古典概型与几何概型大学数学教案2

合集下载

《几何概型》教学设计2

《几何概型》教学设计2

《几何概型》教学设计教学内容:人教版《数学必修3》第三章第三节几何概型。

学情分析:学生学习了概率的含义以及古典概型的计算方式,对概率有了一定的了解,对概率的求法也有了一定的方法。

现在进行几何概型的学习,可以通过对比进行学习,通过分辨两种概型的区别与联系,可以达到学习几何概型的目的。

教学目标知识与技能目标1.初步体会几何概型及其基本特点;2.会运用几何概型的概率计算公式,求简单的几何概型的概率问题;3.让学生初步学会把一些实际问题化为几何概型;过程与方法目标1.通过游戏、案例分析,体会几何概型与古典概型的区别;会用类比的方法学习新知识,提高学生的解题分析能力;2.经历将一些实际问题转化为几何概型的过程,探求正确应用几何概型的概率计算公式解决问题的方法,增强几何概型在解决实际问题中的应用意识;情感、态度与价值观目标通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。

教学重点:初步体会几何概型,将求未知量的问题转化为几何概型求概率的问题教学难点:将求未知量的问题转化为几何概型求概率的问题,准确确定几何区域D和与事件A对应的区域d,并求出它们的测度。

教学过程:一、复习引入T1:计算随机事件概率的方法有哪些?T2:古典概型的特征是什么?T3:如何计算古典概型的概率?二、创设情景,引入新课1.玩转盘游戏游戏规则:甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.数据的统计:1)请每一位同学以左边的转盘,做20次试验,统计指针指向B的次数,并计算指针指向B的频率。

2)教师以右边的转盘,分别做100、200、400、700次试验,统计指针指向B的次数,并计算指针指向B的频率。

2.学生活动(分组讨论)分析下列三个题目,回答问题:1)如图,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜. 求甲获胜的概率?2)射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色。

1-3古典概型与几何概型

1-3古典概型与几何概型

例(会面问题)甲、乙两人相约8点到9点在某 地会面,先到者等候另一人20分钟,过时就可 离去,试求这两人能会面的概率. 解: 以x,y分别表示甲、乙两人的到达时刻,则两人能
y
60
会面的充要条件为 x y 20
y x 20
x y 20
{( x , y ) | 0 x 60, 0 y 60} A {( x , y ) | ( x , y ) ,| x y | 20}
事件分别为A,B,C,D.
(1)第i次取到的是黑球;

1 2 i

a+b
a ab
P ( A)
a [(a b 1)!] ( a b )!

----------抽签的公平性
(2)第i次才取到黑球;

1
P( B)

i-1

2
a Pb
i 1
3
i
a Pb
i i 1
a+b
r

2( n r 1) n( n 1)
n!
练习:
P30 : 12
(2)袋中取球问题(有无放回取球,取球是否考虑顺序) 例:一个袋子中装有10个大小相同的球,其中 3个黑球,7个白球。每次随机地从袋中取一 球,连续取两次。 取球方式 (1)无放回 (2)有放回
分别求下列事件的概率:
(1)取到的两球刚好一个白球一个黑球 (2)两个球全是黑球 (3)两个球中至少有一个黑球
P ( A) 1 P ( A) 1 C 9995 C10000
10 10
0.00499
2.《学习指导与习题解析》:P21:6, P23:9

古典概型教案

古典概型教案

古典概型教案【教案名称】:古典概型教案【教学目标】:1. 理解什么是古典概型;2. 掌握计算古典概型的方法;3. 能够运用古典概型解决实际问题。

【教学重点】:1. 理解古典概型的定义及特点;2. 掌握计算古典概型的方法。

【教学难点】:1. 运用古典概型解决实际问题;2. 培养学生的逻辑思维能力。

【教学准备】:1. 教材:教科书、课件;2. 素材:相关实例和题目;3. 工具:黑板、粉笔、计算器。

【教学过程】:一、导入(5分钟)1. 引入话题:你有没有听说过古典概型?你对它有什么了解?2. 提出问题:古典概型是指什么?它有什么特点?二、讲解古典概型(10分钟)1. 定义古典概型:古典概型是指指定的试验只有有限个可能结果,每个可能结果发生的机会相同。

2. 特点:(1)试验只有有限个可能结果;(2)每个可能结果发生的机会相同。

3. 示例:抛一枚公正的硬币,问正反面的概率各是多少?三、计算古典概型(15分钟)1. 公式:事件A发生的概率 = 事件A包含的基本结果数 ÷所有基本结果数。

2. 示例:扔一枚公正的骰子,求出出现3的概率。

3. 练习:让学生尝试计算一些实例的概率,巩固所学知识。

四、运用古典概型解决实际问题(15分钟)1. 实例1:某班有30名学生,其中20名男生、10名女生。

从中任选一人,求选中的是女生的概率。

2. 实例2:有一包装机器生产的零件,其中10%有缺陷。

从中任选一件,求选中的是有缺陷的概率。

3. 其他实例:老师根据实际情况设置更多的实例,供学生思考和解答。

五、小结(5分钟)1. 总结古典概型的定义及特点;2. 复习计算古典概型的方法;3. 提醒学生在解决实际问题时,要注意分析问题的条件和要求。

【课后作业】:1. 让学生完成课后习题,巩固所学知识;2. 指导学生通过阅读相关的教材和资料,进一步了解和掌握古典概型。

【教学反思】:通过本节课的教学,学生对古典概型有了初步的了解,并能够运用古典概型解决简单的实际问题。

1.3古典概型与几何概型

1.3古典概型与几何概型
设有 N 件产品, 其中有 D 件次品, 今从中任取 n 件,问其中恰有 k ( k D ) 件次品的概率是多少 ?
解 在N件产品中抽取n件的所有可能取法共有 N 种, n
在 N 件产品中抽取n件,其中恰有k 件次品的取法
D N D 种, k n k D N D N . 于是所求的概率为 p k n k n
河南理工大学精品课程 概率论与数理统计
19
2005
. (1) 设事件 A1 为“恰有一 练习1 将一枚硬币抛掷三次 次出现正面” , 求 P ( A1 ). ( 2) 设事件 A2 为 “至少有一 次出现正面” , 求 P ( A2 ).
解 (1) 设 H 为出现正面, T 为出现反面.
则 S { HHH , HHT , HTH , THH , HTT , THT , TTH , TTT }.
S {HH, HT, TT}
他计算得
P( A) 1 3
3
这不是 等可能概型!
2005
河南理工大学精品课程 概率论与数理统计
袋中有 a 只白球, b只红球. 从袋中任取 n 只球, 求取到 k ( min(n, a) ) 只白球的概率. 从 a b 只球中任取 n 只,样本点总数为
nk k C C 取到 k 只白球的有利场合数为 a b
概率非常小的事件,称为小概率事件
小概率事件在大量重复试验中几乎是必然 发生的.
下面的例题是利用统计推断原理对某种假设作
出判断(接受或拒绝),这在数理统计的假设检验 中是非常有用的。
例:某接待站在某一周内接待了12次来访者,已知
所有这些来访都是在星期二与星期四进行的,问能否由此 推断该接待站的接待时间是有规定的? 〖解〗若接待时间没有规定,且来 抽象:模型化 人=“球”

1.3_古典概型与几何概型

1.3_古典概型与几何概型
k n k n
种取法.
摸球模型 (1) 无放回地摸球 问题1 设袋中有4 只白球和 2只黑球, 现从 袋中无放回地依次摸出2只球,求这2只球都 是白球的概率. 解 设 A = {摸得 2 只球都是白球}, 基本事件总数为 6×5 A 所包含基本事件的个数为 4 × 3 4×3 2 故 P( A) = = . 6×5 5
5 8 1 4 6 9 3 10 7
设 随机试验E 具有下列特点: 概率的 基本事件的个数有限 古典定义 每个基本事件等可能性发生 则称 E 为 古典(等可能)概型
古典概型中事件概率的计算
摸到2号球 记 A={摸到 号球 摸到 号球} P(A)=?
2
P(A)=1/10
摸到红球} 记 B={摸到红球 摸到红球 P(B)=?
2、许多表面上提法不同的问题实质上属于同 、 一类型: 一类型: 某城市每周发生7次车祸, 某城市每周发生 次车祸,假设每天发生 次车ห้องสมุดไป่ตู้ 车祸的概率相同. 车祸的概率相同. 求每天恰好发生一次车祸 的概率. 的概率 车祸 天
几何概型 (等可能概型的推广)
如果一个随机试验的样本空间 Ω 是一个大小 可以度量的几何区域。向区域内任意投一点, 落在区域内任意点处都是“等可能的”,则 称这类随机试验为几何概型。
2、许多表面上提法不同的问题实质上属于同 、 一类型: 一类型: 个人, 有n个人,设每个人的生日是任一天的概 个人 率为1/365. 求这n (n ≤365)个人的生日互不相 率为 求这 个人的生日互不相 同的概率. 同的概率 人 任一天
2、许多表面上提法不同的问题实质上属于同 、 一类型: 一类型: 个旅客, 个车站 有n个旅客,乘火车途经 个车站,设每 个旅客 乘火车途经N个车 个人在每站下车的概率为1/ 个人在每站下车的概率为 N(N ≥ n) ,求指 定的n个站各有一人下车的概率 定的 个站各有一人下车的概率. 个站各有一人下车的概率 旅客 车站

第13章第2讲 古典概型与几何概型

第13章第2讲 古典概型与几何概型

1 3
������
3)ቚ1 −1
=43,故所求概率P=
4 3
2
=23.故选B.
考法4 随机模拟的应用
考法指导 利用随机模拟试验可以近似计算不规则图形A的面积,解题的依 据是根据随机模拟估计概率P(A)=随机随取机的取点点落的在总������中次的数频数,然后根据 P(A)=随机取点构的成全事部件结������的果区构域成面的积区域面积列等式求A的面积.为了方便解题, 我们常常设计出一个规则的图形(面积为定值)来表示随机取点的全部结果 构成的区域.
C方法帮∙素养大提升 易错 几何概型中“区域”选取不准致误
理科数学 第十三章:概率
理科数学 第十三章:概率
考情精解读
考纲解读 命题规律 命题分析预测
考纲解读
1.理解古典概型及其概率计算公式. 2.会计算一些随机事件所含的基本事件数及事件发生的概率. 3.了解随机数的意义,能运用模拟方法估计概率. 4.了解几何概型的意义.
∠∠������������������������������������′=π−π22 π4 =34.
( 利用角度比求概率 )
理科数学 第十三章:概率
拓展变式2 在区间[0,π]上随机取一个数x,使cos x的值介于- 23与 23之间的 概率为( )
A.13 B.23 C.38 D.58 答案 B
思路分析 先写出“6元分成3份”所含的基本事件数,然后求出乙获得“手气 最佳”所含的基本事件数,最后利用古典概型的概率公式即可得结果.
理科数学 第十三章:概率
解析 用(x,y,z)表示乙、丙、丁抢到的红包分别为x元、y元、z元. 乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为 (1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2)( 按顺 序列举,不重不漏) 乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1), (2,2,2). 根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P=140=25. 答案 D

数学 古典概型教案

数学 古典概型教案

数学古典概型教案教案标题:数学-古典概型教案教案目标:1. 了解古典概型的基本概念和原理。

2. 能够应用古典概型解决简单的概率问题。

3. 培养学生的逻辑思维和解决问题的能力。

教学资源:1. 教科书:包含古典概型的相关知识点和例题。

2. 白板/黑板和彩色粉笔/白板笔。

3. 学生练习册或作业本。

教学步骤:引入活动:1. 引导学生回顾概率的基本概念,并提出一个问题:如果有一枚硬币,抛掷一次,正面朝上的概率是多少?2. 让学生进行讨论,并记录他们的答案和理由。

知识讲解:1. 介绍古典概型的概念和原理,即指出在一次试验中,所有可能的结果都是等可能发生的。

2. 通过例子解释古典概型的应用,如抛硬币、掷骰子等。

3. 强调古典概型只适用于有限样本空间的情况。

示范演练:1. 给出一个例题:一个袋子里有3个红球和2个蓝球,从中随机抽取一个球,求抽到红球的概率。

2. 引导学生思考解决问题的步骤,并进行解答。

3. 让学生自主尝试解决类似的例题,然后进行讨论和纠正。

巩固练习:1. 分发练习册或作业本,让学生完成相关练习题。

2. 监督学生的学习进度,及时解答他们的问题。

拓展活动:1. 提供更复杂的问题,让学生应用古典概型解决。

2. 鼓励学生思考概率问题在现实生活中的应用,并分享他们的观点和例子。

总结:1. 总结古典概型的基本概念和应用方法。

2. 强调学生在解决概率问题时需要准确地定义样本空间和事件。

3. 鼓励学生继续探索概率和统计的相关知识。

评估方式:1. 教师观察学生在课堂上的参与程度和问题解决能力。

2. 批改学生完成的练习册或作业本,给予及时的反馈和评价。

教学延伸:1. 将古典概型与其他概率模型进行比较,如条件概率、贝叶斯概率等。

2. 引导学生进行实际探究,设计自己的概率实验,并分析结果。

注意事项:1. 确保教学过程中注重学生的参与和思考,避免单纯的讲解。

2. 鼓励学生提问和讨论,促进他们的思维发展和合作能力。

3. 根据学生的实际情况和学习进度,适当调整教学内容和难度。

古典概型公开课教案

古典概型公开课教案

古典概型公开课教案一、教学目标1. 让学生了解古典概型的定义和特点。

2. 让学生掌握古典概型的计算方法。

3. 培养学生运用古典概型解决实际问题的能力。

二、教学内容1. 古典概型的定义与特点2. 古典概型的计算方法3. 实际问题中的应用案例三、教学重点与难点1. 教学重点:古典概型的定义、特点和计算方法。

2. 教学难点:古典概型的计算方法和实际问题中的应用。

四、教学方法1. 讲授法:讲解古典概型的定义、特点和计算方法。

2. 案例分析法:分析实际问题中的应用案例。

3. 互动教学法:引导学生参与课堂讨论,提高学生的思考能力。

五、教学过程1. 导入新课:通过引入古代骰子游戏,引发学生对古典概型的兴趣。

2. 讲解古典概型的定义与特点:引导学生了解古典概型的基本概念,分析其特点。

3. 讲解古典概型的计算方法:引导学生掌握古典概型的计算方法,并进行课堂练习。

4. 分析实际问题中的应用案例:通过案例分析,让学生学会将古典概型应用于实际问题。

5. 课堂小结:总结本节课所学内容,强调重点和难点。

6. 课后作业:布置相关练习题,巩固所学知识。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

2. 课后作业评价:检查学生完成的练习题,评估学生对古典概型的理解和应用能力。

3. 小组讨论评价:在小组讨论环节,评估学生的合作意识和问题解决能力。

七、教学拓展1. 引导学生思考:如何将古典概型应用于现实生活中的概率问题?2. 推荐阅读材料:让学生了解古典概型在数学发展史上的应用和重要性。

八、教学资源1. 教学PPT:展示古典概型的定义、特点、计算方法和应用案例。

2. 练习题:提供相关的练习题,帮助学生巩固所学知识。

3. 案例分析资料:提供实际问题案例,供学生分析讨论。

九、教学建议1. 注重学生基础知识的培养,确保学生掌握古典概型的基本概念和计算方法。

2. 鼓励学生积极参与课堂讨论,提高学生的思考和问题解决能力。

《古典概型与几何概型》教案

《古典概型与几何概型》教案

课题:古典概型与几何概型本课教学内容分析前面已经学习过了第二章统计和第三章概率的前两节内容,概率是研究随机现象规律的学科,它为应用数学解决实际问题提供了新的思想和方法,同时为统计学的发展提供了理论基础。

由于概率统计的应用性强,有利于培养学生的应用意识和动手能力,在数学课程中加强概率统计的份量成为必然。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。

“几何概型”这一节就是新增加的内容,是安排在“古典概型”之后的第二类概率模型,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸,同时也更广泛地满足了随机模拟的需要。

二者既有共同点又有不同,通过对比学习掌握两种概型的相关概率问题的求解,特别是加强几何概型的问题解决。

教学目标:1、知识与技能:能够正确区分几何概型和古典概型,会运用概率公式解决有关概率问题;2、过程与方法:通过对比学习,正确把握几何概型和古典概型的概率计算;提高学生归纳转化的能力。

3、情感、态度及价值观:让学生感受生活中处处有数学,认识数学的价值,习惯用数学的眼光解决生活中的问题。

教学重点与难点:重点:古典概型与几何概型的判断及其概率解决。

难点:几何概型中基本事件构成的区域确定。

教学方法:分析对比,自主探究教学过程:【问题情境】你能判断出下面的问题是古典概型还是几何概型吗?(1)抛掷一枚骰子,求出现“4点”的概率.(2)某公共汽车每隔5 分钟一班,乘客到达汽车站是任意的,求一个乘客候车的时间不超过3分钟的概率 .学生分析:试验中的基本事件是什么?你能说出古典概型与几何概型有何异同吗?:提问学生,师生完善。

【对比迁移】例1:张彬和王华两位同学为得到观看足球比赛的入场券,各自设计了一种方案:王华:将三个完全相同的小球分别标上数字1,2,3后,放入一个不透明的袋子中,从中随机取出一个小球,然后放回袋子;混合均匀后,再随机取出一个小球。

1.3古典概型与几何概型

1.3古典概型与几何概型

所含的总取法为 aPbi1[(a b i)!] 故
P(B)
a
Pbi
1[(a b (a b)!
i)!]
a Pbi 1 Pai b
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
及两个球全是黑球的概率
解 (2) 已知 在 10 个球中任取两球的取法有C120 种 在 10 个球中取到一个白球和一个黑球的取法有C13C17 种 在 10 个球中取两个球均是黑球的取法有C32种 记B为事件“刚好取到一个白球一个黑球” C为事件
“两个球均为黑球” 则
P(B)
C13 C17 C120
P(D)
Ckn
(N 1)nk Nn
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
解 (ab)次取球的总取法为(ab)! 记(1) (2) (3)中的事件 分别为A B C
总数为24 记(1) (2) (3) (4)的事件分别为A B C D
(1) A有两种排法 故有
P(A)
2 24
1 12
(2) B有2(3!)12种排法 故有
P(B)
12 24
1 12
例113 将标号为1 2 3 4的四个球随意地排成一行 求下 列各事件的概率
(1)各球自左至右或自右至左恰好排成1 2 3 4的顺序 (2)第1号球排在最右边或最左边 (3)第1号球与第2号球相邻
等价于将n个球全部放到其余N1个箱子中 共有(N1)n种放

1.3古典概型、几何概型

1.3古典概型、几何概型

P(
A)
=
m( A) m( S )
几何概率显然满足:
(1)对任何事件 A,P( A) ³ 0;
(2)P( S) = 1;
(3)若事件 A1, A2,L , An,L 两两互不相容,则
+?
?
( ) P( U n=1
An )
=
?P
n=1

An
古典概型、几何概型
例 5(约会问题)甲乙二人相约在 0 到T 这段时间内,在预定地 点会面.到达时刻是等可能的,先到的人等候另一人,经过时间
(1)有放回抽样;(2)无放回抽样两种情形下,
第k (k = 1, 2,L , m + n) 次取到红球的概率.
解 设事件 A表示第k次取到红球,
(1)有放回抽样: P( A) = m . m+n
(2)无放回抽样:
P( A)
=
m×Amm++nn--11 Am+n
m+n
=
m(m+ n - 1)! (m+ n)!
概率论与数理统计
Probability and Statistics
— 概率论与数理统计教学组—
第1章 随机事件及其概率
1.3 古典概型、几何概型
学习 要点
古典概型 古典概型的概率计算方法 几何概型 几何概型的概率计算方法
古典概型、几何概型
一、古典概型的引入
掷一颗骰子,问“出现偶数点”“点数大于 4”的概率分别是
针与最近的一条平行线相交的充分必要条件是 x £ l sinq .
l
2a
x •
M
古典概型、几何概型
例 6(比丰投针问题)在平面上画有等距离的平行线,平行线间

8.5古典概型及几何概型(教师版)

8.5古典概型及几何概型(教师版)

科目数学年级高三备课人高三数学组第课时8.5古典概型及几何概型考纲定位掌握古典概型及其概率计算公式;了解几何概型的意义;一、基本事件:1、定义:;2、关于基本事件,下列说法错误的是()DA.一次试验中只能发生一个基本事件B.任何两个基本事件都是互斥的C.任何事件(除不可能事件)都可以表示成基本事件的和D.每个基本事件发生的概率相等3、(1)已知箱中有6个除了编号外完全相同的小球,若一次取两个小球,则共有个基本事件;(2)已知箱中有6个除了编号外完全相同的小球,若先后取两个小球,则共有个基本事件.二、古典概型:1、古典概型的特点:(1);(2) .2、古典概型的计算公式:例1、现有一批产品共有10件,其中8件为正品,2件为次品.(1)如果从中取出一件,确认产品等次后放回,然后再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率;(3)求有放回地连续取3次,3次中恰有2次取到次品的概率.变式训练:1、将一骰子连续抛掷两次,则向上点数之差的绝对值不大于3的概率是()BA.23B.56C.2936D.342、(2011 新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()AA.13B.12C.23D.343、(2012 安徽)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率为()BA.15B.25C.35D.454、(2012 广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()DA.49B.13C.29D.195、(2012 重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率是3 56、(2012 江苏)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 357、(2011 江苏)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是 13小结:古典概型的概率求解步骤:(1) (2) (3) “一判、二列、三数”三、几何概型:1.几何概型的概念及特点: ;2.几何概型的概率计算公式:3.几何概型的常见类型:(1) (2) (3)例2、(1)在区间[1,3]上任取一个数,则这个数大于2的概率为( )BA.0.25B.0.5C.0.75D.1(2)取一个正方形,作它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为( )BA.2π B.2ππ- C.2πD.4π变式训练:1、已知一只蚂蚁在边长分别为3,4,5的三角形的边上随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为 ;2、已知一只蚂蚁在边长分别为3,4,5的三角形的内部随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为 ;3、(2012 辽宁)在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概率为( )CA.16 B.13 C.23 D.454、(2012 北京)设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )DA.4π B.22π- C.6π D.44π- 5、(2011 湖南)已知圆C:2212x y +=,直线:4325l x y +=,则圆C 上任意一点A 到直线l 的距离小于2的概率为 16【课后反思】。

古典概型教案

古典概型教案

古典概型教案古典概型教案4篇古典概型教案1一,教材的地位和作用本节课是中数学3(必修)第三章概率的第二节古典概型的第一课时,是在学习随机事件的概率之后,几何概型之前,文科生不学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

二,教学目标1、知识目标(1)理解古典概型及其概率计算公式,(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

2、能力目标根据本节课的内容和学生的实际水平,通过抽牌游戏让学生理解古典概型的`定义,引领学生探究古典概型的概率计算公式,归纳出求基本事件数的方法-列举法。

3 、情感目标树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性的理解世界, 使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。

鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

三,教学的重点和难点重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

难点:如何判断一个试验的概率模型是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

四,教具计算机多媒体,黑板,粉笔,教棒五,教学方法探究式与讲授式相结合六,教学过程前面我们学习了随机事件及其概率,今天我们将学习古典概型,古典概型是最简单,而且最早被人们所认识的一种概率模型,大约在1812年著名数学家拉普拉斯就已经注意并研究了古典概型概率的计算。

下面先看一个抽牌游戏。

抽牌游戏:有红桃1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,那么抽到的牌为红桃的概率有多大?古典概型教案2一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P(A)=(3)掌握列举法、列表法、树状图方法解题2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数.教学设想:1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3 (10)师生共同探讨:根据上述情况,你能发现它们有什么共同特点?2、基本概念:(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本P121~126;(2)古典概型的概率计算公式:P(A)=议一议】下列试验是古典概型的是?①.在适宜条件下,种下一粒种子,观察它是否发芽.②.某人射击5次,分别命中8环,8环,5环,10环,0环.③.从甲地到乙地共n条路线,选中最短路线的概率.④.将一粒豆子随机撒在一张桌子的桌面上,观察豆子落下的位置.古典概型的判断1).审题,确定试验的'基本事件.(2).确认基本事件是否有限个且等可能什么是基本事件在一个试验可能发生的所有结果中,那些不能再分的最简单的随机事件称为基本事件。

精品教案:古典概型与几何概型

精品教案:古典概型与几何概型

古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。

2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。

【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( )A .61B .365 C .121 D .21 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12 C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S”的概率为 . (5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。

[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1. 某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是 ()A .15 B .524C .1081D .512 2. 盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P 1,第8个人摸出红球的概率是P 8,则()A .P 8=18P 1B .P 8=45P 1C .P 8=P 1D .P 8=03. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率为( )A .12B .13C .23D .14第3题图4.两根相距3m的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m的概率为()A.12B.13C.14D.235.一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为.6.某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为.7.在圆心角为150°的扇形AOB中,过圆心O作射线交AB于P,则同时满足:∠AOP≥45°且∠BOP ≥75°的概率为.8.某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.(1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?9.设A为圆周上一定点,在圆周上等可能的任取一点P与A10.正面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“V P-ABC≥14V”的事件为X,求概率P(X);②设“V P-ABC≥14V且V P-BCD≥14V”的事件为Y,求概率P(Y).17、概率17.2 古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为( )A .2π B .2ππ- CD .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )A .12B .13C .14D .163. 已知椭圆22221x y a b+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;③△PB 1B 2为钝角三角形的概率为ba ;④△PA 1A 2为钝角三角形的概率为ba ;⑤△PB 1B 2为锐角三角形的概率为a ba-。

高考数学二轮复习第1部分主题4古典概型、几何概型教案理

高考数学二轮复习第1部分主题4古典概型、几何概型教案理

高考数学二轮复习第1部分主题4古典概型、几何概型教案理1.古典概型解决古典概型问题应注意2点(1)对于古典概型中的抽取问题,要注意是否有顺序性,是否有无放回,如T 1,T 2,T 3,T 4.(2)在利用排列、组合与两个基本计数原理求样本空间所含的基本事件数n 以及事件A 所含的基本事件数m 时,要明确事件之间是对立关系还是互斥关系,如T 2.1.[一题多解]从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.79C [法一:∵9张卡片中有5张奇数卡片,4张偶数卡片,且为不放回地随机抽取, ∴P (第一次抽到奇数,第二次抽到偶数)=59×48=518,P (第一次抽到偶数,第二次抽到奇数)=49×58=518,∴P (抽到的2张卡片上的数奇偶性不同)=518+518=59.法二:依题意,得P (抽到的2张卡片上的数奇偶性不同)=5×4C 29=59.]2.现有大小形状完全相同的4个小球,其中红球有2个,白球与蓝球各1个,将这4个小球任意排成一排,则中间2个小球不都是红球的概率为( )A.16 B.13 C.56D.23C [设“4个小球排成一排,中间2个小球不都是红球”为事件A.则A 表示事件“中间2个球都是红球”,易知P (A )=A 22A 24=212=16,故P (A )=1-P (A )=56.]3.(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112B.114C.115D.118C [不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有C 210种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率P =3C 210=115,故选C.]4.(2019·全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516 B.1132 C.2132D.1116A [由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C 36=6×5×46=20.根据古典概型的概率计算公式得,所求概率P =2064=516.故选A.]2.几何概型解决几何概型问题应注意2点(1)明确几何概型的适用条件:基本事件发生的等可能性和基本事件的无限性. (2)分清几何概型中的“测度”:注意区别长度与角度、面积、体积等度量方式,如T 1,T 2,T 3.1.在区间(1,3)内,任取1个数x ,则满足log 2(2x -1)>1的概率为( ) A.14 B.12 C.23D.34D [由题意,满足log 2(2x -1)>1,则2x -1>2,解得x >32,所以在区间(1,3)内,任取1个数x 时,x >32的概率为P =3-323-1=34,故选D.]2.(2019·青岛调研)有一底面半径为1,高为2的圆柱,点O 为圆柱下底面圆的圆心,在这个圆柱内随机取一点P,则点P到点O的距离大于1的概率为( )A.13B.23C.34D.14B[设点P到点O的距离小于1的概率为P1,由几何概型,则P1=V半球V圆柱=23π×13π×12×2=13,故点P到点O的距离大于1的概率P=1-13=23.故选B.]3.如图,B是AC上一点,分别以AB,BC,AC为直径作半圆,从B作BD⊥AC,与半圆相交于D,AC=6,BD=22,在整个图形中随机取一点,则此点取自图中阴影部分的概率是( )A.29B.13C.49D.23C[连接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BD2=AB·BC,设AB=x(0<x<3),则有8=x(6-x),得x=2,所以AB=2,BC=4,由此可得图中阴影部分的面积等于π×322-⎝⎛⎭⎪⎫π×122+π×222=2π,故概率P=2π12×9π=49.]。

古典概型的教案

古典概型的教案

古典概型的教案一、教学目标1、知识与技能目标理解古典概型的概念及其特征。

掌握古典概型的概率计算公式。

能够运用古典概型的概率公式解决简单的实际问题。

2、过程与方法目标通过对实际问题的分析,经历从具体到抽象、从特殊到一般的思维过程,培养学生的归纳、概括能力。

通过古典概型的概率计算,提高学生的逻辑推理能力和运算能力。

3、情感态度与价值观目标让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。

培养学生勇于探索、敢于创新的精神。

二、教学重难点1、教学重点古典概型的概念及特征。

古典概型概率计算公式的应用。

2、教学难点如何判断一个试验是否为古典概型。

对古典概型概率计算公式的理解和应用。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示一些生活中的随机现象,如掷骰子、抛硬币等,引导学生思考这些现象中蕴含的概率问题,从而引出本节课的主题——古典概型。

2、讲解古典概型的概念(1)列举一些简单的试验,如掷一枚质地均匀的硬币,观察其正反面;掷一枚质地均匀的骰子,观察其出现的点数。

(2)引导学生分析这些试验的共同特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。

(3)给出古典概型的定义:如果一个随机试验具有上述两个特点,我们就称这样的随机试验为古典概型。

3、讲解古典概型的概率计算公式(1)以掷一枚质地均匀的骰子为例,分析其出现的点数为 1、2、3、4、5、6 这 6 个基本事件,且每个基本事件出现的可能性相等,均为1/6。

(2)设试验的基本事件总数为n,事件A 包含的基本事件数为m,则事件 A 发生的概率 P(A) = m / n 。

(3)强调公式的适用条件:试验为古典概型。

4、例题讲解例 1:一个口袋内装有大小相同的 5 个球,其中 3 个白球,2 个黑球,从中一次摸出 2 个球,求摸出的 2 个球都是白球的概率。

解:设 3 个白球分别为 A、B、C,2 个黑球分别为 D、E。

(完整word版)古典概型,几何概型导学案(定稿)

(完整word版)古典概型,几何概型导学案(定稿)

§3.2.1 古典概型(1)学习目标1.理解古典概型及其概率计算公式;2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

,找出疑惑之处)二、新课导学※ 探索新知探究1:考察两个试验,完成下面填空:试验一:抛掷一枚质地均匀的硬币;试验二:抛掷一枚质地均匀的骰子。

(1)在试验一中,每次试验可能的结果有_______个,即_____________或________________;在试验二中,每次试验可能的结果有____个,即出现______、______、______、______、______、______;它们都是随机事件,我们把这些随机事件叫做________,它们是试验的每一个结果。

(2)基本事件有如下的特点:(1)_______________________________;(2)_____________________________________。

问题1:从字母a,b,c,d中任意取出两个不同的字母的试验中,有几个基本事件?分别是什么?新知1:观察对比,试验一中所有可能出现的基本事件有__个,并且每个基本事件出现的可能性相等,都是_____;试验二中所有可能出现的基本事件有__________________,并且每个基本事件出现的可能性相等,都是___;问题1中所有可能出现的基本事件有____个,并且每个基本事件出现的可能性相等,都是___.发现两个试验和问题1的共同特点:(1)_______________________________________________;(有限性)(2)______________________________________________________。

(等可能性)我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

思考:在古典概型下,每个基本事件出现的概率是多少?某个随机事件出现的概率如何计算?(教材P126内容)。

古典概型教案7篇

古典概型教案7篇

古典概型教案7篇古典概型教案篇1一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中全部可能涌现的基本领件只有有限个;2)每个基本领件涌现的可能性相等;(2)掌控古典概型的概率计算公式:p(a)=2、过程与方法:(1)通过对现实生活中详细的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培育规律推理技能;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3、情感立场与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:重点是掌控古典概型的概念及利用古典概型求解随机事项的概率;难点是如何判断一个试验是否是古典概型,分清一个古典概型中某随机事项包含的基本领件的个数和试验中基本领件的总数。

三、教法与学法指导:依据本节课的特点,可以采纳问题探究式学案导学教学法,通过问题导入、问题探究、问题解决和问题评价等教学过程,与同学共同探讨、合作争论;应用所学数学知识解决现实问题。

四、教学过程:1、创设情境:(1)掷一枚质地匀称的硬币的试验;(2)掷一枚质地匀称的骰子的试验。

师生共同探讨:依据上述状况,你能发觉它们有什么共同特点?同学分组争论试验,每人写出试验结果。

依据结果探究这种试验所求概率的特点,尝试归纳古典概型的定义。

在试验(1)中结果只有2个,即正面朝上或反面朝上,它们都是随机事项。

在试验(2)中,全部可能的试验结果只有6个,即涌现1点2点3点4点5点和6点,它们也都是随机事项。

2、基本概念:(看书130页至132页)(1)基本领件、古典概率模型。

(2)古典概型的概率计算公式:p(a)= .3、例题分析:(呈现例题,深刻体会古典概型的两个特征依据每个例题的不同条件,让每个同学找出并回答每个试验中的基本领件数和基本领件总数,分析是否满意古典概型的特征,然后利用古典概型的`计算方法求得概率。

) 例1 从字母a,b,c,d中任意取出两个不同的试验中,有哪些基本领件?分析:为了得到基本领件,我们可以根据某种顺次,把全部可能的结果都列出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 古典概型与几何概型
引例 一个纸桶中装有10个大小、形状完全相同的球. 将球编号为1—10.把球搅匀, 蒙上眼睛从中任取一球. 因为抽取时这些球被抽到的可能性是完全平等的, 所以我们没有理由认为这10个球中的某一个会比另一个更容易抽得, 也就是说,这10个球中的任一个被抽取的可能性均为10
1. 这样一类随机试验是一类最简单的概率模型, 它曾经是概率论发展初期主要的研究对象.
内容分布图示
★ 引例
★ 古典概型
★ 计算古典概率的方法 ★ 例1
★ 例2 ★ 例3 ★ 例4
★ 例5 ★ 例6 ★ 几何概型
★ 例7
★ 例8 ★ 内容小结
★ 课堂练习
★ 习题1-3
内容要点:
一、古典概型
我们称具有下列两个特征的随机试验模型为古典概型。

1. 随机试验只有有限个可能的结果;
2. 每一个结果发生的可能性大小相同.
因而古典概型又称为等可能概型.在概率论的产生和发展过参程中,它是最早的研究对象,且在实际中也最常用的一种概率模型。

它在数学上可表述为:
在古典概型的假设下,我们来推导事件概率的计算公式. 设事件A 包含其样本空间S 中k 个基本事件, 即
},{}{}{21k
i i i e e e A = 则事件A 发生的概率
.)()()(11中基本事件的总数
包含的基本事件数S A n k e P e P A P k
j i k j i j j ====∑== 称此概率为古典概率.这种确定概率的方法称为古典方法. 这就把求古典概率的问题转化为对基本事件的计数问题.
二、 计算古典概率的方法
基本计数原理:
1. 加法原理:设完成一件事有m 种方式,其中第一种方式有1n 种方法,第二种方式有
2n 种方法,……,第m 种方式有m n 种方法,无论通过哪种方法都可以完成这件事,则完成这
件事的方法总数为m n n n +++ 21.
2. 乘法原理:设完成一件事有m 个步骤,其中第一个步骤有1n 种方法,第二个步骤有
2n 种方法,……,第m 个步骤有m n 种方法;完成该件事必须通过每一步骤才算完成,则完
成这件事的方法总数为 m n n n ⨯⨯⨯ 21.
3. 排列组合方法
(1) 排列公式:(2) 组合公式; (3) 二项式公式.
三、几何概型
古典概型只考虑了有限等可能结果的随机试验的概率模型. 这里我们进一步研究样本空间为一线段、平面区域或空间立体等的等可能随机试验的概率模型—几何概型.
a) 设样本空间S 是平面上某个区域, 它的面积记为)(S μ;
b) 向区域S 上随机投掷一点,这里“随机投掷一点”的含义是指该点落入S 内任何部分区域A 的可能性只与区域A 的面积)(A μ成比例, 而与区域A 的位置和形状无关. 向区域S 上随机投掷一点, 该点落在区域A 的的事件仍记为A ,则A 概率为)()(A A P λμ=, 其中λ为常数,而)()(S S P λμ=,于是得)(1S μλ=,从而事件A 的概率为
)
()()(S A A P μμ= 几何概率 )(* 注: 若样本空间S 为一线段或一空间立体, 则向S “投点”的相应概率仍可用)(*式确定, 但)(⋅μ应理解为长度或体积.
例题选讲:
例1 (讲义例1) 一个袋子中装有10个大小相同的球, 其中3个黑球, 7个白球, 求
(1) 从袋子中任取一球, 这个球是黑球的概率;
(2) 从袋子中任取两球, 刚好一个白球一个黑球的概率以及两个球全是黑球的概率. 解 (1) 10个球中任取一个, 共有10110=C 种.
从而根据古典概率计算, 事件A :“取到的球为黑球”的概率为)(A P 11013
C C =.10
3= (2) 10球中任取两球的取法有210C 种, 其中刚好一个白球, 一个黑球的取法有17
13C C ⋅种取法, 两个球均是黑球的取法有23C 种, 记B 为事件“刚好取到一个白球一个黑球”, C 为事
件“两个球均为黑球”, 则。

相关文档
最新文档