基本初等函数定义及其性质重要资料归纳

合集下载

初等基本函数知识点总结

初等基本函数知识点总结

初等基本函数知识点总结函数是数学中最基本的概念之一,它在数学的各个分支中都有着重要的应用。

初等基本函数是指在初等数学范围内常见的基本函数,包括常数函数、一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等。

本文将对这些初等基本函数的概念、性质等进行总结和介绍。

一、常数函数常数函数的定义是f(x) = c (c为常数)。

这里的c就是常数函数的函数值,它是一个常数,和x的取值无关。

在坐标系中,常数函数的图象是一条水平的直线,它的斜率为0。

常数函数的性质有:1. 常数函数的图象是一条水平的直线。

2. 常数函数的定义域是全体实数集R,值域为{c}。

3. 常数函数的导数为0,即f'(x) = 0。

4. 常数函数是一个一一对应的函数。

5. 常数函数是奇函数,偶函数,周期函数,增函数,减函数等的特殊情况。

二、一次函数一次函数的定义是f(x) = kx + b (k和b为常数,k≠0)。

在坐标系中,一次函数的图象是一条通过点P(k,b)的直线,它的斜率为k,截距为b。

一次函数的性质有:1. 一次函数的图象是一条直线,斜率k决定了直线的倾斜程度,截距b决定了直线与y轴的交点位置。

2. 一次函数的定义域是全体实数集R,值域是一切实数集R。

3. 一次函数的导数为k,即f'(x) = k。

4. 当k>0时,一次函数是增函数;当k<0时,一次函数是减函数;当k=0时,一次函数是常数函数。

5. 一次函数是一个奇函数,因为f(-x) = -kx + b = -f(x)。

三、二次函数二次函数的定义是f(x) = ax^2 + bx + c (a、b和c为常数,a≠0)。

二次函数的图象是一个开口向上或者向下的抛物线,它的开口方向由a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二次函数的性质有:1. 二次函数的图象是一个抛物线,它关于y轴对称,对称轴方程为x = -b/2a。

高一数学必修一第二章基本初等函数知识点总结

高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)

a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x

基本初等函数知识点总结

基本初等函数知识点总结

基本初等函数知识点总结基本初等函数是数学中常见的一类函数,包括多项式函数、指数函数、对数函数、三角函数和反三角函数等。

它们在数学和实际问题中具有广泛的应用,因此掌握基本初等函数的性质和特点对于学习和理解数学非常重要。

下面将对基本初等函数的知识点进行总结。

一、多项式函数多项式函数是由常数乘以各个整数幂的变量构成的函数。

它的一般形式为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x+a_0$$其中,$a_n, a_{n-1},\dots,a_1,a_0$为常数,$n$为正整数,$a_n \neq 0$。

多项式函数的特点包括:定义域为实数集,值域为实数集,可导且导函数为次数比原来次数低一的多项式函数。

二、指数函数指数函数的一般形式为:$$f(x) = a^x$$其中,$a$为正实数且不等于1。

指数函数的特点包括:定义域为实数集,值域为正实数集,可导且导函数为$a^x\ln a$。

三、对数函数对数函数的一般形式为:$$f(x) = \log_a x$$其中,$a$为正实数且不等于1,$x$为正实数。

对数函数的特点包括:定义域为正实数集,值域为实数集,可导且导函数为$\frac{1}{x\ln a}$。

四、三角函数三角函数包括正弦函数、余弦函数、正切函数等。

它们的一般形式为:$$\sin x, \cos x, \tan x$$其中,$x$为实数。

三角函数的特点包括:定义域为实数集,值域为闭区间[-1, 1],具有周期性,可导且导函数是相关三角函数的倍数。

五、反三角函数反三角函数包括反正弦函数、反余弦函数、反正切函数等。

它们的一般形式为:$$\arcsin x, \arccos x, \arctan x$$其中,$x$在相应的定义域内。

反三角函数的特点包括:定义域为闭区间[-1, 1],值域为实数集,可导且导函数是相关函数的倒数。

基本初等函数的性质还包括:1. 奇偶性对于函数$f(x)$,如果对于定义域内的任意$x$,有$f(-x)=-f(x)$,则称函数为奇函数;如果对于定义域内的任意$x$,有$f(-x)=f(x)$,则称函数为偶函数。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点1.函数的定义:函数是一种特殊的关系,它将一个或多个输入数值映射到唯一的输出数值。

函数通常用f(x)来表示,其中x是输入变量,f(x)是输出变量。

函数可以用图形、符号或表格来表示。

2.定义域和值域:函数的定义域是所有可输入的数值的集合,而函数的值域是所有可能的输出数值的集合。

定义域可写作D(f),值域可写作R(f)。

3.线性函数:线性函数是一种具有常数斜率的函数。

它的形式为f(x) = mx + b,其中m是斜率,b是截距。

线性函数的图形是一条直线。

4.幂函数:幂函数是一种形如f(x) = ax^b的函数,其中a和b是常数。

幂函数的图形通常是一条平滑的曲线。

当b为正偶数时,曲线在x轴的正半轴都是上升的;当b为负偶数时,曲线在x轴的正半轴是下降的。

5.指数函数:指数函数是以常数e为底的函数,它的形式为f(x)=a^x,其中a是指数底数。

指数函数的图形为一条逐渐增长(或逐渐减小)的曲线。

6.对数函数:对数函数是指以常数a为底的对数函数,它的形式为f(x) =log_a(x),其中a为底数,x为函数的输入值。

对数函数是指数函数的反函数,即f(x) = a^x的反函数。

7.三角函数:三角函数是有关三角形角度与边长之间的关系的函数。

常见的三角函数包括正弦函数、余弦函数和正切函数。

三角函数的图形是周期性的曲线,周期为2π。

8.反函数:反函数是指满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数对。

反函数可以通过交换函数的输入和输出得到。

9.复合函数:复合函数是指将一个函数的输出作为另一个函数的输入的函数关系。

复合函数可以表示为f(g(x)),其中g(x)是一个函数,f(x)是另一个函数。

10.奇偶函数:奇函数是满足f(-x)=-f(x)的函数,而偶函数是满足f(-x)=f(x)的函数。

奇函数的图形关于原点对称,偶函数的图形关于y轴对称。

这些是基本初等函数的一些常见知识点,掌握了这些知识点可以帮助你理解函数的基本概念、性质和图像,为进一步学习更高级的数学知识打下坚实的基础。

基本初等函数知识总结

基本初等函数知识总结

基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。

初等函数的定义与性质

初等函数的定义与性质

初等函数的定义与性质初等函数是数学中常见且基本的函数类型。

它们在数学分析、数论、概率论等各个领域都有广泛的应用。

本文将介绍初等函数的定义和性质,帮助读者更好地理解和应用初等函数。

一、初等函数的定义初等函数是指能够通过有限次的代数运算和初等函数运算所得到的函数。

这里的代数运算包括四则运算和函数复合运算,而初等函数运算则包括指数函数、对数函数、三角函数以及反三角函数。

初等函数的所属范围相对广泛,这使得我们能够通过简单的运算和组合得到他们的值。

二、初等函数的性质1. 初等函数是连续函数:初等函数在其定义域上都是连续的。

连续性给初等函数的应用提供了数学上的保证,使得我们能够对初等函数进行更简单、更精确的分析和计算。

2. 初等函数的导数:初等函数具有求导性质,即它们的导数可以通过一系列的规则来求解。

常见初等函数的导数规则包括幂函数求导法则、指数函数求导法则、对数函数求导法则、三角函数求导法则等。

这些导数规则是微积分学中的基础,能够帮助我们更深入地理解初等函数的变化规律。

3. 初等函数的周期性:三角函数是一类重要的初等函数,具有周期性的特点。

例如正弦函数和余弦函数的周期都是2π。

这种周期性对于解决周期性问题和振动问题非常有用,例如傅里叶级数展开和信号处理等领域。

4. 初等函数的极限:初等函数的极限也是初等函数性质的重要组成部分。

通过对初等函数的极限进行研究,我们可以得到函数在某一点附近的趋势和变化规律。

5. 初等函数的积分:初等函数也具有求积分的属性。

通过对初等函数的积分,我们能够计算曲线下面的面积、计算物体的质量和体积等。

积分是微积分学的基本内容,对于解决实际问题起着重要的作用。

总结起来,初等函数是数学中非常重要的函数类型。

它们在数学分析、工程学、物理学等多个领域中都具有广泛的应用。

初等函数通过有限次的代数运算和初等函数运算得到,具有连续性、导数性质、周期性、极限性质和积分性质。

这些性质使得初等函数成为研究和应用的基础,对于深入理解数学以及解决实际问题都具有重要的意义。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点一、函数的定义和性质函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素。

函数通常用f(x)表示,其中x是自变量,f(x)是因变量。

函数有以下性质:1. 定义域和值域:函数的定义域是所有可输入的自变量的集合,值域是所有对应的因变量的集合。

2. 奇偶性:一个函数可以是奇函数或偶函数,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

3. 单调性:函数可以是单调递增或单调递减的。

单调递增函数满足当x1小于x2时,f(x1)小于f(x2);单调递减函数则相反。

二、常见的基本初等函数1. 幂函数:指数函数是形如y=x^n的函数,其中n是一个实数。

根据n的不同取值,幂函数可以分为多种情况,如正幂函数、负幂函数、倒数函数等。

2. 指数函数:指数函数是以指数为自变量的函数,常见的指数函数有以e为底的自然指数函数(y=e^x)和以10为底的常用对数函数(y=log(x))。

3. 对数函数:对数函数是指以某个正实数为底的函数,常见的对数函数有以e为底的自然对数函数(y=ln(x))和以10为底的常用对数函数。

4. 三角函数:三角函数是以角度或弧度为自变量的函数,常见的三角函数有正弦函数(y=sin(x))、余弦函数(y=cos(x))、正切函数(y=tan(x))等。

5. 反三角函数:反三角函数是三角函数的逆函数,常见的反三角函数有反正弦函数(y=arcsin(x))、反余弦函数(y=arccos(x))、反正切函数(y=arctan(x))等。

三、基本初等函数的图像和性质1. 幂函数的图像与性质:平方函数(y=x^2)的图像是一个开口上的抛物线,立方函数(y=x^3)的图像则是一个S形曲线。

幂函数的性质与指数n的奇偶性、正负有关。

2. 指数函数的图像与性质:自然指数函数(y=e^x)具有递增的特点,其图像是一条通过原点且向上增长的曲线。

常用对数函数(y=log(x))的图像则是一条斜率逐渐减小的曲线。

基本初等函数知识点总结

基本初等函数知识点总结

基本初等函数知识点总结1.常数函数:常数函数是指函数的值在定义域内都保持不变的函数。

表示为f(x)=c,其中c是常数。

常数函数的图像是一条平行于x轴的直线。

常数函数的性质是恒等性,即f(x)=f(x'),对于任意x和x'都成立。

2.平方函数:平方函数是指函数的值与自变量的平方成正比的函数。

表示为f(x)=x²。

平方函数的图像是一条开口向上的抛物线。

平方函数的性质是奇偶性,即f(-x)=f(x),对于任意实数x都成立。

3.立方函数:立方函数是指函数的值与自变量的立方成正比的函数。

表示为f(x)=x³。

立方函数的图像是一条通过原点且存在于所有象限的曲线。

立方函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)或f(x₁)>f(x₂)成立。

4.绝对值函数:绝对值函数是指函数的值与自变量的绝对值成正比的函数。

表示为f(x)=,x。

绝对值函数的图像是一条以原点为顶点且对称于y轴的V字形曲线。

绝对值函数的性质是非负性,即对于任意实数x,有f(x)≥0成立。

5.指数函数:指数函数是指函数的值与自变量的指数幂成正比的函数。

表示为f(x)=aˣ,其中a是一个正实数且a≠1、指数函数的图像是一条通过点(0,1)且与x轴和y轴都无交点的曲线。

指数函数的性质是增长性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。

6. 对数函数:对数函数是指函数的值与自变量的对数成正比的函数。

表示为f(x)=logₐ(x),其中a是一个正实数且a≠1、对数函数的图像是一条通过点(1, 0)且与x轴和y轴都无交点的曲线。

对数函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。

7. 三角函数:三角函数包括正弦函数、余弦函数、正切函数等。

正弦函数表示为f(x)=sin(x),余弦函数表示为f(x)=cos(x),正切函数表示为f(x)=tan(x)。

(完整版)基本初等函数知识点及函数的基本性质

(完整版)基本初等函数知识点及函数的基本性质
对数函数
定义
函数y logax(a 0且a
1)叫做对数函数
a1
0a1
x1
x1
yx 1
y
y logax
yy logax
图象
(1,0)
O
(1,0)
x
Ox
定义域
(0,,0),即当x
1时,y 0.
奇偶性
非奇非偶
② 对数函数对底数的限制:(a 0,且a1). 三、对数函数的图像和性质:
指数函数及其性质
、指数与指数幂的运算
一)根式的概念
1、如果xna,a R,x R,n1,且n N,那么x叫做a的n次方根.当n是奇数时,a
函数名称
指数函数
定义
函数y ax(a 0且a1)叫做指数函数
图象
a1
0a1
y 1yy ax
(0,1)
Ox
y axy
y 1(0,1)
Ox
定义域
R
值域
(0,+∞)
过定点
在第一象限内,a越小图象越高, 越靠近y轴;
图象影响
在第二象限内,a越大图象越低, 越靠近x轴.
在第二象限内,a越小图象越低, 越靠近x轴.
注意:利用函数的单调性,结合图象还可以看出:
1)
在[a,
b]上,
f (x)
ax(a 0且a
1)值域是[f (a),f(b)]或[f(b),f(a)]
2)
若x
0,则
对数函数及其性质
、对数与对数的运算
一)对数
1.对数的概念: 一般地, 如果ax
N (a
0,a
1),那么数x叫做以.a为.底.N的对数, 记作:
x

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点1.函数的定义与性质函数是一种将一个集合的元素映射到另一个集合的运算关系。

函数可以通过一条或多条有序对来表示,其中每个有序对由自变量和对应的函数值组成。

常见的函数表示方法有显式函数、隐式函数和参数方程等。

函数的性质有定义域、值域、奇偶性、增减性等。

其中,定义域是自变量的取值范围,值域是函数值的取值范围。

奇偶性描述了函数图像的对称性,增减性描述了函数在定义域的变化趋势。

2.常见初等函数常见的初等函数包括多项式函数、指数函数、对数函数、三角函数和双曲函数等。

-多项式函数是形如f(x)=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀的函数,其中aₙ,aₙ₋₁,...,a₁,a₀是常数,x是自变量,n是非负整数。

-指数函数是形如f(x)=aᵢx的函数,其中a是一个正常数,x是自变量。

- 对数函数是指数函数的逆运算,形如 f(x) = logₐx 的函数,其中a 是正常数,x 是自变量。

-三角函数包括正弦函数、余弦函数、正切函数等。

-双曲函数是以指数函数为基础构造的一类函数,包括双曲正弦函数、双曲余弦函数等。

3.函数的运算函数之间可以进行四则运算、函数的复合和逆函数的求解等运算。

-四则运算是指两个函数之间进行加减乘除的运算。

加法运算表示两个函数的对应值相加,减法运算表示两个函数的对应值相减,乘法运算表示两个函数的对应值相乘,除法运算表示两个函数的对应值相除。

-函数的复合是指将一个函数的输出作为另一个函数的输入。

复合函数可以通过符号f(g(x))表示,其中f和g是两个函数。

-逆函数是指将一个函数的自变量和函数值交换后得到的新函数。

逆函数可以通过符号f^(-1)(x)表示,其中f是一个函数。

4.函数的图像与性质函数的图像是函数关系在一些坐标系中的几何表现。

函数的图像可以用来研究函数的性质和变化趋势。

-函数的图像可以用点集、曲线或面积等形式来表示。

-函数的对称性可以通过图像来判断,如关于原点对称、关于x轴对称、关于y轴对称等。

初中数学知识点初等函数的概念与性质

初中数学知识点初等函数的概念与性质

初中数学知识点初等函数的概念与性质初中数学知识点初等函数的概念与性质初等函数是初中数学学习中的一个重要概念,它在数学的各个分支中均有广泛应用。

掌握初等函数的概念及其性质,对于学习数学和解决实际问题具有重要意义。

本文将从初等函数的定义、常见类型以及性质等方面进行论述。

一、初等函数的定义初等函数是指由有限次的常数函数、幂函数、指数函数、对数函数、三角函数及其反函数,以及这些函数的有限次四则运算、函数复合而成的函数。

初等函数是数学中最基本的函数之一,是许多复杂函数的基础。

二、常见类型的初等函数1. 常数函数:常数函数是指函数在定义域上的函数值全都相等的函数,例如f(x) = 2。

2. 幂函数:幂函数是指以自变量为底数,自变量的指数为指数的函数,例如f(x) = x²。

3. 指数函数:指数函数是以常数e(自然对数的底数)为底数,自变量为指数的函数,例如f(x) = eˣ。

4. 对数函数:对数函数是指以常数e为底数,函数值为自变量的指数的函数的自变量,例如f(x) = logₑx。

5. 三角函数:三角函数是指以单位圆上的点坐标值作为函数值的函数,常见的有正弦函数、余弦函数和正切函数等。

三、初等函数的性质初等函数具有以下一些重要的性质:1. 定义域和值域:初等函数的定义域可以是整个实数集R,也可以是实数集上的一个区间,值域则取决于具体函数的性质。

2. 奇偶性:根据函数的定义和性质,初等函数可以具有奇函数和偶函数的特点。

3. 单调性:初等函数具有单调递增和单调递减的性质,这取决于其导数的正负性。

4. 极值点:初等函数在定义域上可能存在极值点,可以通过求导数和分析函数的增减性来确定。

5. 对称轴:初等函数可能存在对称轴,可以通过观察函数的图像或者函数表达式来确定。

6. 渐近线:初等函数的图像可能趋近于某些直线,可以是水平渐近线、垂直渐近线或斜渐近线。

7. 周期性:三角函数具有周期性,周期可以通过观察函数的图像或者函数表达式来确定。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点一、引言在数学中,初等函数是由基本初等函数经过有限次的四则运算(加、减、乘、除)以及复合运算得到的函数。

基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数以及反三角函数。

本文将详细介绍这些基本初等函数的定义、性质和图像。

二、常数函数定义:常数函数 \( f(x) = c \),其中 \( c \) 是一个实数常数。

性质:常数函数的图像是一条平行于 \( x \) 轴的直线,其所有点的函数值都等于常数 \( c \)。

图像:见附录图1。

三、幂函数定义:幂函数 \( f(x) = x^n \),其中 \( n \) 是实数。

性质:幂函数的性质取决于指数 \( n \) 的值。

当 \( n \) 为正整数时,函数图像是 \( n \) 次幂的曲线;当 \( n \) 为负整数时,函数图像是倒数的幂函数曲线。

图像:见附录图2。

四、指数函数定义:指数函数 \( f(x) = a^x \),其中 \( a > 0 \) 且 \( a\neq 1 \)。

性质:指数函数的底数 \( a \) 决定了函数图像的形状。

当 \( a > 1 \) 时,函数是增长的;当 \( 0 < a < 1 \) 时,函数是衰减的。

图像:见附录图3。

五、对数函数定义:对数函数 \( f(x) = \log_a(x) \),其中 \( a > 0 \) 且\( a \neq 1 \)。

性质:对数函数是指数函数的逆函数。

当 \( a > 1 \) 时,函数是单调增加的;当 \( 0 < a < 1 \) 时,函数是单调减少的。

图像:见附录图4。

六、三角函数1. 正弦函数 \( \sin(x) \)2. 余弦函数 \( \cos(x) \)3. 正切函数 \( \tan(x) \)定义:这些函数与单位圆上的点的坐标有关。

性质:三角函数具有周期性,它们的周期为 \( 2\pi \)。

基本初等函数定义及性质知识点归纳

基本初等函数定义及性质知识点归纳

基本函数图像及性质一、基本函数图像及其性质:1、一次函数:(0)y kx b k 2、正比例函数:(0)y kx k 3、反比例函数:(0)k yxx4、二次函数:2(0)y axbx c a (1)、作图五要素:2124(,0),(,0),(0,),(),(,)()224b b ac bx x c x aaa 对称轴顶点(2)、函数与方程:2=4=00bac 两个交点一个交点没有交点(3)、根与系数关系:12b x x a,12c x x a5、指数函数:(0,1)xya aa 且(1)、图像与性质:(i )1()(0,1)xxya ya aa与且关于y 轴对称。

(ii )1a 时,a 越大,图像越陡。

(2)、应用:(i )比较大小:(ii )解不等式:1、回顾:(1)()mmmab ab(2)()m mma a bb2、基本公式:(1)mnm naaa(2)m m nna aa(3)()m nm na a3、特殊:(1)1(0)aa (2)11(0)aa a(3)1(;0)nnaa n a R n a 为奇数,为偶数,(4);0;0||nna n a a aaaa n 为奇其中,为偶例题1:(1)22232[()()]3x xyxy y xx y x y ;32235()()(5)x xy xy (2)11232170.027()(2)(21)79;20.52371037(2)0.1(2)392748(3)44(3);1122aaa例题2:(1)化简:212212)9124()144(a aa a(2)方程016217162xx的解是。

(3)已知32121xx,计算(1)1x x ;(2)37122xxx x例题3:(1)若4812710,310yx,则yx 210= 。

(2)设,0,,,xyzR z y x 且zyx14464,则()A.yxz111 B.yxz112 C.yxz121 D.yxz211(3)已知,123ba 则aba339= 。

(完整版)基本初等函数知识点及函数的基本性质

(完整版)基本初等函数知识点及函数的基本性质

指数函数及其性质一、指数与指数幂的运算 (一)根式的概念1、如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a的n次方根用符号n 是偶数时,正数a 的正的n的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.2n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.3、根式的性质:na =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (二)分数指数幂的概念1、正数的正分数指数幂的意义是:0,,,m na a m n N +>∈且1)n >.0的正分数指数幂等于0. 2、正数的负分数指数幂的意义是: 1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质(0,,)r s r s a a a a r s R +⋅=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈5、0的正分数指数幂等于0,0的负分数指数幂无意义。

二、指数函数的概念一般地,函数)1a ,0a (a y x≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:○1 指数函数的定义是一个形式定义; ○2 注意指数函数的底数的取值范围不能是负数、零和1.(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈ (3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =(4)当1a >时,若21x x <,则)x (f )x (f 21< 四、底数的平移对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点一、函数的概念:函数是自变量与因变量之间的一种对应关系。

其中,自变量是函数的输入,因变量是函数的输出。

函数可以用来描述不同变量之间的关系或者用来描述一些变量随着另一个变量的变化而发生的变化。

二、函数的表示法:函数可以用不同的表示法来表示。

最常见的表示法有解析式表示法、图像表示法和表格表示法。

例如,一元一次函数y=ax+b就是一个常见的初等函数。

三、函数的性质:1.定义域和值域:函数的定义域是自变量的取值范围,值域是函数的因变量的可能取值范围。

2.奇偶性:对于函数f(x),如果对于任意x,有f(-x)=f(x)成立,则函数具有偶性;如果对于任意x,有f(-x)=-f(x)成立,则函数具有奇性。

3.单调性:如果对于任意x1>x2,有f(x1)>f(x2)成立,则函数为递增函数;如果对于任意x1>x2,有f(x1)<f(x2)成立,则函数为递减函数。

4.周期性:如果对于任意x,有f(x+T)=f(x)成立,则函数具有周期T。

四、常见初等函数的性质和图像:1.常数函数:f(x)=c(c为常数),图像为平行于x轴的一条直线。

2. 一次函数:f(x) = ax + b(a和b为常数),图像为一条直线,斜率a决定了直线的倾斜程度,b为与y轴交点的纵坐标。

3.幂函数:f(x)=x^n(n为常数),图像的形状与n的奇偶性以及正负有关,例如,当n为正奇数时,图像的右上和左下部分都在x轴上方。

4.指数函数:f(x)=a^x(a为常数且大于0且不等于1),图像呈现出一种快速增长的趋势。

5. 对数函数:f(x) = loga(x)(a为常数且大于0且不等于1),图像为一条光滑的上升曲线,a决定了函数增长的速度。

五、初等函数的运算:1.四则运算:对于两个初等函数f(x)和g(x),可以进行加减乘除运算,得到新的初等函数。

2.复合运算:对于两个初等函数f(x)和g(x),可以将g(x)的值代入f(x)进行运算,得到新的初等函数。

基本初等函数经典总结优质资料最全面(精华版)

基本初等函数经典总结优质资料最全面(精华版)

第十二讲 基本初等函数一:教学目标1,把握基本初等函数(指数函数,对数函数,幂函数)地基本性质; 2,懂得基本初等函数地性质;3,把握基本初等函数地应用,特殊为指数函数与对数函数二:教学重难点 教学重点:基本初等函数基本性质地懂得及应用;教学难点:基本初等函数基本性质地应用三:学问出现 1.指数与指数函数srr rrsr srrsaba b a aa aa ;1). 指数运算法就: (1) ;( 2) ( 3) ;mnma n1nama , n 奇 nma (4) a;(5) ( 6) n na |, n 偶| a a x(a y 0且a1)2). 指数函数:形如指数函数0<a<1a>1图 象a x表达式 y定义域 R值 域 (0,)过定点 (0,1)单调性单调递减 单调递增2.对数函数1)对数地运算: ba Nb log a N1,互化: log a N2,恒等: aNlog log b a3,换底: c log ba c1 推论 推论 12 log b log clog clog ba b a a log ab n log mnlog a mbb推论 (m 0)3 a 4, log MNlog M log Na a a M Nlog log Mlog Naa a n5, log Mn log Ma a 2) 对数函数:对数函 0<a<1a>1数图 象log a x表达式 y 定义域 (0,)值 域 R过定点 (1 ,0)单调性单调递减单调递增3.幂函数ax ( 一般地,形如 y a R )地函数叫做幂函数,其中a 为常数 1)性质:(1) 全部地幂函数在 1);(0,+ ∞ )都有定义, 并且图象都通过点 (1,(2) 假如 α >0,就幂函数图象通过( 0, 0),并且在区间 [0,+ ∞ )上为增函数;(3) 假如 α <0,就幂函数在区间 (0,+ ∞ )上为减函数,在第一象限内,当 x 从右边趋向于原 点时,图象在 y 轴右方无限地靠近 y 轴,当 x 趋于 +∞时,图象在 x 轴上方无限靠近 x 轴;四:典型例题考点一:指数函数 23x5) 21 x例 1 已知 5) ,就 x 地取值范畴为.(a2 a ( a 2 a 分析:利用指数函数地单调性求解,留意底数地取值范畴. 2a25 ( a 1)解:∵ 4≥ 4 2a 1 ,2(a x2a 5) 在 ∴函数 ∞, ∞) 上为增函数, y ( 1 4 1, 4∴ 3x x ,解得 ∞ ..∴ x 地取值范畴为 1 x 评注: 利用指数函数地单调性解不等式,需将不等式两边都凑成底数相同地指数式,并判断底数与 1 地大小,对于含有参数地要留意对参数进行争论. 2xa x2a例 2 函数 1(a 0且 a1) 在区间 [ 1,1] 上有最大值 14,就 a 地值为 .y xa 可将问题转化成二次函数地最值问题,需留意换元后 分析:令 t t 地取值范畴.2 xax2a21)xa ,就 解:令 tt0 ,函数 y 1 可化为 y (t 2 ,其对称轴为 t 1 .∴当 a 1时,∵1,1 ,x1 ≤ a x a1 ≤ a ≤ a ,即 t ≤ ∴ a . 2∴当 a 时, t y max (a 1)2 14.解得 3 或 a(舍去);a 5 当 0 1 时,∵ 1,1 ,a x 1 a 1 aa ≤ a x ≤ a ≤ t≤ ∴ ,即 , 21 a1 a∴ 2 14 ,t时, y max11或 1(舍去),∴ a 地值为 3 或 1 . 3解得 aa 35 评注: 利用指数函数地单调性求最值时留意一些方法地运用, 比如:换元法, 整体代入等.x 26例 3 求函数 y1 地定义域与值域. x 62≥0 ,即 x 26 ≤ 1 , 解:由题意可得 1 ∴ x 2≤ 0 ,故 x ≤ 2 . ∴函数 f (x) 地定义域为∞ ,2 .x 62,就 令 t ,y 1 t 又∵ x ≤ 2 2 ≤ 0 . ∴ 0 x 26 ,∴ x ≤ 1 ,即 0 t ≤ 1 .∴ 0 ≤ 1 0 ≤ y 1 ,即 1 . t ∴函数地值域为 0,1 .评注:利用指数函数地单调性求值域时,要留意定义域对它地影响. x 2 3x 21 3例 求函数 y =地单调区间 .4 分析 这为复合函数求单调区间地问题u u13 1 32,u = x 可设 y = -3x+2 ,其中 y =为减函数 ∴ u = x 2-3x+2 地减区间就为原函数地增区间 u = x -3x+2 地增区间就为原函数地减区间 ( 即减减→增 )( 即减,增→减 )2u1 32,u = x 解:设 y =关于 u 递减,-3x+2,y 3 当 x ∈(- ∞,) 时, u 为减函数,23 ∴ y 关于 x 为增函数;当 x ∈[,+∞ ) 时, u 为增函数, 2y 关于 x 为减函数 .考点二:对数函数例 5 求以下函数地定义域 ( 1) y=log 2 (x 2-4x-5 );( 2) y=log x+1 ( 16-4 )x( 3) y= .解: ( 1)令 x2-4x-5 > 0,得( x-5 )( x+1 )> 0, 故定义域为 {x | x < -1,或 x > 5}.( 2)令 得故所求定义域为{ x | -1< x <0,或 0<x < 2}.(3)令,得故所求定义域为{x|x<-1- ,或-1- <x<-3,或x≥2}.说明求与对数函数有关地定义域问题,第一要考虑,真数大于零.底数大于零不等于1,如处在分母地位置,仍要考虑不能使分母为零.例6 比较大小:(1)log0.71.3 与log 0.71.8.2(2)(lg n)1 .7 与(lgn)(n>1).(3)log23 与(4)log35 与log53.log64.解:(1)对数函数y=log 0.7x在(0,+∞)内为减函数.由于1.3<1.8,所以log0.71.3>log0 .71.8.(2)把lgn 看作指数函数地底,此题归为比较两个指数函数地函数值地大小,故需对底数lgn 争论.R 上为减函数,所以(lgn )1.2>(lgn)2;x 在如1>lgn>0,即1<n<10 时,y=(lgn)如lgn >1,即n>10 时,y= (lgn)2 在R 上为增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log 2x log2 3>log53.与y=log 5x 当x>1 时,y=log 2x 地图像在y=log 5x 图像上方.这里x=3 ,所以(4)log35 与单调性即可求解.log64 地底数与真数都不相同,须找出中间量“搭桥”,再利用对数函数地由于log 35>log33=1=log 66>log64,所以log35>log 64.评析要留意正确利用对数函数地性质,特殊为第(3)小题,可直接利用例 2 中地说明得到结论.22)地最大值,及例7 已知f (x)=2+log y3x,x∈[1,9],求y=[f(x)]+f (x取最大值时,x 地值.22)地最大值,要做两件事,一为要求其表达式;分析要求函数y=[f(x)]+f (x二为要求出它地定义域,然后求值域.解:∵f(x)=2+log 3x,22)=(2+log 22∴y=[f (x)]+f (x 3x)+2+log 3x2=( 2+log 3x ) +2+2log 3 x 2=log 3x+6log 3x+6 2=( log 3x+3 ) -3.∵函数 f (x )地定义域为[ 1,9],21 1 xx 99∴要使函数 y=[ f ( x )] 2+f ( x 2)有定义,就须,∴ 1≤x ≤.3 ∴ 0≤log 3x ≤1 2∴ 6≤y=( log 3x+3 ) -3≤ 13x=3 时,函数 y=[ f ( x )] 22)取最大值 ∴当 13. +f ( x y=[ f ( x )] 2+f ( x 2)定义域地正确确定.假如说明 本例正确求解地关键为:函数我们误认为[ 1, 9]为它地定义域.就将求得错误地最大值22.其实我们仍能求出函数y=[ f ( x )] 2+f ( x 2)地值域为[ 6,13]. 2例 8 求函数 y=log 0. 5( -x +2x+8 )地单调区间. u=-x 2分析 由于对函数地底为一个小于 1 地正数,故原函数与函数+2x+8 ( -2< x < 4)地单调性相反.解.∵ -x 2+2x+8 > 0, ∴ -2< x <4,∴ 原函数地定义域为( -2, 4).函数 u=-x 22 又∵ +2x+8=- ( x-1 ) +9 在( -2,1]上为增函数,在[ 1, 4)上为减函数,2∴函数 y=log 0. 5( -x +2x+8 )在( -2, 1]上为减函数,在[ 1, 4)上为增函数. 评析 判定函数地单调性必需先求出函数地定义域,单调区间应为定义域地子集.考点三:幂函数 例 9. 比较大小:111.2)3 ,( 1.25)3 ( 3) 1 12( 4)3,3(1)2 2( 2) (1 311.7 ,∴ 212yx2解:( 1)∵ 在 [0,) 上为增函数, 3x 在 R 上为增函数, 3( 1.2)31.25)(2)∵ y ,∴( 1在 11;(3)∵ y x ,∴ (0,) 上为减函数,yx为增函数,12∵ 12 ,∴5.26 ;112综上,3(4)∵ log 0 ,1 , 31, 3 3∴ log33 2xm2m 3例 10.已知幂函数 y (m Z )地图象与 x 轴, y 轴都无交点, 且关于原点对称, 求 m 地值. m 2 2m 3解: ∵幂函数 Z )地图象与 x 轴, y 轴都无交点,y x( m m2∴1 m 3 ;2m 3 0 ,∴ 2∵ m Z ,∴ ( m 2m 3) Z ,又函数图象关于原点对称,2m∴ m 0 或m 2 . 2m 3 为奇数,∴ 2x 5 1+ 2x 5例 11, 求函数 y = 1+ 4( x ≥-32)值域. 解析: 设 t = x 5 ,∵ x ≥- 32,∴ t ≥- 2,就 y = t 2+ 2t + 4=( t + 1)2+3. 当 t =- 1 时, y min =3. 2x 5 1+ 2x 5 ∴函数 y = +4(x ≥- 32)地值域为[ 3,+ ).点评: 这为复合函数求值域地问题,应用换元法.五:课后练习x x与 地 图 像 可 能 为 ( )y=log1 , 如 a > 1 在 同 一 坐 标 系 中 , 函 数 y=aaAB C D1 6 -( 4 3 3 = 842.求值+- 3 ),0 3. 以下函数在上为减函数地为()1x3x2x32A. y B. yyD. y xC. 答案:Bx xy yx xy y1 21 3地值4.已知 x=,求,y=-1- 1 2a 2 <a a ,就 地取值范畴为() 5.如 A . a ≥1B . a >0 C . 1> a >0D . 1≥ a ≥0解析: 运用指数函数地性质,选 C .答案: C6.以下式子中正确选项()x log a log ax y( x y )xyA log =log -log B=log -log aa a a ayxloga log axxx -log y= log C=log Dlog yya a a a y。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点基本初等函数是数学中常见的一类函数,包括常数函数、幂函数、指数函数、对数函数、三角函数等。

它们在数学和科学领域应用广泛,对于理解和解决实际问题具有重要意义。

本文将介绍基本初等函数的定义、性质和应用,以帮助读者全面理解和掌握这些知识点。

一、常数函数常数函数是指函数的函数值始终保持不变的函数。

它的定义域是全体实数,通常表示为f(x) = c,其中c为常数。

常数函数的图像是一条水平的直线,平行于x轴。

无论自变量取何值,函数值始终为常数。

常数函数在数学中的应用较少,但在物理、经济学等学科中有时会用到。

二、幂函数幂函数是指自变量的指数和函数值之间的关系为幂关系的函数。

幂函数的表达式可以写作f(x) = x^a,其中a为实数。

幂函数的图像形状与指数a的正负、大小有关。

当a为正数时,函数图像是递增的曲线;当a为负数时,函数图像是递减的曲线;当a为0时,函数图像是一条常数函数的直线。

三、指数函数指数函数是自变量为指数的函数。

指数函数的一般形式为f(x) = a^x,其中a为正实数且不等于1。

指数函数的图像是一条递增或递减的曲线。

当a大于1时,函数图像是递增曲线;当a介于0和1之间时,函数图像是递减曲线。

指数函数在经济学、生物学、物理学等领域有广泛的应用。

四、对数函数对数函数是指自变量和函数值之间的关系为指数关系的函数。

对数函数的一般形式为f(x) = logₐ(x),其中a为正实数且不等于1。

对数函数的图像是一条递增或递减的曲线。

当a大于1时,函数图像是递增曲线;当a介于0和1之间时,函数图像是递减曲线。

对数函数在科学计算、数据处理等领域被广泛运用。

五、三角函数三角函数是指以角度或弧度为自变量的函数。

常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。

三角函数的图像是周期性曲线。

它们的性质和图像形态与角度或弧度的取值范围有关。

三角函数在物理学、几何学、信号处理等领域具有重要应用价值。

基本初等函数知识点归纳

基本初等函数知识点归纳

函数及其基本初等函数〖1.1〗函数及其表示 【1.1.1】函数的概念 (1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.(所以进行已知对应关系()f x 的函数,一定先求出函数的定义域)③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).而且无论闭区间或者开区间,,a b 均称为端点。

(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.例1 已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A 00,()0x R f x ∃∈=B 函数()y f x =的图像是中心对称图形C 若0x 是()f x 的极小值点,则()f x 在区间(-∞,0x )上单调递减D 若0x 是()f x 的极值点,则'()0f x =例2 已知偶函数()f x 在[0,)+∞上单调递减,(2)f =0,若(1)0f x ->,则x 的取值范围是( )例 3 设函数()xf x mπ=,若存在()f x 的极值点0x 满足22200[(()]x f x m +<,则m 的取值范围是( )A (-∞,-6)∪(6,+∞)B (-∞,-4)∪(4,+∞)C (-∞,-2)∪(2,+∞)D (-∞,-1)∪(1,+∞) 例4 下列函数与y=x 有相同图像的一个函数是( )A y =B 2x y x=C log (01)xy aa a =>≠且 D log xa a y =【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值 (1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数(判定方法2). (3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =. 【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)yxo如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算 (1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0) nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈ 【2.1.2】指数函数及其性质(4)指数函数 函数名称指数函数定义 函数(0xy a a =>且1)a ≠叫做指数函数图象1a > 01a <<xa y =xy(0,1)O1y =xa y =xy(0,1)O1y =〖2.2〗对数函数【2.2.1】对数与对数运算 (1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质 (5)对数函数函数 名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域(即原函数的值域).(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔x y1x 2x 0>a O ••1k 2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O•<a 1k •2k 0)(1<k f 0)(2<k f a b x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合x y1x 2x 0>a O ••1k 2k 0)(1>k f 0)(2<k fxy1x 2x O•<a 1k •2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =f(p) f (q) ()2b f a-f (p)f(q)()2bf a-f (p)f (q)()2b f a-f(p) f (q)()2b f a-0x f(p) f(q)()2b f a-0x(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用〖3.1〗方程的根与函数的零点 一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本函数图像及性质
一、基本函数图像及其性质: 1、一次函数:(0)y kx b k =+≠
2、正比例函数:(0)y kx k =≠
3、反比例函数:(0)k
y x x
=

4、二次函数:2
(0)y ax bx c a =++≠
(1)、作图五要素:2
124(,0),(,0),(0,),(),(,)()224b b ac b x x c x a a a -=--对称轴顶点 (2)、函数与方程:2
=4=0
0b ac >⎧⎪∆-⎨⎪<⎩
两个交点一个交点没有交点
(3)、根与系数关系:12b x x a +=-,12c x x a
⋅=
5、指数函数:(0,1)x
y a a a =>≠且 (1)、图像与性质:
(i )1()(0,1)x x y a y a a a
==>≠与且关于y 轴对称。

(ii )1a >时,a 越大,图像越陡。

(2)、应用:
(i )比较大小: (ii )解不等式: 1、回顾:
(1)()m
m
m
ab a b =⋅ (2)()m
m m a a b b
=
2、基本公式:
(1)m n m n
a a a
+⋅= (2)m m n n a a a
-= (3)()m n m n
a a ⨯=
3、特殊:
(1)0
1(0)a a =≠ (2)11
(0)a a a
-=
≠ (3
)1;0)n
a n a R n a =∈≥为奇数,为偶数,
(4
;0;0||
a n a
a a
a a n ≥⎧⎧==⎨⎨
-<⎩⎩为奇其中,为偶
例题1:(1)22232[()()]3x x y xy y x x y x y ---÷;3223
5()()(5)x xy xy ÷
(2
)1
1203
2170.027()(2)1)79----+-;20.52
0371037(2)0.1(2)392748
π--++-+
(3
例题2:(1)化简:2
12
2
12)9124()144(+-+++a a a a
(2)方程016217162=+⨯-x
x 的解是 。

(3)已知32
12
1=+-x
x ,计算(1)1
--x x ;(2)3
7
122++-+--x x x x
例题3:(1)若48
12710,310==-y
x
,则y x -210= 。

(2)设,0,,,≠∈xyz R z y x 且z y x 14464==,则( )
A.
y x z 111+= B.y x z 112+= C.y x z 121+= D.y
x z 211+=
(3)已知,123=+b a 则
a b a 3
39⨯= 。

6、对数函数:log (0,1)a y x a a =>≠且 (1)、图像与性质:
(2)、应用:
(i )比较大小: (ii )解不等式:
对数运算
1、与指数运算的关系:互为逆运算 log (01)(0)a b a b >≠>且
557log 7x x =→= (注:底数不变)
2、基本公式:
(1)log log log a a a M N M N +=⋅; (2)log log log a a a
M M N N
-=; (3)log log n
a a M n M =
3、特殊:
(1)log 10a =;1
log 1a
a
=-;log a b a b = (2)换底公式:log lg ln log (10,)(,)log lg ln c a c b b b
b c c e a a a
=
====常用对数自然对数;
注:log log 1a b b a ⋅=;log log m n a a n
b b m
= 例题1:指数式与对数式的转化
→=62554 ;→=-1.0101 ;→=2x e ;
→=3log 2x ;→-=201.0lg ;→=2ln x ;
例题2:求下列x 的值:3
2log ln 100lg 642-
==-=x x
e x
例题3:用z y x a a a log ,log ,log 表示下列各式(1);log z xy
a (2);log 32z
y x a
例题4:(1)若2log 2,log 3,m n
a a m n a +=== 。

(2)已知2log 3=a ,那么6log 28log 33-用a 表示为 。

例题5:化简计算(1)3log 7925
log 8log 93
(lg 2lg 2)2
⋅+-+;
(2)5
21log 2
3
322log (log 16)(5)++
(3)12
lg12
321162log lg 20lg 2(log 2)(log 3)1)49⎛⎫
++--⋅+ ⎪⎝⎭
★随堂训练:
1、已知0)](log [log log 237=x ,那么2
1-x 等于 。

2、方程12
log 1log )1(2=++x x 的解是=x 。

3、若53,32==b a ,试用a 与b 表示72log 45
4、2
1
6log log 3log 9362=⋅⋅m ,则实数m 的值为 。

5、若0>ab ,则下列正确的序号是 。

①b a ab lg lg )lg(+=;②b a b
a
lg lg lg -=;③b
a
b a lg )lg(212=;④10log 1)lg(ab ab =
6、若0>a 且0,0,1>>≠c b a ,则下列式子正确的个数为 。

①c b
c b a a a log log log =;②)(log )(log c b c b a a +=⋅;③c b c b a a a log log )(log +=⋅;④c
b
c b a a a log log )(log =-;
⑤c b c b a a a log log )(log ⋅=+;⑥c b c
b
a a a
log log log -=
7、若y=log 56·log 67·log 78·log 89·log 910,则有 ( )
A. y ∈(0 , 1) B . y ∈(1 , 2 ) C. y ∈(2 , 3 ) D. y =1
8、计算:(1)(log )log log 2222
545415
-++
(2)100011
3
43460022
++
-++-lg .lg lg lg lg .
7、正弦函数:sin y x = 8、余弦函数:cos y x = 9、正切函数:tan y x =
10、幂函数:a
y x =
(1)、基本图像:
(2)、幂函数图像不过第四象限。

二、绝对值图像:
x :将0x >保留,擦去0x <,再将0x >部分沿y 轴对折 y :将0y >保留,再将0y <部分沿x 轴对折
三、图像平移变换: 左加右减;上加下减。

相关文档
最新文档