),代数数,超越数[定理4.1.1]集合A为可数集⟺A的全部元素可以排成无重复项的序列[定理4.1.2]无限集中包含可数子集[定理4.1.3]两个可数集的并是可数集[定理4.1.4]有限个可数集的并是可数集[定理4.1.7]可数个可数集的并是可数集:写成无穷阶方阵,按对角线游历[定理4.1.8]有理数集Q是可数集[定理4.1.10]一列有限个集合的笛卡尔乘积为可数集4.2连续统集定义::连续统(与[0,1]实数集对等)[定理4.2.1]区间[0,1]内的全体实数构成不可数无穷集::康托对角线第二篇图论第六章图的基本概念6.1图论的产生与发展概述6.2基本定义定义::无向图,G(p,q),平凡图,零图,有向图,定向图,子图,生成子图,导出子图,图的同构,度(degv),δ(G),Δ(G),正则图(推论三次图的顶点个数为偶数)[定理6.2.1]欧拉定理:Σ(degv)=2q推论度为奇数的点的个数必为偶数6.3路、圈、连通图定义::通道,闭通道,迹,闭迹,路,圈(回路),连通图,支[定理6.3.1]uv有路⟺u≅v[定理6.3.2]degu+degv≥p–1⟹G连通::拆成两个支用结论反证,degu≤n1-1,degv≤p-n1-1推出与结论的矛盾[定理6.3.3]∀v∈V,degv为偶数⟹G中有圈::设最长路证明[定理6.3.4]∃u,v中有两条不同路⟹G有圈::6.4补图、偶图定义::补图,自补图,三角形,偶图,完全偶图(Km,n), 图上两点间的距离d(u,v)[定理6.4.1]R(3,3)≤6::抽屉原理+[定理6.4.2]偶图判断的充要条件:图上所有的圈的长度都为偶::⇒将圈上的奇偶序的点放入两个顶点划分中⇐取定一点按距离奇偶构造[定理6.4.3](Turan定理)p个顶点没有三角形的图至多有[p^2/4]::6.5欧拉图定义::欧拉闭迹,欧拉图,欧拉迹[定理6.5.1]欧拉图存在定理:G的每个顶点的度都为偶::⇒显然⇐结合定理6.3.3造N个圈Zi然后数归证明这些圈相接.推论::欧拉图的等价命题: 1)G是欧拉图2)∀v∈V,degv为偶数3)G的边能划分成若干不相交的圈.[定理6.5.2]欧拉迹存在定理:: ⇒从定理6.5.1获得⇐uv奇数度,加edge(u,v)得欧拉迹C,在C上去掉edge(u,v).6.6哈密顿图定义::哈密顿圈、哈密顿图[定理6.6.1]G是Hamilton⟹∀S∈V有ω(G-S)<|S|[定理6.6.2](Dirac定理)p个顶点的图G,δ(p)≥p/2,⟹G是一个哈密顿图.[定理6.6.3](Ore定理)p个顶点的图,∀u,v(u,v不邻接),均有degu+degv≥p⟹G是哈密顿图.[定理6.6.4]p个顶点的图,∀u,v(u,v不邻接),均有degu+degv≥p-1⟹G是哈密顿图.6.7图的邻接矩阵[定理6.7.1]图同构的邻接矩阵判定[定理6.7.2]ij顶点间长l的通道条数=A l(i,j)::数归l,[定理6.7.3]G(p,q),连通⟺(A+I)^(p-1)>0::⇒定理6.7.2⇐定理6.7.2第七章树和割集7.1树及其性质定义::树,极小连通图(推论树是极小连通图), 偏心率,树的半径,树的中心[定理7.1.1]树的六个等价命题:1)树;2)G中任两点有且只有一条路;3)G连通且p=q+1; 4)G无圈且p=q+1;5)G无圈且其中任意不相邻两点加边得唯一的圈;6)连通(p≥3且G非Kp)且其中任意不相邻两点加边得唯一的圈.推论非平凡树至少有两个度为1的顶点且非平凡树是偶图::偶图判断的构造证明法[定理7.1.2]树的中心的位置7.2生成树定义::生成树, 生成森林, 生成树的距离,生成树的基本变换[定理7.2.1]生成树存在⟺G连通::⟹显然⟸破圈法.推论G连通⟹q≥p-1[定理7.2.2](Cayley定理)Kp的生成树的个数=p(p-2)[定理7.2.3]生成树中去掉边集E1后必能找到另一不在原生成树中的边集E2使T-E1+E2为生成树[定理7.2.4]距离为k的两个生成树可以经过k次基本变换互相得到::数归,由定理7.2.3知,d(T0,T)=k去掉e1后必然有e2∉T0使(T0-e1)+e2=T1,而d(T1,T)=k-1得到归纳.7.3割点、桥和割集定义::割点,桥,割集(有极小性)[定理7.3.1]割点的等价命题:1)v是割点;2)∃u,w≠v使uw间所有路经过v;3)∃划分{U,W} UW间所有路经过v;[定理7.3.2]桥的等价命题:1)x是桥;2)x不在G的任何圈上3)∃u,v使x在连接uw所有路上;4)∃划分{U,W},使x在连接UW所有路上; [定理7.3.4]割集将图分成两个支(推论有k个支的图G去掉割集后有k+1个支)[定理7.3.5]割集必然包含生成树的某条边::反证[定理7.3.6]割集与G中的圈必有偶数条公共边::G1G2取定一点周游,e(u,v)(u∈G1,v∈G2)是圈与割集相交的边第八章连通度和匹配8.1顶点连通度和边连通度定义::κ(G), λ(G), n-连通,n-边连通[定理8.1.1]κ(G)≤λ(G)≤δ(G)[定理8.1.2]κ(G)=a,λ(G)=b,δ(G)=c的构造方法:构造两个Kc+1,用b条边连接这两个支[定理8.1.3]G(V,E)有p个顶点且δ(G)≥ [p/2]⟹λ(G)=δ(G)::[定理8.1.4][定理8.1.5]∀u,v∈V且u,v∈C⟺G是2-连通[定理8.1.6]8.2门格尔定理8.3匹配、霍尔定理定义::匹配,最大匹配,偶图G的完备匹配,相异代表系, 完美匹配[定理8.3.1](Hall定理)::[推论8.3.1]第九章平面图和图的着色9.1平面图及其欧拉公式定义::平面图,面,内部面,外部面[定理9.1.1]欧拉定理:平面图有p-q+f=2::通过f数归[推论9.1.1]每个面都由长为n的圈围成⟹q=n(p-2)/(n-2)::每条边都与两个面邻接⟹2q=nf拓展最大可平面图[推论9.1.2]G(p,q)的最大可平面图每个面都是三角形且q=3p-6[推论9.1.3]每个面都由长为4的圈围成⟹q=2p-4::拓展没有三角形的边极大图[推论9.1.4]G(p,q),q≤3p-6,G没有三角形q≤2p-4[推论9.1.5]K5和K3,3都是不可平面图::K5,f=7,由于每个面至少三条边, K3,3中每个圈至少为4[推论9.1.6]G可平面⟹ (G)≤5::反证+推论9.1.49.2非哈密顿平面图[定理9.2.1]Grinberg定理:G(V,E)是(p,q)平面哈密顿图,C是哈密顿圈.令fi为C的内部由i条边围成的面的个数,gi为C的外部由i条边围成的面的个数则(1)Σ(i-2)fi=p-2;(2) Σ(i-2)gi=p-2;(3) Σ(i-2)(fi-gi)=0;9.3库拉托斯基定理、对偶图定义::细分,同胚,初等收缩,对偶图[定理9.3.1](Kuratowski定理)G可平面⟺G没有同胚于K5或K3,3的子图[定理9.3.2](Wagner定理) G可平面⟺G没有收缩到K5或K3,3的子图9.4顶点的着色定义::n-可着色,色数(有极小性),χ(G)[定理9.4.2]Δ=Δ(G),G是(Δ+1)- 可着色的.[定理9.4.3-定理9.4.5]平面图可以4着色9.5边的着色定义::n-边着色,边色数(有极小性), χ’(G)第十章有向图10.1有向图的概念定义::有向图,弧,对称弧,定向图,带环图,多重有向图,有向图的反图,入度(id(v)),出度(od(v)),完全有向图,有向图的补图,有向图的同构[定理10.1.1]Σid(v)= Σod(v)=q且Σ(id(v)+od(v))=2q10.2有向路和有向圈定义::有向通道,有向闭通道,生成通道,有向迹,有向闭迹,生成(闭)轨迹,有向路,有向圈,有向回路,可达,半(弱)通道,强连通,强支,单连通,弱连通,有向图的连通[定理10.2.1]有向图D是强连通的⟺D有一条闭生成通道[定理10.2.2]uRv当且仅当uv可互达⟹R是V上的等价关系[定理10.2.3]有向图D的每个顶点都在D的一个强支中[定理10.2.4]一个没有有向圈的有向图至少有一个出度为0的顶点[定理10.2.5]有向图D没有圈⟺D中每条有向通道都是有向路[定理10.2.6]有向图D有有向圈⟺D的子图D1(V1,E1),∀v∈V1,id(v)>0,od(v)>0[定理10.2.7]连通有向图D,∀v∈V,od(v)=1,D中恰有一个有向圈10.3强连通图的应用10.4有向图的邻接矩阵定义::有向图的邻接矩阵,可达矩阵,关联矩阵10.5有向树与有序树定义::有向树,有根树,入树,父,子,祖先,真祖先,深度,高度,子树,有序树,m元有序树,正则m元有序树,正则二元树,二元树,满二元树,完全二元树(高为h的二元树,去掉深度为h一层,得到满树,而且h层从左向右排布)[定理10.5.1]有向图D是有根树⟺D没有弱圈且D中存在一个可以到达其他顶点的顶点(root)::⇒化为无向图证明没有弱圈,用除根以外的点入度为1证可达.⇐[定理10.5.3]高为h的二元树至多有2 (h+1)-1个顶点[定理10.5.4]高为h的完全二元树的顶点数满足2h≤p≤2(h+1)-110.6判定树10.7比赛图定义::比赛图[定理10.7.1]每个比赛图必有生成有向路(有哈密顿路)::。

集合的概念及运算

集合的概念及运算
②并集: 由所有属于集合A或属于集合B的元素组成的集合 叫做集合 A 与 B 的并集, 记作A∪B, 即
A∪B={x | x∈A, 或 x∈B}.
③补集: 设 S 是一个集合, A 是 S 的一个子集(即AS), 由 S 中所有不属于 A 的元素组成的集合, 叫做 S 中子集 A 的补集 (或余集), 记作 CsA, 即
一、集合的基本概念及表示方法
1.集合与元素
某些指定的对象集在一起就成为一个集合, 简称集, 通常 用大写字母A, B, C, … 表示. 集合中的每个对象叫做这个集合 的元素, 通常用小写字母a, b, c, … 表示.
2.集合的分类 集合按元素多少可分为: 有限集(元素个数有限)、无限集
(元素个数无限)、空集(不含任何元素); 也可按元素的属性分, 如: 数集(元素是数), 点集(元素是点)等.
集合中的每个对象叫做这个集合的元素, 通常用小写字母a, b, c, … 表示.
A∪B=B∪A, (-∞, -9)∪[1, +∞)
元素与集合之间的关系
A∪BA,
A∪BB,
A∪A=A,
A∪ =A, AB A∪B=B. a3x4-2a2x2-x+a-1=0 的实根,
注: 集合与集合的关系特例:
设有限集合 A 中有 n 个元素, 则 A 的子集有:
M∪Cs(N∩P) D.
(1)求证: A B; (2)如果 A={-1, 3}, 求 B.
C (C A)=A, C =S, C S= A∩(C A)= , A∪(C A)=S, s s s s 元素与集合之间是个体与整体的关系, 不存在大小与相等关系.
则 x=card(A∩B) 且 card(A)=75, card(B)=80, 依题意得:

集合的概念及运算

集合的概念及运算

2, a+b, 0}, 则 a2006+b2007= 1 . 1.若{a, b , 1}={ a a 2.若集合 M={-1, 1, 2}, N={y | y=x2, x∈M}, 则 M∩N 是 ( B ) A. {1, 2, 4} B. { 1 } C. {1, 4} D. x+1 3.若集合 M={12, a}, 集合P={x | x -2 ≤0, x∈Z} 且 M∩P={0}, 记 M∪P=S, 则集合 S 的真子集个数是 ( D) A. 8 B. 7 C. 16 D. 15 4.已知集合 S, M, N, P 如图所示, 则图中阴影部分表示的集合 S 是( D) A. M∩(N∪P) B. M∩Cs(N∩P) P M N C. M∪Cs(N∩P) D. M∩Cs(N∪P)
一、集合的基本概念及表示方法
1.集合与元素 某些指定的对象集在一起就成为一个集合 , 简称集, 通常 用大写字母A, B, C, … 表示. 集合中的每个对象叫做这个集合 的元素, 通常用小写字母a, b, c, … 表示. 2.集合的分类 集合按元素多少可分为: 有限集(元素个数有限)、无限集 (元素个数无限)、空集(不含任何元素); 也可按元素的属性分, 如: 数集(元素是数), 点集(元素是点)等. 3.集合中元素的性质 对于一个给定的集合, 它的元素具有确定性、互异性、无 序性. 4.集合的表示方法 ①列举法;②描述法;③图示法;④区间法;⑤字母法.
三、集合之间的运算性质
1.交集的运算性质 A∩B=B∩A, A∩BA, A∩BB, A∩A=A, A∩=, AB A∩B=A. 2.并集的运算性质 A∪B=B∪A, A∪BA, A∪BB, A∪A=A, A∪=A, AB A∪B=B. 3.补集的运算的性质 设S为全集, AS, 则: Cs(CsA)=A, Cs=S, CsS= A∩(CsA)=, A∪(CsA)=S, Cs (A∩B)=(CsA)∪(CsB), Cs(A∪B)=(CsA)∩(CsB).

集合的运算

集合的运算

集合的运算
集合的运算是:交集、并集、相对补集、绝对补集、子集。

集合简称集,是集合论的主要研究对象。

现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。

集合交换律:A∩B=B∩A、A∪B=B∪A
集合结合律:(A∩B)∩C=A∩(B∩C)、(A∪B)∪C=A∪(B∪C)
集合分配律:A∩(B∪C)=(A∩B)∪(A∩C)、A∪(B∩C)=(A∪B)∩(A∪C)
集合的特性
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。

有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。

集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。

但就集合本身的特性而言,元素之间没有必然的序。

集合的概念及运算

集合的概念及运算

10.集合 M={m | m=2a-1, aZ} 与 N={n | n=6b1, bZ} 之间的 关系是 N M .
11.已知 R 为全集, A={x | log 1(3-x)≥-2}, B={x | x 5 ≥1}, 求 +2 2 CRA∩B. (-2, -1)∪{3} 12.调查 100 名有携带药品出国的旅游者, 其中 75 人带有感冒 药, 80 人带有胃药, 那么既带感冒药又带胃药的人数的最大值 和最小值分别为多少? 解: 设既带感冒药又带胃药的人数为 x, 既不带感冒药又不带 胃药的人数为 a. 记这100名出国旅游者组成全集 I , 其中带感冒药的人组成集 合 A, 带胃药的人组成集合 B. 则 x=card(A∩B) 且 card(A)=75, card(B)=80, 依题意得: a+card(A)+card(B)-x=100, 0≤a≤20. ∴x=a+55, 0≤a≤20. ∴55≤x≤75. 故既带感冒药又带胃药的人数的最大值为 75, 最小值为 55. 13.已知函数 f(x)=ax2-1, aR, xR, 设集合 A={x | f(x)=x}, 集 合 B={x | f[f(x)]=x}, 且 A=B, 求实数 a 的取值范围.
2, a+b, 0}, 则 a2006+b2007= 1 . 1.若{a, b , 1}={ a a 2.若集合 M={-1, 1, 2}, N={y | y=x2, x∈M}, 则 M∩N 是 ( B ) A. {1, 2, 4} B. { 1 } C. {1, 4} D. x+1 3.若集合 M={12, a}, 集合P={x | x -2 ≤0, x∈Z} 且 M∩P={0}, 记 M∪P=S, 则集合 S 的真子集个数是 ( D) A. 8 B. 7 C. 16 D. 15 4.已知集合 S, M, N, P 如图所示, 则图中阴影部分表示的集合 S 是( D) A. M∩(N∪P) B. M∩Cs(N∩P) P M N C. M∪Cs(N∩P) D. M∩Cs(N∪P)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合及其运算
1、求两个离散型集合的交集(09,13,18)
2、求两个连续型集合的交、并集(14,17)
3、求一个离散型集合与一个连续型集合的交集(10,16)
4、判断两个离散型集合间的关系(12)
5、求两个离散型集合交集的元素个数;子集个数(11,15)
附:会解绝对值不等式
第二章逻辑
1、对给出的全称命题和特称命题判断真假(09)
2、通过考查全称命题与特称命题的真假来判断复合命题的真假(13)
3、根据提供信息进行逻辑推理(14)
第三章平面向量
1、利用向量垂直结合向量数量积的坐标运算求参数值(09)
2、利用向量数量积的坐标运算求向量夹角的余弦值(10)。

相关文档
最新文档