加群 的全体自同态构成环

合集下载

近世代数复习(1)

近世代数复习(1)

第一章 基本概念1.1 集合1.集合:由一些事物所组成的一个整体.通常用大写拉丁字母,,,A B C L L 表示.2.组成一个集合的各个事物称为这个集合的元素,通常用小写拉丁字母,,,a b c L L 表示.常见符号:;,.a A a A a A ∈∉∈3.子集:若,a A a B ∀∈⇒∈则称A 是B 的子集,B 是A 的扩集,或A 包含于B , B 包含A ,记作,A B B A ⊆⊇.当A 不是B 的子集时,记作“A B ⊄”.4.真子集:若A B ⊆,且b B ∃∈,而b A ∉,则称A 是B 的真子集,记作A B ⊂.5.幂集:由给定集合A 的全体子集所组成的集合称为A 的幂集,记作()2A P A =.6.设,A B 是全集U 的两个子集.{}|A B x x A x B ⋃=∈∈或{}|A B x x A x B ⋂=∈∈且A 的余:{}=|A x x U x A '∈∉,B 在A 中的余:{}{}\||.A B x x A x B x x A x B A B ''=∈∉=∈∈=⋂且 且 例. 设},,,,,{},,,,{},,,,,,,,{g f e d a N h e c a M h g f e d c b a U ===求,\,.M N M N M N ''⋃⋂解:{}{}{}{}{},,,,,,;\,;,,,,,,;.M N a c d e f g h M N c h M b d f g N b c h M N b ⋃==''''==⋂=1.2 映射1.映射:设,A B 是两个给定的非空集合,若有一个对应法则f ,使a A ∀∈,通过f ,!b B ∃∈与其对应,则称f 是A 到B 的一个映射,记作:f A B →或f A B −−→A 称为f 的定义域,B 称为f 的陪域.b 称为a 在f 下的像,a 称为b 在f 下的 原像,记作()b f a =或:.f a b a2.映射相等:设f 是1A 到1B 的映射,g 是2A 到2B 的映射,若1122,,A B A B ==且1x A ∀∈,都有()()f x g x =,则称f 与g 相等,记作f g =.3.设,,A B C 是三个集合,f 是A 到B 的映射,g 是B 到C 的映射,规定:(()),,h x g f x x A ∀∈a则h 是A 到C 的映射,称为f 与g 的合成(或乘积),记作h g f =o ,即()(()),.g f x g f x x A =∀∈o4.设f 是A 到B 的一个映射.(1)若12,a a A ∀∈,当12a a ≠时,有12()()f a f a ≠,则称f 是A 到B 的一个单射;(2)若,b B a A ∀∈∃∈,使()f a b =,则称f 是A 到B 的一个满射;(3)若f 既是单射,又是满射,则称f 是一个双射.例如,映射:,2,,f x x x →+∀∈ a ?是从¡到¡的一一映射.设f 是A 到B 的映射,g 是B 到C 的映射,若g f o 有左逆映射,则f 有左逆映射.但是g 没有.1.3 卡氏积与代数运算1.设,A B 是两个集合,作一个新的集合:{}(,)|a b a A b B ∈∈,称这个集合是A 与B 的笛卡尔积(简称卡氏积),记作A B ⨯.例如,集合A 中含有m 个元素,集合B 中含有n 个元素,则A 与B 的卡氏积 A B ⨯中含有mn 个元素.n 个集合的卡氏积12,,,n A A A L 定义为{}12(,,,)|1,2,,,n i i a a a a A i n ∈=L L ,并记作12n A A A ⨯⨯⨯L ,或1ni i A =∏.2.设,,A B D 是三个非空集合,从A B ⨯到D 的映射称为,A B 到D 的代数运算.特别,当A B D ==时,,A A 到A 的代数运算简称为A 上的代数运算.3.设o 是集合A 上的一个代数运算,若123,,a a a A ∀∈,都有123123()(),a a a a a a =o o o o则称o 适合结合律.若12,a a A ∀∈,都有1221,a a a a =o o则称o 适合交换律.设e 是集合,B A 到A 的代数运算,⊕是A 上的代数运算,若12,,a a A b B ∀∈∈,都有1212()()(),b a a b a b a ⊕=⊕e e e则称e 对于⊕适合左分配律.设⊗是集合,A B 到A 的代数运算,⊕是A 上的代数运算,若12,,a a A b B ∀∈∈,都有1212()()(),a a b a b a b ⊕⊗=⊗⊕⊗则称⊗对于⊕适合右分配律.4.设o 是集合A 上的一个代数运算,(1)若,,a b c A ∀∈,有,a b a c b c =⇒=o o则称o 适合左消去律.(2)若,,a b c A ∀∈,有,b a c a b c =⇒=o o则称o 适合右消去律.例. 在实数集¡上规定一个代数运算ο:,2b a b a +=ο问这个代数运算ο是否适合结合律、交换律?解:(1)由于,11325353)221(3)21(,1782181)322(1)32(1=⋅+==⋅+==⋅+==⋅+=οοοοοοοο 二者不等,代数运算ο不适合结合律.(2)由于,722323,832232=⋅+==⋅+=οο 二者不等,代数运算ο不适合交换律.1.4 等价关系与集合的分类1.设,A B 是两个集合,则A B ⨯的子集R 称为,A B 间的一个二元关系.当(,)a b R ∈时,称a 与b 具有关系R ,记作aRb ;当(,)a b R ∉时,称不具有关系R ,记作aR b '.,A A 间的二元关系简称为A 上的关系.2.设:是集合A 上的一个二元关系,若满足下列性质:(1)自反性:,;a A a a ∀∈:(2)对称性:,,;a b A a b b a ∀∈⇔::(3)传递性:,,,,;a b c A a b b c a c ∀∈⇔:::则称:是A 上的一个等价关系.当a b :时,称a 与b 等价.例如,定义为“8|a b a b ⇔-:”的二元关系“:”是偶数集2¢上的一个等价关系.3.设一个集合A 分成若干个非空子集,使得A 中每一个元素属于且只属于一个元 素,则这些子集的全体称为A 的一个分类.每个子集称为一个类.类里任何一个元 素称为这个类的一个代表.集合A 上的等价关系与集合的分类之间有着本质的联系,它们可以互相决定:{}[]|.a x x A x a =∈:,4.设:是集合A 上的一个等价关系,由A 的全体不同:等价类所组成的集合族称为A 关于:的商集,记作/A :.例. 若设,,A m =∈ⅴ令 {}(,)|,,|,m R a b a b m a b =∈-¢证明m R 是整数集¢上的一个等价关系,并给出由这个等价关系所确定的¢的一个分类.证明:显然m R 是⨯ⅱ的一个子集,所以m R 是¢上的一个关系.又(1),|,a m a b ∀∈-¢所以m aR a ;(2),,a b ∀∈¢若m aR b ,则|m a b -,于是|m b a -,所以m bR a ;(3),,,a b c ∀∈¢若,m m aR b bR c ,则|,m a b -|m b c -,于是|()()m a b b c -+-,即|m a c -,所以.m aR c因此,m R 是整数集¢上的一个等价关系.由这个等价关系m R 所确定的m R 等价类为:{}[0],2,,0,,2,,m m m m =--L L{}[1],21,1,1,1,21,,m m m m =-+-+++L L{}[2],22,2,2,2,22,,m m m m =-+-+++L L………{}[1],1,1,1,21,.m m m m -=-----L L第二章 群2.1 半群1.设S 是一个非空集合,若(1)在S 中存在一个代数运算ο;(2)ο适合结合律:()(),a b c a b c =o o o o ,,,a b c S ∀∈则称S 关于ο是一个半群,记作),(οS .若半群S 的运算还适合交换律:,,,a b b a a b S =∀∈o o则称S 是交换半群.半群的代数运算“ο”通常称为乘法,并将符号“ο”省略,即b a ο记作ab ,称为a 与b 的积.一个交换半群S 的代数运算常记作“+”,并称为加法,此时结合律、交换律分别为:()(),,,,,,.a b c a b c a b c S a b b a a b S ++=++∀∈+=+∀∈2.设S 是半群,,n a S ∈∈¥,n 个a 的连乘积称为a 的n 次幂,记作n a ,即.n n a aa a =678L且有:(),,,,.nm n m n m mn a a a a a a S m n +==∀∈∈¥ 如果S 是交换半群,且代数运算是加法时,a 的n 次幂应为a 的n 倍,表示n 个a 的和,记作na ,即.n na a a a =+++6447448L相应运算性质具有下列形式:,,.a S m n ∀∈∈¥(),()(),().ma na m n a n ma nm a n a b na nb +=+=+=+2.2 群的定义1.设(,)G g 是一个有单位元的半群,若G 的每个元都是可逆元,则称G 是一个群.适合交换律的群称为交换群或阿贝尔群.交换群G 的运算常用“+”号表示,并称G 是加群.2.设G 是半群,则下列四个命题等价:(1)G 是群;(2)G 有左单位元l ,而且G a ∈∀关于这个左单位元l 都是左可逆的;(3)G 有右单位元r ,而且G a ∈∀关于这个右单位元r 都是右可逆的;(4)G b a ∈∀,方程b ya b ax ==,在G 中都有解.3.若群G 所含元素个数有限,则称G 是有限群,称G 所包含元素的个数G 是G 的阶.4.群G 的运算适合左、右消去律.2.3 元素的阶1.设G 是一个群,e 是G 的一个单位元,a G ∈,使m a e =成立的最小正整数m 称为元素a 的阶,记作a m =.若使上式成立的正整数m 不存在,则称a 是无限阶的,记作a =∞.每个元素的阶都是无限的群不存在.当G 是加群时,其运算是加法,单位元为零元0,所以上式具有下列形式:0.ma =2.设G 是一个群,a G ∈,若,b G n ∀∈∃∈¢,使n b a =则称G 是由a 生成的循环群,a 是G 的生成元,记作().G a =循环群一定是交换群.3.设()G a =是一个循环群,(1)若a m =,则G 是含有m 个元素的有限群,有()m ϕ个生成元:,(,)1,r a m r =且{}0121,,,,;m G e a a a a -==L(2)若a =∞,则G 是无限群,有两个生成元:1,a a -,且{}21012,,,,,,.G a a a a a --=L L4.设G 是m 阶群,则G 是循环群当且仅当G 有m 阶元.例. 求出模12的剩余类加群12¢的每一个元的阶与所有生成元.解:12个元素:],11[],10[],9[],8[],7[],6[],5[],4[],3[],2[],1[],0[ 阶分别为:.12,6,4,3,12,2,12,3,4,6,12,1 由于12¢是由[1]生成的12阶循环群,所以12¢的生成元为:].11[],7[],5[],1[2.4 子群1.设G 是一个群,H G ∅≠⊆,若H 对G 的乘法作成群,则称H 是群G 的一个子群,记作.H G ≤2.设G 是群,H G ∅≠⊆,则下列各命题等价:(1)H G ≤(即H 对G 的乘法构成群);(2),a b H ∀∈,有1,ab a H -∈;(3),a b H ∀∈,有1.ab H -∈3.(1)无限循环群G 的子群,除单位元子群外,都是无限循环群.而且G 的子群的个数是无限的;(2)m 阶循环群G 的子群的阶是m 的因数;反之,若n|m ,则G 恰有一个n 阶子群,从而G 的子群的个数等于m 的正因数个数.任何一个群都不能是它的两个真子群的并.例1. 设12¢是一个模12的剩余类加群,证明:{}[0],[4],[8]H =是12¢的一个子群.证明:首先[0]H ∈,从而H ≠∅.又[0][0][0],[0][4][4],[0][8][8],[4][4][8],[4][8][0],[8][8][4],+=+=+=+=+=+= 而12¢是一个交换群,所以H 对12¢的加法运算封闭. 因此12.H <¢ 例2. 求出Klein 四元群{}4,,,K e a b ab =的所有子群.解:由Lagrange 定理,{}4,,,K e a b ab =的子群的阶只能是:1,2,4.1阶子群是单位元群{}e ,4阶子群是4K 自身;2阶(素数阶)子群是由二阶元生成的循环群. 因此4K 的子群有且只有下列5个:1阶子群:{}e ;2阶子群:{}{}{}(),,(),,(),a e a b e b ab e ab ===;4阶子群:4.K2.5 变换群1.非空集合A 到A 自身的映射称为A 的变换,A 到A 自身的满射称为A 的满变换,A 到A 自身的单射称为A 的单变换,A 到A 自身的双射称为A 的一一变换,A A ={A 的所有变换}.()E A ={A 的所有一一变换}.()E A 称为A 的一一变换群,()E A 的子群称为A 的变换群.2.(1)一个包含n 个元的有限集合的一一变换称为(n 次)置换;(2)一个包含n 个元的有限集合的所有置换作成的群称为n 次对称群,记作n S ;对称群的子群称为置换群.3.设在n 次置换σ下,1j 的像是2j ,2j 的像是31,,r j j -L 的像是r j ,r j 的像是1j , 其余的数字(如果还有的话)保持不变,则称σ是一个r 项循环置换,记作()12,,,,r j j j σ=L也可以记作()()23111,,,,,,,,,.r r r j j j j j j j σσ-==L L L1项循环置换()j 是恒等置换,2项循环置换()12j j 又称为对换.4.(1)n S 中的所有偶置换作成n S 的子群(称为n 次交错群,记作n A );(2)n 次交错群n A 的阶是!.2n例1. 写出三次对称群3S 的所有元素.解:.123321,312321,231321,213321,132321,321321⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛例2. 设两个六次置换: ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=416532654321,526413654321τσ求.,,12-στστστ 解:123456,142536στ⎛⎫= ⎪⎝⎭ 2123456,134652τσ⎛⎫= ⎪⎝⎭ 1123456.231546στ-⎛⎫= ⎪⎝⎭例3. 将下列轮换的乘积表示为不相交轮换的乘积.()()()4251314234563解:记(3654),(3241),(31524)σδη===,则:1554,2411,3136,4322,5243,6665,σδηa a a a a a a a a a a a a a a a a a从而,(3654)(3241)(31524)(142)(365).=2.6 群的同态与同构1.设G 与G '都是群,f 是G 到G '的映射,若f 保持运算,即()()(),,,f xy f x f y x y G =∀∈则称f 是G 到G '的同态.若同态f 是单射,则称f 是单同态;若同态f 是满射,则称f 是满同态,并称G 与G '同态,记作G G ':;若同态f 是双射,则称f 是同构,并称G 与G '同构,记作.G G '≅2.设f 是群G 到群G '的同态,e '是G '的单位元,则称{}Im ()()|f f G f x x G ==∈是f 的同态像,称{}1()|()Kerf f e x G f x e -''==∈=是f 的同态核.3.设f 是群G 到群G '的同态,e 是G 的单位元,则(1)f 是满同态当且仅当Im ;f G '=(2)f 是单同态当且仅当{}.Kerf e =4.任意一个群G 都与一个变换群同构.5.设()G a =是循环群,则(1)若a m =,则(,);m G ≅+¢(2)若a =∞,则(,).G ≅+¢2.7 子群的陪集1.设H G ≤,在G 中定义一个(等价)关系l R :1,,.l aR b b a H a b G -⇔∈∀∈由等价关系l R 所决定的类称为H 的左陪集.包含元素a 的左陪集等于aH .2.设H G ≤,则下列各命题成立:(1)a aH ∈;(2)1.aH bH aH bH a b H b aH bH aH -=⇔⋂≠∅⇔∈⇔∈⇔⊆ 特别,;.aH H a H eH H =⇔∈=(3)在aH 与H 之间存在一个双射.3.设H G ≤,在G 中定义一个(等价)关系r R :1,,.r aR b ab H a b G -⇔∈∀∈由等价关系r R 所决定的类称为H 的右陪集.包含元素a 的左陪集等于Ha .4.(Lagrange 定理)设G 是有限群,H 是G 的子群,则||[:]||.G G H H =5.有限群G 的每一个元素的阶都是||G 的因数;素数阶的群都是循环群.例如,6阶有限群的任何子群的阶数都是其正因子:1,2,3,6. 设G 是有限群,H 是G 的正规子群,若||H 与[:]G H 互素,则H 是G 中唯一的||H 阶子群.例. 求出Klein 四元群{}4,,,K e a b ab =的所有子群.解:由Lagrange 定理,{}4,,,K e a b ab =的子群的阶只能是1,2,4,而1阶子群是单位元群{}e ,4阶子群是4K 自身.二阶(素数阶)子群是由二阶元生成的循环群,因此4K 的子群有且只有下列5个:1阶子群:{}e ;2阶子群:{}{}{}(),,(),,(),a e a b e b ab e ab ===;4阶子群:4.K2.8 正规子群与商群1.设N G ≤,若a G ∀∈都有,aN Na =则称N 是G 的正规子群或不变子群,记作.N G <2.设N G ≤,则下列各命题等价:(1)N G <(即,aN Na a G =∀∈);(2)1,,;ana N a G n N -∈∀∈∈(3)1,;aNa N a G -⊆∀∈(4)1,;aNa N a G -=∀∈(5)N 的每一个左陪集也是N 的右陪集.3.设G 是群,记作N G <,令{}/|,G N aN a G =∈规定:(),,/,aN bN ab N aN bN G N =∀∈g则(/,)G N g 是一个群,称为G 关于N 的商群.4.商群/G N 的阶是N 在G 中的指数[:]G N ,且当G 是有限群时,/G N 的阶是||.||G N 2.9 正规子群与商群1.一个群G 与它的每一个商群/G N 同态.:/,,G G N a aN a G π→∀∈a称为自然(满)同态.自然同态π的核为N.2.(同态基本定理)设f 是群G 到群G '的同态,则(1);Kerf G <(2)/Im .G Kerf f ≅3.(第一同构定理)设f 是群G 到G '的满同态,N G ''<,1()N f N -'=,则N G <,并且//.G N G N ''≅例. 设(6),(30)是整数加群¢的两个子群,证明:5(6)/(30).≅¢ 证明:令5:(6),6[6],f n n →则f 是到的一个满同态,且{}{}{}{}6(6)|(6)[0]6(6)|[6][0]6(6)|5|630|(30).Kerf n f n n n n n m m =∈==∈==∈=∈=¢因此,(30)(6)<,且5(6)/(30).≅¢ 第三章 环3.1 环的定义1、设R 是一个非空集合,具有两种代数运算:加法(记作“+”)与乘法(记作“g ”),若(1)(,)R +是一个加群;(2)(,)R g 是一个半群;(3),,a b c R ∀∈都有乘法关于加法的左右分配律:(),(),a b c a b a c b c a b a c a +=++=+g g g g g g 则称R 是一个结合环,简称环,记作(,,)R +g .2、常见环(1)数环:数集关于数的加法、乘法所作成的环.例如2.⊂⊂⊂⊂ⅱぁ?(2)R 上的n 阶全矩阵环()n M R :数环R 上全体n 阶矩阵关于矩阵加法、乘法.(3)R 上的一元多项式环[]R x :数环R 上全体一元多项式关于多项式的加法、乘法.(4)高斯(Gauss )整数环[]{|,}i m ni m n =+∈ⅱ关于数的加法、乘法作成一个环.(5)设G 是一个加群,()E End G =是G 的所有自同态所组成的集合,规定:,,E x G στ∀∈∈,()()()(),()()(()),x x x x x στστστστ+=+=g 则(,,)E +g 是一个环,称为G 的自同态环.(6)商集{}[0],[1],,[1]m m =-关于加法运算[][][],a b a b +=+与乘法运算[][][],a b ab =g作成一个环(,,)m +,称为模m 的剩余类环.3、环的初步性质环R 关于加法是一个加群,R 具有加群的运算性质:(1)00,;a a a a R +=+=∀∈(2)()()0,;a a a a a a a R -=+-=-+=∀∈(3)(),;a a a R --=∀∈(4),,,;a b c b c a a b c R +=⇔=-∀∈(5)(),(),,;a b a b a b a b a b R -+=----=-+∀∈(6)()(),(),,,,;m na mn a n a b na nb m n a b R =+=+∀∈∈¢其次,环R 关于乘法是一个半群,而且加法与乘法通过左右分配律相联,从而R 还具有如下性质:(7)(),(),,,;a b c ac bc c a b ca cb a b c R -=--=-∀∈(8)000,;a a a R ==∀∈(9)()(),()(),,;a b a b ab a b ab a b R -=-=---=∀∈00,,x y x y ⎛⎫∈ ⎪⎝⎭¡00,,x y x y ⎛⎫∈ ⎪⎝⎭¡(10)121212121111(),(),,;,,;n n n n i m n mn i j i j i j i j i j a b b b ab ab ab b b b a b a b a b a a b R a b a b a b R ====+++=++++++=+++∀∈⎛⎫⎛⎫=∀∈ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑L L L L(11)()()(),,,.na b a nb n ab n a b R ==∀∈∈¢4、若环R 的乘法运算g 适合交换律,则称R 是交换环.5、若在环R 中,半群(,)R g 有单位元,则称R 是有单位元环,或称R 是带1的环.6、设R 是一个环,0a R ≠∈,若0b R ∃≠∈,使0(0),ab ba ==则称a 是R 的一个左(右)零因子.当a 既是R 的左零因子,又是R 的右零因子时,则称a 是R 的零因子. 例如,模12的剩余类环12¢是有零因子环:[3][4][12][0]==.例1. 求所有形如的矩阵组成的环R 的零因子.解:对任意的由于00000,0a x y ⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭所以环R 的每个非零元素都是R 的右零因子,且每个形如00,00a a ⎛⎫≠ ⎪⎝⎭的元素都是R 的左零因子.又当0≠a 时,如果0000000,*a x y ax ay ⎛⎫⎛⎫⎛⎫⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则有0,0==y x .所以00,0*a a ⎛⎫≠ ⎪⎝⎭不是环R 的左零因子.所以环R 的左右零因子分别是00,00a a ⎛⎫≠ ⎪⎝⎭ 与 00,x y ⎛⎫ ⎪⎝⎭y x ,不全为0. 7、设环R 不含左、右零因子,则称R 是无零因子环.8、一个有单位元、无零因子的交换环称为整环.9、设R 是一个环,若(1)R 至少包含两个元素;(2)R 有单位元;(3)R 中每个非零元都可逆;则称R 是一个除环(或体,斜域).一个交换除环称为域.除环具有以下性质:(1)设R 至少包含两个元素,则R 是除环R ⇔中全体非零元组成的集合R *关于乘法作成一个群;(2)除环R 是无零因子环;(3)在除环R 中,,,0a b R a ∀∈≠,方程ax b =与ya b =都有唯一解.(4)一个至少含有两个元素,且没有零因子的有限环是除环.(5)一个有限整环是域.11、设R 是一个环,若存在最小正整数n ,使对于所有a R ∈,都有0na =,则称n 是环R 的特征(数).若这样的n 不存在,则称环R 的特征(数)是零.环R 的特征(数)记作chR .在一个无零因子环R 中,所有非零元(对于加法)的阶全相等.12、设R 是一个环,且0chR n =>,则(1)当R 是有单位元时,n 是满足10n =g 的最小正整数;(2)当R 是无零因子时,n 是素数.13、域F 的特征或是素数,或是零.3.2 子环1、设R 是一个环,S R ∅≠⊆,若S 关于R 的加法、乘法作成环,则称S 是R 的一个子环,R 是S 的扩环,记作S R ≤.平凡子环:{0},.R非平凡子环:,{0},.S R S S R ≤≠≠2、(1)设R 是一个环,S R ∅≠⊆,则S 是R 的子环,a b S ⇔∀∈,有,.a b ab S -∈(2)设R 是一个除环(域),S R ∅≠⊆,则S 是R 的子除环(子域),a b S ⇔∀∈,有1,(0).a b ab b S --≠∈3、当S 是R 的一个子环时,S 与R 在是否可交换、有无零因子、有无单位元等性质上有一定的联系,但是并不完全一致.(1)在交换性上.①若R 是交换环,则S 也是交换环.②当S 是交换环时,R 未必是交换环. 例如20|,,().0a a b M b ⎧⎫⎛⎫∈⎨⎬ ⎪⎝⎭⎩⎭ (2)在有无零因子上.①若R 是无零因子环,则S 也是无零因子环.②当S 是无零因子环时,R 未必是无零因子环. 例如12¢有零因子[3],[4]等,但{}[0],[4],[8]没有零因子.(3)在有无单位元上.①若R 有单位元,S 可以没有单位元. 例如¢有单位元1,但其子环2¢没有单位元.②若S 有单位元,R 可以没有单位元. 例如0|,,|,.0000a b a R a b S a b ⎧⎫⎧⎫⎛⎫⎛⎫=∈=∈⎨⎬⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭ ③若R 与S 都有单位元,它们的单位元可以不同. 例如210(),;01010|,,.0000M a S a b ⎛⎫ ⎪⎝⎭⎧⎫⎛⎫⎛⎫=∈⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭¡¡ 4、设R 是环,I 是一个指标集,()i S R i I ≤∈,则i i I S R ∈≤I .5、设R 是环,T R ∅≠⊆,令{}12|,n i S x x x x T n =±∈∈∑L ?则S R ≤.上述子环S 称为由T 生成的子环,记作[]T .并称T 中元素是[]T 的生成元,T 是[]T 的生成元集.若12{,,,}l T t t t =L 是有限集,则称[]T 是有限生成的,并可以记作12[,,,]l t t t L .特别地,1[]|,m i i i i t n t n m =⎧⎫=∈∈⎨⎬⎩⎭∑ⅴ. 6、设R 是环,T R ∅≠⊆,{}|,i i M S T S R i I =⊆≤∈是R 的所有包含T 的子环族,则i i IT S ∈=I .3.3 环的同态与同构1、设R 与R '都是环,f 是R 到R '的映射,若f 保持运算,即,x y R ∀∈,有()()(),()()(),f x y f x f y f xy f x f y +=+= 则称f 是R 到R '的同态.单同态:同态f 是单射.满同态:同态f 是满射,并称R 与R '同态,记作R R ':. 同构:同态f 是双射,并称R 与R '同构,记作R R '≅. 环R 的自同态:R 与R 的同态;环R 的自同构:R 与R 的同构.2、设f 是环R 到环R '的同态.(1)若0是R 的零元,则(0)f 是R '的零元;(2),()()a R f a f a ∀∈-=-;(3)若S R ≤,则()f S R '≤;(4)若S R ''≤,则1()f S R -'≤.3、当:f R R '→是满同态时,R 与R '在是否可交换、有无零因子、有无单位元等性质上有一定的联系,但是并不完全一致.(1)在交换性上.①若R 是交换环,则R '也是交换环.②当R '是交换环时,R 未必是交换环. 例如0:.00a b a f c c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭a (2)在有无零因子上.①当R 是无零因子环时,R '未必是无零因子环. 例如:m f ,¢没有零因子,m 是合数时,m ¢是有零因子环.②当R '是无零因子环时,R 未必是无零因子环. 例如 0:;00001010.0000a b a f c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭a (3)在有无单位元上.①若R 有单位元1,则R '有单位元(1)f .②当R '有单位元时,R 未必有单位元. 例如010:;000000a b a f ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭a 4、设环R R '≅,则R 是整环(除环,域)R '⇔是整环(除环,域).5、设f 是环R 到环R '的同态,g 是环R '到环R ''的同态,则f 与g 的合成g f o 是环R 到环R ''的同态.6、设f 是环R 到环R '的满同态(单同态,同构),g 是环R '到环R ''的满同态(单同态,同构),则f 与g 的合成g f o 是环R 到环R ''的满同态(单同态,同构).7、设f 是环R 到环R '的同态,0'是R '的零元,则称{}|()0Kerf x R f x '=∈=是的同态核.8、设f 是环R 到环R '的同态,0是R 的零元,则f 是单同态{}0.Kerf ⇔=3.4 理想与商环1、设(,,)R +g 是一个环,(,)A +是(,)R +的一个子加群,(1)若,r R a A ∀∈∈有ra A ∈,则称A 是R 的左理想;(2)若,r R a A ∀∈∈有ar A ∈,则称A 是R 的右理想;(3)若A 既是R 的左理想,又是R 的右理想,则称A 是R 的(双侧)(双边)理想,记作A R <.若A R <,且A R ≠,则称A 是R 的真理想.理想是子环,子环不一定是理想.2、只有零理想{}0与单位理想R 的环R 称为单环. 除环是单环.3、设R 是一个环,I 是一个指标集,()i A R i I ∈<,则i i IA R ∈<I .注:理想的并集一般不是理想.5、设R 是环,T R ∅≠⊆,{}|,i i M A T A R i I =⊆∈<是R 的所有包含T 的理想族,则称i i IA ∈I 是由T 所生成的理想,记作()T .并称T 中元素是()T 的生成元,T 是()T 的生成元集.若12{,,,}l T t t t =L 是有限集,则称()T 是有限生成的,并可以记作12(,,,)l t t t L . 特别地,由一个元素a 生成的理想()a 称为主理想.3、设R 是一个环,a R ∈,T R ∅≠⊆,则{}()|,,,,i i i i a x ay sa at na x y s t R n =+++∈∈∑¢.且有(1)若R 是有单位元环,则{}()|,i i i i a x ay x y R =∈∑;(2)若R 是交换环,则{}()|,a ra na r R n =+∈∈¢;(3)若R 是有单位元的交换环,则{}()|a ra r R =∈;(4){}()|(),i i i i T x x t t T =∈∈∑.例1. 求整数环¢上一元多项式环[]x ¢的理想(2,)x ,并证明(2,)x 不是主理想. 证明:因为[]x ¢是有单位元的交换环,所以12120(2,){2()()|(),()[]}{2()|()[]},x f x xf x f x f x x a xf x f x x =+∈=+∈¢¢ 即(2,)x 是由[]x ¢中常数项为偶数的多项式组成.若(2,)(()),()[],x p x p x x =∈¢则2(()),(()),2()(),()(),(),()[],(),(),1(2,)p x x p x p x q x x p x h x q x h x x p x a x ah x a x ∈∈==∈=∈==±∈¢¢这与1(2,)x ±∉矛盾.得证.4、设R 是环,A R <,在商群{}{}(,)/(,)[]||R A x x R x A x R ++=∈=+∈中再规定:[][][],[],[]/x y xy x y R A =∀∈g ,则(/,,)R A +g 是一个环,/R A 称为R 关于A 的商环或剩余类环,[]x x A =+称为R 模A 的剩余类.5、(1)若R 是交换环,则/R A 也是交换环;(2)若R 是有单位元1的环,则/R A 有单位元[1].6、一个环R 与它的每一个商环/R A 同态.自然同态::/,[],R R A x x x A x R π→=+∀∈a . 且有.Ker A π=7、(同态基本定理)设f 是环R 到环R '的同态,则(1)Kerf R <;(2)/Im R Kerf f ≅.8、(第一同构定理)设f 是环R 到环R '的满同态,A R ''<,1()A f A -'=,则A R <,并且//R A R A ''≅.9、设f 是环R 到环R '的满同态,若A R <,则()f A R '<.3.5 素理想与极大理想1、设R 是交换环,P 是R 的一个理想,若,,a b R ab P a P ∀∈∈⇒∈或b P ∈,则称P 是R 的素理想.单位理想是素理想.当R 是无零因子交换环时,零理想也是素理想;当R 有零因子时,零理想不是素理想.2、设P 是有单位元的交换环R 的一个理想,则P 是R 的素理想/R P ⇔是整环.例1. 试求模18的剩余类环18¢的所有素理想.解:(1)18¢有6个子加群:{}{}{}{}{}18{[0]},[0],[1],,[17],([2])[0],[2],[4],[6],[8],[10],[12],[14],[16],([3])[0],[3],[6],[9],[12],[15],([6])[0],[6],[12],([9])[0],[9].=====它们也是18¢的所有子环,也是18¢的所有理想.(2)因为[2][3][6]([6]),=∈但是[2],[3]([6]),∉所以([6])不是18¢的素理想.同理可证,{0},([9])都不是18¢的素理想.(3)对于([3]),设18[],[],[][]([3])a b a b ∈∈¢,则[][]([3]),[3][0],18|3a b r ab r ab r =-=-,从而存在m ∈¢,使318,183.ab r m ab m r -==+因为3|18,所以3|ab ,从而3|a 或3|b ,因此[]([3])a ∈或[]([3])b ∈,所以([3])是18¢的素理想.同理可证,([2])也是18¢的素理想.(4)显然单位理想18¢是18¢的素理想.3、设M 是环R 一个真理想,若对于的理想N ,M N N R ⊂⇒=,则称M 是R 的极大理想.R 中包含极大理想M 的理想只有R 与M .环R 本身不是的极大理想.若R 只有平凡理想,则零理想是R 的极大理想. 一个环可以有多个极大理想,也可以没有极大理想.4、设M 是有单位元的交换环R 的一个理想,则M 是R 的极大理想/R M ⇔是域.5、在有单位元的交换环中,极大理想一定是素理想.例2. 证明:在整数环¢上一元多项式环[]x ¢中,(2,)x 是一个极大理想. 证:因为[]x ¢是有单位元的交换环,所以12120(2,){2()()|(),()[]}{2()|()[]},x f x xf x f x f x x a xf x f x x =+∈=+∈ⅱ 即(2,)x 是由[]x ¢中常数项为偶数的多项式组成.令[0],2|(0),(())[1],f f x ϕ⎧=⎨⎩其它 …………(3分) 则ϕ是满同态,且ker {()[]|(())[0]}{()[]|2|(0)}(2,),f x x f x f x x f x ϕϕ=∈==∈=¢¢ 由同态基本定理,2[](2,)x x ≅¢¢,2¢是域,则 [](2,)x x ¢ 也是域,(2,)x 是[]x ¢的极大理想. 3.6 商域1、(挖补定理)设S 是环R 的子环,S S '≅,S R '⋂=∅,则存在S '的扩环R ', 使R R '≅.2、每一个无零因子交换环R 都可以扩充为一个域F .3、无零因子交换环R 的扩域F 的构造为{}1|,F ab a R b R -*=∈∈.4、设R 是无零因子交换环,F 是R 的扩域,且{}1|,F ab a R b R -*=∈∈则称F 是R 的商域(或分式域).5、(1)设F 是环R 的商域,F '是环R '的商域,若R R '≅,则F F '≅.(2)设F 与F '都是环R 的商域,则F F '≅.即,在同构的意义下,环的商域是唯一的.(3)环R 的商域是R 的最小扩域.例如¤是¢的商域,¡不是¢的商域.3.7 多项式环1、设R '是一个有单位元1的交换环,1R R '∈≤,R α'∈,则R '中形如()2012,{0}n n i a a a a a R n ααα++++∈∈⋃L ?的元素称为R 上α的一个多项式,记作()f α;i a 称为()f α的系数,i i a α称为()f α的项.2、用[]R α表示全体R 上α的多项式所组成的集合,[]R α称为R 上α的多项式环.3、设R '是一个有单位元1的交换环,1R R '∈≤,x R '∈,若()201201,{0}0,nn i n a a x a x a x a R n a a a ++++∈∈⋃⇒====L ?L则称x 是R 上的未定元.称x 的多项式 ()2012(),{0}n n i f x a a x a x a x a R n =++++∈∈⋃L ?是一元多项式.当0n a ≠时,称n n a x 是()f x 的首项;称n a 是()f x 的首项系数;称n 是()f x 的次数,记作deg ()f x ,零多项式0没有次数.[]R x 称为R 上的一元多项式环.4、设(),()f x g x 是[]R x 中两个非零多项式,则(1)(){}deg ()()max deg (),deg ()f x g x f x g x +≤,(2)()deg ()()deg ()deg ()f x g x f x g x ≤+,且当()f x 与()g x 的最高次项系数不是零因子时,有()deg ()()deg ()deg ()f x g x f x g x =+5、设R 是一个有单位元的交换环,则一定存在R 上的未定元x ,从而存在一元多项式环[]R x .6、设(),()[]f x g x R x ∈,且()0g x ≠,若()g x 的首项系数是可逆元,则存在唯一的一对多项式(),()[]q x r x R x ∈,使()()()(),()0f x g x q x r x r x =+= 或 deg ()deg ()r x g x <.7、设R '是一个有单位元1的交换环,1R R '∈≤,12,,,n R ααα'∈L ,把环12[][][]n R αααL 称为R 上的12,,,n αααL 的多项式环,记作12[,,,]n R αααL .12[,,,]n R αααL 中的元素称为R 上12,,,n αααL 的多项式,它们都可以表示为()1212n n i i i i i i a a R ∈∑L L 其中仅有有限个120n i i i a ≠L ,12n i i i a L 称为这个多项式的系数.8、设R '是一个有单位元1的交换环,1R R '∈≤,12,,,n x x x R '∈L ,若()1212121212000,1,2,;1,2,,n n n n i i i i i i n i i i i i i j a x x x a i j n =⇒===∑L L L L L L则称12,,,n x x x L 是R 上的无关未定元.称12,,,n x x x L 的多项式()1212121212n n n n i i i i i i n i i i i i i a x x x a R ∈∑L L L L 是n 元多项式.称12[,,,]n R x x x L 是n 元多项式环.9、设R 是一个有单位元的交换环,n ∈¥,则一定存在R 上的无关未定元12,,,n x x x L ,从而存在n 元多项式环12[,,,]n R x x x L .第四章 整环里的因子分解在本章中,I 都表示整环,其单位元是1.4.1 不可约元、素元、最大公因子1、整环I 中的可逆元ε称为I 的单位.ε是单位()I ε⇔=.一个元素个数大于2的整环中至少有两个单位:1和1-.整数环只有两个单位,即1和1-.域F 中的每一个非零元都是单位.2、整环I 的全体单位关于I 的乘法构成一个交换半群.3、设,a b I ∈,若c I ∃∈,使a bc =则称b 整除a ,或b 是a 的因子,记作|b a .4、整除关系具有下列性质.(1)|,||c b b a c a ⇒;(2)|()()b a a b ⇔⊆;(3)|,|,a b b a b a εε⇔=是I 的单位()()b a ⇔=;(4)ε是I 的单位|1ε⇔;(5)设b I ∈,ε是I 的单位,若|b ε,则b 也是I 的单位;(6)设a I ∈,ε是I 的单位,则|,|a a a εε.5、设,a b I ∈,若|a b 且|b a ,则称a 与b 相伴,记作a b :.6、设,,a b c I ∈,则下列各个命题等价:(1)a b :;(2),b a εε=是I 的单位;(3)()()a b =.7、相伴关系是整环I 上的一个等价关系.8、设,a b I ∈,若|b a ,但b 不是单位,且b 与a 不相伴,则称b 是a 的真因子.9、设,a b I ∈,则b 是a 的真因子()()a b I ⇔⊂⊂.10、单位没有真因子.11、设a I ∈,且a bc =,若b 是a 的真因子,则c 也是a 的真因子.12、设a I ∈,且0a ≠,a 不是单位,若a 在I 中没有真因子,则称a 是I 的一个不可约元;若a 在I 中有真因子,则称a 是I 的一个可约元.13、设a I ∈,且0a ≠,a 不是单位,则a 是I 的可约元a bc ⇔=,且,bc 都不是单位.14、一个不可约元的相伴元也是不可约元.15、设p I ∈,且0p ≠,p 不是单位,若由|p ab 可推出|p a 或|p b ,则称p 是I 的一个素元.16、在整环I 中,每一个素元都是不可约元.17、设,a b I ∈,若d I ∃∈,使(1)|,|d a d b ;(2),|,||c I c a c b c d ∀∈⇒;则称d 是a 与b 的最大公因子. 18、最大公因子有以下基本性质:(1)(,0)a a :;(2)(,)00a b a b ⇔==:;(3)a I ∀∈与单位ε,有(,)a εε:.19、设,a b I ∈,a 与b 的最大公因子存在,且是单位,则称a 与b 互素.a 与b 互素,当且仅当除单位外,a 与b 无其他公因子20、若整环I 中任意两个元的最大公因子都存在,则,,a b c I ∈,有(1)(,(,))((,),)a b c a b c :;(2)(,)(,)c a b ca cb :;(3)(,)1,(,)1(,)1a b a c a bc ⇒:::.4.2 唯一分解环1、设a I ∈满足:(1)有一个因子分解式12r a p p p =L (i p 是I 中不可约元);(1)若同时又有因子分解式12s a q q q =L (j q 是I 中不可约元);那么s r =,并且可以适当调换因子的次序,使(1,2,,)i i q p i r =:L . 则称a 为I 中的唯一分解元,并称r 是a 的长.2、设a 是唯一分解元,若在a 的分解式中,有t 个不可约因子12,,,t p p p L 互不相伴,且其他的不可约因子都与某个i p 相伴,则a 的分解式可以写作:1212t e e e t a p p p ε=L ,其中ε是单位,i e ∈¥.这个式子称为a 的标准分解式.3、若整环I 中每一个既不是零又不是单位的元都是唯一分解元,则称I 是唯一分解环.4、在一个唯一分解环I 中,若元a 的不可约因子已知,则可确定出a 的所有真因子(至多相差单位因子),且元a 的长大于其任一真因子的长.5、在一个唯一分解环I 中,任意两个元都有最大公因子,每一个不可约元都是素元.7、若整环I 中任意两个元的最大公因子都存在,则I 中的每一个不可约元都是素元.8、若整环I 满足:(1)I 中每一个既不是零又不是单位的元a 都有一个因子分解:12r a p p p =L (i p 是I 中不可约元);(2)I 的每一个不可约元p 都是素元;则I 是唯一分解环.9、若整环I 满足:(1)I 中每一个既不是零又不是单位的元a 都有一个因子分解:12r a p p p =L (i p 是I 中不可约元);(2)I 的任意两个元都存在最大公因子;则I 是唯一分解环.例1. 设[3]{3|,}{3|,}I m n m n m n i m n =-=+-∈=+∈ⅱ?(1)ε是I 的单位2||11εε⇔=⇔=±;(2)求2的相伴元;(3)I 中适合条件2||4a =的元a 是I 的不可约元;(4)2是I 的不可约元,但不是I 的素元;(5)I 不是唯一分解环.证:(1)循环论证法.若ε是I 的单位,则I ε'∃∈,使1εε'=.两边取模的平方,得22||||1εε'=. 设3m n ε=+-,则222||3m n εεε==+是正整数.同理2||ε'也是正整数,于是2||1ε=.若2||1ε=,则2231m n +=,所以0,1n m ==±,即1ε=±.显然1±是I 的单位.(2)由(1)及相伴元的定义,2的相伴元只有2与2-.(3)因为2||4a =,所以0a ≠且不是单位.设3b m n I =+-∈是a 的一个因子,则a bc =,c I ∈,于是2224||||||a b c ==.但是对于任何正整数222,,||32m n b m n =+≠,所以2||1b =或4.若2||1b =,则b 是单位;若2||4b =,则2||1c =,于是c 是单位,所以b a :.从而a 只有平凡因子,因此a 是不可约元.(4)因为2|2|4=,由(1)知,2是I 的不可约元.下面证2不是I 的素元.首先2|(13)(13)+---.若2|13+-,则存在c I ∈,使132c +-=.于是222|13||2|||c +-=,即244||c =,从而2||1c =,1c =±,但这是不可能的.所以2/|13+-.同理2/|13--.因此2不是I 的素元.(5)I 的单位只有1与1-,从而4是I 中一个既不是零元也不是单位的元,而且422(13)(13)=⋅=+--- 因为222|2||13||13|4=+-=--=,所以都是I 的不可约元.又因为213/+-:,213/--:,所以4有两种本质上不同的不可约元的因子分解,从而4不是唯一分解元.因此[3]I =-¢不是唯一分解环.4.3 主理想环1、若整环I 的每一个理想都是主理想,则称是主理想环.例如,整数环¢和域F 上的一元多项式环[]F x 都是主理想环;但¢上的一元多项式环[]x ¢不是主理想环:(2,)x 不是主理想.2、设是一个主理想环,若在序列123,,,(,1,2,3,)i a a a a I i ∈=L L中每一个元都是前面一个元的真因子,则这个序列一定是有限序列.3、每一个主理想环都是唯一分解环.4、设I 是主理想环,,a b I ∈,则(,)()a b d d =⇔是a 与b 的一个最大公因子.5、设I 是主理想环,12,,,s a a a I ∈L ,则12(,,,)()s a a a d d =⇔L 是12,,,s a a a L 的一个最大公因子.6、设I 是一个主理想环,p 是I 中的非零元,则()p 是I 的极大理想p ⇔是I 的不可约元.4.4 欧氏环1、设I 是整环,若(1)存在一个由\{0}I I *=到非负整数集{0}⋃¥的映射ϕ;(2),,,a I b I q r I *∀∈∈∃∈,使,0b aq r r =+=或()()r a ϕϕ<;则称I 是一个欧氏环.例如,整数环¢,高斯整(数)环[]{|,}i m ni m n =+∈ⅱ,域F 上的一元多。

高等代数环的定义与性质

高等代数环的定义与性质

一、 环的定义与基本性质(一) 环的定义:1、 定义1:交换群称为加群(Aβελ群),其运算叫做加法,记为“+”。

2、 定义2:代数系统),;A (⋅+称为环,若1)(A,+)就是加群;2)代数系统);A (⋅适合结合律;3)乘法);A (⋅对加法+的分配律成立。

3、 例子(1)),;Z (⋅+、),;Q (⋅+、),;R (⋅+、),;C (⋅+都就是环,均称为数环。

(2)Z[ι] ={α+βι | α、β∈Z,ι2=-1 },则),];i [Z (⋅+也就是数环,称之为高斯整环。

(3)设Φ就是任一数环,则Φ[ξ]关于多项式加法与乘法作成一个多项式环。

(4)Z ν={所有模ν剩余类},则),;Z (n ⋅+就是模ν剩余类环,这里[α]+[β] = [α+β],]b []a [⋅ = [αβ].(5)设(A,+)就是加群,规定乘法如下:,A b ,a ∈∀αβ=0,则),;A (⋅+作成一个环,称之为零环。

(二)环的基本性质:(1)0x a a x =⇒=+。

(2)a x x a -=⇒=+0。

(3)c b c a b a =⇒+=+。

(4)nb na )b a (n +=+。

(ν为整数)(5)na ma a )n m (+=+。

(μ、ν为整数)(6))na (m a )mn (=。

(μ、ν为整数)(7),A a ∈∀ 000=⋅=⋅a a 。

(8)ab )b (a b )a (-=-=-。

(9)ab )b )(a (=--。

(10)ac bc c )a b (,ac ab )c b (a -=--=-。

(11)j m i n j i n j j m i i b a b a ∑∑∑∑=====⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1111 。

(12))ab (n )nb (a b )na (==。

(ν为整数)。

(13)若环中元a 、b 满足ba ab =,则()k n k nk k n n b a C b a -=∑=+0 (14)mn n m n m n m a )a (,a a a ==⋅+。

第三章--环与域

第三章--环与域

第三章 环与域与群一样,环与域也是两个重要的代数系统。

但我们早在高等代数课程里就已经接触过它们了,在哪里,我们有数环和数域的概念,它们实际上就是特殊的环与域。

在本章里,我们只是介绍环与域的最基本的性质及几类最重要的环与域,通过本章的学习,将使得我们一方面对数环和数域有更清楚的了解,另一方面也为进一步学习研究代数学打下必备的基础。

§1 加群、环的定义一、加群在环的概念里要用到加群的概念,因此要先介绍一下什么是加群,实际上加群也不是什么新的群,在习惯上,抽象群的代数运算,都是用乘法的符号来表示的,但我们知道,一个代数运算用什么符号表示是没有什么关系的,对于一个交换群来说,它的代数运算在某种场合下,用加法的符号来表示更加方便。

因此,我们通常所说的加群,是指用加法符号表示代数运算的交换群。

由于加法符号与乘法符号有所不同,所以加群的许多运算规则与表示形式就要与乘法表示的群有所不同。

如:(1)加群G 的单位元用0表示,叫做零元。

即a G ∀∈,有00a a a +=+=。

(2)加群G 的元素a 的逆元用a -表示,叫做a 的负元。

即有()0a a a a -+=+-=。

利用负元可定义加群的减法运算:()a b a b-+-。

(3)()a a--=。

(4)a c b c b a+=⇔=-。

(5)(),()a b a b a b a b-+=----=-+(6)(00()()a a a n a nna nn a n+++⎧⎪==⎨⎪--⎩个相加)为正整数为负整数,且有(),()(),() ma na m n a m na mn a n a b na nb +=+=+=+请同学们在乘法群中写出以上各结论的相应结论。

加群G的一个非空子集S作成一个子群,a b S⇔∀∈,有,a b a S+-∈,a b S⇔∀∈,有a b S-∈。

加群G的子群H的陪集表示为:a H H a+=+。

二、环的定义设R是一个非空集合,“+”与“。

第14讲 环的概念及例子.

第14讲  环的概念及例子.

是HR上的一个基. I2=J2=K2= E. IJ=K= JI, JK=I= KJ, KI=J= IK.
作业:P89, 2,3,4.
除环
设R是环,
如果R*关于R的乘法是群,
则称R是除环.
域是交换的除环.
例11 四元数除环
2阶复矩阵集合
a bi c di 2 H a , b , c , d R , i 1. c di a bi
关于矩阵的加法和乘法运算构成一个除环.
例4 令 f : M n1 (F) Mn(F) A n 1 A n 1 0 0 0
例5 令 h : Mn(F) M n1 (F), A n 1 α A n 1 β t 易知 h 保持加法运算. 但 h 不是环同态.
易知 f 是环同态.
f 是单同态: Ker( f )={0}. 同构=同态+双射 f 是满同态: Im( f )=T.
美丽的数学花, 谨献给热爱数学、
并执著地追求她的人.
环的定义:环R是具有两个运算的代数系统 (R,+, · ), 其运算满足:
(I) (F,+)是加群, 单位元叫零元,记0; a 的逆元叫负 元,记 a. (II) (F, · ,1)是幺半群。 (III) 两个运算之间的联系: 乘法对加法满足左、右分配律;


1
1 2 2 数域R上的四维向量空间,
1 0 i 0 0 1 0 i E , I , J , K 0 1 0 i 1 0 i 0 ,
定 义
设R ,T都是环, 如果映射 f : R T a,b∈R 保持运算:

商环与环同态基本定理

商环与环同态基本定理

证明 在 F 里
ab1 b1a a b
有意义。作 F 的子集
a,b R,b 0
Q

所有
a b

Q 显然是 R 的一个商域。证毕。
a,b R,b 0
(三)商域的同构唯一性定理
定理 3.6.6
设 与 为两个整环, 与 分别为它们的商域. 如果 :
, 则存在域的同构 :

(a,b Q)
的方阵作成的集合.证明:对普通加法与乘法来说,R 与 R 同构且 R 是一个域.
5. 设 R 为环, NR. 证明: 1) R N 中的理想都具有形状 K N ,其中 K 是 R 的含 N 的理想; 2)在自然同态 R ~ R N 之下,R 的理想 H 的象为
(ⅰ)若 S 是 R 的子环,则(S) 是 R 的子环; (ⅱ)若 I 是 R 的理想且 为满射,则(I ) 是 R 的理想; (ⅲ)若 S 是 R 的子环,则 1 (S ) 是 R 的子环; (ⅳ)若 S 是 R 的理想,则 1 (S ) 是 R 的理想.
证明 (ⅰ) a,b (S ), a,b S ,使 a (a), b (b). 所以 a b S ,于是 a b (a) (b) (a b) (S) , 从而(S) 是 R 的子群.另外 a b (a)(b) (ab) (S) , 所以(S) 是 R 的子环. (ⅱ)因为 I R ,所以 I 是 R 的子环,从而(I ) 是 R
1)若 char R= ,则 R 有子环与 Z 同构; 2)若 char R=p(p 是素数),则 R 有子环与 Z p 同构.
3. 设 是环 R 到环 R 的一个同态满射,K 为其同态核,N R.
4. 令 R a bi a,b Q , R 由一切形如

3-5群的自同构群.ppt

3-5群的自同构群.ppt
2018/1/10 16:35
于是易知 1 n(A) : A 0 1 是G到自身的一个映射 .又由于 1 ( AB) ( 0 n( AB) 1 ) 0 1 n( A) n( B ) 1
1 n( A) 1 n( B ) ( A) ( B ), 0 1 0 1 故是群G的一个自同态映射 .但是, 把中心元素 2 0 1 0 2 却变成非中心元素 0 不是全特征子群 .
2018/1/10 16:35
(H ) H ,
则称H为群G的一个全特征子群. 全特征子群一定是特征子群.
例2 群G的中心C是G的一个特征子群. 证 : 任取c C, x G, AutG, 则
(c)x (c) [ (x)] [c (x)]
-1 -1
由于无限循环群有两个生成元,n阶循环群有 (n) 个生成元,从而其自同构群分别为2阶循环
2018/1/10 16:35
群和
(n) 阶群.
推论2 无限循环群的自同构群与三阶循环群的自同 构群同构. 定理3 设G是一个群, a G. 1)

a : x axa1 ( x G)
是G的一个自同构,称为G的一个内自同构;
2018/1/10 16:35
小结 1.群的自同构群的概念,循环群的自同构群。 2.内自同构群,特征子群,全特征子群。 作业: 5.6
2018/1/10
16:35
2018/1/10
2 ,因此, G的中心 1
16:35
例4 证明:循环群G=<a>的子群都是全特征子群.
全特征子群、特征子群和正规子群间的关系是
全特征子群 特征子群 正规子群

高等代数环的定义与性质

高等代数环的定义与性质

一、 环的定义与基本性质 (一) 环的定义:1、 定义1:交换群称为加群(群),其运算叫做加法,记为“+”。

2、 定义2:代数系统),;A (⋅+称为环,若 )(,)是加群;)代数系统);A (⋅适合结合律;)乘法);A (⋅对加法的分配律成立。

3、 例子(1)),;Z (⋅+、),;Q (⋅+、),;R (⋅+、),;C (⋅+都是环,均称为数环。

()、∈,-,则),];i [Z (⋅+也是数环,称之为高斯整环。

()设是任一数环,则关于多项式加法与乘法作成一个多项式环。

()所有模剩余类,则),;Z (n ⋅+是模剩余类环,这里+,]b []a [⋅ ()设(,+)是加群,规定乘法如下:,A b ,a ∈∀,则),;A (⋅+作成一个环,称之为零环。

(二)环的基本性质:()0x a a x =⇒=+。

()a x x a -=⇒=+0。

()c b c a b a =⇒+=+。

()nb na )b a (n +=+。

(为整数) ()na ma a )n m (+=+。

(、为整数) ())na (m a )mn (=。

(、为整数)(),A a ∈∀000=⋅=⋅a a 。

()ab )b (a b )a (-=-=-。

()ab )b )(a (=--。

()ac bc c )a b (,ac ab )c b (a -=--=-。

()j m i nj i n j j m i i b a b a ∑∑∑∑=====⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1111 。

())ab (n )nb (a b )na (==。

为整数。

()若环中元a 、b 满足ba ab =,则()k n k nk k n nb a C b a -=∑=+0()mn n m n m n m a )a (,a a a ==⋅+。

(、为整数)(三)交换律与单位元:、定义:环R叫做交换环,若,R∀有b,a∈ab=ba定义:环R的元e称为单位元,若,R∀有a∈=ae=eaa约定:环R若有单位元,则记其单位元为,并称R为有的环。

第9讲 群的同构与同态

第9讲 群的同构与同态
同态保持元素的性质
f(e1)=e2 f(x−1)=f(x)−1 f 将生成元映到生成元(满同态时) |f(a)| 整除 |a|,同构条件下|f(a)| = |a|
2019/9/15
7
同态映射的性质2
同态保持子代数的性质
H≤ G1 ⇒ f(H)≤ G2 H⊴G1, f 为满同态,f(H)⊴G2
幂运算规则
2019/9/15
22
题例分析
EX18 若 G 为偶数阶群,则 G 中必存在 2 阶元. 证 若xG,|x|>2,则 xx-1
由于|x|=|x-1|, 大于 2 阶的元素成对出现,总数 有偶数个.
G 中 1 阶和 2 阶元也有偶数个.由于 1 阶元只有 单位元,因此 2 阶元有奇数个,从而命题得证. 分析:|x|=|x-1|,
f:Z→Zn, f(x)=(x)mod n
2019/9/15
5
群的同态与同构
群同态只要求保持乘法运算,即若 ∀x,y∈G1,f(xy)=f(x)f(y) ,
若将群看成代数系统<G, ◦,-1,e>,则同态 f 是否满足: f(e1)=e2 ,f(x−1)=f(x)−1
2019/9/15
6
同态映射的性质1
2019/9/15
16
同态基本定理推论
(同态基本定理)若G’为G 的同态像 (f(G)=G’),则G/kerf ≅G’.
|f(G)|整除于|G|
2019/9/15
17
小结:
集合和二元运算构成半群,独异点,群 群(集合及元素)的基本性质 群G 的给定子集H 构成子群 群G 的给定子群是正规的 f 是群G1 到G2 的同态映射 循环群,置换群

环的同态与同构

环的同态与同构

例5
设 R (a, b) a, b Z .在 R 中定义运算
a1, b1 a2 , b2 a1 a2 , b1 b2 . a1, b1 a2 , b2 a1a2 , b1b2 .
可以验证: R 是一个环.现作一个对应:
: R Z , 其中 , a, b a . 则 是一个环同态满
f
下面证②也成立( 即 S 是 R 的子环).
现设 R 中加法和乘法分别记为“ ”和“ ”, 又 S 设与 S 中的加法和乘法分别记为“ + ”和“· ”. 以下 将证明若局限在 S 内,“ ”与“+”, 与·是一致的.
xS , yS S 于是 xS yS Z S S ,所以 S S .则
定理 3.4.3
若 R 和 R 都是环,且 R R , 那么

不仅能传递所有的代数性质,而且 R 是整环(除环, 域) 当且仅当 R 是整环(除环,域).
利用环同构的性质 , 可以得到下面一个有趣 的事实.
引理
设R, , 是一个环, 而 : R A 是一个双
射 , 其中 A 仅是一个集合 . 那么, 可以给集合 A 定义加 法和乘法,使得 成为 R 到 A 的同构映射(即环同构).
为同态 的核.
例 3 一些常见的同态. (1) 零同态: : R R ', (a ) 0, ker ( ) R .
(2) 自然同态: 设 I 是环 R 的理想,
:R R
aa
自然同态为满同态, 且 ker ( ) I .
(3) 恒等同构:
ker ( ) {0}.
(4) 设 知, 存在 使 及
, 由多项式的带余除法 ,

抽象代数中的同态映射和环同构

抽象代数中的同态映射和环同构

抽象代数中的同态映射和环同构同态映射和环同构是抽象代数中的两个重要概念。

它们在表示数学中有广泛应用,对于深入了解代数学是非常重要的。

一、同态映射的定义同态映射是一种特殊的映射,它保持代数结构的一定性质。

设$G$和$H$是两个群,$\varphi : G \rightarrow H$ 是从$G$到$H$的映射。

当满足如下条件时,$\varphi$是一个同态映射:1. $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$,对于所有的$g_1,g_2 \in G$2. $\varphi(e_G) = e_H$其中$e_G$和$e_H$分别是群$G$和$H$的单位元素。

同态映射很重要的一点是它保持群的乘法结构,也就是说,群$G$中的任何乘法关系映射到群$H$中的乘法关系。

这让我们能够在不同的群之间建立联系,为代数学的应用提供了很多便利。

二、环同构的定义环同构是指两个环之间的映射,它保持环的加法和乘法形式相同。

设$R$和$S$是两个环,$\varphi : R \rightarrow S$是从$R$到$S$的映射。

当满足如下条件时,$\varphi$是一个同构:1. $\varphi(r_1+r_2) = \varphi(r_1)+\varphi(r_2)$,对于所有的$r_1,r_2 \in R$2. $\varphi(r_1r_2) = \varphi(r_1)\varphi(r_2)$,对于所有的$r_1,r_2 \in R$3. $\varphi(1_R) = 1_S$其中$1_R$和$1_S$分别是环$R$和$S$的乘法单位元素。

同态映射和环同构都保持代数结构的一定性质,但它们的应用场景却不同。

同态映射广泛应用于群论、环论等代数学领域;而环同构则更常用于数论、代数几何等领域。

三、同态映射和环同构的例子1. 同态映射的例子我们考虑有理数群$\mathbb{Q}$和实数群$\mathbb{R}$以及乘法运算。

环的定义与性质

环的定义与性质

定理8:R中非零元如果与n互素,则为可逆元;否则为零因子。 证明:数论中互素的充要条件 (m,n)=1 等价于am+bn=1。
思考题:R 中所有可逆元是否构成一个群?其阶是多少? (群论的应用中我们讲过)
更一般的,一个含幺环的全体可逆元对乘法构成群,成为环的乘群。
Euler 定理:n 是正整数,(a,n)=1, 则 a φ(n)=1
(4)证明思路:
用归纳法证明a1,a2,...,an 有
n
n
( ai )b j ai2,...,bm 有
于是
m
m
ai (b j ) aib j
j 1
j 1
n
m
n
m
nm
( ai )(b j ) ai (b j ) aib j
i1
j 1
i1 j1
i1 j1
数论中可以用既约剩余系的概念证明,这里我们可以用群的概念证明。
第四节 除环
定义 一个环R叫做一个除环,若 1、R至少包含一个不等于零的元; 2、R有一个单位元; 3、R每一个非零的元都有逆元。
除环的性质
1、除环没有零因子 2、除环的特征只能为零或者素数。
一个交换除环叫做一个域。(我们将在下一章详细讨论)
3. 环与子环的单位元
设 S 是 R 的一个子环,当 R 有单位元时,S 不一定有;当 S 有单位元 时,R 不一定有;即使两者都有单位元,此两单位元也不一定相同。
1、考虑 R为整数环<Z,+,·> ,S 为偶数环<2Z,+,·> 。 2、考虑 R为偶数环<2Z,+,·>, S为零环。 3、考虑实数环 R,S为零环,两个环的单位元不同。

同构及同态和环

同构及同态和环
不难验证f是G到Z上的同构映射。因此,GZ。
定义6.5.3 设G是一个群,若σ是G到G上的同构映 射,则称σ为自同构映射。
自同构映射的最简单的例子就是恒等映射,称为恒 等自同构映射。在恒等自同构映射下,群中每个 元素都保持不变。下面再举几个自同构映射的例 子。
第9页,本讲稿共48页
例6.5.6 设(Z,+)是整数加法群, 令σ:n-n,nZ,
证明:因为N是正规子群,故Nb=bN,今设A=aN, B=bN,AB=aNbN=abNN=abN,所以AB是一个陪集。
第14页,本讲稿共48页
定理6.5.3 按照陪集的乘法,N的所有陪集作成一个群.
命σ:a→aN,则σ是G到 上G的一个同态映射,其核为N.
证明: 由σ引(a理)σ1,(bG)中=a乘Nb法N=封ab闭N ,映射σ使
第13页,本讲稿共48页
以上所述说明了:若σ是G到G′上的同态映射,则其 核N为一正规子群。反过来,我们要问: 设N是G的一个正规子群,是否有一个群G′以及一 个G到G′上的同态映射σ,使N为σ的核?
回答是肯定的,下面造出如此之G′和σ。
引理1 设N是G的正规子群。若A,B是N的陪集,则 AB也是N的陪集。
是的。
证:因 -1(H’)表示H’在G中全体原象集,故 在下再看象集必是H’。 (6)若H是G正规子群,则H’=(H)是G’正规子 群。 证:对任g’G’ 往证g’H’g’-1H’ 因为必有gG 使(g)=g’而 g’H’g’-1=(g)(H)(g)-1=(gHg1)=(H)=H’ 所以,H’正规子群。
则σ是R+到R上的1-1映射,且对a,bR+, σ(a·b)=log(a·b)=log a+log b
=σ(a)+σ(b)。 故σ是R+到R上的同构映射。 Log x是以e为底的x的对数,若取σ(x)=log2x,或

20+代数学基础(4)环和域

20+代数学基础(4)环和域
• 考虑F[x]中所有多项式模g(x)的余式, 将这些集合 称为F[x]模g(x)的多项式, 记为F[x]/g(x).
利用不可约多项式构造域
• 令F是一个域,f(x)是F[x]中的一个非零多项式, 那么F[x]/f(x)是一个环,当且仅当 f(x)在F上不可 约时, F[x]/f(x)是一个域.
• f(x)是F[x]中的一个不可约多项式, 当F是域时, F[x]/f(x)是一个域. 将f(x)称为域F[x]/f(x)的定义多 项式.
x3 1 x x2 1 x 1 x 0
f ( x)(x6 x3 x2 1)
g(x)(x7 x4 x3 x2 x) 1
x7 x4 x3 x2 x
理想的例子
• F[x]为数域F上的一元多项式环, I={a1x+a2x2+…+anxn|ai∈F, n ∈ N}, 即I是由所有常数项为0的多项式构成的集合, 则I是F[x]的理想.
主理想
• 由R中一个元素a生成的理想称为主理想.
商环
• 设I是环R的理想, 在加法商群R/I上定义如下乘法 (x+I)(y+I) = (x+y) +I 则R/I关于加法和乘法构成一个环.
• 设F是一个域,f, g是F[x]中的两个多项式,且g不为0,类似
于整数的除法: f=gq+r,
其中,q, r是F[x]中的两个多项式,且deg(r)<deg(g).
带余除法的例子
• f(x)=x5+x4+x3+x2+x+1∈F2[x] g(x)=x3+x+1∈F2[x] q=x2+x, r=x2+1
• 多项式环 Z[x]

4:环同态PPT课件

4:环同态PPT课件

.
11
设σ是R到R′上的同态映射,R′的零0′的逆映象 σ-1(0′)叫σ的核。
定理6.7.3同态映射σ的核N是R的一个理想.设a′ 是R′的任意元素,则a′的逆映象
σ-1(a′)={a∈R∣σ(a)=a′}是N的一个剩余类。
证明: 因为σ是R的加法群到R′的加法群上面的 一个同态映射,所以σ的核N=σ-1(0′)是R的一 个子群,且a′的逆映象σ-1(a′)是模N的一个 剩余类。现在再证N做成理想,即证:若 a∈N,х∈R,则aх∈N,χa∈N, 事实上σ(aχ)=σ(a)σ(χ)=0′σ(χ)=0′, 故aχ∈N,同样可证χa∈N。
.
23
事实上,根据定理6.7.8和定理6.7.9,R∕N是一 个域,必要而且只要R∕N是一个有壹的交换的单 纯环,又根据定理6.7.7,对于有壹的环R∕N( 环R∕N有壹,则R∕N中至少有两个元素,因之N<R ),其为单纯环,必要而且只要N是R的一个极大理 想.
规定σ(a)= a+N,则σ是R到R∕N上的一个同态 映射,其核为N。
R∕N叫做R对于N的剩余环,前面定理6.7.1中 (4),(5)所说的加法和乘法的同态性,其实是
说剩余环R∕N中的加法和乘法运算可由剩余类中 的任意元素来确定,剩余类的运算与其中元素的 特殊选择无关。剩余环R∕N有了这加法和乘法两 种运算,就与环R同态。
证明:取F的任意理想N≠(0),则有a∈N,a≠0, 于是有a-1∈F。因为N是F的理想,故aa-1∈N,
即1∈N,因此,对于任意的χ∈F,有χ=1χ∈N, 即FN。但自然NF,所以N=F。总之,F为单纯 环。
定理6.7.10 设R是有壹的交换环,N是R的理想。 于是,R∕N是一个域,必要而且只要N是一个极 大理想。

近世代数之环与域

近世代数之环与域
Z m , , 是一个环.
证 (1)由第一章知,剩余类的加法是 Z m 的代 数运算. 由第二章知 Z m , 是加群. 下面证明乘法 “·” :
[i ] [ j ] [i j ] 是 Z m 的代数运算.
假设 i [i ], j [ j ],那么 按照定义,有
[i[ [i],[ j] [ j ]
[i] [ j] [i j]
(2)
(1) , ( 2 )两式的左端是相等的, 即
[i] [ j] [i ] [ j ].
如果它们的右端不一样,就有
[i] [ j] [i ] [ j ],
那么,规则“· ”就不是 Z m 的代数运算, 就是说 Z m 中两个元素,按照规则“· ”得到 两个不同的值了.
a a a (a) (a) a 0, a R; (a ) a, a R;
a b c b a c, a, b, c R;
性质5 (a b) a b, (a b) a b, a, b R; 性质6 m(na) (mn)a, n(a b) na nb, m, n Z , a, b R;
In our classes, all the mobile phones should be switched off !
上课啦!
The class is begin!
第 三 章
环 和 域
群是有一个代数运算的代数系统 但是, 我们在数学特别是在高等代数中,遇到过很 重要的讨论对象,例如,数、多项式、函数 以及矩阵和线性变换等,都有两个代数运算, 这一事实说明,在近世代数中研究有两个代 数运算的代数系统,也具有非常重要的现实 意义。在有两个代数运算的代数系统 “· ” R, , 中设 Z 为整数集,

01加群、环的定义

01加群、环的定义

第三章 环与域(Rings and Fields)概述:本意主要讨论两种根本代数系统一一环与域.和上章一样,在这一意我们只讨论环与域的假设十最根本的性质及一些根本理论,并且介绍几种特别的环 与域,使得我们一方面对于中学代数有更活楚、 更深入的了解,另一方面为了今后 进一步的学习和研讨获得必要的根底.第一节环的定义根本概念:环的定义及根本性质、单位元、零因子、整环、无零因子环、除 环、域.重点、难点:环的定义、几种最常见的环之间的关系.一、加群定义3.1.1设G 是一个交换群,假设将群 G 的代数运算叫做加法,那么称 G 为了一个加群, 此时G 的代数运算记为了“ + 〞 .注1 加群G 中的单位元称为了零元,记为了 0;G 中元素a 的逆元称为了a 的负元(简称负a),记为了一a.注2 加群G 中的其他一些符号及运算定律的记法也随之发生改变(具体见教材 P80-82). 注3设S 加群G 的一个非空子集,那么S 为了G 一个子群a b S, a S, a,b S a b S, a,b S、环的定义 v 一> 根本概念环就是一个带有两种代数运算并满足一些运算性质的非空集合.具体如下 定义3.1.2设R 是一个非空集合,R 带有两种代数运算:加法(记为了“ + 〞 )和乘法(记为了假设(1) R 对于加法是一个加群; (2) R 对于乘法构成一个幺半群; (3) 加法和乘法满足左、右安排律:简称R 是一个环,记做(R,+, - , 0)是一个环.(a b)c a(b c)ac bc ab ac, a,b,c那么称R 是一个结合环,注环中的运算顺序为了:有括号先算括号,无括号的先算乘法后算加法.例1 R = (0 ,山,& , S}.加法和乘法由以下两个表给定:+0a b e X0a b c00a b c00000a a.I cb a000Cib b Q a b0a i?rb a 0c0a b c那么R对于上述两种运算构成一个环.证(1) R是一个加群:①.封闭,② 结合律,③ 零元,④ 负元,⑤ 交换律.(2)R是一个乘法半群:①封闭,结合律.(3)满足左、右安排律.例2容易验证:(1)全体整数关于数的普通加法和乘法构成一个环,称为了整数环,记为了(,,,0,1)或简记为了C. (2)全体有理数(实数、复数)关于数的普通加法和乘法构成一个环,称为了有理数域,记为了(,,,0,1)(( , , ,0,1)、( , , ,0,1))或简记为了.(?、£).例3 数域F上的n阶方阵的全体关于矩阵的加法和乘法构成一个环,称为了F上的n 阶方阵环,记为了M n(F).例4 R = (所有模酩的剩余类},规定运算为了[小四皿"][』][&]■["]可以证明R关于上述运算构成一个环,称之为了模氏的剩余类环,记为了ii/n ,或.n.v二〉初等性质(P81-84中的(1 )—(14 )条,略)值得一提的是:在一般的环中, (ab)n未必等于a n b n,即二项式定理未必成立.三、一些特别的环v一〉交换环定义3.1.3假设环R的乘法满足交换律, 即愚=ba , a,b R,那么称R是一个交换环.例如,C、.、?、£、如都是交换环,而M n(F )那么不是交换环.注1 在交换环中,二项式定理成立,即(ab)n a n b n , n为了正整数.<二>含幺环定义3.1.4假设R 的乘法半群是一个乘法幺半群,那么称 法单位元古通常记为了1,此时环R 通常也称为了含幺环.例如,C 、.、?、£都是含幺环,单位元就是数1, C n 、M n (F )也是含幺环,单位元分别是[1]和n 阶单位矩阵E n .这也说明含幺环中的单位元1并非就是普通整数1.注1 并非所有的环都是含幺环.如下例.例5 2 C = (所有偶数}, R 对于数的普通加法和乘法来说作成一个环.但R 没有单位元.注2假设R 是有单位元的非零环,那么R 中的零元与单位元一定不相等. 注意,零环R {0}也是一个含幺环.故约定在今后的讨论中,含幺环总是指非零环. 注3含幺环中的单位元总是惟一存在的. 注4在含幺环R 中,规定 a 0 1, a R .定义3.1.5 一个有单位元环的一个元 占叫做元食的一个逆元,假设死=如=1 ,此时也 称a 是一个可逆元.注1 假设b 是a 的一个逆元,那么 a 也是b 的一个逆元.注2逆元未必存在,如非零环中的零元.但逆元假设存在,那么必是惟一存在的.n汪3右a 可逆,那么a (a ) , n C. 注4还有左逆、右逆的概念(见第二章) v 三〉无零因子环问:在一般的环中,两个非零元素之积是否仍旧非零,即 ab 0能否推出a 0或b 0 ?这个问题的答复是否认的,如环0n ,n 是个合数.定义3.1.6假设是在一个环里a 0,b 0,但 ab 0,那么称就是这个环的一个 左零因子,石是一个右零因子.假设a 既是一个左零因子,又是一个右 零因子,那么称a 是一个零因子.注1在交换环中,左零因子、右零因子、零因子的概念是统一的.注2在非交换环中,左零因子与右左零因子的概念是不统一的.如特别矩阵环0 R注3乘法可逆兀一定不是左、右零因子.定义3.1.7不含左、右零因子的环称为了 例如,C 、.、?、£都是无零因子环,而 C n (n 是合数)、M n (F)不是无零因子环.R 是一个有单位元的环,其中乘 a a, b O b无零因子环注1可以证明:R是无零因子环"a,b R,ab 0 a 0或b 0" R中非零元素之积仍非零.证a( 0)R, b, c R .假定R是无零因子环ab ac a(b c)0b c 0 bba ca(b c)a0b c 0 bc;故R中的乘法满足左、右消去律^反过来,假定R中的乘法满足左消去律ab 0,那么aba0即R无零因子.由上面的证明可以得知有推论3.1.2环R的乘法满足左消去律R是无零因子环R的乘法满足右消去律. v四〉整环定义3.1.8 一个有单位元的无零因子的交换环叫做一个整环.例如,C、.、?、£都是整环,而2C、0n (n是合数)、M n(F)不是整环.<五>除环、域例6艮只包含一个元莅,加法和乘法是:那么R是一个有单位元环,单位元a有一个逆元,就是a本身.此时R就是零环._ °.................. .. ......................... 1 - 1 1 例7.、?、£中任怠一个非苓数a都有一个逆兀一,且a —一a 1 -一般的,我们有如下的概念.定义3.1.9 一个环R叫做一个除环(或体、斜域),假设(1) R中至少包含一个不等于零的元(即R中至少有两个元素);(2) R有单位元;(3) R的每一个不等于零的元有一个逆元.交换的除环叫做域.例如,.、?、£都是域.定理3.1.1环R是无零因子环R的乘法满足左、右消去律容易证明,除环具有下面的性质. 命题3.1.3 (1)除环是无零因子环.a 1b ba 1 ,统一记为了b ,称为了b 除以a 的商,易知商具有与普通数相似的一些性质(具 a体见教材P91).例8设H {a ° a 〔i a 2 j a 3k | a °, a 〔,a 2, a 3 ?)是实数域?上的四维向量空间,1,i,j,k 为了其一组基,规定基元素之间的乘法为了:将其线性扩张为了 H 中的元素之间的乘法.那么 H 关于向量的加法和上面定义的乘法构成一个 除环,称之为了(Hamilton )四元数除环或四元数体.证():易知p 0,1 .假设p 为了合数,那么 p ab,a,b 1 .丁是[a] 0,[b] 0,证只需证明H 对于H 的乘法构成一个群,为了此只需证明 H 中的每个非零元均可逆:事实上,设02 a 0 a 1i a 2 j a 3k H ,贝U a°2a 〔 2a2a . %— —i可逆, 从而 H 为了除环.注1 H 还有其他的定义方式,如定义为了复数域上的二维向量空间(见教材P92)或复数域上的二阶方阵环 M 2 (£)的子环(见 N.Jacobson « Basic Algebra I >). 注2 爱尔兰数学家 W.R.Hamilton 花了十年时间给出了 H 的乘法.关于扩大数系的探 索钻研开辟了代数钻研中的一个方向一有限维代数(有兴趣的读者可以查阅相关资料) . 利用〞满足满足左、右消去律的有限半群是群〞可知 定理 3.1.4 一个至少含有两个元素的无零因子的有限环是除环. 推论 3.1.5 有限整环是除环. 模p 的剩余类环0 p 为了域p 为了素数.但[a][b] [p] 0,即0p 中有零因子,此与Cp 为了域矛盾,故p 为了素数.⑵设R 是一个非零环,记R * {a R| a_ _ _ . — *0) R \{0},那么R 是除环 R 对于R的乘法构成一个群,称之为了 除环R 的乘法群.(3)在除环R 中, a( 0) R,b R,方程ax b 和ya b 都有惟一解.注1 在除环R 中,a( 0) R,b R,a 1b 与ba 1未必相等.假设 R 是域,那么222(1) i j k 1 ;(2 ) ij k, jk i, ki j .():设p 为了素数.假设[a][ b] 0 ,那么p |ab ,从而[b] 0,故0p 为了一个无零因子环,于是 0p 是一个有限整环,附注1环的定义示图(凡+「0)是Abel 加群左右安排芾_(&,,)是乘法半群*n~~幺半群 ---------------- r 一厂 1」 ■ Abel _____________ 辱0} (R) I 半群——> 半群 --------------- > ---- "群 ----------------- > ------- k Abel 群 ------------ 附注2本节中介绍的几种最常见的环之间有如下的关系图:其中,例①可取偶数环 2C ;例②可取数域F 上的n 阶方阵环M n (F); 例③可取模n 的剩余类环0n (n 是合数); ,一 .. ..... . ................ ' . . .. 一p |a 或p |b ,即有[a] 0或即 0 p 为了域.(E) <含幺环)交换环\ I无零因子环 除环 域例④可取四兀数除环H的子环H (a0 a1i a2 j a3k | a0,a1, a2,a3印;例⑤可取整数环 .或数域F上的一元多项式环F[x];例⑥可取四元数除环H ;例⑦可取.或?或£.作业:Page 89 第2题,第5题Page 93 第1题,第3题,第5题。

01 加群、环的定义

01 加群、环的定义

第三章 环与域(Rings and Fields )概述:本章主要讨论两种基本代数系统——环与域.和上章一样,在这一章我们只讨论环与域的若干最基本的性质及一些基本理论,并且介绍几种特殊的环与域,使得我们一方面对于中学代数有更清楚、更深入的了解,另一方面为今后进一步的学习和研讨获得必要的基础.第一节 环的定义基本概念:环的定义及基本性质、单位元、零因子、整环、无零因子环、除环、域.重点、难点: 环的定义、几种最常见的环之间的关系.一、加群定义3.1.1 设G 是一个交换群,若将群G 的代数运算叫做加法,则称G 为一个加群,此时G 的代数运算记为“+”.注1 加群G 中的单位元称为零元,记为0;G 中元素a 的逆元称为a 的负元(简称负a ),记为-a.注2 加群G 中的其他一些符号及运算定律的记法也随之发生改变(具体见教材P80-82).注3 设S 加群G 的一个非空子集,则S 为G 一个子群,,,,,a b S a S a b Sa b S a b S ⇔+∈-∈∀∈⇔-∈∀∈二、环的定义<一> 基本概念环就是一个带有两种代数运算并满足一些运算性质的非空集合.具体如下定义3.1.2 设R 是一个非空集合,R 带有两种代数运算:加法(记为“+”)和乘法(记为“.”),假如(1) R 对于加法是一个加群;(2) R 对于乘法构成一个幺半群;(3) 加法和乘法满足左、右分配律:()(),,,a b c ac bca b c ab ac a b c R +=++=+∀∈, 则称R 是一个结合环,简称R 是一个环,记做(R,+,.,0)是一个环.注 环中的运算顺序为:有括号先算括号,无括号的先算乘法后算加法.例1 R ={0,,,}。

加法和乘法由以下两个表给定:则R 对于上述两种运算构成一个环.证 (1) R 是一个加群: ①. 封闭,② 结合律,③ 零元,④ 负元,⑤ 交换律.(2) R 是一个乘法半群: ①封闭,结合律.(3) 满足左、右分配律.例 2 容易验证:(1)全体整数关于数的普通加法和乘法构成一个环,称为整数环,记为(,,,0,1)+或简记为¢.(2)全体有理数(实数、复数)关于数的普通加法和乘法构成一个环,称为有理数域,记为(,,,0,1)+((,,,0,1)+、(,,,0,1)+)或简记为¤(¡、£). 例3 数域F 上的n 阶方阵的全体关于矩阵的加法和乘法构成一个环,称为F 上的n 阶方阵环,记为()n M F .例4 R ={所有模的剩余类},规定运算为 , .可以证明R 关于上述运算构成一个环,称之为模的剩余类环,记为/n ⅱ,或n ¢.<二> 初等性质 (P81-84中的(1)-(14)条,略)值得一提的是:在一般的环中,()n ab 未必等于n n a b ,即二项式定理未必成立.三、一些特殊的环<一> 交换环定义3.1.3 若环R 的乘法满足交换律,即,,a b R ∀∈,则称R 是一个交换环. 例如,¢、¤、¡、£、n ¢都是交换环,而()n M F 则不是交换环.注1 在交换环中,二项式定理成立,即()n n nab a b =,n 为正整数.<二> 含幺环定义3.1.4 若R 的乘法半群是一个乘法幺半群,则称R 是一个有单位元的环,其中乘法单位元通常记为1,此时环R 通常也称为含幺环.例如,¢、¤、¡、£都是含幺环,单位元就是数1,n ¢、()n M F 也是含幺环,单位元分别是[1]和n 阶单位矩阵n E .这也说明含幺环中的单位元1并非就是普通整数1.注1 并非所有的环都是含幺环.如下例.例5 2¢={所有偶数},R 对于数的普通加法和乘法来说作成一个环.但R 没有单位元. 注2 若R 是有单位元的非零环,则R 中的零元与单位元一定不相等.注意,零环{0}R =也是一个含幺环.故约定在今后的讨论中,含幺环总是指非零环.注3 含幺环中的单位元总是惟一存在的.注4 在含幺环R 中,规定 01,a a R =∀∈.定义3.1.5 一个有单位元环的一个元叫做元的一个逆元,假如,此时也称a 是一个可逆元.注1 若b 是a 的一个逆元,则a 也是b 的一个逆元.注2 逆元未必存在,如非零环中的零元.但逆元若存在,则必是惟一存在的.注3 若a 可逆,则1(),nn a a n --=∀∈¢. 注4 还有左逆、右逆的概念(见第二章).<三> 无零因子环问:在一般的环中,两个非零元素之积是否仍然非零,即0ab =能否推出0a =或0b =? 这个问题的回答是否定的,如环 ,n n ¢是个合数.定义3.1.6 若是在一个环里0,0a b ≠≠,但0ab =, 则称是这个环的一个左零因子,是一个右零因子.若a 既是一个左零因子,又是一个右零因子,则称a 是一个零因子.注1 在交换环中,左零因子、右零因子、零因子的概念是统一的.注2 在非交换环中,左零因子与右左零因子的概念是不统一的.如特殊矩阵环0,0a R a b b ⎧⎫⎡⎤⎪⎪=∈⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭¤. 注3 乘法可逆元一定不是左、右零因子.定义3.1.7 不含左、右零因子的环称为无零因子环.例如,¢、¤、¡、£都是无零因子环,而n ¢(n 是合数)、()n M F 不是无零因子环.注1 可以证明:R 是无零因子环",,000"a b R ab a b ⇔∀∈=⇒==⇔或R 中非零元素之积仍非零.定理3.1.1 环R 是无零因子环⇔R 的乘法满足左、右消去律.证 (0),,a R b c R ∀≠∈∈.假定 R 是无零因子环,则有()00ab ac a b c b c b c =⇒-=⇒-=⇒=;()00ba ca b c a b c b c =⇒-=⇒-=⇒=故R 中的乘法满足左、右消去律.反过来,假定R 中的乘法满足左消去律 ,则000ab ab a b =⇒=⇒=即R 无零因子.由上面的证明可以得知有推论3.1.2 环R 的乘法满足左消去律⇔R 是无零因子环⇔R 的乘法满足右消去律.<四> 整环定义3.1.8 一个有单位元的无零因子的交换环叫做一个整环.例如,¢、¤、¡、£都是整环,而2¢、n ¢(n 是合数)、()n M F 不是整环.<五> 除环、域例6 只包括一个元,加法和乘法是:则R 是一个有单位元环,单位元a 有一个逆元,就是a 本身.此时R 就是零环.例7 ¤、¡、£中任意一个非零数a 都有一个逆元1a ,且111a a a a ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 一般的,我们有如下的概念.定义3.1.9 一个环R 叫做一个除环(或体、斜域),假如(1) R 中至少包含一个不等于零的元 (即R 中至少有两个元素);(2) R 有单位元;(3) R 的每一个不等于零的元有一个逆元.交换的除环叫做域.例如, ¤、¡、£都是域.容易证明,除环具有下面的性质.命题3.1.3 (1) 除环是无零因子环.(2) 设R 是一个非零环,记*{|0}\{0}R a R a R =∈≠=,则R 是除环⇔*R 对于R 的乘法构成一个群,称之为除环R 的乘法群.(3)在除环R 中,(0),a R b R ∀≠∈∈,方程ax b =和ya b =都有惟一解.注1 在除环R 中,(0),a R b R ∀≠∈∈,1a b -与1ba -未必相等.若R 是域,则11a b ba --=,统一记为b a,称为b 除以a 的商,易知商具有与普通数相似的一些性质(具体见教材P91).例8 设01230123{|,,,}H a a i a j a k a a a a =+++∈¡是实数域¡上的四维向量空间,1,,,i j k 为其一组基,规定基元素之间的乘法为:(1)2221i j k ===-; (2),,ij k jk i ki j ===.将其线性扩张为H 中的元素之间的乘法.则H 关于向量的加法和上面定义的乘法构成一个除环,称之为(Hamilton)四元数除环或四元数体.证 只需证明*H 对于H 的乘法构成一个群,为此只需证明H 中的每个非零元均可逆:事实上,设01230a a i a j a k H α≠=+++∈,则222201230a a a a ∆=+++≠,令 0312a a a a i j k H β=---∈∆∆∆∆,则1αββα==,即α可逆,从而H 为除环.注1 H 还有其他的定义方式,如定义为复数域上的二维向量空间(见教材P92)或复数域上的二阶方阵环2()M £的子环(见N.Jacobson 《Basic Algebra I 》).注2 爱尔兰数学家W.R.Hamilton 花了十年时间给出了H 的乘法.关于扩大数系的探索研究开辟了代数研究中的一个方向—有限维代数(有兴趣的读者可以查阅相关资料).利用"满足满足左、右消去律的有限半群是群"可知定理3.1.4 一个至少含有两个元素的无零因子的有限环是除环.推论3.1.5 有限整环是除环.例9 模p 的剩余类环p ¢为域p ⇔为素数.证 ()⇒:易知0,1p ≠.若p 为合数,则,,1p ab a b =≠±.于是[]0,[]0a b ≠≠,但[][][]0a b p ==,即p ¢中有零因子,此与p ¢为域矛盾,故p 为素数.()⇐:设p 为素数.若[][]0a b =,则|p ab ,从而|p a 或|p b ,即有[]0a =或[]0b =,故p ¢为一个无零因子环,于是p ¢是一个有限整环,即p ¢为域.附注1附注2 本节中介绍的几种最常见的环之间有如下的关系图:其中,例①可取偶数环2¢;例②可取数域F 上的n 阶方阵环()n M F ;例③可取模n 的剩余类环n ¢(n 是合数); 环①有单位元环交换环③ 非交换环②④ 整环⑤无零因子环除环⑥ 域⑦*(){0}R R =例④可取四元数除环H 的子环0'1230123{|,,,}H a a i a j a k a a a a =+++∈¢; 例⑤可取整数环¢或数域F 上的一元多项式环[]F x ; 例⑥可取四元数除环H ;例⑦可取¤或¡或£. 作业:Page 89第2题,第5题 Page 93第1题,第3题,第5题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
21
我们说这种情形不会发生,
因为
[i[ [i] | ( j j) 或 i mq1 i, j mq2 j.
于是
i j mq1 mq2 mq1 j mq2i i j.
或 i j i j m(mq1q2 q1 j q2i)
F[x] {anxn an1xn1 L a1x a0 | ai F,n Z ,n 0}
关于多项式通常的加法与乘法.也可构成一个环.
这个环 F[x],, 称为关于 x 的多项式 环或一元多项式环.
A
16
实际上,在例 4 中,若将数域F 换成任一个 数环,那么也能构成多项式环,譬如,取整数Z ,则
A
7
的基本想法,还是在分析问题、解决问题的主要 手法方面,对于近世代数来说,都具有普遍的 典型的意义。可以说基本上体现了近世代数研 究问题的格调与模式。这些对于环的讨论会有 重要的启发和借鉴作用。
A
8
本讲主要介绍环的概念—环的主要特性 及它与群的联系和区别。在教学还将引出一 批环的类别以及讨论环在两个运算方面所具 有的基本性质。由于是刚刚引入一种新的代 数体系,所以受到内容的限制,这一讲中不 会碰到什么难点。但重点是要弄清楚环这种 代数体系中两种运算的谐调关系。
例 1 R,, 中设Z 为整数集,“+”和“·” 为 Z 中通常的整数加法和乘法.易知 R,, 是 一个环.——习惯上称它为整数环,记为Z .
A
13
同理有理数集 Q、实数集 R 对通常的数的 加法和乘法构成环,分别称为有理数环和实 数环,复数集 C 对通常的复数的加法和乘法 构成环,称为复数环。
A
11
注意 1:
1、乘法的说明
与群的运算类似, 当进行乘法运算对
时, 乘法运算的符号通常省略不写.
即将
记作 .
2、分配律的说明 这两个分配律分别称为左分配律与右分配律.
A
12
3、 上定义中说到{R;}是加法交换群.意味着{R;}满足群 的四条,其中单位元为 0—零元.a R,a 的逆元为-a — a 的负元.而{R;}是乘法半群,意味着 R 对”·”满足封闭和结 合律.
A
9
一、环的定义及例子
定义 1 设 R,, 是具有两个代数运算的 代数体系,
如果它满足 (1) R, 是一个加群;
(2) R, 是一个半群;
A
10
(3) R的乘法“· ”对加法“+”满足左右 分配律:
a(b c) ab ac 且 (b c)a ba ca. a,b,c R
那么称 R,, 是一个环。在不产生混淆的前 提下,可以记这个环为 R .
我们通常把由数集构成的环称为数环.
A
14
例2 偶数集2Z {L ,6,4,2,0,2,4,6,L },对于 整数通常的加法和乘法也是一个环.
例3 设 Z[i] {a bi | a,b Z} , 按 数 的 通 常 的 加法也构成一个环,叫做高斯数环.
A
15
例 4 任取定一个数域F .由F 上一切一元多项式 组成的集合
In our classes, all the mobile phones should be switched off !
A
1
上课啦!
The class is begin!A
2
A
3
第 三 章



A
4
群是有一个代数运算的代数系统 但是, 我们在数学特别是在高等代数中,遇到过很 重要的讨论对象,例如,数、多项式、函数 以及矩阵和线性变换等,都有两个代数运算, 这一事实说明,在近世代数中研究有两个代 数运算的代数系统,也具有非常重要的现实 意义。在有两个代数运算的代数系统中,最 基本最重要的就是环与域。
为使Zm做成为一个环,首先要对Zm 再定义 乘法“·” :
[i][ j] [i j]
(1)
显然,这里也采用了“钟表计数法”.试证明
Zm, , 是一个环.
A
19
证 (1)由第一章知,剩余类的加法是Zm 的代 数运算. 由第二章知 Zm, 是加群.下面证明乘法 “·” :
[i][ j] [i j] 是Zm的代数运算.
Z[x] {bnxn bn1xn1 L b1x b0 | bi Z,n Z ,n 0}
叫做整系数多项式环. 例 5 取出数域F 上的全部n阶方阵组成的
集合, Mn (F) {A (aij ) | aij F,1 i, j n} 关于矩阵的加法和乘法构成一个环,这个环 Mn(F),, 叫做n阶全矩阵环,或称为n阶矩阵环.
这一部分主要介绍环与域的定义和初步 性质,以及一些常见的重要的环与域。
A
5
第 16 讲
第 三 章 环与域
§1 环的定义与性质 (2课时)
A
6
本讲的教学目的和要求: 本讲开始在群论的基础上讨论具有两个二元运
算的代数体系—环的基本性质.环也是近世代数中 一类重要的、基本的代数体系.由于它具有两个二元 运算,所以不可避免地会涉及到在群论中没有接触 的概念.在群的讨论中,无论在思考问题,提出问题
A
17
在例 5 中,若用数环替代数域F 后,结果仍 成立,譬如用偶数环替换F ,得到
Mn (2Z ) {A (aij ) | aij 2Z,1 i, j n} 也是一个环.
A
18
例 6 在第二章里,我们曾讨论模m的剩余类加群
Zm, Zm {[0],[1],L ,[m 1]}. ( 其中 加 群 Zm 中的加法采用“钟表加法”).
假设i[i], j[ j],那么 按照定义,有
[i][ j] [i j]
[i[ [i],[ j] [ j] (2)
A
20
(1),(2)两式的左端是相等的, 即 [i][ j] [i][ j].
如果它们的右端不一样,就有 [i][ j] [i][ j],
那么,规则“·”就不是 Z m 的代数运算, 就是说 Z m 中两个元素,按照规则“·”得到 两个不同的值了.

m | (ij ij),即 [i j] [i j]
这就证明了规则“·”是 Z m 的代数运算.
A
22
(2) [i],[ j],[k] Zm, 有 ([i][ j]) [k] [i j][k] [i j k]
[i] ([ j k]) [i] ([ j][k]). 即乘法“·”满足结合律.
相关文档
最新文档