一次函数的应用说课稿

合集下载

苏科版数学八年级上册《6.2一次函数》说课稿

苏科版数学八年级上册《6.2一次函数》说课稿

苏科版数学八年级上册《6.2 一次函数》说课稿一. 教材分析苏科版数学八年级上册《6.2 一次函数》这一节主要介绍了什么?一次函数的定义、性质和图象。

通过这一节的学习,学生能够掌握一次函数的基本知识,理解一次函数的图象特征,并能运用一次函数解决实际问题。

在教材中,首先介绍了函数的概念,让学生理解函数是一种数学对应关系。

然后,引入一次函数的定义,让学生了解一次函数的表达方式。

接着,通过实例讲解一次函数的性质,让学生理解一次函数的增减性和比例系数的概念。

最后,讲解一次函数的图象,让学生学会如何绘制一次函数的图象,并能够从图象中获取信息。

二. 学情分析学生在学习这一节内容时,需要具备哪些基础知识和技能?首先,学生需要了解函数的基本概念,知道函数是一种数学对应关系。

其次,学生需要掌握一些基本的代数运算,如解方程、求导数等。

此外,学生还需要具备一定的图形识别能力,能够识别和绘制一次函数的图象。

在学习这一节内容的过程中,学生可能会遇到哪些困难和问题?首先,学生可能对函数的概念不够清晰,难以理解函数的定义和性质。

其次,学生可能对一次函数的表达方式不够熟悉,难以理解和运用一次函数的公式。

此外,学生可能对一次函数的图象不够了解,难以绘制和解读一次函数的图象。

三. 说教学目标通过这一节的学习,我希望学生能够达到哪些目标?首先,我希望学生能够理解一次函数的定义和性质,掌握一次函数的表达方式。

其次,我希望学生能够学会绘制一次函数的图象,并能从图象中获取信息。

最后,我希望学生能够运用一次函数解决实际问题,提高学生的数学应用能力。

四. 说教学重难点在这一节内容中,我认为哪些部分是学生的难点和重点?首先,函数的概念和一次函数的定义是学生的重点和难点。

其次,一次函数的性质和图象是学生的重点和难点。

最后,运用一次函数解决实际问题是学生的重点和难点。

五. 说教学方法与手段在这一节的教学中,我打算采用哪些方法和手段进行教学?首先,我打算采用讲授法,向学生讲解一次函数的定义、性质和图象。

北师大版数学八年级上册4《一次函数的应用》说课稿3

北师大版数学八年级上册4《一次函数的应用》说课稿3

北师大版数学八年级上册4《一次函数的应用》说课稿3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4节的内容。

本节主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。

教材通过实例引导学生认识一次函数的图像和性质,以及如何用一次函数解决实际问题。

二. 学情分析八年级的学生已经学习了初中数学的前置知识,对函数的概念和性质有了一定的了解。

但学生在解决实际问题时,往往不知道如何将数学知识与实际问题相结合。

因此,在教学过程中,教师需要引导学生将数学知识运用到实际问题中,提高学生的应用能力。

三. 说教学目标1.让学生了解一次函数在实际生活中的应用,体会数学与生活的紧密联系。

2.培养学生用数学的眼光观察生活,提高学生的数学应用能力。

3.帮助学生掌握一次函数的图像和性质,为后续学习打下基础。

四. 说教学重难点1.教学重点:一次函数在实际生活中的应用,一次函数的图像和性质。

2.教学难点:如何将一次函数与实际问题相结合,解决实际问题。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学规律。

2.利用多媒体课件,展示一次函数的图像,帮助学生直观理解一次函数的性质。

3.创设生活情境,让学生在实践中感受一次函数的应用。

4.分组讨论与合作,培养学生团队合作精神,提高学生的解决问题能力。

六. 说教学过程1.导入:通过展示实际问题,引导学生思考如何用数学知识解决问题。

2.新课导入:介绍一次函数的定义和性质,让学生了解一次函数的基本概念。

3.实例讲解:通过生活实例,讲解一次函数在实际中的应用,让学生体会数学与生活的联系。

4.课堂练习:让学生独立解决实际问题,巩固一次函数的应用。

5.分组讨论:让学生围绕实际问题展开讨论,探讨如何用一次函数解决问题。

6.总结提升:总结一次函数的图像和性质,强化学生对一次函数的认识。

7.课后作业:布置相关练习题,巩固课堂所学知识。

七. 说板书设计板书设计应突出一次函数的图像和性质,以及一次函数在实际中的应用。

2024《一次函数》说课稿范文

2024《一次函数》说课稿范文

2024《一次函数》说课稿范文今天我说课的内容是《一次函数》,下面我将从以下几个方面进行阐述。

一、说教材1、《一次函数》是高中数学必修一的内容。

它是在学生已经学习了代数基础知识并掌握了一些常见的函数相关概念的基础上进行教学的,是数学领域中的重要知识点。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的数学基础,我制定了以下三点教学目标:①认知目标:了解一次函数的定义、性质和图像特征,掌握函数图象的绘制方法。

②能力目标:培养学生分析和解决实际问题的能力,提高学生的数学建模能力。

③情感目标:培养学生对数学的兴趣,增强学生对数学学习的信心。

二、说教法学法在教学一次函数时,我将采用启发式教学法、探究式学习法和案例分析法相结合的教法。

通过引导学生提出问题、进行实际操作以及分析实例,培养学生的探究精神和自主学习能力。

三、说教学准备在教学过程中,我将使用多媒体教具展示函数的图象和实例,以直观呈现教学素材,增强学生的学习兴趣,提高教学效果。

四、说教学过程新课标要求教学活动是师生共同参与、互动交流的过程,因此我设计了以下教学环节。

环节一、导入新课我将通过引导学生回顾一元一次方程的知识,引出一次函数的概念,并且提问一次函数与一元一次方程的关系,激发学生的思考和探究欲望。

同时,我会根据学生的回答,引导他们思考一次函数的定义和性质。

环节二、探究新知我将通过引导学生观察一次函数的图象特征来探究它的性质。

首先,我会示范绘制一次函数的图象,并向学生解释绘制的过程和方法。

然后,我会给学生一些实例,让他们自己尝试绘制函数的图象,并对绘制结果进行对比分析。

环节三、案例分析我将给学生一些实际问题,让他们运用一次函数的知识进行分析和求解。

通过具体实例的分析,帮助学生理解一次函数在解决实际问题中的应用,培养他们的数学建模能力。

环节四、练习巩固我会设计一些练习题,让学生巩固所学的知识。

练习题包括计算函数值、求解方程、分析图象等多种形式,既能帮助学生巩固基本概念和运算技巧,又能提高他们的思维能力和解决问题的能力。

2023年一次函数与一元一次不等式说课稿

2023年一次函数与一元一次不等式说课稿

2023年一次函数与一元一次不等式说课稿2023年一次函数与一元一次不等式说课稿1一、教材分析(说教材):1、教材所处的地位和作用:本节内容在全书及章节的地位是:《一元一次不等式、一元一次方程、一次函数》是苏科版八下第七章第七节内容。

在此之前,学生已学习了一元一次不等式、一元一次方程、一次函数基础上,这为过渡到本节的学习起着铺垫作用。

本节内容在初中数学学习阶段中,占据重要的`地位,以及为其他学科和今后高中数学学习打下基础。

2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)、知识目标:认识并理解一元一次不等式、一元一次方程、一次函数的内在联系及在解决问题时的不同作用。

(2)、过程与方法通过用一元一次不等式、一元一次方程、一次函数解决问题,培养学生用联系变化的观点看问题的意识及数形结合的解题能力。

(3)情感、态度与价值观通过对解决实际问题的教学,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3:重点,难点以及确定的依据:本课中一元一次不等式、一元一次方程、一次函数的内在联系是重点,灵活使用一元一次不等式、一元一次方程、一次函数解决实际问题是本课的难点,下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:二:教学策略:教法:据本节课教学内容和八年级学生的年龄、心理特点及目标教学的要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,让学生的知识形成网状结构,使知识能相互交融,培养学生触类旁通的能力。

学法:建构主义教学构想的核心思想是:通过问题的解决来学习。

根据本节课的特点,采用自主探究、合作交流的探究式学习方法。

北师大版-数学-八年级上册-北师大版八年级上册《一次函数的应用》精品说课稿

北师大版-数学-八年级上册-北师大版八年级上册《一次函数的应用》精品说课稿

北师大版八年级上册《一次函数的应用》精品说课稿一.说教材:(一)教材所处的地位和作用:《一次函数图象的应用》是义务教育课程标准北师大版实验教科书数学八年级(上)第四章《一次函数》的第四节.本节内容安排了2个课时完成,本节为第一课时.主要是利用一次函数图象解决有关现实问题,本节课将借助材料让学生在具体操作中获取一次函数图象的有关信息,从而回答和解决现实生活中的具体问题,也就是说,通过本节课的学习,应该在图象信息的识别与分析中,提高学生的识图能力,进一步培养学生的数形结合能力和数学应用能力,发展形象思维.(二)教学目标:知识与技能目标:1.能通过函数图象获取信息,解决简单的实际问题;2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。

过程与方法目标:1.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;2.通过具体问题的解决,培养学生的数学应用能力;3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.情感与态度目标:1.在具体的案例中,培养学生良好的环保意识和对生活的热爱等.●教学重点一次函数图象的应用.●教学难点正确地根据图象获取信息,并解决现实生活中的有关问题.二.说学法教法:1、学情分析:学生已学习了一次函数及其图象,认识了一次函数的性质.在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础.但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力.2、教法:一次函数是刻画现实世界变量间关系的最为简单的模型,其应用比比皆是.在教学设计中,争取选用最具有现实生活背景,与学生生活密切相关的问题,并让学生展开充分的讨论,提倡从不同的角度思考问题,一方面力求让学生体会数学的广泛运用,另一方面,在学科教学中渗透德育教育.在教学活动中教师应尊重学生的个体差异,满足多样化的学习需要,关注学生对图象的识图能力和解决问题的过程,关注学生对基本知识技能的掌握情况和对一次函数与方程之间的关系的理解.教学过程中可通过学生对“议一议”、“想一想”的探究情况和学生对反馈练习的完成情况分析学生的认识状况,对于学生的回答,只要学生的方法有道理,教师应给予鼓励和恰当的评价.通过分层练习,调动了不同学生的学习热情,教师应留给学生充分的时间思考,在独立思考的基础上,再进行点评。

北师大版八年级上册一次函数的应用说课稿

北师大版八年级上册一次函数的应用说课稿

北师大版八年级上册一次函数的应用说课稿一. 教材分析北师大版八年级上册数学教材中,一次函数的应用是本节课的主要内容。

一次函数是初中数学中的重要知识点,也是解决实际问题的重要工具。

本节课通过引入一次函数的概念和性质,使学生能够理解和掌握一次函数的基本特征,并能够运用一次函数解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了代数知识,对数学概念和符号有一定的理解。

但是,对于一次函数的应用,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

此外,学生可能对于解决实际问题感到困惑,需要教师进行引导和指导。

三. 说教学目标1.知识与技能目标:学生能够理解一次函数的概念和性质,能够运用一次函数解决实际问题。

2.过程与方法目标:学生能够通过实例和练习,掌握一次函数的应用方法,培养解决实际问题的能力。

3.情感态度与价值观目标:学生能够对数学产生兴趣和自信心,培养积极的学习态度和合作精神。

四. 说教学重难点1.教学重点:一次函数的概念和性质,一次函数的应用方法。

2.教学难点:一次函数在实际问题中的应用,理解函数的图像和性质。

五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过实例和练习,引导学生自主学习和合作学习。

2.教学手段:利用多媒体课件和板书,展示一次函数的图像和性质,帮助学生直观理解。

六. 说教学过程1.导入:通过引入一次函数的实例,激发学生的兴趣,引导学生思考一次函数的应用。

2.新课导入:介绍一次函数的概念和性质,引导学生通过实例和练习来理解和掌握一次函数的应用方法。

3.课堂讲解:通过多媒体课件和板书,展示一次函数的图像和性质,引导学生直观理解。

4.练习与讨论:学生进行练习,教师进行个别指导和解答疑问,引导学生通过合作学习来解决问题。

5.总结与反思:教师引导学生总结一次函数的应用方法,反思自己在学习过程中的收获和不足。

七. 说板书设计板书设计要简洁明了,突出一次函数的概念和性质,以及一次函数的应用方法。

北师大版八年级下册数学《2.5 第2课时 一元一次不等式与一次函数的综合应用》说课稿

北师大版八年级下册数学《2.5 第2课时 一元一次不等式与一次函数的综合应用》说课稿

北师大版八年级下册数学《2.5 第2课时一元一次不等式与一次函数的综合应用》说课稿一. 教材分析北师大版八年级下册数学《2.5 第2课时一元一次不等式与一次函数的综合应用》这一节,是在学生已经掌握了一次函数和一元一次不等式的知识基础上进行教学的。

本节课的主要内容是让学生掌握一元一次不等式与一次函数的综合应用,通过解决实际问题,让学生学会如何将数学知识运用到生活中。

本节课的教学内容主要包括两个方面:一是理解一元一次不等式与一次函数的关系;二是学会如何运用一元一次不等式和一次函数解决实际问题。

在教材的处理上,我将以学生已有的知识为基础,通过引导学生的思考,让学生自主探究,从而达到对知识的理解和应用。

二. 学情分析在进入八年级下册的学习之前,学生已经学习了一次函数和一元一次不等式的相关知识,对于如何解一元一次不等式,以及如何绘制一次函数的图像,学生都已经有了初步的了解。

然而,对于如何将这两个知识点结合起来,解决实际问题,学生可能还比较陌生。

因此,在教学过程中,我将以学生的实际需求为导向,引导学生进行探究和学习。

三. 说教学目标本节课的教学目标主要有以下几点:1.让学生理解一元一次不等式与一次函数之间的关系,掌握如何将一元一次不等式和一次函数结合起来解决实际问题。

2.提高学生的数学思维能力,培养学生的解决问题的能力。

3.通过解决实际问题,让学生感受到数学的价值,提高学生学习数学的兴趣。

四. 说教学重难点本节课的教学重难点主要是让学生理解一元一次不等式与一次函数之间的关系,以及如何运用这两个知识点解决实际问题。

其中,如何将一元一次不等式和一次函数结合起来,解决实际问题,是本节课的教学难点。

五. 说教学方法与手段在教学过程中,我将采用引导探究法、案例教学法和小组合作法等教学方法,以学生已有的知识为基础,通过设置问题和案例,引导学生进行自主探究和学习。

同时,我还将运用多媒体教学手段,以直观的图像和动画,帮助学生更好地理解和掌握知识。

北师版一次函数的应用说课稿9篇

北师版一次函数的应用说课稿9篇

北师版一次函数的应用说课稿9篇北师版一次函数的应用说课稿精选篇1大家好!我今天说课的内容是八年级上册第七章第三节《一次函数》第1课时,下面我将从教材分析、教法学法分析、教学过程分析和设计说明等几个环节对本节课进行说明。

一、教材分析1、教材地位和作用本节课是在学生学习了常量和变量及函数的基本概念的基础上学习的,学好一次函数的概念将为接下来学习一次函数的图象和应用打下坚实的基础,同时也有利于以后学习反比例函数和二次函数,所以学好本节内容至关重要。

2、教学目标分析根据新课程标准,我确定以下教学目标:知识和技能目标:理解正比例函数和一次函数的概念,会根据数量关系求正比例函数和一次函数的解析式。

过程和方法目标:经历一次函数、正比例函数的形成过程,培养学生的观察能力和总结归纳能力。

情感和态度目标:运用函数可以解决生活中的一些复杂问题,使学生体会到了数学的使用价值,同时也激发了学生的学习兴趣。

3、教学重难点本节教学重点是一次函数、正比例函数的概念和解析式,由于例2的问题情境比较复杂,学生缺乏这方面的经验,是本节教学的难点。

二、教法学法分析八年级的学生具备一定的归纳总结和表达能力,所以本节课采用创设情境,归纳总结和自主探索的学习方式,让学生积极主动地参与到学习活动中去,成为学习的主体,同时教师引导性讲解也是不可缺少的教学手段。

根据教材的特点,为了更有效地突出重点,突破难点,采用了现代教学技术————多媒体和实物投影。

三、教学过程分析本节教学过程分为:创设情境,引入新课→归纳总结,得出概念→运用概念体验成功→梳理概括,归纳小结→布置作业,巩固提高。

为了引入新课,我创设了以下四个问题情境,请学生列出函数关系式:(1)梨子的单价为6元/千克,买t千克梨子需m元钱,则m与t的函数关系式为m=6t(2)小明站在广场中心,记向东为正,若他以2千米/时的速度向正西方向行走_小时,则他离开广场中心的距离y与_之间的函数关系式为y=—2_(3)小芳的储蓄罐里原来有3元钱,现在她打算每天存入储蓄罐2元钱,则_天后小芳的储蓄罐里有y元钱,那么y与_之间的函数关系式为y=2_+3(4)游泳池里原有水936立方米,现以每小时312立方米的速度将水放出,设放水时间为t时,游泳池内的存水量为Q立方米,则Q关于是t的函数关系式为Q=936—312t然后请学生观察这些函数,它们有哪些共同特征?m=6t;y=—2_;y=2_+3;Q=936—312t学生们各抒己见,最后由教师引导学生得出:它们中含自变量的代数式都是整式,并且自变量的次数都是一次。

北师大版数学八年级上册5《一次函数图象的应用》说课稿2

北师大版数学八年级上册5《一次函数图象的应用》说课稿2

北师大版数学八年级上册5《一次函数图象的应用》说课稿2一. 教材分析北师大版数学八年级上册5《一次函数图象的应用》是学生在掌握了函数图象的基本知识后,进一步学习一次函数图象的应用。

本节内容主要包括一次函数图象的斜率和截距的物理意义,一次函数图象的增减性和对称性,以及一次函数图象在实际问题中的应用。

教材通过丰富的实例和练习题,帮助学生理解和掌握一次函数图象的应用,培养学生的数学思维和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了函数图象的基本知识,包括函数图象的描点和连线,函数图象的平移和翻转等。

同时,学生也学习了不等式的解法和应用,对一次函数的基本概念和性质有一定的了解。

但是,学生对于一次函数图象在实际问题中的应用,可能还存在一定的困惑和困难。

因此,在教学过程中,需要结合学生的实际情况,通过实例和练习题,引导学生理解和掌握一次函数图象的应用。

三. 说教学目标1.知识与技能目标:学生能够理解一次函数图象的斜率和截距的物理意义,掌握一次函数图象的增减性和对称性,能够运用一次函数图象解决实际问题。

2.过程与方法目标:学生通过观察和分析实例,培养观察和分析问题的能力,通过绘制和分析一次函数图象,培养数形结合的思维方式。

3.情感态度与价值观目标:学生能够积极参与课堂活动,对一次函数图象的应用产生兴趣,体验数学在生活中的应用,培养学生的数学素养。

四. 说教学重难点1.教学重点:一次函数图象的斜率和截距的物理意义,一次函数图象的增减性和对称性,一次函数图象在实际问题中的应用。

2.教学难点:一次函数图象在实际问题中的应用,特别是涉及到不等式和多变的实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过实例和练习题,引导学生观察和分析,培养学生的数形结合思维方式。

2.教学手段:利用多媒体课件,展示一次函数图象的动态变化,帮助学生直观理解一次函数图象的性质,利用练习题和实例,让学生动手实践,加深对一次函数图象应用的理解。

青岛版数学八年级下册第10章《一次函数》说课稿

青岛版数学八年级下册第10章《一次函数》说课稿

青岛版数学八年级下册第10章《一次函数》说课稿一. 教材分析《一次函数》是青岛版数学八年级下册第10章的内容,本章主要让学生了解一次函数的定义、性质和图像,学会用一次函数解决实际问题。

本章内容是初中数学的重要知识点,也是后续学习二次函数、不等式等知识的基础。

二. 学情分析学生在学习本章内容前,已经掌握了有理数的运算、方程的解法等基础知识,但对函数的概念和性质可能还不够清晰。

因此,在教学过程中,需要引导学生将已有的知识与一次函数相结合,从而更好地理解和掌握一次函数的知识。

三. 说教学目标1.知识与技能:掌握一次函数的定义、性质和图像,能运用一次函数解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,引导学生发现一次函数的规律,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作和自主学习能力。

四. 说教学重难点1.教学重点:一次函数的定义、性质和图像。

2.教学难点:一次函数在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动、案例教学、小组讨论等教学方法,引导学生主动探究、合作学习。

2.教学手段:利用多媒体课件、黑板、粉笔等教学工具,辅助教学。

六. 说教学过程1.导入:通过生活中的实例,引导学生了解函数的概念,激发学生的学习兴趣。

2.新课导入:介绍一次函数的定义、性质和图像,让学生初步认识一次函数。

3.案例分析:选取实际问题,让学生运用一次函数解决,巩固所学知识。

4.小组讨论:让学生分组讨论,分享一次函数在实际问题中的应用实例,提高学生的合作能力。

5.课堂练习:布置针对性的练习题,让学生巩固一次函数的知识。

6.总结与拓展:对本章内容进行总结,提出课后思考题,引导学生课后自主学习。

七. 说板书设计板书设计要清晰、简洁,突出一次函数的定义、性质和图像。

可以采用以下板书设计:定义:一般形式为y=kx+b(k≠0,k、b为常数)1.k≠0时,函数图像为直线。

一次函数的应用说课稿(任莹)

一次函数的应用说课稿(任莹)

一次函数的应用说课稿(任莹)《一次函数的实际应用》说课稿各位评委、老师:大家好!我叫任莹,来自于鹤岗市第二十一中学,我今天说课的题目是《一次函数的实际应用》,教材是人教版《义务教育课程标准实验教科书》八年级上册第十一章《一次函数》第二节的内容,本节课我将围绕以下七个方面加以分析和说明,希望各位评委老师多加指导!一、教材分析本节课主要是利用一次函数解决有关的实际问题,我将引导学生借助材料在具体问题中获取一次函数的有关信息,从而回答和解决现实生活中的具体问题,也就是说,通过本节课的学习,使学生在材料信息的识别与分析中,提高学生的分析问题和解决问题的能力,进一步培养学生的数形结合能力和数学应用能力。

二、学生分析学生已学习了一次函数及其图象,认识了一次函数的性质。

在前面学习一元一次方程和二元一次方程组时也见识过大量的实际问题,所以具备了从实际问题中获取信息,并借助这些信息分析问题、解决问题的基础。

但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力。

三、教学目标知识与技能目标:1.能在具体实例中获取信息,解决简单的实际问题;2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。

过程与方法目标:1.通过具体问题的解决,培养学生的数学应用能力;2.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式。

情感与态度与价值观目标:建立应用数学的意识,体会到数学的抽象性和广泛应用性,并从合作交流中感受到成功。

四、教学重难点教学重点:培养学生用一次函数去解决实际问题的能力。

教学难点:将文字语言表述的关系转化为函数关系,即建模思想。

五、教学方法采用了“问题探究”式教学方法,引导学生发现问题和探索疑难,教师给予指导,更主要的是引导学生充分利用好实例中给出的信息。

六、教学流程(环节一)知识链接本环节以小组比赛的形式来提问“关于一次函数的知识点”,然后我再利用课件把知识点展示给学生,进一步的强化记忆。

第12讲《一次函数的应用》教案

第12讲《一次函数的应用》教案
其次,案例分析环节,我选择了物体匀速运动作为例子,但可能有学生对此并不感兴趣。我意识到,选择与学生生活密切相关的案例更能激发他们的学习兴趣。下次我会尝试引入购物、交通等与学生日常生活紧密相关的案例,以提高他们的参与度。
在实践活动方面,学生们在分组讨论和实验操作中表现出较高的积极性,但有些小组在讨论过程中偏离了主题。为了提高讨论效果,我计划在下次活动中明确讨论主题,并在讨论过程中适时给予指导和提示,引导学生围绕主题展开讨论。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
-难点内容:一次函数图像的绘制及其在实际问题中的应用。
-图像绘制:如何准确地根据函数表达式在坐标系中绘制出一次函数的图像。
-实际应用:将实际问题转化为数学模型,利用一次函数解决问题。
-举例解释:
-图像绘制难点:学生可能会在坐标系的选择、点与线的关系等方面感到困惑。需讲解如何选取合适的点来绘制直线,例如选取x=0和y=0时的点,以及如何理解任意两点确定一条直线的原理。
此外,我发现部分学生在绘制一次函数图像时,对坐标系的选择和点与线的关系掌握不够熟练。针对这一问题,我打算在接下来的教学中,增加一些图像绘制的练习,让学生在实际操作中熟悉和掌握这一技能。
在小组讨论环节,学生们表现出了较好的思考和分析能力,但在分享成果时,有些学生表达不够清晰。为了提高学生的表达能力,我会在今后的教学中加强口语表达训练,鼓励学生在课堂上多发言,提高他们的自信心。

湘教版数学八年级下册4.5《一次函数的应用》说课稿1

湘教版数学八年级下册4.5《一次函数的应用》说课稿1

湘教版数学八年级下册4.5《一次函数的应用》说课稿1一. 教材分析湘教版数学八年级下册 4.5《一次函数的应用》是本册教材中的一个重要内容。

本节课主要让学生了解一次函数在实际生活中的应用,通过实际问题引导学生运用一次函数的知识解决问题。

教材通过丰富的实例,使学生感受到一次函数与生活的紧密联系,培养学生的数学应用意识。

二. 学情分析八年级的学生已经学习了平面直角坐标系、函数的概念和性质等基础知识,对一次函数有一定的了解。

但学生在实际应用一次函数解决生活中的问题时,还缺乏必要的操作能力和思维能力。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高学生的应用能力。

三. 说教学目标1.知识与技能:让学生掌握一次函数在实际生活中的应用,能运用一次函数解决简单的生活问题。

2.过程与方法:通过实例分析,培养学生从实际问题中提出数学模型的能力,提高学生的数学思维能力。

3.情感态度与价值观:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣,培养学生的数学应用意识。

四. 说教学重难点1.教学重点:一次函数在实际生活中的应用。

2.教学难点:如何将实际问题转化为一次函数模型,以及运用一次函数解决实际问题。

五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。

2.教学手段:利用多媒体课件、实物模型和教学卡片等辅助教学。

六. 说教学过程1.导入新课:通过展示生活中的一些实例,引导学生发现一次函数的应用,激发学生的学习兴趣。

2.知识讲解:讲解一次函数在实际生活中的应用,引导学生理解一次函数模型的建立过程。

3.实例分析:分析具体的生活问题,引导学生运用一次函数模型解决问题。

4.小组讨论:让学生分组讨论,分享各自在生活中发现的一次函数应用实例,互相学习,提高认识。

5.总结提升:总结一次函数在实际生活中的应用,强调数学与生活的紧密联系。

6.课堂练习:布置一些实际问题,让学生运用一次函数模型解决,巩固所学知识。

北师大版八年级数学上册:4.4《一次函数的应用》说课稿

北师大版八年级数学上册:4.4《一次函数的应用》说课稿

北师大版八年级数学上册:4.4《一次函数的应用》说课稿一. 教材分析北师大版八年级数学上册4.4《一次函数的应用》这一节的内容,是在学生已经掌握了函数的基本概念、一次函数的定义、图像和性质等知识的基础上进行教学的。

本节课的主要内容是一次函数在实际生活中的应用,通过具体的实例让学生了解一次函数在实际生活中的重要性,提高学生解决实际问题的能力。

教材中给出了几个实际问题,让学生通过列一次函数的关系式来解决问题,从而加深对一次函数的理解和应用。

二. 学情分析八年级的学生已经具备了一定的函数知识,对于一次函数的基本概念和性质有一定的了解。

但是,对于如何将一次函数应用于实际问题中,可能还存在一定的困难。

因此,在教学过程中,我将会注重引导学生将理论知识与实际问题相结合,提高他们解决实际问题的能力。

三. 说教学目标1.让学生了解一次函数在实际生活中的应用,提高解决实际问题的能力。

2.通过对实际问题的分析,让学生加深对一次函数的理解。

3.培养学生的数学思维能力和团队协作能力。

四. 说教学重难点1.教学重点:一次函数在实际生活中的应用。

2.教学难点:如何将实际问题转化为一次函数问题,并找出合适的解题方法。

五. 说教学方法与手段在教学过程中,我将采用问题驱动的教学方法,引导学生通过小组合作、讨论交流的方式进行学习。

同时,我会利用多媒体教学手段,如PPT、视频等,来帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过一个简单的实际问题,引导学生思考如何用数学知识来解决问题。

2.新课讲解:通过PPT展示教材中的实例,引导学生了解一次函数在实际生活中的应用。

3.小组讨论:让学生分组讨论,如何将实际问题转化为一次函数问题,并找出合适的解题方法。

4.总结讲解:对学生的讨论结果进行点评,讲解一次函数在实际问题中的应用方法和技巧。

5.练习巩固:布置一些相关的练习题,让学生巩固所学知识。

6.课堂小结:让学生总结本节课所学的内容,加深对一次函数应用的理解。

八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)

八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)

八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,这部分内容主要让学生学会利用两个一次函数图象解决实际问题。

教材通过生活实例引入两个一次函数图象的交点坐标,让学生理解交点坐标的意义,并学会如何求解交点坐标。

同时,教材还引导学生通过观察图象来判断两个函数的交点个数,以及如何利用交点坐标解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了一次函数图象的基本知识,包括一次函数的定义、图象的性质等。

但是,对于两个一次函数图象的交点坐标以及应用,可能还存在一定的困惑。

因此,在教学过程中,我将会重点引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。

三. 说教学目标1.知识与技能目标:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。

2.过程与方法目标:通过生活实例的引入,培养学生的观察能力和思维能力;通过小组合作探究,培养学生的合作意识和团队精神。

3.情感态度与价值观目标:让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣和热情。

四. 说教学重难点1.教学重点:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。

2.教学难点:如何引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作探究法等。

2.教学手段:利用多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入新课:通过一个实际问题引入本节课的内容,让学生观察图象,引导学生思考两个函数的交点坐标有什么意义。

2.讲解新课:讲解两个一次函数图象的交点坐标的意义,以及如何求解交点坐标。

函数的应用说课稿

函数的应用说课稿

函数的应用说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是“函数的应用”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“函数的应用”是高中数学课程中的重要内容,它不仅是函数知识的延续和深化,更是培养学生数学应用意识和解决实际问题能力的重要途径。

本节课所选用的教材是人民教育出版社出版的普通高中课程标准实验教科书《数学》必修 1。

在教材中,函数的应用通过实际问题的引入,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。

同时,教材中提供了丰富的例题和习题,帮助学生掌握函数应用的方法和技巧。

二、学情分析授课对象是高一年级的学生,他们已经学习了函数的基本概念和性质,具备了一定的函数知识储备。

但是,学生在将函数知识应用到实际问题中时,往往会遇到困难,缺乏解决实际问题的思路和方法。

此外,高一学生的思维正处于从形象思维向抽象思维过渡的阶段,在教学中需要注重引导学生从实际问题中抽象出数学模型,培养学生的抽象思维能力。

三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)学生能够理解函数在实际问题中的应用,掌握建立函数模型解决实际问题的一般步骤。

(2)学生能够运用常见的函数模型(如一次函数、二次函数、指数函数、对数函数等)解决简单的实际问题。

2、过程与方法目标(1)通过实际问题的探究,培养学生观察、分析、归纳、概括的能力,提高学生的数学思维能力。

(2)让学生经历从实际问题中建立函数模型,求解模型,检验模型的过程,体会数学建模的思想方法。

3、情感态度与价值观目标(1)让学生感受数学与生活的密切联系,激发学生学习数学的兴趣和积极性。

(2)培养学生的创新意识和应用意识,提高学生解决实际问题的能力,增强学生的自信心。

四、教学重难点1、教学重点(1)建立函数模型解决实际问题的一般步骤。

(2)常见函数模型在实际问题中的应用。

一次函数说课稿

一次函数说课稿

《一次函数》说课稿(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《一次函数》说课稿一、说教材《一次函数》是苏教版初中数学八年级上册第六单元第二节的内容。

从知识内容来说,本课是对函数的进一步认识与提升,进一步发展学生的抽象逻辑思维,渗透建模思想。

函数本身是反映现实世界变化规律的重要模型,教材在编排上充分体现了从实际生活情境中抽象数学问题,建立模型并形成概念的过程,并将正比例函数纳入一次函数的研究中,力图通过实例从代数表达式的角度认识一次函数。

从教材体系来说,之前学生已经掌握了变量之间的关系,初步体会了函数概念的基础之上的教学。

通过本节课的学习可以培养学生函数思想和建模意识,为之后探究一次函数图像、二次函数等奠定了扎实的基础。

本课的知识起到了承前启后的作用,也符合学生的认知规律。

二、说学情八年级的学生好奇、好动、好表现,应尽量让学生发表自己的想法。

因此本节课既要考虑学生的认知思维特点,也要积极关注学生的已有知识储备。

就现阶段的学生而言,已经掌握了两个变量的关系,能列出变量间的关系表达式,但是借助生活情境,正确将实际问题抽象为函数模型是有一定困难的,因此需要积极引导学生学习好的数学方法,进一步体会变量和函数之间的关系因此在教学过程中教师要充分借助具体情境来激发学生学习兴趣的同时设置问题来引发学生思考,类比观察、探究规律,巧妙地建立概念。

三、说教学目标教学目标是教学活动实施的方向和预期达到的结果,是一切教学活动的出发点和归宿。

精心设计了如下的教学目标:(一)知识与技能理解一次函数和正比例函数的概念,体会之间的联系,并能根据已知生活情境给出一次函数解析表达式,发展抽象概括能力。

(二)过程与方法经历动手试验、规律探索的活动过程,提高抽象思维能力,并借助于将实际生活情境转化为数学问题,渗透建模思想。

(三)情感态度与价值观在知识的探求过程中提高学习数学的兴趣,提高数学的应用意识。

一次函数的应用说课稿.2.5一次函数的应用(说课稿)

一次函数的应用说课稿.2.5一次函数的应用(说课稿)

12.2.5一次函数的应用(说课稿)数学教学的基本出发点是促进学生全面、持续、和谐的发展。

它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

一、教材分析(一)教材所处的地位与作用这节课是九年义务教育教科书(沪科版)八年级第十二章一次函数的第五节数学课。

主要是根据待定系数法确定分段函数,根据函数图像解决生活中的应用。

目的在于:一方面通过实际生活中的问题,进一步突出函数这种数学模型应用的广泛性和有效性;另一方面使学生在解决实际问题的情景中运用所学数学知识,进一步提高分析问题和解决问题的综合能力,本章在学生已有数学模型的基础上,继续重视数学与实际的联系,在建立函数这种应用更广泛的数学模型的进程中继续体现建模思想。

(二)学生情况分析学生通过第十一章平面直角坐标系的学习,“数形结合思想”已初步形成。

一次函数内容进一步加强了学生对识图能力的培养,并学会将理论和生活实际相结合。

教学目标知识与技能熟练掌握用待定系数法确定一次函数的解析式,并能解决简单的实际问题。

初步了解一次函数的建模过程,运用所学知识和技能解决问题,发展应用意识。

过程与方法经历探究利用一次函数解决简单问题的过程,学会运用待定系数法确定一次函数的解析式解决简单的实际问题的思想方法,初步掌握函数建模的过程。

情感、态度与价值观通过学习利用一次函数解决简单问题,体验学习一次函数的重要性。

二、教法与学法(一)教法分析数学教学是数学活动的教学,是师生之间、学生之间的交往互动与共同发展的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章一次函数4. 一次函数的应用(第1课时)各位老师,各位评委大家好!我是新九学校的数学教师陈莹,今天我说课的课题是《一次函数的应用》第一课时,下面是我对本节课的简单分析。

一、学情分析在前面的学习过程中,学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。

在此基础上,引导学生根据图象等信息列出一次函数表达式的方法,并进一步感受数形结合的思想方法.且八年级学生在13—14岁之间,有一定生活经验和较强的好奇心、求知欲,已具备了思维的完整性、深刻性和实践性等思维品质,但尚待提高,学生的抽象概括能力有限.在学习过程中尽可能的为学生提供更广阔的独立自由思考的空间,也鼓励学生大胆探索,调动学生的学习积极性,使学生在活动中,学会解决问题的方法。

二、教材分析1.本课内容在教材中地位、特点和作用本节课是北师大版义务教育教科书八年级上第四章《一次函数》第四节的第一课时,主要内容是利用图象、表格等信息,确定一次函数的表达式.在此之前,学生已经学习一次函数的相关知识,本节既是对前面所学知识的深化与拓展,又是联系生活实际,培养学生应用数学意识和创新能力的良好素材。

为今后学习实际问题与反比例函数,实际问题与二次函数的转化奠定了基础。

与原教材相比,新教材更注重与实际联系,更加注重培养学生掌握数形结合这一重要的思想方法;并且让学生更加明确确定一次函数的表达式需要两个独立的条件,这个问题虽然简单,但它涉及数学对象的一个本质概念---基本量.值得一提的是确定一次函数表达式,需要根据两个条件列出关于k、b的方程组,而二元一次方程组是下一章的学习内容,因此本节所研究的一次函数,某个参数应较易于从所给条件中获得,从而转化为通过另一个条件确定另一个参数的问题.因此,在教学中要注意控制问题的难度,对于一般问题,可在下一章的学习中再加强训练.2.教学目标的确立及依据教学目标是教学活动的起点和归宿,教学目标设计的科学性和合理性直接影响教学过程的实施和教学效果的评价.基于本班学生,知识、能力、情感态度以及对新的学习所具备的相关知识掌握程度,考虑到本班学生已有的认知结构、心理特征,及本节课在教材中的地位和作用,本着以教材为基础、以课标为准绳,我确立如下三维目标:知识与技能:了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.过程与方法:经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法;情感态度与价值观:经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.3.教学重难点由于函数具有较高的抽象性和动态变化过程,其中蕴含众多的数学思想,八年级学生虽然具备了一定的抽象概括能力,但要求学生自主发现实际问题如何转化成函数问题是很困难的,所以我确定本节课重点和难点是:教学重点:把实际问题转化为数学问题,建立函数模型,并能用一次函数解决问题。

教学难点:把实际问题抽象成函数问题,画出函数图象,利用分段函数解决实际问题。

三、说教法、学法教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞,充分发挥学生在学习中的积极性、主动性和创造性。

所以在课堂教学中,只有充分发挥教师“主导、点拨、总结、调控”的作用,营造起民主和谐的课堂氛围,才能实现教师角色转换,真正突出学生的主体地位.使学生课前勤学,课上会学,最终达到乐学,把“倡导自主、体现合作、引导探究、重视过程”真正落实到课堂教学之中,让素质教育走进课堂.教法:本节课与实际生活联系紧密,比较贴近生活,为了体现以学生的发展为主,遵循学生的认知规律,我主要采用设置问题情境,引导发现归纳法和启发式教学.学法:在教学过程中,为学生自主探索提供问题情境,重视学生的互动学习,让学生互动讨论,积极与同伴交流自己的想法,最后把教师讲解的要点归纳总结.四、教学过程节课设计了六个教学环节:本节课设计了六个教学环节:第一环节:复习引入;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习与知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节复习引入内容:提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数具有什么性质?目的:学生回顾一次函数相关知识,温故而知新.第二环节初步探究内容1:展示实际情境提供两个问题情境,供老师选用.实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.实际情境二:假定甲、乙二人在一项赛跑中路程y与时间x的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.目的:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.情景一、二可根据学生情况进行选取,情景二几个问题有一定的梯度,学生可能更易写出函数关系式.教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先求出速度,再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出待定系数法.内容2:想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?目的:在实践的基础上学生加以归纳总结。

这个问题涉及到数学对象的一个本质概念——基本量.由于一次函数有两个基本量k 、b ,所以需要两个条件来确定.第三环节 深入探究内容1:例1 在弹性限度内,弹簧的长度y (厘米)是所挂物体的质量x (千克)的一次函数,一根弹簧不挂物体时长14.5cm ;当所挂物体的质量为3kg 时,弹簧长16cm 。

写出y 与x 之间的关系式,并求所挂物体的质量为4kg 时弹簧的长度.解:设b kx y +=,根据题意,得14.5=b , ①16=3k +b ,②将5.14=b 代入②,得5.0=k .所以在弹性限度内,5.145.0+=x y .当4=x 时,5.165.1445.0=+⨯=y (厘米).即物体的质量为4千克时,弹簧长度为5.16厘米.目的:引例中设置的是利用函数图象求函数表达式,这个例子选取的是弹簧的一个物理现象,目的在于让学生从不同的情景中获取信息求一次函数表达式,进一步体会函数表达式是刻画现实世界的一个很好的数学模型.这道例题关键在于求一次函数表达式,在求出一般情况后,第二个问题就是求函数值的问题可迎刃而解.教学注意事项:学生除了从函数的观点来考虑这个问题之外,还有学生是用推理的方式:挂3千克伸长了1.5厘米,则每千克伸长了0.5厘米,同样可以得到y 与x 间的关系式.对此,教师应给予肯定,并指出两种方法考虑的角度和采用的方法有所不同.内容2:想一想:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤.求函数表达式的步骤有:1.设一次函数表达式.2.根据已知条件列出有关方程.3.解方程.4.把求出的k,b值代回到表达式中即可.目的:对求一次函数表达式方法的归纳和提升。

在此基础上,教师可指出这种先将表达式中未知系数用字母表示出来,再根据条件求出这个未知系数,这种方法称为待定系数法.第四环节反馈练习内容:1.如图,直线l是一次函数b=的图象,求它的表达kxy+式.2.若一次函数b=2的图象经过A(-1,1),则=y+xb,该函数图象经过点B(1,)和点C(,0).3.如图,直线l是一次函数b=的图象,填kxy+空:(1)=k;b,=(2)当30y;x时,==(3)当30x.=y时,=4.已知直线l与直线xy2=平行,且与y轴交于点(0,2),求直线l的-表达式.答案:1.x y 3-= 2.)0,23(),5,1(,3-=C B b . 3.(1)32,2-==k b ; (2)18-;(3)42-.4.22+-=x y .目的:四个练习旨在对学生求一次函数表达式的掌握情况进行反馈,以便及时调整教学进程.效果:四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.第五环节 课时小结内容:总结本课知识与方法1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出k ,b 的值,从而确定函数解析式。

其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;4.把k,b代回表达式中,写出表达式.2.本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.第六环节作业布置习题4.5:1,2,3,4目的:进一步巩固当天所学知识。

教师也可根据学生情况适当增减,但难度不应过大.四、教学设计反思1.设计理念本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.2.突出重点、突破难点策略探究的过程由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣,又让学生深切体会到一次函数就在我们身边,应用非常广泛.教学中注意到利用问题串的形式,层层递进,逐步让学生掌握求一次函数表达式的一般方法.教学中还注意到尊重学生的个体差异,使每个学生都学有所获.3.分层教学根据本班学生及教学情况可在教学过程中选择拓展资源中内容进行补充或拓展,也可留作课后作业.。

相关文档
最新文档