常见泰勒公式展开式

合集下载

高中泰勒公式展开式大全

高中泰勒公式展开式大全

高中泰勒公式展开式大全
高中数学中,泰勒公式是一种重要的数学工具,用于将一个函数在某一点附近展开成无限项的幂级数。

它在数学分析、微积分等领域有着广泛的应用。

下面将为大家介绍一些常见的高中泰勒公式的展开式。

1. 正弦函数展开式:
正弦函数的泰勒展开式可以写成:
sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...
2. 余弦函数展开式:
余弦函数的泰勒展开式可以写成:
cos(x) = 1 - (x^2)/2! + (x^4)/4! - (x^6)/6! + ...
3. 自然指数函数展开式:
自然指数函数的泰勒展开式可以写成:
e^x = 1 + x + (x^2)/2! + (x^3)/3! + ...
4. 对数函数展开式:
对数函数的泰勒展开式可以写成:
ln(1+x) = x - (x^2)/2 + (x^3)/3 - (x^4)/4 + ...
这些展开式在高中数学中经常用到,可以用来近似计算复杂的函数值。

通常情况下,展开式的前几项会给出较为准确的结果,而随着项数的增加,近似的精度也会提高。

需要注意的是,泰勒展开式只在展开点附近有效,当离展开点越远,近似的精度就会变得越低。

因此,在实际应用中,需要根据具体问题选择合适的展开点和合适的项数,以得到满意的近似结果。

以上是一些常见的高中泰勒公式的展开式,通过学习和理解这些展开式,可以帮助我们更好地理解和应用数学知识,提高解决问题的能力。

泰勒公式展开形式

泰勒公式展开形式

泰勒公式展开形式泰勒公式是指以一个单变量实值或复值函数在某点的多项式展开形式。

它是数学中重要的工具之一,常被用于在某一点附近逼近函数的值或者研究函数的性质。

一个函数f(x)在点a处展开的泰勒公式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ... +f^n(a)(x-a)^n/n! + Rn(x)其中f(a)表示函数f在点a处的取值,f'(a)表示f的一阶导数在点a处的取值,f''(a)表示f的二阶导数在点a处的取值,依次类推。

Rn(x)表示剩余项,是当n趋于无穷大时的余项,通常用于衡量近似精确度。

泰勒公式展开形式的应用非常广泛,以下列举几个常见的应用:1. 近似计算:利用泰勒公式可以将复杂的函数近似为多项式,从而简化计算。

例如,在计算机科学中,经常利用泰勒公式展开计算指数函数、三角函数等,提高计算效率。

2. 函数性质研究:通过泰勒公式展开,可以对函数在某一点的性质进行研究。

例如,可以通过观察各阶导数的符号来判断函数在某一点的单调性和极值点的性质。

3. 近似解析解的求解:在一些无解析解的问题中,可以利用泰勒公式展开得到近似解析解。

这种方法在物理学、工程学等领域中经常被使用,例如在无阻尼谐振子的运动方程中,通过泰勒公式展开可以得到近似的解析解。

4. 数值计算:在数值计算方法中,泰勒公式是一种重要的基本工具。

通过截断泰勒级数,可以将一个连续函数转化为一个离散的数值计算问题,从而进行数值近似计算。

总结起来,泰勒公式展开形式是一种重要的数学工具,通过将函数在某一点附近展开为多项式形式,可以近似计算、研究函数性质、求解近似解析解以及进行数值计算等。

其应用广泛,渗透到多个领域中,是数学研究和实际问题求解中不可或缺的工具。

泰勒展开常用公式

泰勒展开常用公式

泰勒展开常用公式摘要:1.泰勒展开的定义和背景2.泰勒展开常用公式3.泰勒展开的应用领域4.总结正文:泰勒展开是微积分学中一种重要的数学工具,它可以帮助我们更好地理解函数的性质和行为。

泰勒展开,又称泰勒公式,是由英国数学家布鲁克·泰勒在17 世纪提出的。

泰勒展开是一种用多项式逼近函数的方法,通过它,我们可以将一个复杂的函数表示为一系列简单的多项式之和,从而简化问题。

泰勒展开常用公式如下:对于一个函数f(x),在点x=a 的泰勒展开公式为:f(x) ≈ f(a) + f"(a)(x-a) + f""(a)(x-a)^2 / 2! + f"""(a)(x-a)^3 / 3! + ...+ f^n(a)(x-a)^n / n! + R_n(x)其中,f"(a)、f""(a)、f"""(a) 等表示函数f 在点a 的各阶导数值;n! 表示n 的阶乘;R_n(x) 是余项,表示多项式逼近的误差。

泰勒展开的应用领域非常广泛,主要包括以下几个方面:1.近似计算:通过泰勒展开,我们可以将复杂的函数近似为多项式,从而简化计算过程。

例如,在数值分析中,泰勒展开可以用于插值和逼近问题。

2.分析函数性质:泰勒展开可以揭示函数的某些性质,如奇偶性、单调性、极值等。

这些性质对于研究函数的内在规律具有重要意义。

3.求解微分方程:泰勒展开可以用于求解一些微分方程,例如常微分方程和偏微分方程。

通过对函数进行泰勒展开,可以将微分方程转化为关于多项式的代数方程,从而求解。

4.构建概率分布:在概率论中,泰勒展开可以用于构建一些常见的概率分布,如正态分布、指数分布等。

通过对概率密度函数进行泰勒展开,可以得到这些概率分布的参数。

总之,泰勒展开作为一种重要的数学工具,在理论研究和实际应用中具有广泛的应用价值。

常用十个泰勒展开公式

常用十个泰勒展开公式

常用十个泰勒绽开公式常用bai泰勒绽开公式如下:1、due^x = 1+x+x^2/2!+x^3/3!+……zhi+x^n/n!+……2、daoln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。

(-∞<x<∞)4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+……(-∞<x<∞)5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)6、arccos x = π- ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……) (|x|<1)7、arctan x = x - x^3/3 + x^5/5 -……(x≤1)8、sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+……(-∞<x<∞)9、cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)10、arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - ……(|x|<1)11、arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)扩展资料:数学中,泰勒公式是一个用函数在某点的信息描述其四周取值的公式。

假如函数足够平滑的话,在已知函数在某一点的各阶导数值的状况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。

泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

泰勒公式得名于英国数学家布鲁克·泰勒。

10个最常见的泰勒级数展开公式common taylor series

10个最常见的泰勒级数展开公式common taylor series
x2R
note y = sin x is an odd function (i.e., sin( x) = sin(x)) and the taylor seris of y = sin x has only odd powers.
x2R
question: is y = ln(1 + x) even, odd, or neither?
f x PN x
( + 1)! x x0
.
N
So either or . So we do not know exactly what is but atleast we know that is between and
x c x0 x0 c x
c
c
x x0
and so 2 .
cI
Remark: This is a Big Theorem by Taylor. See the book for the proof. The proof uses the Mean Value Theorem.
the sum keeps on going and going
-
.
P1(x)
=
X 1 (n)( ) f x0 !
(x
n
n=0
)n x0 .
The
for = ( ) is just the Taylor series for = ( ) at = 0.
Maclaurin series y f x
y f x x0
y PN x
N
y f x x0
So
( ) = ( )+ ( )
(3)
f x PN x RN x
that is

8个泰勒公式总结

8个泰勒公式总结

8个泰勒公式总结1. 一阶泰勒公式一阶泰勒公式是数学中用来近似计算函数值的重要公式。

它基于函数在某一点的导数,可以将函数在该点附近的近似值表示为一个线性函数。

一阶泰勒公式可以表示为:f(x) ≈ f(a) + f'(a)(x-a)其中,f(x)是函数在点x处的值,f(a)是函数在点a处的值,f'(a)是函数在点a处的导数。

2. 二阶泰勒公式二阶泰勒公式是泰勒公式的推广,可以更精确地近似计算函数值。

它基于函数在某一点的导数和二阶导数,可以将函数在该点附近的近似值表示为一个二次函数。

二阶泰勒公式可以表示为:f(x) ≈ f(a) + f'(a)(x-a) + (1/2)f''(a)(x-a)^2其中,f(x)是函数在点x处的值,f(a)是函数在点a处的值,f'(a)是函数在点a处的一阶导数,f''(a)是函数在点a处的二阶导数。

3. 多项式泰勒公式多项式泰勒公式是泰勒公式的另一种表现形式。

它通过将函数展开成一系列幂函数的和,来近似计算函数值。

多项式泰勒公式可以表示为:f(x) ≈ f(a) + f'(a)(x-a) + (1/2)f''(a)(x-a)^2 + ... + (1/n!)f^(n)(a) (x-a)^n其中,f(x)是函数在点x处的值,f(a)是函数在点a处的值,f'(a)是函数在点a处的一阶导数,f''(a)是函数在点a处的二阶导数,f^(n)(a)是函数在点a处的n阶导数,n!表示n的阶乘。

4. 常用的泰勒公式展开函数在实际计算中,有一些常见的函数的泰勒公式展开式被广泛使用。

这些函数包括正弦函数、余弦函数、指数函数等。

正弦函数的泰勒公式展开式为:sin(x) ≈ x - (1/3!)x^3 + (1/5!)x^5 - (1/7!)x^7 + ...余弦函数的泰勒公式展开式为:cos(x) ≈ 1 - (1/2!)x^2 + (1/4!)x^4 - (1/6!)x^6 + ...以及指数函数的泰勒公式展开式为:e^x ≈ 1 + x + (1/2!)x^2 + (1/3!)x^3 + ...5. 泰勒级数泰勒级数是指将一个函数展开成一系列幂函数的和的无穷级数。

十个常用泰勒公式展开

十个常用泰勒公式展开

十个常用泰勒公式展开常用泰勒公式是在微积分中常用的一种展开函数的方法,可以将一个复杂的函数表示为一系列简单的多项式函数的和。

这些多项式函数的系数与原函数在某个点的导数有关,通过计算这些导数可以得到展开式的各项系数。

以下是十个常用的泰勒公式展开。

1. 正弦函数展开:正弦函数的泰勒展开式为:sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...2. 余弦函数展开:余弦函数的泰勒展开式为:cos(x) = 1 - (x^2)/2! + (x^4)/4! - (x^6)/6! + ...3. 自然指数函数展开:自然指数函数的泰勒展开式为:e^x = 1 + x + (x^2)/2! + (x^3)/3! + ...4. 对数函数展开:对数函数的泰勒展开式为:ln(1+x) = x - (x^2)/2 + (x^3)/3 - (x^4)/4 + ...5. 幂函数展开:幂函数的泰勒展开式为:(x+a)^n = a^n + n*a^(n-1)*x + (n*(n-1)*a^(n-2)*x^2)/2! + ...6. 反正弦函数展开:反正弦函数的泰勒展开式为:arcsin(x) = x + (x^3)/6 + (3*x^5)/40 + ...7. 反余弦函数展开:反余弦函数的泰勒展开式为:arccos(x) = π/2 - arcsin(x) = π/2 - x - (x^3)/6 - (3*x^5)/40 - ...8. 反正切函数展开:反正切函数的泰勒展开式为:arctan(x) = x - (x^3)/3 + (x^5)/5 - (x^7)/7 + ...9. 双曲正弦函数展开:双曲正弦函数的泰勒展开式为:sinh(x) = x + (x^3)/3! + (x^5)/5! + (x^7)/7! + ...10. 双曲余弦函数展开:双曲余弦函数的泰勒展开式为:cosh(x) = 1 + (x^2)/2! + (x^4)/4! + (x^6)/6! + ...以上是十个常用的泰勒公式展开。

常用重要20个泰勒展开式

常用重要20个泰勒展开式
泰勒公式也称为泰勒中值定理是高等数学中的一个重要定理也是考研数学中的一个重要考点常用于函数极限的计算中值问题和不等式的证明以及函数的无穷级数展开式中因此大家应该理解并熟练掌握其应用
常用重要 20个泰勒展开式
泰勒公式也称为泰勒中值定理,是高等数学中的一个重要定理,也是考研数学中的一个重要考点,常用于函数极限的计算、中值问题和不等 式的证明以及函数的无穷级数展开式中,因此大家应该理解并熟练掌握其应用。有些同学在看到泰勒展开式的一长串数学式子后,感到很头 疼,也记不住哪些公式。为了帮助这些同学理解并记住常用函数的泰勒展开式,下面就和大家谈谈常用的几个函数泰勒展开式及其记忆技 巧,供各位参考。
ห้องสมุดไป่ตู้

泰勒公式展开常用

泰勒公式展开常用

泰勒公式展开常用泰勒公式是一种将函数展开成无穷级数的方法,可以用来近似计算函数的值。

它是数学分析中的重要工具,在物理学、工程学等领域也有广泛的应用。

本文将介绍泰勒公式的基本概念和常用的展开形式。

一、泰勒公式的基本概念泰勒公式是由英国数学家布鲁克·泰勒于18世纪提出的。

它的基本思想是将一个函数在某一点的附近用多项式来逼近,从而得到函数的近似值。

泰勒公式的一般形式如下:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...其中,f(x)是要近似计算的函数,a是展开的中心点,f'(x)、f''(x)、f'''(x)等表示函数的导数。

二、常用的泰勒展开形式1. 麦克劳林级数展开当中心点a为0时,泰勒公式简化为麦克劳林级数展开。

麦克劳林级数展开是泰勒公式的一种特殊形式,它将函数展开成以0为中心的无穷级数。

麦克劳林级数展开的公式如下:f(x) = f(0) + f'(0)x + f''(0)x^2/2! + f'''(0)x^3/3! + ...麦克劳林级数展开在计算机科学中有广泛的应用,例如在数值计算、图像处理等领域。

2. 泰勒展开的应用泰勒展开在物理学、工程学等领域有着重要的应用。

例如,在力学中,可以利用泰勒展开来近似计算物体的运动轨迹;在电路分析中,可以利用泰勒展开来近似计算电路中的电流、电压等参数。

3. 泰勒展开的误差估计泰勒展开是一种近似计算方法,展开的级数项数越多,计算结果越接近真实值。

误差估计是判断泰勒展开逼近的精度的重要方法。

常用的误差估计方法有拉格朗日余项和佩亚诺余项。

拉格朗日余项的公式如下:Rn(x) = f(n+1)(c)(x-a)^(n+1)/(n+1)!其中,Rn(x)为泰勒展开的余项,f(n+1)(c)为函数f(x)在a和x之间某一点c的(n+1)阶导数。

泰勒公式两种展开式

泰勒公式两种展开式

泰勒公式两种展开式泰勒公式是数学中的一个重要定理,它可以用来将一个函数在某一点处展开成无限项的多项式,从而更好地近似原函数。

本文将介绍两种常见的泰勒公式展开式。

一、泰勒公式展开式泰勒公式是一个非常重要的数学定理,它可以将一个函数在某一点处展开成无限项的多项式。

它的公式表达式如下:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ... + f^n(a)(x-a)^n/n! + Rn(x)其中,f(a)表示在点a处函数的值,f'(a)表示在点a处函数的一阶导数,f''(a)表示在点a处函数的二阶导数,以此类推。

Rn(x)表示余项。

二、麦克劳林公式展开式麦克劳林公式是泰勒公式的一种特殊情况,它把泰勒公式中的a取为0,即在原点处展开。

其公式表达式如下:f(x) = f(0) + f'(0)x + f''(0)x^2/2! + f'''(0)x^3/3! + ... + f^n(0)x^n/n! + Rn(x)其中,f(0)表示在原点处函数的值,f'(0)表示在原点处函数的一阶导数,f''(0)表示在原点处函数的二阶导数,以此类推。

Rn(x)表示余项。

总结:以上是两种常见的泰勒公式展开式,它们都是将一个函数在某一点处展开成多项式的形式。

对于一些无法直接求解的函数,利用泰勒公式展开式可以进行近似求解,以达到更好的精度。

同时,泰勒公式也可以用于数值计算、微积分等领域,具有广泛的应用价值。

8个泰勒公式常用公式

8个泰勒公式常用公式

8个泰勒公式常用公式泰勒公式是一种在微积分中非常重要的工具,它可以利用函数在其中一点的导数来近似地表示函数在该点附近的取值。

在数学和物理等领域,泰勒公式广泛应用于函数的近似计算和数值求解等问题。

下面我们介绍一些常用的泰勒公式及其应用。

1.一阶泰勒公式一阶泰勒公式也称为泰勒展开式,用于近似地表示函数在其中一点附近的取值。

设函数$f(x)$在$x=a$处可导,则函数$f(x)$在$x=a$处的一阶泰勒公式为$$f(x)\approx f(a)+f'(a)(x-a)$$其中$f'(a)$表示函数$f(x)$在$x=a$处的导数。

一阶泰勒公式常用于近似计算和数值求解等问题中。

2.二阶泰勒公式二阶泰勒公式是泰勒展开式的推广,用于更精确地近似表示函数在其中一点附近的取值。

设函数$f(x)$在$x=a$处二阶可导,则函数$f(x)$在$x=a$处的二阶泰勒公式为$$f(x)\approx f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2$$其中$f''(a)$表示函数$f(x)$在$x=a$处的二阶导数。

二阶泰勒公式在高精度数值求解和近似计算等问题中广泛应用。

3.泰勒级数泰勒级数是将一个函数在其中一点处展开成无穷级数的形式,用于表示函数在该点附近的取值。

设函数$f(x)$在$x=a$处具有无限阶导数,则函数$f(x)$在$x=a$处的泰勒级数为$$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+...$$泰勒级数是一种非常重要的数学工具,能够用无穷阶导数展开的形式表示函数,具有广泛的应用价值。

4.泰勒多项式泰勒多项式是将函数在其中一点处展开成有限项多项式的形式,用于近似地表示函数在该点附近的取值。

泰勒展开常用公式

泰勒展开常用公式

泰勒展开常用公式【最新版】目录1.泰勒公式的定义与意义2.泰勒公式的常用展开形式3.泰勒公式的应用实例正文1.泰勒公式的定义与意义泰勒公式,以英国数学家布鲁克·泰勒(Brook Taylor)的名字命名,是一种用于描述一个可微函数在某一点附近的近似值的数学公式。

泰勒公式可以将函数在某一点展开成无穷级数,该级数的每一项都与该点的各阶导数有关。

泰勒公式在数学、物理等科学领域具有重要的应用价值。

2.泰勒公式的常用展开形式泰勒公式的常用展开形式如下:f(x) ≈ f(a) + f"(a)(x-a) + (f""(a)(x-a)^2)/2! +...+(f^n(a)(x-a)^n)/n! + Rn(x)其中,f(x) 是要展开的函数,a 是函数的某一点,f"(a)、f""(a) 等分别表示函数在点 a 处的一阶导数、二阶导数等,n! 表示 n 的阶乘,Rn(x) 是泰勒公式的余项。

3.泰勒公式的应用实例泰勒公式在许多科学领域都有广泛应用,例如在数值分析、近似计算、泛函分析等方面都有重要作用。

下面我们通过一个具体的应用实例来说明泰勒公式的使用。

假设我们要计算函数 f(x) = e^x 在点 a = 0 处的近似值,我们可以利用泰勒公式进行展开:f(x) ≈ f(0) + f"(0)(x-0) + (f""(0)(x-0)^2)/2! +...由于 f(0) = 1,f"(0) = 1,f""(0) = 1,我们可以将这些值代入公式中,得到:e^x ≈ 1 + x + (x^2)/2! +...通过泰勒公式,我们可以将复杂的指数函数 e^x 展开成多项式,从而简化计算。

当然,实际应用中,我们通常只需要取展开式的前几项,就可以获得较好的近似结果。

总之,泰勒公式是一种重要的数学工具,它为我们提供了一种在特定点附近近似计算函数值的方法。

【泰勒展开】常见泰勒公式大全

【泰勒展开】常见泰勒公式大全

【泰勒展开】常见泰勒公式大全几个常见的泰勒公式(x\rightarrow0) :sinx = x -\frac{x^3}{6} +o(x^3)\qquad \qquad \quad \ \ arcsinx=x+\frac{x^3}{6}+o(x^3)cosx=1-\frac{x^2}{2}+\frac{x^4}{24}+o(x^4)\qquad \quad arccosx=? [1]tanx = x +\frac{x^3}{3}+o(x^3)\qquad \qquad \quad \ arctanx=x-\frac{x^3}{3}+o(x^3)e^x = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3) \qquad ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3)(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2}x^2+o(x^2)另外\begin{align} &对于 (1+x)^{\alpha}=1+\alphax+\frac{\alpha(\alpha-1)}{2}x^2+o(x^2) \\&\text{当}\alpha =\frac{1}{2}\text{,则}\sqrt{1+x}=1+\frac{1}{2}x-\frac{1}{8}x^2+o\left( x^2 \right) \\ &\text{当}\alpha =\frac{1}{3}\text{,则}\sqrt[3]{1+x}=1+\frac{1}{3}x-\frac{1}{9}x^2+o\left( x^2 \right) \end{align}习题中常见(x \rightarrow 0) :\begin{align} tanx - sinx &= \frac{1}{2}x^3+o(x^3)\\ x - sinx &= \frac{1}{6}x^3+o(x^3)\\ arcsinx - x &=\frac{1}{6}x^3+o(x^3)\\ tanx - x &=\frac{1}{3}x^3+o(x^3)\\ x-arctanx&=\frac{1}{3}x^3+o(x^3) \end{align}即有\begin{align*} tanx - sinx &\sim \frac{1}{2}x^3\\ x - sinx &\sim \frac{1}{6}x^3\\ arcsinx - x &\sim\frac{1}{6}x^3\\ tanx - x &\sim \frac{1}{3}x^3\\ x-arctanx &\sim\frac{1}{3}x^3 \end{align*}还可以得到(x\rightarrow0) :\begin{align} x-\ln \left( 1+x \right) \,&\sim\frac{x^2}{2} \\ e^x-1-x\,&\sim \frac{x^2}{2} \\ 1-\cos ^ax\ &\sim \frac{ax^2}{2} \\ f\left( x \right)^{g\left( x \right)}-1 &\sim g\left( x \right)\left[ f\left( x \right) -1 \right] \qquad \left( 当f\left( x \right) \rightarrow 1\text{且}f\left( x\right) ^{g\left( x \right)}\rightarrow 1 \right)\end{align}注:上述四结论来自:有时还会用到\left( 1+x \right) ^{\frac{1}{x}}=e-\frac{e}{2}x+\frac{11e}{24}{x^2}+o\left( x^2 \right) [2]一般地\begin{align} e^{x}&=\sum_{n=0}^{\infty}\frac{x^{n}}{n!} =1+x+\frac{x^{2}}{2 !}+\cdots+\frac{x^{n}}{n!} x^{n}+\cdots \\ \ sinx&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{x^{3}}{3 !} +\frac{x^{5}}{5!} -\cdots+\frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}+\cdots\\ \ cos x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !}x^{2 n}=1-\frac{x^{2}}{2!} +\frac{x^{4}}{4!} -\cdots+\frac{(-1)^{n}}{(2n)!} x^{2n}+\cdots \\ \ ln(1+x)&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}x^{n+1}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots+\frac{(-1)^{n}}{n+1} x^{n+1}+\cdots, x \in(-1,1] \\ \frac{1}{1-x}&=\sum_{n=0}^{\infty}x^{n}=1+x+x^{2}+x^{3}+\cdots+x^{n}+\cdots, x \in(-1,1) \\ \frac{1}{1+x} &= \sum_{n = 0}^{\infty}(-1)^{n} x^{n} = 1-x+x^{2}-x^{3}+\cdots+(-1)^{n} x^{n}+\cdots, x\in(-1,1) \\ (1+x)^{\alpha} &= 1+\sum_{n = 1}^{\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n} = 1+\alpha x+\frac{\alpha(\alpha-1)}{2 !}x^{2}+\cdots+\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n !} x^{n}+\cdots, x \in(-1,1) \\ \arctan x &=\sum_{n = 0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2\pi+1} = x-\frac{1}{3} x^{3}+\frac{1}{5}x^{5}+\cdots+\frac{(-1)^{n}}{2 n+1} x^{2 n+1}+\cdots, x \in[-1,1] \\ \end{align}{\LARGE \begin{align} \arcsin x &= \sum_{n =0}^{\infty} \frac{(2 n!)x^{2n+1}}{4^{n}(n !)^{2}(2n+1)} = x+\frac{1}{6} x^{3}+\frac{3}{40}x^{5}+\frac{5}{112} x^{7}+\frac{35}{1152}x^{2}+\cdots+\frac{(2 n) !}{4^{n}(n !)^{2}(2 n+1)}x^{2 n+1}+\cdots, x \in(-1,1) \\ \tan x &= \sum_{n = 1}^{\infty} \frac{B_{2n}4^{n}(4^{n}-1)}{(2 n) !} x^{2n-1} = x+\frac{1}{3} x^{3}+\frac{2}{15}x^{5}+\frac{17}{315} x^{7}+\frac{62}{2835}x^{9}+\frac{1382}{155925} x^{11}+\frac{21844}{6081075} x^{13}+\frac{929569}{} x^{15}+\cdots ,x \in(-1,1) \\ \sec x &= \sum_{\pi = 0}^{\infty} \frac{(-1)^{n}E_{2n} x^{2 n}}{(2 n) !} = 1+\frac{1}{2} x^{2}+\frac{5}{24} x^{4}+\frac{61}{720} x^{6}+\cdots, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\\ \csc x &=\sum_{n = 0}^{\infty} \frac{(-1)^{n+1} 2\left(2^{2\mathrm{n}-1}-1\right) B_{2n}}{(2 n) !} x^{2 x-1} =\frac{1}{x}+\frac{1}{6} x+\frac{7}{360}x^{3}+\frac{31}{15120} x^{5}+\frac{127}{604800}x^{7}+\frac{73}{3421440} x^{2}+\frac{1414477}{}x^{11}+\cdots, x \in(0, \pi)\\ \cot x &= \sum_{n =0}^{\infty} \frac{(-1)^{n} 2^{2n} B_{2n}}{(2 n) !}x^{2 n-1} = \frac{1}{x}-\frac{1}{3} x-\frac{1}{45}x^{3}-\frac{2}{945} x^{5}-\cdots, x \in(0, \pi)\end{align}}相关链接:1.^利用arccosx = pi/2 - arcsinx即可得出。

常用十个泰勒展开公式

常用十个泰勒展开公式

泰勒公式bai是将一个在x=x0处具有n阶导数的函du数f(x)利用关于(x-x0)的n次多项式来逼近zhi函数的方法。

若函数f(x)在包含daox0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:
其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。

余项
泰勒公式的余项Rn(x)可以写成以下几种不同的形式:
1、佩亚诺(Peano)余项:
这里只需要n阶导数存在。

2、施勒米尔希-罗什(Schlomilch-Roche)余项:
其中θ∈(0,1),p为任意正实数。

(注意到p=n+1与p=1分别对应拉格朗日余项与柯西余项) [2]
3、拉格朗日(Lagrange)余项:
其中θ∈(0,1)。

4、柯西(Cauchy)余项:
其中θ∈(0,1)。

5、积分余项:
其中以上诸多余项事实上很多是等价的。

带佩亚诺余项
以下列举一些常用函数的泰勒公式:。

常见泰勒公式展开式

常见泰勒公式展开式

常见泰勒公式展开式
一个函数N阶可导,则这个函数就可以用泰勒公式N阶展开
即f(x)=f(x0)+f’(x0)(x-x0)+f’’(x0)(x-x0)/2!+...+f^(n)(x0)(x-x0)^(n)/n!+0X
f^(n)(x0)表示f(x)在x0处的N阶导数.0X表示比(x-x0)^(n)更高阶的无穷小
用拉格朗日型余项表示则0X=f^(n+1)(ζ)(x-ζ)^(n+1)/n+1!
而麦克劳林公式是泰勒公式在0点展开的特例
泰勒公式可以很容易的让你得到f(x)展开式中关于x的幂次项的系数,也可由已知的函数的导数值推出原函数.多用于求极限问题
比如求lim (e^x-x-1)/x在x趋近于0时的极限
f(x)=e^x在x=0处二次展开=e^(0)+e^(0)*(x-0)+e^(0)(x-0)/2!+0x
=1+x+x/2;
那么lim (e^x-x-1)/x=lim (1+x+x/2-x-1)/x=1/2答案补充用导数定义去理解
f’(x)=lim [f(x)-f(x0)]/(x-x0)其中x->x0
那么就有当x->x0时lim f(x)-f(x0)=f’(x)(x-x0)
lim f(x)其于f(x)的误差拉格朗日型余项为f^(2)(ζ)(x-ζ)^(2)/2!是(x-x0)的高阶无穷小,一般用于证明题。

泰勒公式展开式大全

泰勒公式展开式大全

泰勒公式展开式大全泰勒公式是微积分中的一个重要概念,它可以将一个函数在某一点附近展开成无穷级数的形式,从而可以用多项式来逼近原函数。

泰勒公式的应用非常广泛,涉及到物理、工程、经济等各个领域。

在本文中,我们将介绍泰勒公式的基本概念和展开式的计算方法,并列举一些常见函数的泰勒展开式,希望能对读者有所帮助。

首先,我们来看泰勒公式的基本形式。

对于一个充分光滑的函数f(x),在点x=a处的泰勒展开式可以表示为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ... 。

其中,f'(a)表示f(x)在x=a处的一阶导数,f''(a)表示f(x)在x=a处的二阶导数,以此类推。

展开式中的每一项都可以由原函数在点x=a处的导数来确定,这就是泰勒展开式的基本思想。

接下来,我们将列举一些常见函数的泰勒展开式。

首先是指数函数e^x,在点x=0处的泰勒展开式为:e^x = 1 + x + x^2/2! + x^3/3! + ...这个展开式实际上就是指数函数的麦克劳林展开式,它在数学分析和物理计算中有着广泛的应用。

另一个常见的函数是三角函数sin(x),在点x=0处的泰勒展开式为:sin(x) = x x^3/3! + x^5/5! x^7/7! + ...这个展开式可以用来近似计算sin(x)的值,尤其是在计算机程序中经常会用到。

除了指数函数和三角函数,对数函数ln(1+x)的泰勒展开式也是非常重要的。

在点x=0处的展开式为:ln(1+x) = x x^2/2 + x^3/3 x^4/4 + ...这个展开式在微积分和数学分析中有着重要的应用,可以用来近似计算对数函数的值。

除了这些常见的函数,泰勒展开式还可以用于其他各种函数的近似计算。

通过计算函数在某一点处的导数,我们可以得到它的泰勒展开式,从而可以用多项式来逼近原函数。

常用的泰勒公式

常用的泰勒公式

常用的泰勒公式泰勒公式(Taylor Series)是数学分析中的一个重要工具,用于近似地表示一个函数在其中一点附近的值。

其基本思想是使用函数在其中一点的各阶导数来逼近函数的值。

泰勒公式的完整推导可以用数学归纳法证明,展开为一般形式为:\[f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots +\frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)\]其中,\(f(x)\)是要近似的函数,\(a\)是近似的中心点,\(n\)是近似的阶数,\(f'(x), f''(x), \ldots, f^{(n)}(x)\)是函数在\(a\)点的各阶导数,\(R_n(x)\)是余项。

以下是几种常用的泰勒公式:1.一阶泰勒公式:\[f(x)=f(a)+f'(a)(x-a)\]这是泰勒公式的最简单形式,将一阶导数乘以\(x-a\),得到函数在近似点附近的一次线性逼近。

2.二阶泰勒公式:\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2\]在一阶泰勒公式的基础上,再加上二阶导数乘以\(\frac{(x-a)^2}{2!}\),得到函数在近似点附近的二次二项式逼近。

3.三阶泰勒公式:\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3\]在二阶泰勒公式的基础上,再加上三阶导数乘以\(\frac{(x-a)^3}{3!}\),得到函数在近似点附近的三次三项式逼近。

8个泰勒公式常用公式

8个泰勒公式常用公式

8个泰勒公式常用公式泰勒公式是一种在数学和物理学中非常有用的近似计算方法。

它基于将一个函数在其中一点处进行多项式展开,并使用多项式系数来逼近函数的值。

这种近似方法广泛应用于数学、物理学和工程学的各个领域。

接下来,我将介绍八个常用的泰勒公式。

1.一阶泰勒公式一阶泰勒公式将函数在其中一点处进行一次多项式展开,用一阶导数来逼近函数的值。

它的表达式如下:f(x)≈f(a)+f'(a)(x-a)2.二阶泰勒公式二阶泰勒公式是将函数在其中一点处进行二次多项式展开,用一阶和二阶导数来逼近函数的值。

它的表达式如下:f(x)≈f(a)+f'(a)(x-a)+f''(a)(x-a)²/23.麦克劳林级数展开麦克劳林级数展开是指将函数在x=0的附近进行多项式展开。

这个展开的系数是函数在x=0处各阶导数的值。

麦克劳林级数展开的表达式如下:f(x)≈f(0)+f'(0)x+f''(0)x²/2!+f'''(0)x³/3!+...4.泰勒多项式泰勒多项式是一种特殊的多项式,它是将函数在其中一点处进行多项式展开得到的。

泰勒多项式在数值计算中非常有用,可以用来近似计算一些特殊函数的值。

5.结合泰勒展开和拉格朗日插值泰勒展开和拉格朗日插值是两种常用的近似计算方法。

有时候,我们可以将它们结合使用,通过泰勒展开逼近函数的一部分,然后使用拉格朗日插值来逼近剩余的部分。

6.拉格朗日余项拉格朗日余项是指在使用拉格朗日插值逼近函数时,展开项与被近似函数之间的差值。

通过计算余项,我们可以估计逼近的误差和精度。

7.级数收敛性泰勒级数的收敛性是指级数展开的多项式是否能够逼近函数的值。

在使用泰勒公式进行近似计算时,我们需要判断级数的收敛性,以确保逼近的有效性。

8.常见的泰勒展开函数在实际应用中,有一些函数的泰勒展开式非常常见。

例如,指数函数、三角函数、对数函数等可以通过泰勒展开逼近它们的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泰勒公式
泰勒公式是一个用函数在某点的信息描述其附近取值的公式。

如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。

泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。

泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容历史发展
泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。

18世纪早期英国牛顿学派最优秀的代表人物之一的数学家泰勒( Brook T aylor),其主要著作是1715年出版的《正的和反的增量方法》,书中陈述了他于1712年7月给他老师梅钦信中提出的著名定理——泰勒定理。

1717年,泰勒用泰勒定理求解了数值方程。

泰勒公式是从格雷戈里——牛顿差值公式发展而来,它是一个用函数在某点的信息描述其附近取值的公式。

如果函数足够光滑,在已知函数某一点各阶导数的前提下,泰勒公式可以利用这些导数值作为系数构建一个多项式来近似该函数在这一点的邻域中的值。

1772年,拉格朗日强调了泰勒公式的重要性,称其为微分学基本定理,但是泰勒定理的证明中并没有考虑级数的收敛性,这个工作直到19世纪20年代,才由柯西完成。

泰勒定理开创了有限差分理论,使任何单变量函数都
可以展开成幂级数,因此,人们称泰勒为有限差分理论的奠基者。

泰勒公式是数学分析中重要的内容,也是研究函数极限和估计误差等方面不可或缺的数学工具,泰勒公式集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。

利用泰勒公式可以将非线性问题化为线性问题,且具有很高的精确度,因此其在微积分的各个方面都有重要的应用。

泰勒公式可以应用于求极限、判断函数极值、求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

相关文档
最新文档