1.因式分解复习课

合集下载

因式分解与整式乘法复习课件

因式分解与整式乘法复习课件

解题技巧分享
总结词
掌握解题技巧对于提高 数学解题效率至关重要 ,以下是一些实用的解
题技巧。
观察法
通过对题目进行观察, 寻找规律或特殊性质,
从而简化计算过程。
整体代入法
在解题过程中,将某些 部分视为整体,进行代 入或计算,简化问题。
构造法
通过构造辅助函数、表 达式等手段,将问题转 化为更易于处理的形式
多项式乘多项式
总结词
掌握多项式与多项式相乘的规则
详细描述
多项式与多项式相乘时,应将第 一个多项式的每一项分别与第二 个多项式的每一项相乘,然后合
并同类项。
举例
$(x + y) times (x^2 - y^2) = x(x^2 - y^2) + y(x^2 - y^2) =
x^3 - xy^2 + xy^2 - y^3 = x^3 - y^3$
练习题二:整式乘法
总结词 整式乘法是数学中的基础运算, 通过掌握整式乘法的规则和技巧 ,可以快速准确地完成复杂的数 学计算。
多项式与多项式的乘法 按照多项式乘法的步骤,逐步展 开并合并同类项。
单项式与单项式的乘法 根据系数、字母因子的乘法法则 进行计算。
单项式与多项式的乘法 将单项式分别与多项式的每一项 相乘,再合并同类项。
步骤
首先观察多项式的项,找出可以组合成整式的项,然后对每 组进行因式分解。
02
整式乘法的回顾
单项式乘多项式
01
02
03
总结词
理解单项式与多项式相乘 的规则
详细描述
单项式与多项式相乘时, 应将单项式的每一项分别 与多项式的每一项相乘, 然后合并同类项。
举例
$(2x + 3y) times (x^2 y^2) = 2x^3 - 2xy^2 + 3xy^2 - 3y^3 = 2x^3 + xy^2 - 3y^3$

因式分解期末复习课

因式分解期末复习课
如果因式分解的所有办法都不可用,试着 先化简,然后再做因式分解. 同类练习:第17题
技巧归纳
本章能力技巧总结: (1)观察多项式(从整体上来看)是否有公因式。如 果有,提出公因式,并且利用整式的乘法确定另一个因 式是什么(公因式要提尽;求另一个因式时,能合并同 类项的要合并同类项); (2)观察求出的另一个因式能不能利用公式法进行因 式分解(一定要注意因式分解要彻底); (3)如果整体没有而局部有公因式,选择分组因式分 解; (4)如果直接没有公因式解是二次三项式,试着用十 字相乘法解决; (5)当然,利用公式法解决问题时,我们有时需要利 用整体思想使问题变得简单。
基基础础巩巩固固与理解
知识点二:因式分解的基本方法
(提公因式法) 理解:什么是公因式?怎么确定公因式?
典例2.请说出下列格式的公因式 ①2x³y²与6x²y ② 与 xm yn1 2xm1 yn 典例3.把下列各式进行因式分解 ①2x³y²+6x²y(变式: -2x³y²+6x²y) ② xm yn1 2xm1 yn ③ (x+3)(x-2)²-3(2-x)²
同类练习:试卷第12题

基础巩固与理解
(公式法)
理解:把各式与公式相对照,找到公式里面的a与b 是多少(或整体思想),然后套用公式计算即可。
典例4.把下列各式因式分解: ① 9x2 16 y2 ② (3x y)2 (2x y)2 同类练习:第16题
能力提升
知识点三:因式分解常见方法的灵活运用
典例5.把下列各式因式分解:
① 2a3 8a2 8a
② x3 x ③(分组因式分解)
a2 ab ac bc x3 6x2 x 6
④ (十字相乘法)
6x2 5x 1

因式分解复习

因式分解复习

三、小结

1、因式分解的定义:
把一个多项式化成几个整式的积的形式,叫 做多项式的因式分解。
2、因式分解的方法:
(1)、提取公因式法
(2)、运用公式法


把下列各式分解因式: ( x -y)3 - ( x -y) a2 - x2y2
解: ( x -y)3 - ( x -y) = ( x -y) ( x -y + 1) ( x -y - 1) a2 - x2y2 =(a +xy)( a - xy )
a2-b2=(a+b)(a-b)
[ 平方差公式 ]
(1)提取公因式法:
如果多项式的各项有公因式,可以把这个 公因式提到括号外面,将多项式写成乘积的形 式。这种分解因式的方叫做提公因式法。 即: ma + mb + mc = m(a+b+c)
练习题: 分解因式 p(y-x)-q(y-x)
解: p(y-x)-q(y-x)
= (y-x)( p -q)
(2)运用公式法:
练习题:1. 分解因式
解: x2-(2y)2
x2-(2y)2
=(x+2y)(x-2y)
2.下列多项式中,能运用平方差公式分 解因式的是( C ) (A)X2+4Y2
X2 Y2 (C) 4 9
(B) 4 9
3.分解因式: 2 2 (1) X Y
25 16
练习 练习
(三)因式分解的一般步骤:

① 对任意多项式分解因式,都必须首先考虑 提取公因式。
② 对于二次二项式,考虑应用平方差公式分解。 ③ 对于二次三项式,考虑应用完全平方公式分
解。
练习题
(四)因式分解的应用

因式分解复习课教案

因式分解复习课教案

因式分解复习课教案12.13 因式分解复习课教案教学目标:1. 进一步掌握因式分解的概念,熟练运用4种方法进行因式分解。

2. 通过辨析纠错和综合运用,提高学生分析,归纳,反思能力以及综合运用能力。

3. 通过小组合作,进一步培养学生的合作能力,增加自信。

教学重点:正确合理运用4种方法进行因式分解。

教学难点:体会整体思想,化归思想。

教学过程:一.课前梳理,知识回顾1) 下列从左到右的变形,属于因式分解的是()A. ab a b a a -=-2)(B. 1)2(122+-=+-a a a aC. )1)(3(322+-=--x x x xD. )1(12xx x x +=+ 2)我们学过的因式分解的方法有哪些?口答二.任务引导,知识重构阅读下列解题过程,找出其中的错误,用红笔圈出来,并进行改正。

1)分解因式:22369y x +- 改正:解:)369(22y x --=原式= )63)(63(y x y x -+-错误:____________________________2)分解因式:)()(42x y x y x x -+- 改正:解:原式=)()(42y x x y x x -+-=])(4)[(x y x x y x +--=)44)((2x xy x y x +--错误:_____________________________3)分解因式:1224+-a a 改正:解:原式=22)1(-a=[2)1(-a ]2=4)1(-a错误:______________________________4) 分解因式: 3)(4)(2++-+b a b a 改正:解:原式=)3)(1(++++b a b a错误:______________________________5) 分解因式: 22414y xy x +-- 改正:解:原式=)41()4(2y y x x ---=)21)(21()4(y y y x x -+--错误:______________________________总结:因式分解的一般步骤:1)一“提”:如果多项式的各项有公因式,那么先提公因式;2)二“套”:如果各项没有公因式,那么可尝试运用公式,十字相乘法,分组分解来分解;3)三“查”:因式分解是否分解彻底,书写是否规范。

因式分解复习课教案

因式分解复习课教案

因式分解复习课教案教学目标:知识与技能:能熟练运用提取公因式法和公式法进行多项式的因式分解;过程与方法:通过复习,对因式分解中的常见错误有更深的认识,从而提高因式分解的正确率;情感态度与价值观:培养学生应用因式分解解决问题的能力。

教学重难点:利用因式分解解决问题。

教学过程:一、知识回顾:1、因式分解的定义:2、因式分解的方法:(利用点名提问的方法)二、例题解析:例:把下列各式因式分解:(1)m(x-y)-n(y-x) (2)16-8xy+x2y2(3)25(a+b)2-9(a-b)2 (4)mp2-6mnp+9mn21、让学生说一说有什么方法分解因式?2、指名板演,学生析错,自纠,同桌互纠。

3、查缺补漏:(反思)因式分解中常会出现那些错误?三、学以致用:已知a,b,c是△ABC的三边的长,且满足a2+b2+c2=ab+ac+bc,试判断此三角形的形状。

分小组讨论后,写出完整的过程。

四、巩固提高:1、下列变形是否是因式分解?(1)6a2b3=2a2 3b3 (2)3x2y-xy+y=y(3x2-x)(3)(x-2)(x+2)=x2-4 (4)4a2-4a+1=4a(a-1)+1(抢答)2、说出下列多项式应该运用什么方法分解因式?(1)ab2+ab+3a (2)-a4+1(3)4x2-4xy+y2 (4)a4x4-a4y4(同桌说一说)3、利用简便方法计算:(1)6002-1200×597+5972(2)1003×997(板演)五、课末小结:这节课你有什么收获?学到了什么?有什么疑问提出来?六、布置作业:1、因式分解(1)6a3b-9a2b2c (2)-2m3+8m2-2m(3) x2 y – 4y (4) –a4+162、设n为整数,用因式分解说明(2n+1) - 25能被4整除。

3、思考题:观察下列各式:1–9 = - 8, 4-16= -12,9-25=-16, 16-36= -20 ······(1)把以上各式所含的规律用含n(n为正整数)的等式表示出来。

专题03 因式分解(课件)2023年中考数学一轮复习(全国通用)

专题03 因式分解(课件)2023年中考数学一轮复习(全国通用)

知识点2 :因式分解的方法与步骤
知识点梳理
1. 一般方法: (1)提公因式法: 如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式 与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法. 用字母表示:ma+mb+mc= m(a+b+c) . 公因式的确定:取各项系数的最大公约数,取各项相同的因式及其最低次幂. ①定系数:公因式的系数是多项式各项系数的最大公约数. ②定字母:字母取多项式各项中都含有的相同的字母. ③定指数:相同字母的指数取各项中最小的一个,即字母的最低次数.
典型例题
知识点1 :因式分解的概念
【例2】(2020•河北3/26)对于①x-3xy = x(1-3y),②(x+3)(x-1) = x2+2x-3,从左
到右的变形,表述正确的是( )
A.都是因式分解
B.都是乘法运算
C.①是因式分解,②是乘法运算
D.①是乘法运算,②是因式分解
知识点1 :因式分解的概念
典型例题
知识点2 :因式分解的方法与步骤
几种方法的综合运用
【例14】(2分)(2021•北京10/28)分解因式:5x2﹣5y2=

【考点】提公因式法与公式法的综合运用. 【分析】提公因式后再利用平方差公式即可. 【解答】解:原式=5(x2﹣y2)=5(x+y)(x﹣y), 故答案为:5(x+y)(x﹣y). 【点评】本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是 正确应用的前提.
【答案】C.
典型例题
知识点2 :因式分解的方法与步骤
利用十字相乘法分解因式
【例10】(2022•内江)分解因式:a4-3a2-4=

4.4因式分解复习课 - 预习

4.4因式分解复习课 - 预习

因式分解的方法
提公因式法
1.把下列各式因式分解:
(1)a(x y) b(y x);
(2)6(m n)3 12(n m)2;
因式分解的方法
提公因式法
2.若(x+y)3-xy(x+y)=(x+y)·A,则A为( )
A.x2+y2
B.x2-xy+y2
C.x2-3xy+y2
D.x2+xy+y2
式 多项式)

变形规律:提多项式公因式,多项式相同或互为相反数

注意
1.分解因式是一种恒等变形; 2.公因式:要提尽; 3.不要漏项,和所提公因式相同的项提完保留1; 4.(首项为负,添括号法则)提负号,注意变号
因式分解的方法
提公因式法
一般步骤:确定应提公因式;多项式除以公因式所得商
作另一个因式;把多项式写成两个因式的积的形式
因式分解的方法
提公因式法
(1) a-b 与 b-a 互为相反数. (a-b)n = (b-a)n (n是偶数) (a-b)n = -(b-a)n (n是奇数)
a+b 与 -a-b 互为相反数. (-a-b)n = (a+b)n (n是偶数) (-a-b)n = -(a+b)n (n是奇数)
(2) a+b与b+a 互为相同数, (a+b)n = (b+a)n (n是整数)
分组分解法
3.已知a、b、c是∆ABC的三边,且满足a ²+b ²+c ²=ab+ac+bc,是说明∆ABC 是等边三角形.
因式分解
概念 方法 步骤 应用 小结
因式分解的步骤
一提 ① 对任意多项式分解因式,都必须首先考虑

第四章-因式分解(复习课)教学设计精选全文完整版

第四章-因式分解(复习课)教学设计精选全文完整版

可编辑修改精选全文完整版
第四章因式分解(复习课)教学设计
【教学目标】
1.进一步理解因式分解的概念和意义,了解因式分解和整式乘法的关系——方向相反的恒等变形;
2.复习提公因式法、公式法因式分解的过程,会综合运用提公因式法、公式法分解因式;
【教学重点】综合运用提公因式法、公式法分解因式.
【教学难点】根据题目的结构特点,选择合理的方法进行因式分解.
【教学思路】情境导入→知识回顾→例题讲解→练习巩固→中考链接→小结→作业布置
【教学过程】
环节一:情境导入
环节三:例题讲解
1.本单元复习题。

因式分解复习课

因式分解复习课

B CAa cb 因式分解复习课一.想一想:下列各式从左到右的变形中,哪些是因式分解?为什么?(1)bc ac b a c -=-)((2)2222)(b ab a b a ++=+(3)))((22b a b a b a -+=-(4)222)1)(1(1y x x y x +-+=+-概括:把一个多项式写成几个整式乘积的形式叫做把这个多项式因式分解,因式分解是整式乘法的逆变形。

二.做一做:因式分解1.(1)221625y x - (2)322344ab b a b a ++ (3)1+++b a ab (4)1522--x x(5)m m m -+-1)1(2 因式分解五步曲:先看有无功因式再看能否套公式十字相乘试一试分组分解要合适因式分解要彻底。

2.小试牛刀:(1)1642-x (2)42242b b a a +- (3)22)(4)(9b a b a --+ (4)2223y xy x +-(5)1222-+-b b a三.用一用1.计算:2299101-2.求值(1)当2,3==+xy y x ,求22xy y x +的值(2)已知:054222=+-++b a b a ,求3422-+b a 的值3.已知:a,b,c 是△ABC 的三边长,且满足02322=-+-c b b c a b a ,试判断三角形的形状.思考和感悟:因式分解不可怕,简化计算需要它,条件求值应用它,数学问题想到它.我们真的喜欢它小试牛刀:(1)已知:a,b,c 是△ABC 的三边长,且满足0)(22222=+-++c a b c b a ,尝试判断三角形的形状.(2)已知:x.y 为任意有理数, 22y x M +=,xy N 2=,你能确定M ,N 的大小吗?为什么?教后感B C A a c b。

八年级数学上册第十四章整式的乘法因式分解复习课件

八年级数学上册第十四章整式的乘法因式分解复习课件
式或完全平方公式的形式,
然后进行因式分解。
30% Option 3
56% Option 2
完全平方公式
$a^2 + 2ab + b^2 = (a + b)^2$ 和 $a^2 - 2ab + b^2 = (a - b)^2$,用于将 三项式因式分解。
分组分解法
概念
分组分解法是把多项式中的项 按照某种规则分成几组,然后 分别进行因式分解,最后再将 各组的结果整合起来。
乘法公式及其应用
80%
平方差公式
$(a+b)(a-b)=a^2-b^2$,用于 计算两个数的平方差。
100%
完全平方公式
$(a+b)^2=a^2+2ab+b^2$ 和 $(a-b)^2=a^2-2ab+b^2$,用 于计算一个二项式的平方。
80%
举例
利用平方差公式计算 $(x+3)(x3)=x^2-9$;利用完全平方公式计 算 $(x+2)^2=x^2+4x+4$。
05
课堂小结与知 识点梳理
单击此处添加正文,文字是您思想的提炼,为了演示发 布的良好效果,请言简意赅地阐述您的观点。
整章知识点回顾总结
掌握单项式与单项式、单项式与多项 式、多项式与多项式的乘法法则,并 能熟练进行运算。
整式的乘法
理解并掌握平方差公式和完全平方公 式,能运用公式进行简单的计算。
乘法公式
因式分解$a^2+2ab+b^2$和$a^2-2ab+b^2$, 并比较结果
综合应用典型例题
已知$a+b=5$,$ab=6$,求$a^2+b^2$和$(ab)^2$的值 例题1 例题2 例题3 已知多项式$f(x)=x^2+px+q$,且$f(1)=0$, $f(2)=0$,求$f(x)$的解析式 已知$x^2+y^2=10$,$xy=3$,求$(x+y)^2$和 $(x-y)^2$的值

(完整版)因式分解复习教案(教师版)

(完整版)因式分解复习教案(教师版)

因式分解复习教案(教师教学案)教学目标: 1。

复习巩固用提公因式、平方差公式、完全平方公式分解因式的方法。

2.会综合运用提公因式、平方差公式、完全平方公式分解因式.教学重点:综合运用提公因式、平方差公式、完全平方公式分解因式。

教学难点 :根据题目的结构特点,合理选择方法。

教师活动一、引入本章我们学习了分解因式,学习分解因式同学们要掌握以下知识:(1)什么叫分解因式?(2)怎样分解因式?或者分解因式有哪些方法?下面我们一起带着这些问题进行复习二、教授新课知识点1:分解因式的定义(教师和学生一起复习定义及特征,强调因式分解与整式的乘法的关系) 思考:什么是分解因式?因式分解与整式的乘法有何关系分解因式的特征,左边是 , 右边是 。

针对练习:下列选项,哪一个是分解因式( )(学生自主完成此题,并指出错在哪里)A .x x x x x 6)3)(3(692+-+=+-B 。

103)2)(5(2-+=-+x x x xC 。

22)4(168-=+-x x xD 。

y x x y x ⋅⋅=552知识点2:分解因式的第一种方法—-——--提公因式法思考:如何提公因式?(教师强调公因式公有的意思-——你有我有大家有才是公有)注意:(学生一起读一遍)公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号)(2)系数:取系数的最大公约数; (3)字母:取字母(或多项式)的指数最低的;(4)所有这些因式的乘积即为公因式 (5)某一项被作为公因式完全提出时,应补为例如:1.的公因式是多项式 963ab - aby abx -+_________2.多项式3223281624a b c a b ab c -+-分解因式时,应提取的公因式是( )A .24ab c -B .38ab -C .32abD .3324a b c3。

342)()()(n m m n y n m x +++-+的公因式是__________提公因式法分解因式分类:1.直接提公因式的类型:(1)3442231269b a b a b a +-=________________;(2)11n n n a a a +--+=____________(3)423)()()(b a b a y b a x -+---=_____________(4)不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值 2.首项符号为为负号的类型:(1)33222864y x y x y x -+- =_________(2)若被分解的因式只有两项且第一项为负,则直接交换他们的位置再分解(特别是用到平方差公式时) 如: 22188y x +-练习:1.多项式:aby abx ab 24186++-的一个因式是ab 6-,那么另一个因式是( )y x A 431..+-- y x B 431..-+ C y x 431--- D 。

因式分解复习课课件

因式分解复习课课件
3、|a-2|+b2-2b+1=0,求a=( ), b=( ).
4、计算(a+b+c)2-(a-b-c)2 5、已知两个正方形的边长之差为2,面积之 差84,求两个正方形的边长。
相 信 你 能 行
整体思想,转化思想
智力冲浪
(1)不论a、b为何数,代数式a2+b2-2a+4b+5的 值总是 (
D
) B.负数 C.正数 D.非负数
A.0
思考和感悟
因式分解不可怕, 简化计算需要它, 条件求值应用它, 数学问题想到它, 我们真的喜欢它 .
五.本课小结
1.复习因式分解概念 2.重温因式分解步骤 3.领略因式分解应用
有没有? 能不能?
知识回顾题组
A组练习
自主探究
将下列各式分解因式:
⑴ -a² -ab; ⑵ m² -n² ; ⑶ x² +2xy+y²(4)3am² -3an² ; (5)x3-2x2+x;(6)x2(x-y)+y2(y-x)
提醒:
(1) a+b与b+a
(a+b)n = (b+a)n
互为相同数,
(n是整数)
(2)a-b 与 -a+b
(a-b)n = (b-a)n
互为相数.
(n是偶数)
(a-b)n = -(b-a)n (n是奇数)
(3)a+b 与 -a-b
(-a-b)n = (a+b)n (-a-b)n = -(a+b)n
互为相反数.
(n是偶数) (n是奇数)
互为相反数的偶次幂相等,奇次幂仍互为相反数
七年级下册(青岛版)

分解因式复习课

分解因式复习课
答案:
(3) (5)
父孤入焰符监藕镁退霞渺渠港彭旱浙钵吠蹬畸苇拭额札闷帆和是矢谍海谬分解因式复习课分解因式复习课
回顾与思考:
我们学习了哪些因式分解的方法?
1、提取公因式法
2、运用公式法
平方差公式
完全平方公式
辟任础仿俄帕洞哑逃捡鳖沦块萧壕隋蛇秸干游割稚站禾梨哄誊沾怠忱讣绸分解因式复习课分解因式复习课
2、分解因式的时候可用的公式有哪些呢?
a-b = (a+b) (a-b)
2
2
斤糊蓟醒夜犯疤术火诞阜属近怜炊案培贴脉切淡钎秽久悦浆漱汐赌衫肄累分解因式复习课分解因式复习课
利用平方差公式分解因式
葫汤五聊很癌邵青颧哄芋窃于熄悍商帖下郑劝整遥邹掠消完泪湍警廉置储分解因式复习课分解因式复习课
议 一 议
给度瘤禽尿躲翅芹塘楼蔫食滔皆用述落畴消迪惋概膛王呜羽教奶狐跳皮委分解因式复习课分解因式复习课
请指出下列各式中从左到右的变形哪个是分解因式. (1)x2-2=(x+1)(x-1)-1 (2)(x-3)(x+2)=x2-x+6 (3)3m2n-6mn=3mn(m-2) (4)ma+mb+mc=m(a+b)+mc (5)a2-4ab+4b2=(a-2b)2
3、已知关于x的二次三项式3x-mx+n分解因式的结果为(3x+2)(x-1),试求m,n的值 。
2
闻斋式给客椽之腻诽丑拘曲狗哦兆签碾粱仆族唁斥啡歉筒泰裂凉晓仪牺阻分解因式复习课分解因式复习课
4 999-999能被998整除吗?能被998和1000整除吗?为什么?
理解 · 定义
杭膨吞唯堑袜繁椭彝寡碧辰猿动净哀操等暗疡唐乍网廖集品滚检范沼假途分解因式复习课分解因式复习课
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解的一般步骤: ①优先考虑提公因式法;
②其次看能不能使用公式;
③务必检查是否分解彻底!
判断下列的因式分解是否正确,如果错误,请订正!
规则:一组一题!
①x2-y2=(x-y)2 × (x+y)(x-y) ②x2-4y2=(x+4y)(x-4y) × (x+2y)(x-2y) ③ax2-a=a(x2-1) × a(x+1)(x-1) ④a2+6a+4=(a+2)2 × 无法因式分解
(a-b)2 a2-2ab+b2=__________
首2±2·首·尾+尾2=(首±尾)2 首平方,尾平方,2倍首尾在中央
① 4a2-9b2 解:原式=(2a)2 -(3b)2
②x2+6x+9
解:原式= x2 +2·x·3 +32 2 (x+3) = (2a+3b) (2a-3b) =
③ a3b-ab 解:原式= ab·a2 - ab·1 = ab(a2-1) = ab(a2-12) = ab(a+1)(a-1) ④3x2+6x+3 解:原式= 3 (x2 +2x+1 ) = 3(x+1)2
⑤-x2-2xy-y2=-(x-y)2 × -(x+y)2
⑥x#43;4) × x(x+2)2
规则:同学们先在草稿本上完成题目(过程要完整),并写上自 己的姓名。5分钟后,随机抽取同学进行投影展示!
第一轮:因式分解: 第三轮:因式分解: 第二轮:因式分解: 2-9abc 2 ① 6ab 4xy+6xy 2x +2xy 2 2-9 24 4 ② 4a 25x -9 x -y 2 ③ 4a 3x -6xy+3y ax2+4a+1 -6ax+9a2
1、一年之计在于春! 2、良好的开始就是成功的一半!
初二数学组—张磊
学习目标: 1、复习因式分解的概念。 2、会用提公因式法、公式法对一些多项式进行 因式分解! 课堂要求: 积极参与课堂,人人都要会!
1、因式分解的定义
(1)把一个多项式化成几个整式相___ 乘 的形式的 因式分解 (__________ 分解因式 )。 变形叫做把这个多项式__________
(2a+3) = (b-c)
② 8a3b2+12ab3c 解:原式= 4ab2·2a2 + 4ab2·3bc = 4ab2(2a2+3bc)
方法二:公式法 (a+b)(a-b) 1.平方差公式: a2-b2=_____________
(a+b)2 2.完全平方公式:a2+2ab+b2=__________
(2)判断下列式子的变形是不是因式分解? ①x(x-1)=x2-x 不是 ② ma+mb=m(a+b) 是
③ x2-9=(x+3)(x-3) 是 ④x2+2x+1=(x+1)2 是
⑤ x2+3x-1=x(x+3)-1 不是
2、因式分解的方法 方法一:提公因式法 ① 2a(b-c)-3(b-c) 变式:2a(b-c)-3(c-b) ( 2a -3) 解:原式= 2a(b-c)+ 3(b-c) 解:原式= (b-c)
你对因式分解还存在疑问吗?欢迎提出来讨论!
相关文档
最新文档