一元二次不等式的解法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点一:一元二次不等式的定义

只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。比如:.

任意的一元二次不等式,总可以化为一般形式:或

.

知识点二:一般的一元二次不等式的解法

设一元二次方程的两根为且,,则相应的不等式的解集的各种情况如下表:

注意:

(1)一元二次方程的两根是相应的不等式的解集的端点的取值,是抛物线与轴的交点的横坐标;

(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;

(3)解集分三种情况,得到一元二次不等式

与的解集。

知识点三:解一元二次不等式的步骤

(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数;

(2)写出相应的方程,计算判别式:

①时,求出两根,且(注意灵活运用因式分解和配方法);

②时,求根;

③时,方程无解

(3)根据不等式,写出解集.

知识点四:用程序框图表示求解一元二次不等式ax2+bx+c>0(a>0)的过程规律方法指导

1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正数;2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;

3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系;

5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数

二次函数()的图象

经典例题透析

类型一:解一元二次不等式

1.解下列一元二次不等式

(1);(2);(3)

思路点拨:转化为相应的函数,数形结合解决,或利用符号法则解答.

总结升华:

1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;

2. 当时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当

且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题).

3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三:

【变式1】解下列不等式

(1) ;(2)

(3) ;(4) .

【变式2】解不等式:

类型二:已知一元二次不等式的解集求待定系数

2.不等式的解集为,求关于的不等式的解集。

总结升华:二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解此类题的关键。

举一反三:

【变式1】不等式ax2+bx+12>0的解集为{x|-3<x<2},则a=_______, b=________。【变式2】已知的解为,试求、,并解不等式.

【变式3】已知关于的不等式的解集为,求关于的不等式的解集. 类型三:二次项系数含有字母的不等式恒成立恒不成立问题

3.已知关于x的不等式(m2+4m-5)x2-4(m-1)x+3>0对一切实数x恒成立,数m的取值围。

思路点拨:不等式对一切实数恒成立,即不等式的解集为R,要解决这个问题还需要讨论二次项的系数。

总结升华:情况(1)是容易忽略的,所以当我们遇到二次项系数含有字母时,一般需讨论。

举一反三:【变式1】若关于的不等式的解集为空集,求的取值围.

【变式2】若关于的不等式的解为一切实数,求的取值围.

【变式3】若关于的不等式的解集为非空集,求的取值围.

类型四:含字母系数的一元二次不等式的解法

4.解下列关于x的不等式

(1)x2-2ax≤-a2+1;

(2)x2-ax+1>0;

(3)x2-(a+1)x+a<0;

总结升华:对含字母的二元一次不等式,一般有这样几步:

①定号:对二次项系数大于零和小于零分类,确定了二次曲线的开口方向;

②求根:求相应方程的根。当无法判断判别式与0的关系时,要引入讨论,分类求解;

③定解:根据根的情况写出不等式的解集;当无法判断两根的大小时,引入讨论。

举一反三:

【变式1】解关于x 的不等式:

【变式2】解关于的不等式:()

5.解关于x的不等式:ax2-(a+1)x+1<0。

总结升华:熟练掌握一元二次不等式的解法是解不等式的基础,对最高项含有字母系数的不等式,要注意按字母的取值情况进行分类讨论,分类时要“不重不漏”。

举一反三:

【变式3】解关于x的不等式:ax2-x+1>0 【变式1】解关于x的不等式:(ax-1)(x-2)≥0;

【变式2】解关于x的不等式:ax2+2x-1<0;

学习成果测评

基础达标:

1.不等式x2-ax-12a2<0(其中a<0)的解集为()

A.(-3a ,4a)B.(4a,-3a)C .(-3,-4)D.(2a,6a)

2.使有意义的x的取值围是()

A.B.

C .D.

3.不等式ax2+5x+c>0的解集为,则a,c的值为()

A.a=6,c=1 B.a=-6,c=-1 C.a=1,c=1 D.a=-1,c=-6

4.解不等式得到解集,那么的值等于( ) A.10 B.-10 C.14 D .-14

5.不等式x2-ax-b<0的解集是{x|2<x<3},则bx2-ax-1>0的解集是()A.B.

C.D.

6.抛物线y=-x 2+5x-5上的点位于直线y=1的上方,则自变量x的取值围是____。7.如果关于x的方程x2-(m-1)x+2-m=0的两根为正实数,则m的取值围是____。8.解下列不等式

(1) 14-4x2≥x;(2) x2+x+1>0;

(3) 2x2+3x+4<0;(4) ;

(5) ;(6) ;(7)

9.已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}。

(1)求a,b;

(2)解不等式ax2-(ac+b)x+bc<0。

10. 不等式mx2+1>mx 的解集为实数集R,数m的取值围.

相关文档
最新文档