函数定义域值域求法(全十一种)
函数定义域值域求法(全十一种)

文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x
故
22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。
函数值域求法大全

函数值域求法大全函数的值域是由定义域和对应法则共同确定。
确定函数的值域是研究函数不可缺少的重要一环。
本文介绍了十一种函数值域求法。
首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。
例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。
再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。
其次是配方法,这是求二次函数值域最基本的方法之一。
例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。
还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。
除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。
这些方法各有特点,应根据具体情况选择合适的方法来求解。
总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。
换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。
其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。
换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。
例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。
代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。
由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。
因此,函数的值域为 $[1,+\infty)$。
又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。
求函数值域方法十一种

在 函 数 的 定义 域 内
的 值域
。
观 察 自变 量 变 化 时 所 对 应 的 函 数 值 的 变 化情 况
,
从而 直 接 求 出函 数
例
解
:
l
求函数了
=
5 +
了百 百 护 的值 域
,
。
由偶 次 根 式 的 定 义 域
9
一 :
:
知
,
七
一
O
又由
’.
x 忿
七
0
。
可知
一
9
一 工,
(
3
9
( 丫 9
二玄蕊 《 5
x
,
可通过
x
c
o
一 元 二 次方 程 的 判 别 式 求 出值 域
例
7
求函数y
=
1
Zx
:
+
x
一
1
的值域
。
解
:
将函 数 表 达 式 化 为
( Zy )
x
,
一
,
y
x
+
(
y +
1
)
=
o
,
注意 到 y 因 为 x 是 实数
’ :
“
二
o
时
·
方 程两 边显 然不 等
( Zy ) 〔
一
一
因而 y 今
。
,
x 把上 式 看作 关 于 的 一 元 二 次 方 程
2
时
叼吓厄 二
1
十
2
二 X +
1
3
x
.
高中数学-函数定义域值域求法精编

函数定义域、值域求法总结(一)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(二)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结一、定义域是函数()y f x =中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数()y f x =中y 的取值范围。
函数定义域值域求法总结

函数定义域值域求法总结函数的定义域(Domain)和值域(Range)是函数的基本性质之一,它们是通过对函数的规则、图像以及问题的具体要求进行分析和计算得出的。
在数学中,定义域和值域的求法可能会因函数类型的不同而有所不同。
本文将总结一些常见的函数定义域和值域求法方法,并提供一些示例。
一、函数定义域的求法方法1. 使用函数规则:根据函数的定义和规则,确定函数所能接受的变量范围。
例如,对于一个有理函数(Rational Function) f(x) = 1/(x-2),由于分母不能为零,所以定义域为除去 x=2 的所有实数。
2. 图像法:绘制函数的图像,观察函数在整个定义域上是否有意义。
一般来说,如果函数在一些点处没有定义或出现断点,则这个点不属于定义域。
例如,对于一个分段函数(Piecewise Function)f(x) = ,x,其图像是一条 V 型曲线,因此定义域为所有实数。
3.非负实数法:有些函数定义域存在特定的限制,负数、零或者正数。
例如,对于一个以平方根为主的函数f(x)=√(x-3),它的定义域要求x-3≥0,即x≥34. 根式定义域法:对于一些函数,如开方函数、对数函数,可以通过求解不等式来确定函数的定义域。
例如,对于对数函数 f(x) = log(x),由于 log 函数的定义域要求 x > 0,所以它的定义域为所有正实数。
5.分式的定义域法:对于一个分式函数,要求分母不为零。
因此,可以根据分式的分母求解不等式来确定函数的定义域。
例如,对于一个分式函数f(x)=2/(x+1),由于分母要求不等于零,所以定义域为除去x=-1的所有实数。
二、函数值域的求法方法1. 观察法:通过观察函数的定义和规则,或者通过观察函数的图像,推测函数的值域。
例如,对于一个二次函数 f(x) = ax^2 + bx + c,如果 a > 0,那么函数的值域是 (−∞, f(v)],其中 f(v) 是顶点的纵坐标。
函数值域的求法大全

函数值域的求法大全值域为R(注意判别式);对数函数y=logax(a>0,a≠1)的定义域为R+,值域为R;指数函数y=ax(a>0,a≠1)的定义域为R,值域为(0,+∞);三角函数y=sin x,y=cos x的值域均为[-1,1];反三角函数y=arcsin x的定义域为[-1,1],值域为[-π/2,π/2];y=arccos x的定义域为[-1,1],值域为[0,π];y=arctan x的定义域为R,值域为(-π/2,π/2)。
利用函数的单调性来求值域对于单调递增函数f(x),其值域为[f(a),f(b)];对于单调递减函数f(x),其值域为[f(b),f(a)]。
利用反函数来求值域设函数f(x)的反函数为g(x),则f(x)的值域等于g(x)的定义域,即f(x)的值域为{x|g(x)∈R}。
利用配方法来求值域对于形如y=f(x)=ax2+bx+c(a>0)的二次函数,可通过配方法将其化为y=a(x+p)2+q的形式,其中a>0,(p,q)为顶点坐标,此时,y的值域为[q,+∞)或(−∞,q]。
利用不等式来求值域对于形如y=f(x)=ax2+bx+c(a>0)的二次函数,可通过求解不等式ax2+bx+c≥0来确定其值域。
以上是常见的求值域的方法,不同的函数类型可能需要不同的方法来求值域。
在解题过程中,要根据具体情况选择合适的方法,结合图像、单调性、反函数等性质进行分析,才能得出正确的结果。
剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
求函数值域是数学中常见的问题。
下面介绍两种常用的方法:单调性法和换元法。
单调性法是指利用函数的单调性来确定函数的值域。
具体来说,可以先找到函数在给定区间内的单调区间,然后比较区间两端点的函数值,从而确定函数的最大值或最小值。
当顶点横坐标是字母时,需要根据其对应区间特别是区间两端点的位置关系进行讨论。
求函数值域的12种方法

求函数值域的12种方法函数是中学数学的重要的基本概念之一,它与代数式、方程、不等式、三角函数、微积分等内容有着密切的联系,应用十分广泛。
函数的基础性强、概念多,其中函数的定义域、值域、奇偶性等是难点之一,是高考的常见的题型。
下面就函数的值域的求法,举例说如下。
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
函数定义域值域解析式求法

函数定义域、值域、解析式的求法一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手:(1)分母不为零 (2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)配方法 (3)反函数法 (4)分离常数法 (5)换元法 (6)判别式法 (7)函数的单调性法(8)利用有界性(9)图像法(数型结合法)(10)不等式法 (11)有理化法 等等三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义, 而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒⎩⎨⎧≠-≥21x x 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。
例1 求函数8|3x |15x 2x y 2-+--=的定义域。
解:要使函数有意义,则必须满足⎩⎨⎧≠-+≥--②①8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。
③ 由②解得 5x ≠或11x -≠ ④③和④求交集得3x -≤且11x -≠或x>5。
故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。
例2 求函数2x161x sin y -+=的定义域。
解:要使函数有意义,则必须满足⎩⎨⎧>-≥②①0x 160x sin 2由①解得Z k k 2x k 2∈π+π≤≤π, ③由②解得4x 4<<-④由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。
(1)已知)x (f 的定义域,求)]x (g [f 的定义域。
(2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。
例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。
解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。
(2)已知)]x (g [f 的定义域,求f(x)的定义域。
其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的定义域。
例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。
解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。
即函数f(x)的定义域是}5x 3|x {≤≤。
三、逆向型即已知所给函数的定义域求解析式中参数的取值围。
特别是对于已知定义域为R ,求参数的围问题通常是转化为恒成立问题来解决。
例5 已知函数8m m x 6m x y 2++-=的定义域为R 数m 的取值围。
分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项的系数是m ,所以应分m=0或0m ≠进行讨论。
解:当m=0时,函数的定义域为R ;当0m ≠时,08m mx 6mx 2≥++-是二次不等式,其对一切实数x 都成立的充要条件是1m 00)8m (m 4)m 6(0m 2≤<⇒⎩⎨⎧≤+--=∆> 综上可知1m 0≤≤。
评注:不少学生容易忽略m=0的情况,希望通过此例解决问题。
例6 已知函数3kx 4kx 7kx )x (f 2+++=的定义域是R ,数k 的取值围。
解:要使函数有意义,则必须3kx 4kx 2++≠0恒成立,因为)x (f 的定义域为R ,即03kx 4kx 2=++无实数①当k ≠0时,0k 34k 162<⨯-=∆恒成立,解得43k 0<<; ②当k=0时,方程左边=3≠0恒成立。
综上k 的取值围是43k 0<≤。
四、实际问题型这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要加倍注意,并形成意识。
例7 将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数的解析式,并求函数的定义域。
解:设矩形一边为x ,则另一边长为)x 2a (21-于是可得矩形面积。
2x ax 21)x 2a (21x y -=-⋅=ax 21x 2+-=。
由问题的实际意义,知函数的定义域应满足⎩⎨⎧>->⇒⎪⎩⎪⎨⎧>->0x 2a 0x 0)x 2a (210x 2ax 0<<⇒。
故所求函数的解析式为ax 21x y 2+-=,定义域为(0,2a )。
例8 用长为L 的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x ,求此框架围成的面积y 与x 的函数关系式,并求定义域。
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
因为CD=AB=2x ,所以x CD π=⋂,所以2xx 2L 2CD AB L AD π--=--=⋂, 故2x 2x x 2L x 2y 2π+π--⋅= Lx x )22(2+π+-=根据实际问题的意义知2L x 002xx 2L 0x 2+π<<⇒⎪⎩⎪⎨⎧>π--> 故函数的解析式为Lx x )22(y 2+π+-=,定义域(0,2L +π)。
五、参数型对于含参数的函数,求定义域时,必须对分母分类讨论。
例9 已知)x (f 的定义域为[0,1],求函数)a x (f )a x (f )x (F -++=的定义域。
解:因为)x (f 的定义域为[0,1],即1x 0≤≤。
故函数)x (F 的定义域为下列不等式组的解集:⎩⎨⎧≤-≤≤+≤1a x 01a x 0,即⎩⎨⎧+≤≤-≤≤-a 1x a a1x a 即两个区间[-a ,1-a ]与[a ,1+a ]的交集,比较两个区间左、右端点,知(1)当0a 21≤≤-时,F (x )的定义域为}a 1x a |x {+≤≤-; (2)当21a 0≤≤时,F (x )的定义域为}a 1x a |x {-≤≤;(3)当21a >或21a -<时,上述两区间的交集为空集,此时F (x )不能构成函数。
六、隐含型有些问题从表面上看并不求定义域,但是不注意定义域,往往导致错解,事实上定义域隐含在问题中,例如函数的单调区间是其定义域的子集。
因此,求函数的单调区间,必须先求定义域。
例10 求函数)3x 2x (log y 22++-=的单调区间。
解:由03x 2x 2>++-,即03x 2x 2<--,解得3x 1<<-。
即函数y 的定义域为(-1,3)。
函数)3x 2x (log y 22++-=是由函数3x 2x t t log y 22++-==,复合而成的。
4)1x (3x 2x t 22+--=++-=,对称轴x=1,由二次函数的单调性,可知t 在区间]1(,-∞上是增函数;在区间)1[∞+,上是减函数,而t log y 2=在其定义域上单调增;3)[1)[1)31(]11(]1()31(,,,,,,,=∞+--=-∞- ,所以函数)3x 2x (log y 22++-=在区间]11(,-上是增函数,在区间)31[,上是减函数。
函数值域求法十一种1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x1y =的值域。
解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x3y -=的值域。
解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞ 2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2xy 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8] 3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈ ∴0y 8)1y (42≥-+=∆解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤ 由0≥∆,仅保证关于x 的方程:0y x )1y (2x222=++-在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由0≥∆求出的围可能比y 的实际围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例6. 求函数6x 54x 3++值域。
解:由原函数式可得:3y 5y 64x --=则其反函数为:3x 5y 64y --=,其定义域为:53x ≠故所求函数的值域为:⎪⎭⎫ ⎝⎛∞-53,5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例7. 求函数1e 1e y xx +-=的值域。
解:由原函数式可得:1y 1y e x -+=∵0e x >∴01y 1y >-+解得:1y 1<<- 故所求函数的值域为)1,1(- 例8. 求函数3x sin xcos y -=的值域。
解:由原函数式可得:y 3x cos x sin y =-,可化为:y 3)x (x sin 1y 2=β++即1y y 3)x (x sin 2+=β+∵R x ∈∴]1,1[)x (x sin -∈β+ 即11y y 312≤+≤- 解得:42y 42≤≤-故函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡-42,426. 函数单调性法 例9. 求函数)10x 2(1x log 2y 35x ≤≤-+=-的值域。
解:令1x log y ,2y 325x 1-==-则21y ,y 在[2,10]上都是增函数 所以21y y y +=在[2,10]上是增函数 当x=2时,8112log 2y 33min =-+=-当x=10时,339log 2y 35max =+=故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81例10. 求函数1x 1x y --+=的值域。