一次函数的应用--课件
合集下载
一次函数的应用PPT课件
例2 教材补充例题 如图,直线l是一次函数y=kx+b的图象,请根据图象 求出这个函数的表达式.
【解析】由图象可知,函数y=kx+b的图象经过 点(0,1)和点(3,-3).
解:由图象可知,直线 y=kx+b 过点(0,1), 所以 b=1,所以一次函数的表达式为 y=kx+1. 又因为此函数图象过点(3,-3), 所以-3=3k+1,解得 k=-43. 故这个函数的表达式为 y=-4x+1.
点(a,0)
函数值为 0 时,相应的自变量的值为 a;函数图象与 x 轴的交点
点(x1,y1)和点(x2,y2)
自变量每增加 1,函数值的改变量为y2-y1 x2-x1
点(x1,y1)和点(x2,y2) (x1≤x≤x2)
若 k>0,当 x=x1 时,y 最小值=kx1+b;当 x=x2 时,y 最大值=kx2+b 若 k<0,当 x=x1 时,y 最大值=kx1+b;当 x=x2 时,y 最小值=kx2+b
解:(1)根据题意,得s=400-80t(0≤t≤5). (2)如图所示: (3)当t=3时,s=400-80×3=160. 因此Байду номын сангаас3小时后,小明一家距重庆160千米.
总结反思
小结
知识点一 正比例函数表达式的确定 由于正比例函数y=kx中只有一个不确定的系数k,故只要
一个条件(原点除外,如一对x,y的值或一个点的坐标)就可求得 k的值.
3
【归纳总结】 确定一次函数表达式的“五步法”: (1)设一次函数表达式为y=kx+b; (2)根据已知条件列出有关k,b的方程; (3)解方程,求k,b的值; (4)把k,b的值代回所设表达式; (5)写出表达式.
目标二 能借助表达式解决一些简单问题
一次函数的应用课件(共31张PPT)
(0,b)
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
一次函数的应用ppt
解题思路
02
确定一次函数的表达式
03
04
代入已知条件求解
验证答案是否符合实际情况
经典的一次函数应用题解析
1 2 3
题型一
速度与时间问题
题目
一辆汽车以60千米/小时的速度匀速行驶,行驶 了3小时后,离目的地还有100千米,求目的地 与起始点的距离。
解析
设目的地与起始点的距离为 d 千米,根据速度、 时间和距离的关系,有 d = 60 × 3 + 100。
02
一次函数是线性函数的一种,其 图像是一条直线。
一次函数的性质
当 $a > 0$ 时,函数为增函数,即当 $x$ 增大时,$y$ 也随之增大;当 $a < 0$ 时,函数为减函数,即当 $x$ 增大时,$y$ 随之减小。
斜率 $k = a$,表示函数图像的倾斜程度。当 $k > 0$ 时,图像向右上方倾斜;当 $k < 0$ 时,图像向右下方倾斜。
VS
一次函数与预测模型
利用一次函数建立预测模型,可以预测未 来趋势或结果。例如,通过历史销售数据 建立一次函数模型,可以预测未来的销售 趋势。
04 一次函数的应用题解析
一次函数的应用题类型及解题思路
类型一:速度与时间问题 类型二:利润与销售量问题
类型三:几何问题
一次函数的应用题类型及解题思路
01
一次函数的应用
contents
目录
• 一次函数的定义和性质 • 一次函数在实际生活中的应用 • 一次函数与其他数学知识的综合应用 • 一次函数的应用题解析 • 一次函数的应用前景展望
01 一次函数的定义和性质
一次函数的定义
01
一次函数的一般形式为 $y = ax + b$,其中 $a$ 和 $b$ 是常数,且 $a neq 0$。
02
确定一次函数的表达式
03
04
代入已知条件求解
验证答案是否符合实际情况
经典的一次函数应用题解析
1 2 3
题型一
速度与时间问题
题目
一辆汽车以60千米/小时的速度匀速行驶,行驶 了3小时后,离目的地还有100千米,求目的地 与起始点的距离。
解析
设目的地与起始点的距离为 d 千米,根据速度、 时间和距离的关系,有 d = 60 × 3 + 100。
02
一次函数是线性函数的一种,其 图像是一条直线。
一次函数的性质
当 $a > 0$ 时,函数为增函数,即当 $x$ 增大时,$y$ 也随之增大;当 $a < 0$ 时,函数为减函数,即当 $x$ 增大时,$y$ 随之减小。
斜率 $k = a$,表示函数图像的倾斜程度。当 $k > 0$ 时,图像向右上方倾斜;当 $k < 0$ 时,图像向右下方倾斜。
VS
一次函数与预测模型
利用一次函数建立预测模型,可以预测未 来趋势或结果。例如,通过历史销售数据 建立一次函数模型,可以预测未来的销售 趋势。
04 一次函数的应用题解析
一次函数的应用题类型及解题思路
类型一:速度与时间问题 类型二:利润与销售量问题
类型三:几何问题
一次函数的应用题类型及解题思路
01
一次函数的应用
contents
目录
• 一次函数的定义和性质 • 一次函数在实际生活中的应用 • 一次函数与其他数学知识的综合应用 • 一次函数的应用题解析 • 一次函数的应用前景展望
01 一次函数的定义和性质
一次函数的定义
01
一次函数的一般形式为 $y = ax + b$,其中 $a$ 和 $b$ 是常数,且 $a neq 0$。
《一次函数的应用》PPT课件
销售问题 工程问题 路程问题 积分问题 比较问题 车费问题 增减问题 方案选择 。。。。。。(中考重点)
数学的魅力与奇妙: 题异,理相通,同理可得。 化繁为简,解决实际问题。 应用于生活,服务于生活。
学以致用
练习:如图,李大爷要围成一个矩形菜园ABCD,菜园的 一边利用足够长的墙,用篱笆围成的另外三边总长应恰好 为24米.设BC边的长为x米,AB边的长为y米,则y与x之 间的函数关系式是?
学习目标 1、通过对实际问题分析,体会一次函数是刻画现实世 界数量关系的模型. 2、能用一次函数解决简单的实际问题,感悟数形结合、 转化和建模的数学思想,增强应用意识,提高分析问 题和解决问题的能力.
温故知新---化繁为简
之前学过的应用题主要有列一元一次方程解应用题、列分式方程解应用 题、列一元一次不等式解应用题。应用题基本题型你记得有哪些呢?
出最低费用.
数的性质求出最低费用.
典例剖析
解:(1)设购买甲种树苗x万株, 则乙种树苗y万株,由题意得:
x+y=3 25x+40y=90 解得x=2,y=1 经检验 符合题意 答:购买甲种树苗2万株,乙种 树苗1万株. (2)设甲种树苗购买z万株, 由题意得:
80%z+90%(3-z)≥3×85%, 解得z≤1.5. 答:甲种树苗至多购买1.5万株.
10.6 一次函数的应用
-.
y (元)
为有源头活水来--理论转化实际
2、再看左图,某航空公司规定,
900
旅客所携带行李的质量(kg)与其运
300
(kg)
O
30 50 x
费(元)由左图所示的一次函数图象 确定,如果旅客缴纳的运费在300 元到900之间,那么你能否猜测出
一次函数的应用课件ppt
A.骑车的同学比步行的同学晚出发30分钟
C
B.骑车的同学从出发到追上步行的同学用了20分钟
C.骑车的同学和步行的同学同时到
达目的地
D. 步行的速度是10千米/时
二、一次函数图像的应用
在实际问题中,当自变量的取值范围收到一定的限 制时,函数y=kx+b(k≠0)的图像就不再是一条直线。要 根据实际情况进行分析,其图像可能是射线、线段或折线 等。 例2、宝应县上网方式有三种:方式一:每月80元包干;方 式二:每月上网时间(x)与上网费用(y)的函数关系如图所 示;方式三:以0小时为起点,每小时收费1.6元,月收费 不超过120元。 (1)写出方式二、方式三 的函数关系式。 (2)小华家每月上网60个小时, 选用哪种方式上网合算?
某班级需要购球拍4付,乒乓球若干盒(不少于4盒)。 (1)、设购买乒乓球盒数为x(盒),在甲店购买的 付款数为y甲(元),在乙店购买的付款数为y乙(元), 分别写出在两家商店购买的付款数与乒乓球盒数x之间 的函数关系式。
(2)就乒乓球盒数图书馆开展两种方式的租书业务:一种 是使用会员卡,另一种是使用租书卡。使用这两种卡 租书,租书金额y(元)与租书时间x(天)之间的关 系如图所示。
( 1)分别写出用租书卡和会员卡租书的金额y(元) 两函数图像在同一坐标系中,当取相同的 与租书时间x(天)之间的函数关系式;
自变量时,下方图像对应的函数的函数值 ( 2)两种租书方式每天租书的收费分别是多少元? 小,交点处的函数值相等。 (元) y (3)若两种租书卡的使用
(2)两图象的交点表示了什么意思?
(3)在哪一段时间内,甲工程
队挖掘的河渠比乙工程队挖掘 的河渠长?
2、如图, lA 、 lB 分别表示A步行与B骑车在同 一路上行驶的路程s与时间t的关系. (1)B出发时与A相距 10 km; (2)走了一段路后,自行车发生故障,进行修理 ,所用的时间是 1 h;
C
B.骑车的同学从出发到追上步行的同学用了20分钟
C.骑车的同学和步行的同学同时到
达目的地
D. 步行的速度是10千米/时
二、一次函数图像的应用
在实际问题中,当自变量的取值范围收到一定的限 制时,函数y=kx+b(k≠0)的图像就不再是一条直线。要 根据实际情况进行分析,其图像可能是射线、线段或折线 等。 例2、宝应县上网方式有三种:方式一:每月80元包干;方 式二:每月上网时间(x)与上网费用(y)的函数关系如图所 示;方式三:以0小时为起点,每小时收费1.6元,月收费 不超过120元。 (1)写出方式二、方式三 的函数关系式。 (2)小华家每月上网60个小时, 选用哪种方式上网合算?
某班级需要购球拍4付,乒乓球若干盒(不少于4盒)。 (1)、设购买乒乓球盒数为x(盒),在甲店购买的 付款数为y甲(元),在乙店购买的付款数为y乙(元), 分别写出在两家商店购买的付款数与乒乓球盒数x之间 的函数关系式。
(2)就乒乓球盒数图书馆开展两种方式的租书业务:一种 是使用会员卡,另一种是使用租书卡。使用这两种卡 租书,租书金额y(元)与租书时间x(天)之间的关 系如图所示。
( 1)分别写出用租书卡和会员卡租书的金额y(元) 两函数图像在同一坐标系中,当取相同的 与租书时间x(天)之间的函数关系式;
自变量时,下方图像对应的函数的函数值 ( 2)两种租书方式每天租书的收费分别是多少元? 小,交点处的函数值相等。 (元) y (3)若两种租书卡的使用
(2)两图象的交点表示了什么意思?
(3)在哪一段时间内,甲工程
队挖掘的河渠比乙工程队挖掘 的河渠长?
2、如图, lA 、 lB 分别表示A步行与B骑车在同 一路上行驶的路程s与时间t的关系. (1)B出发时与A相距 10 km; (2)走了一段路后,自行车发生故障,进行修理 ,所用的时间是 1 h;
《一次函数的应用》一次函数PPT
第四章 一次函数
4.4 一次函数的应用
学习目标
1.经历分析实际问题中两个变量之间关系,并解决有关问题的
过程,发展应用意识;
2.进一步体会数形结合的思想,发展数形结合解决问题的能力;
3.利用一次函数图象分析、解决简单实际问题,发展几何直观;
4.初步体会函数与方程的关系.
知识回顾
什么是一次函数?
若两个变量x,y间的对应关系可以表示成y=kx+b(k,
即所挂物体的质量为4kg时,弹簧长度为16.5cm.
一 确定一次函数表达式
待定系数法确定一次函数表达式
(1) 设出函数表达式;
(2) 将已知的x,y的对应值代入所设表达式中,得到
关于k,b的一元一次方程;
(3) 解方程求未知数;
(4) 写出函数的表达式.
合作探究
探究2:由于持续高温和连日无雨,某水库的蓄水量随着时间的增
b为常数,k≠0)的形式,则称y是x的一次函数.
上式中k,b对函数
图象有什么影响?
合作探究
探究1:某物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间
t(s)的关系如图所示.
(1)写出v与t之间的关系式;
(2)下滑3s时物体的速度是多少?
v(m/s)
6
5
4
分析:因为直线过原点,符合正比例函数的
3
量的关系,根据图象填空:
大于4t
(4) 当销售量________时,该公司赢利
l1
6000
l2
5000
(收入大于成本);
4000
3000
当销售量_________时,该公司亏损
小于4t
2000
(收入小于成本).
4.4 一次函数的应用
学习目标
1.经历分析实际问题中两个变量之间关系,并解决有关问题的
过程,发展应用意识;
2.进一步体会数形结合的思想,发展数形结合解决问题的能力;
3.利用一次函数图象分析、解决简单实际问题,发展几何直观;
4.初步体会函数与方程的关系.
知识回顾
什么是一次函数?
若两个变量x,y间的对应关系可以表示成y=kx+b(k,
即所挂物体的质量为4kg时,弹簧长度为16.5cm.
一 确定一次函数表达式
待定系数法确定一次函数表达式
(1) 设出函数表达式;
(2) 将已知的x,y的对应值代入所设表达式中,得到
关于k,b的一元一次方程;
(3) 解方程求未知数;
(4) 写出函数的表达式.
合作探究
探究2:由于持续高温和连日无雨,某水库的蓄水量随着时间的增
b为常数,k≠0)的形式,则称y是x的一次函数.
上式中k,b对函数
图象有什么影响?
合作探究
探究1:某物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间
t(s)的关系如图所示.
(1)写出v与t之间的关系式;
(2)下滑3s时物体的速度是多少?
v(m/s)
6
5
4
分析:因为直线过原点,符合正比例函数的
3
量的关系,根据图象填空:
大于4t
(4) 当销售量________时,该公司赢利
l1
6000
l2
5000
(收入大于成本);
4000
3000
当销售量_________时,该公司亏损
小于4t
2000
(收入小于成本).
一次函数的应用课件
关系就可以用一次函数表示。
热学
在热学中,描述温度随时间变化 的规律时,一次函数经常被使用 。例如,当物体被加热或冷却时 ,其温度变化率往往是一次函数
。
电学
在电学中,电流、电压和电阻之 间的关系也可以用一次函数来表 示。通过这些关系,可以计算出
电流、电压和电阻的值。
日常生活中的应用
购物
在购物时,一次函数可以用来计算购物后的总花费。例如, 如果一件商品的价格随着购买数量的增加而增加,那么这个 价格和数量之间的关系就可以用一次函数来表示。
二次函数在金融、经济、工程等领域 应用较多,如投资、贷款、工程设计 等。
05 一次函数与不等式的关系
通过图像解不等式
01
函数图像与x轴的关系
当函数值大于0时,函数图像位于x轴上方;当函数值小于0时,函数图
像位于x轴下方。
02
函数图像与y轴的关系
当自变量为0时,函数值即为y轴截距,正数表示函数值大于0,负数表
在物理学中,一次函数可 以用来描述物体的运动规 律,例如速度、加速度和 时间之间的关系。
自然科学中的应用
化学反应速率
化学反应的速率可以用一次函数表示 ,描述反应物浓度和反应速率之间的 关系。
细胞生长
在生物学中,一次函数可以用来描述 细胞生长过程中细胞数量和时间之间 的关系。
1.谢谢聆 听
单调性判断
根据斜率正负和函数图像升降规律判断单调性,当函数图 像向上倾斜时,函数单调递增;当函数图像向下倾斜时, 函数单调递减。
单调性与函数最值关系
单调性决定了函数在区间上的最值,单调递增函数在区间 上取得最小值,单调递减函数在区间上取得最大值。
03 一次函数的应用
解析几何中的应用
热学
在热学中,描述温度随时间变化 的规律时,一次函数经常被使用 。例如,当物体被加热或冷却时 ,其温度变化率往往是一次函数
。
电学
在电学中,电流、电压和电阻之 间的关系也可以用一次函数来表 示。通过这些关系,可以计算出
电流、电压和电阻的值。
日常生活中的应用
购物
在购物时,一次函数可以用来计算购物后的总花费。例如, 如果一件商品的价格随着购买数量的增加而增加,那么这个 价格和数量之间的关系就可以用一次函数来表示。
二次函数在金融、经济、工程等领域 应用较多,如投资、贷款、工程设计 等。
05 一次函数与不等式的关系
通过图像解不等式
01
函数图像与x轴的关系
当函数值大于0时,函数图像位于x轴上方;当函数值小于0时,函数图
像位于x轴下方。
02
函数图像与y轴的关系
当自变量为0时,函数值即为y轴截距,正数表示函数值大于0,负数表
在物理学中,一次函数可 以用来描述物体的运动规 律,例如速度、加速度和 时间之间的关系。
自然科学中的应用
化学反应速率
化学反应的速率可以用一次函数表示 ,描述反应物浓度和反应速率之间的 关系。
细胞生长
在生物学中,一次函数可以用来描述 细胞生长过程中细胞数量和时间之间 的关系。
1.谢谢聆 听
单调性判断
根据斜率正负和函数图像升降规律判断单调性,当函数图 像向上倾斜时,函数单调递增;当函数图像向下倾斜时, 函数单调递减。
单调性与函数最值关系
单调性决定了函数在区间上的最值,单调递增函数在区间 上取得最小值,单调递减函数在区间上取得最大值。
03 一次函数的应用
解析几何中的应用
一次函数的应用PPT课件
1、函数的定义: 一般地,在某个变化过 程中,有两个变量x和y,如 果给定一个x值,相应地就确 定另一个变量y的值,那么我 们称y是x的函数,其中x是自 变量,y是因变量。
2、函数图象的概念: 把一个函数的自变量x与对应 的因变量y的值分别作为点的横坐 标和纵坐标,在直角坐标系内描出 它们的对应点,所有这些点组成的 图形叫做该函数的图象。
甲 地 乙 地
A 校
3500 100
B 校
2400
(3)设甲地运往A校的草皮为x平方米,总运费为y元。 ∴甲地运往B校的草皮为(3500- x)平方米, 乙地运往A校的草皮为(3600- x)平方米, 乙地运往B校的草皮为(x -1100)平方米。 A 校 B 校 甲 地 乙 地
x
(3600- x)
R
Q
D
P
C
例3、某工厂加工一批产品,为了提前交货,规定 每个工人完成100个以内,按每个产品2元付酬; 超过100个,超过部分每个产品付酬增加0.2元; 超过200个,超过部分除按以上规定外,每个 产品付酬再增加0.3元,求每个工人: (1)完成100个以内所得报酬y(元)与产 品数x(个)之间的函数关系; (2)完成100个以上但不超过200个,所得 报酬y(元)与产品数x(个)之间的函数关系; (3)完成200个以上所得报酬y(元)与产 品数x(个)之间的函数关系。
A 校
1100 2500
B 校
2400 0
总运费最省的方案为:
[练一练]
某工厂生产某种产品,每件产品的出厂价为50元,其成 本价为25元,因为在生产过程中,平均每生产一件产品有 0.5立方米污水排出,所以为了净化环境,工厂设计两种对 污水进行处理的方案,并准备实施。 方案1:工厂将污水先并净化处理后排出,每处理1立方米污水, 所用的原料费为2元,并且每月排污设备损耗费为30000元。 方案2:工厂将污水排放到污水厂统一处理,每处理1立方米 污水需付14元的处理费。
2、函数图象的概念: 把一个函数的自变量x与对应 的因变量y的值分别作为点的横坐 标和纵坐标,在直角坐标系内描出 它们的对应点,所有这些点组成的 图形叫做该函数的图象。
甲 地 乙 地
A 校
3500 100
B 校
2400
(3)设甲地运往A校的草皮为x平方米,总运费为y元。 ∴甲地运往B校的草皮为(3500- x)平方米, 乙地运往A校的草皮为(3600- x)平方米, 乙地运往B校的草皮为(x -1100)平方米。 A 校 B 校 甲 地 乙 地
x
(3600- x)
R
Q
D
P
C
例3、某工厂加工一批产品,为了提前交货,规定 每个工人完成100个以内,按每个产品2元付酬; 超过100个,超过部分每个产品付酬增加0.2元; 超过200个,超过部分除按以上规定外,每个 产品付酬再增加0.3元,求每个工人: (1)完成100个以内所得报酬y(元)与产 品数x(个)之间的函数关系; (2)完成100个以上但不超过200个,所得 报酬y(元)与产品数x(个)之间的函数关系; (3)完成200个以上所得报酬y(元)与产 品数x(个)之间的函数关系。
A 校
1100 2500
B 校
2400 0
总运费最省的方案为:
[练一练]
某工厂生产某种产品,每件产品的出厂价为50元,其成 本价为25元,因为在生产过程中,平均每生产一件产品有 0.5立方米污水排出,所以为了净化环境,工厂设计两种对 污水进行处理的方案,并准备实施。 方案1:工厂将污水先并净化处理后排出,每处理1立方米污水, 所用的原料费为2元,并且每月排污设备损耗费为30000元。 方案2:工厂将污水排放到污水厂统一处理,每处理1立方米 污水需付14元的处理费。
《一次函数的应用》PPT课件(北师大版)
iX
让每一个生命都精彩绽放
01 小组大比拼
3.如图,直线l是一次函数y=kx+b的图象,填空:
(1)当x=30时,y=
;
(2)当y=30时,x= iX
.
y
l
3
2
1
O
x
-3 -2 -1
123
-1
-2
-3
让每一个生命都精彩绽放
iX
第二关
02 巩固提升
4.如图,直线l是一次函数y=kx+b的图象,
求l与两坐标轴所围成的三角形的面积.
让每一个生命都精彩绽放
iX
第一关
01 小组大比拼
1.如图,直线l是某正比例函数的图象,点A(-4,12),B
(3,-9)是否在该函数的图象上?
iX
y
3
2
1 O
-3 -2 -1 -1
123x
-2
-3
l
让每一个生命都精彩绽放
01 小组大比拼 2.若一次函数y=2x+b的图象经过点A(-1,1),点B(1,5), C(-10,-17),D(10,17)是否在该函数的图象上?
iX
y l
3
2
1
O
x
-3 -2 -1
123
-1
-2
-3
让每一个生命都精彩绽放
02 乘胜追击 •5. 已知一次函数的图象过点(0,2),且与两坐标轴围成的三 角形的面积为2,求此一次函数的表达式.
iX
让每一个生命都精彩绽放
iX
第三关
03 你敢挑战吗?
6.在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧
让每一个生命都精彩绽放
让每一个生命都精彩绽放
01 小组大比拼
3.如图,直线l是一次函数y=kx+b的图象,填空:
(1)当x=30时,y=
;
(2)当y=30时,x= iX
.
y
l
3
2
1
O
x
-3 -2 -1
123
-1
-2
-3
让每一个生命都精彩绽放
iX
第二关
02 巩固提升
4.如图,直线l是一次函数y=kx+b的图象,
求l与两坐标轴所围成的三角形的面积.
让每一个生命都精彩绽放
iX
第一关
01 小组大比拼
1.如图,直线l是某正比例函数的图象,点A(-4,12),B
(3,-9)是否在该函数的图象上?
iX
y
3
2
1 O
-3 -2 -1 -1
123x
-2
-3
l
让每一个生命都精彩绽放
01 小组大比拼 2.若一次函数y=2x+b的图象经过点A(-1,1),点B(1,5), C(-10,-17),D(10,17)是否在该函数的图象上?
iX
y l
3
2
1
O
x
-3 -2 -1
123
-1
-2
-3
让每一个生命都精彩绽放
02 乘胜追击 •5. 已知一次函数的图象过点(0,2),且与两坐标轴围成的三 角形的面积为2,求此一次函数的表达式.
iX
让每一个生命都精彩绽放
iX
第三关
03 你敢挑战吗?
6.在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧
让每一个生命都精彩绽放
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设y1对应的函数表达
6000
y1
y2
式是___y1_=_1_0_0_0x
5000
y2对应的函数表达式
是_y_=_5_0_0_x_+_2000
4000
(当x=4时,y1, y2表示什么意思?)
3000
∵销售收入等于销售成本
2000
∴y1=1000x=y=500x+2000
1000
∴x=4,即……
0 1 23 4 5 6 7 8
问题(二):
(2)摩托车每行驶100千米消耗多少升汽
油?
y/升
10
解:观察图象得:当x 从0增加到100时,y
9 8
从10减少到8,减少
7 6
了2,因此摩托车每
5 4
行驶100千米消耗2升
3 2
汽油。
1
x/千米
0 100 200 300 400 500
问题(三):
(3)油箱中的剩余油量小于1升时,摩托车
之 间的关系如图:根据图象
回答下列问题:
y/升
10
9
8
7
6
5
4
3
2
1
x/千米
0 100 200 300 400 500
问题(一):
(1)一箱汽油可供摩托车行驶多少千米?
y/升
解:观察图象,得
10 9
当y=0,x=500.因此一
8 7
箱汽油可供摩托车行
6 5
驶500千米。
4
3
2
1
x/千米
0 100 200 300 400 500
(2)求出当x≥25时,
风速y(km/h)与时间x(h) 之间的函数关系式。 (
)A
提示:K为多少?
(3)沙尘暴从发生到结 束,共经过多少小时?
0 4 10 25
D x(h)
小
结
1、经过本节课的学习,你有哪些收获? 经过本节课的学习,知道了通过作平行于X轴、Y 轴的直线与函数图象相交的情况进行分析,从而 获取信息,借助形象思维利用函数图象解决简单 的实际问题,以提高数学应用能力。 2、本节课主要运用什么方法来解决一些简 单的实际问题?
§19.2一次函数图象的应用
复习回顾
如图:直线l是一次函数y=kx+b,( K≠O)的图象,填空:
1 、b =
, k=
。
2、当x=30 时,y= 3 、y =0 时,x=
。y
4 3
2
。
1
-4 -3 -2 -1-1 O 1 2 3 4 5 x
-2
-3
新课导入
例1 某植物t天后的高度为ycm,图中反映了y与t之间 的关系,根据图象回答下列问题:
的距离与追赶时间之间的关系.
(2)A,B哪个速度快?
B的速度快
s/海里
10
9
8
7
6 5
A
4
3
2
B
1
s2 s1
0
2 4 6 8 10 t/分
问题: (3)15分内B能否追上A?(如何分析更简单?)
(4)如果一直追下去,那么B能否追上A?当B追
s/海里
10 8 6
上A是什么意思?什么时候能追上?怎么 解决?
将自动报警。行驶多少千米后,摩托车将自
动报警?
y/升
10
观察图象得:当y=1
9 8
时,x=450,因此当行
7 6
驶超过450千米后,摩
5 4
托车将自动报警。
3
2
1
x/千米
0 100 200 300 400 500
归纳1:
通过作平行于X轴、Y轴 的直线与函数图象相交的情 况进行分析,从而获取信息, 借助形象思维利用函数图象 解决简单的实际问题,以提高 数学应用能力。
方法一:分析函数图象方法,通过在图象上作垂线找 交点,结合实际意义解决问题;
方法二:运用一次函数的解析式和图象,建立等量关 系,再把数和形结合起来解决实际问题,这样更容易。
课后练习 书本: p100 14 15
p109 13 (提示:在确定函数的解析式
时,先认真观察图象特征)
结束的全过程,开始时风速平均每小时增加2km/h,经过郊外开
阔荒漠地时风速变为平均每小时增加4km/h,一段时间,之后风
速保持不变。当沙尘暴遇到城郊树林区时,其风速平均每小时
减少1km/h,最终停止。结合风速y与时间x的图象,回答下列
问题
y(km)
(1)在y轴( )处填
入相应的数值;
()
BC
提示:分别求出OA、AB的函数解析式
5000 4000 3000 2000
填空: (1)当销售量为2吨时, 销售收入=_ 2_0_0_0__元, 销售成本=_ 3_0_0_0 _元; (2)当销售量为6吨时,
1000
销售收入=___6_0_0_0___元,
0 1 23 4 5 6 7 8
X吨 销售成本=___5_0_0_0_ _元;
(3)当销售量等于__4_吨__时,销售收入等于销售成本;
(1)植物刚栽的时候多高?
Y/cm
(2)3天后该植物高度为
24 21
多少?
18
(3)几天后该植物高度可
达21cm?
12
9 6
(4)先写出y与t的关系式,
3
再计算长到 100cm需
0 2 4 6 8 1012 14 t/天 几天?
试一试
某种摩托车的油箱最多可储油10升,加满油后,
油箱中的剩余油量y(升)与摩托车行驶路程x(千米)
∴将点坐标分别代入函数解析式可得:
k1=1/5,b=5;k2=1/2 ∴A的解析式为: y=1/5x+5; B的解析式为:
y=1/2x ( x≥ 0)
思考:如果还用在在函
又∵B追 上A
数图象上作直线找交点 的方法可以吗?会有什
∴y= y,即1/5x+5=1/2x
么困难?这种方法的优
∴x=50/3
点是什么?
例2: 我边防局接到情报,近海处有一可疑船 只A正向公海方向行驶,边防局迅速派出快艇B 追赶,如图中s1与s2分别表示两船只相对于海岸 的距离s(海里)与追赶时间t(分)之间的关系。
s/海里
10 9 8 7 6 5 4 3 2 1
s2 s1
0
2 4 6 8 10
t/分
问题:
(1)哪条线表示B到海岸的距离与追赶时间 之间的关系? 当t=0时,s=0,所以s1表示B到海岸
所以,当x=50/3分钟时, B追上A
归纳2:
用函数知识求解实际问题时, 可用待定系数法先确定函数的解 析式,建立等量关系再结合函数 的图象,联系实际意义解决问题。
当当小老师
如图,y1反映了某公司产品的销售
收入与销售量之间的关系,y2
Y元
6000
y1
反映了该公司产品的销售成本
y2 与销售量之间的关系,根据图意
X吨
(4)当销售量_大__于__4_吨_时,该公司赢利?; 当销售量_小__于_4_吨___时,该公司亏损?
6000
5000 4000
y1
y2 分析:1、赢利什么意思?
收入大于成本
3000 2000
1000
2、亏损什么意思?
收入小于成本
0 1 23 4 5 6 7 8
X吨
探索、讨论
某气象研究中心观察新疆克州阿图什春天一场沙尘暴从发生到
s2 N P(?) M A
4
s1
B 2
0
24
6
8 10 12 14 16 t/分
(4)如果一直追下去,那么B能否追上A?当B追
上A是什么意思?什么时候能追上?怎么解决?
解:由题意,设A的解析式为: y=k1x+b; B的解析式 为:y=k2x,(k1,k2≠0)
∵ y=k1x+b 的图象过点(0,5),(10,7); y=k2x 的图象过点(10,5)