内压薄壁容器的设计

合集下载

8 内压薄壁容器设计基础

8 内压薄壁容器设计基础

储存液体的回转薄壳
圆筒形壳体 球形壳体
21
8 内压薄壁容器设计基础(续)
1、 受内压的圆筒形壳体 已知圆筒平均直径为 D,厚度为δ,试求圆筒上
任一点 A 处的经向应力和环向应力。
22
8 内压薄壁容器设计基础(续)
薄壁圆筒中各点的第一曲率半径和第二曲率半径
分别为 R1=∞;R2=R
将R1、R2代入薄膜应力理论计算公式得经向应力 与环向应力:
a/b<2 时,σθ>0 a/b =2 时,σθ=0 a/b >2 时,σθ<0 σθ<0,表明σθ为压应力;a/b值越大,即封头成型越浅,x=a 处的压应力越大。
31
8 内压薄壁容器设计基础(续)
32
8 内压薄壁容器设计基础(续)
(4)当a/b=2时,为标准型式的椭圆形封头。
在x=0处,
m
pa
椭圆曲线方程
x2 a2
y2 b2
1
27
8 内压薄壁容器设计基础(续)
推导思路:
椭圆曲线方程
式(8-1)(8-2)
R1和R2
, m
m
pR2
2
p
2
a4
x2 (a2
b2 )
1 2
b
(8-9)
(8-10)
p
2
a4
x2 (a2 b
b2 )
1 2
2
a4
a4 x2 (a2
b2
)
又称胡金伯格方程
② 壳体的边界处不受横向剪力、弯矩和转矩作用。
③ 壳体的边界处的约束沿经线的切线方向,不得限制边界处 的转角与挠度。
对很多实际问题:无力矩理论求解 ╬ 有力矩理论修正
20

内压薄壁容器设计

内压薄壁容器设计
不被加热或冷却,筒内介质最高或最低温度。
用蒸汽、热水或其它载热体加热或冷却,载体最高温度或最低温度。
㈡设计温度
㈢许用应力系数
焊接削弱而降低设计许用应力的系数。 根据接头型式及无损检测长度比例确定。
焊接接头形式
无损检测的长度比例
100%
局部
1.0
0.85
小位移假设
各点位移都远小于厚度。可用变形前尺寸代替变形后尺寸。变形分析中高阶微量可忽略。
2.基本假设
02
直线法假设
变形前垂直于中面直线段,变形后仍是直线并垂直于变形后的中面。变形前后法向线段长度不变。沿厚度各点法向位移相同,厚度不变。
不挤压假设
各层纤维变形前后互不挤压。
01
2.基本假设
2.球形壳体
直径与内压相同,球壳内应力仅是圆筒形壳体环向应力的一半,即球形壳体的厚度仅需圆筒容器厚度的一半。 当容器容积相同时,球表面积最小,故大型贮罐制成球形较为经济。 制造 球壳R1=R2=D/2,得:
3.圆锥形壳体
圆锥形壳半锥角为a,A点处半径为r,厚度为d,则在A点处: 代入(4-3)、(4-4)可得A点处的应力:
㈡受液体静压的圆筒形壳体的受力分析 筒壁上任一点的压力值(不考虑气体压力)为: 根据式(4-3) (4-4)可得:
上部支承圆筒(b),液体重量使得圆筒壁受轴向力作用,在圆筒壁上产生经向应力:
底部支承的圆筒(a),液体重量由支承传递给基础,筒壁不受液体轴向力作用,则s1=0。
[s]t-设计温度t℃下材料许用应力,MPa。
㈠焊接接头系数
钢板卷焊。夹渣、气孔、未焊透等缺陷,导致焊缝及其附近区域强度可能低于钢材本体的强度。 钢板 [s]t乘以焊接接头系数f,f≤1

第3章 内压薄壁容器

第3章 内压薄壁容器
径。无缝钢管的公称直径、外径及无缝钢管制作筒体时的公称直径见表3-15。
第3章 内压薄壁容器
3.3 压力试验
3.3.1 压力试验的对象、目的及方法 压力试验包括液压试验和气压试验。从安全考虑,多数情况下尽可能采用液压试
验。但对不允许有微量残留液体或容积过大及结构复杂的容器;严寒下易发生冰胀而 不适宜作液压试验的容器均须进行气压试验。对剧毒介质容器和高压易燃介质等不允 许有微量介质泄漏的容器,在液压试验合格后还要做气密性试验。对需要进行热处理 的容器,应在热处理后再做压力试验。
第3章 内压薄壁容器
3.2 设计参数的确定
3.2.3 许用应力 许用应力是容器壳体、封头等受压元件的材料许用强度,它是根据材料各项强
度性能指标分别除以相应的标准中所规定的安全系数来确定的。 钢制压力容器用材料(除螺栓材料外)许用应力的取值方法见表3-6。
第3章 内压薄壁容器
3.2 设计参数的确定
(3)
设计压力p
指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不得低 于工作压力。
第3章 内压薄壁容器
3.2 设计参数的确定
3.2.2 设计温度t 设计温度是指容器在正常工作情况下,在相应设计压力下,设定的受压元件的
金属温度
元件的金属温度可用传热计算求得,或在已使用的同类容器上测定,或按内部 介质温度测定。当不可能通过传热计算或测试结果确定时,可按以下方法确定。
3.1.4 各类厚度的关系 各类厚度之间的关系如图3-1和表3-1所示。
第3章 内压薄壁容器
3.2 设计参数的确定
3.2.1 压力参数
(1)
工作压力pw
指在正常工作情况下,容器顶部可能达到的最高压力,也称为最高工作压力。

内压薄壁容器的设计计算

内压薄壁容器的设计计算
1
2、容器的分类 (1)按受力情况:内部介质的压力大于外界压力,称为内
压容器。反之称为外压容器。 常压容器:压力p<0.07MPa
内压容器:
0.07<p<1.6MPa;低压容器 1.6<p<10MPa;中压容器 p>10MPa;高压容器
外压容器
2
(2)按壁厚分为薄壁容器、厚壁容器 按照容器的外径(Do)和内径(Di)的比值K= Do/ Di
-设计温度下材料的蠕变极限,MPa
nb、ns、nD、nn-安全系数,可从有关手册中查到。
16
4. 焊缝系数
设计计算中所取焊缝系数的大小,主要是根据压力容器受 压部分的焊缝位置、焊接接头和焊缝的无损探伤检验要求 而定的。
焊接接头型式
双面焊或相当于双面焊的全焊透对接焊缝 单面焊的对接焊缝,在焊接过程中,沿焊逢根 部全长有紧贴基本金属的垫板 无法进行探伤的单面焊环向对接焊缝,无垫板
薄壁容器:K<1.2 厚壁容器: K>1.2 厚壁容器多用于高温、高压条件,制浆造纸应用较多的是 薄壁容器。
3
(3)按照容器的形状 方形或矩形:由平板焊接而成,制造简单,但承压能力低,
用于小型常压贮槽。
球形:节省材料,承压能力强,但制造困难,设备内件安 装不方便,一般用作贮罐。
圆筒形:主体为圆柱形筒体,加各种形式的封头(半球形、 椭圆形、锥形、碟形、平盖板)。制造容易,设备内件安 装方便,承压能力强,应用广泛。
PDi
SC 2[ ] P C
(7-5)
式中 Di-圆筒体内径,mm Sc-考虑了腐蚀裕度时圆筒体设计壁厚,mm
-焊缝系数
C-壁厚附加量,mm 其他符号意义同式(7-2)。

化工机械基础-第08章 内压薄壁容器设计基础

化工机械基础-第08章 内压薄壁容器设计基础

化工设备机械 基础
例8-2回转壳体薄膜应力分析例题
例:有一圆筒形容器,两端为椭圆形封头, 已知圆筒的平均直径为D=2000mm厚度为 20mm,设计压力为2MPa,试确定:
(1)筒身上的经向应力和环向应力? (2)如果椭圆封头的a/b分别为2、1.414和3, 封头厚度为20mm,分别确定封头的最大经向 应力和最大环向应力所在的位置。
d1
2
2 dl1
d2
2
0
pdl1dl2
m dl1dl2
1 R1
dl1dl2
1 R2
0
m p R1 R2
化工设备机械 基础
经推导,可得环向应力计算公式为:
m p R1 R2
R1: 该点的第一曲率半径,m
:环向应力,MPa
Page16
化工设备机械 基础
薄膜理论适用范围
• 除了要求壳体较薄,还要满足如下条件: • 回转体轴对称,壁面厚度无突变。曲率半径连
n
锥截面
中间面
M
横截面
壁厚在那个截面量取?
Page5
化工设备机械 基础
➢ 三个曲率半径
1) 第一曲率半径:中间面上任一点经线 的曲率半径。R1=MK1(K1点在法线上)
2) 第二曲率半径:通过经线上M点的法 线作垂直于经线的平面,其与中间面相 交得到一平面曲线EM,此曲线在M点 处的曲率半径.R2=MK2(K2点是法线与 回转轴的交点)
1) 直法线假设:壳体在变形前垂直于中间面的直 线段,在变形后仍保持直线段并垂直于变形后的 中间面,且直线段长度不变。
2) 互不挤压假设:壳体各层纤维变形后均互不挤 压。
忽略弯矩作用,对于薄壁壳体,计算结果足够精 确。(无力矩理论)

第三章-内压薄壁容器设计

第三章-内压薄壁容器设计

第三章内压薄壁容器设计第一节内压薄壁圆筒设计【学习目标】通过内压圆筒应力分析和应用第一强度理论,推导出内压圆筒壁厚设计公式。

掌握内压圆筒壁厚设计公式,了解边缘应力产生的原因及特性。

一、内压薄壁圆筒应力分析当圆筒壁厚与曲面中径之比δ/D≤0.1或圆筒外径、内径之比K=D0/D i≤1.2时,可认为是薄壁圆筒。

1、基本假设①圆筒材料连续、均匀、各向同性;②圆筒足够长,忽略边界影响(如筒体两端法兰、封头等影响);③圆筒受力后发生的变形是弹性微小变形;④壳体中各层纤维在受压(中、低压力)变形中互不挤压,径向应力很小,忽略不计;⑤器壁较薄,弯曲应力很小,忽略不计。

2、圆筒变形分析图3-1 内压薄壁圆筒环向变形示意图筒直径增大,说明在其圆周的切线方向有拉应力存在,即环向应力(周向应力)圆筒长度增加,说明在其轴向方向有轴向拉应力存在,即经向应力(轴向应力)。

圆筒直径增大还意味着产生弯曲变形,但由于圆筒壁厚较薄,产生的弯曲应力相对环向应力和经向应力很小,故忽略不计。

另外,对于受低、中压作用的薄壁容器,垂直于圆筒壁厚方向的径向应力相对环向应力和经向应力也很小,忽略不计。

3、经向应力分析采用“截面法”分析。

根据力学平衡条件,由于内压作用产生的轴向合力(外力)与壳壁横截面上的轴向总应力(内力)相等,即:124δσππD p D =由此可得经向应力: δσ41pD=图3-2 圆筒体横向截面受力分析4、环向应力分析 采用“截面法”分析。

图3-3 圆筒体纵向截面受力分析根据力学平衡条件,由于内压作用产生的环向合力(外力)与壳壁纵向截面上的环向总应力(内力)相等,即:22δσL LDp = (3-3)由此可得环向应力: δσ22pD= (3-4) 5、结论通过以上分析可以得到结论:122σσ=,即环向应力是经向应力的2倍。

因此,对于圆筒形内压容器,纵向焊接接头要比环向焊接接头危险程度高。

在圆筒体上开设椭圆形人孔或手孔时,应当将短轴设计在纵向,长轴设计在环向,以减少开孔对壳体强度的影响。

第二章第三节内压薄壁容器的设计计算

第二章第三节内压薄壁容器的设计计算

液 压 试 验
试验 方法 夹 套 容 器 试 验温 度 t 试 验 压 力 按 表 试 液 一 用 水 需 时 用 会 致 生 险 其 液 验 体 般 , 要 可 不 导 发 危 的 它 体
充 液时 将 容 器 内 空气 排尽 缓 慢 升 压 至 PT 保 压 30 分 钟 以 上 降 压 至 80% P T
考虑容器内部介质或周围大气腐蚀
td = pc Di + C2 t 2[σ ] ϕ − pc
式中: 设计厚度, 式中:td ——设计厚度,mm; 设计厚度 ; C2——腐蚀裕量,mm。 腐蚀裕量, 腐蚀裕量 。
名义厚度: 名义厚度:tn≥td+C1 厚度附加量 C = C1 + C2
td=t+C2
tn=td+C1+圆整值 圆整值
缓慢升压至 10%PT 且≤ 0.05MPa
保压 5 分钟 修
渗漏
合 格 合 格
缓慢升压至 50%PT
按 10% PT 的级差 逐级增压至 PT
渗漏
降压至 87%PT
必须用两只量程相同,经校正压力表 1.5PT≤量程≤4 PT
空压机
试压前通入 0.4~0.5Mpa 压缩空气检查焊接接头
介质的毒性程度为极高或高度的容器, 在压力试验合格后进行气密性试验
直立容器卧置试压时,此压力应计入容器立置时的液柱静压力。 直立容器卧置试压时,此压力应计入容器立置时的液柱静压力。
气压试验
pT ( Di + te ) σT = ≤ 0.8σ s (σ 0.2 ) 2teϕ
压力试验

按图样规定
气压试验
水压试验
优先选用 当不适合做液压试验的容器,如容器内不允许有微量残 留液体,或由于结构原因不能充满液体的容器,可采用 气压试验。

第三章内压薄壁容器的设计与计算(3)_化工设备

第三章内压薄壁容器的设计与计算(3)_化工设备
c i t c
计算值中的较大值。 K-系数,查表3-20;f-系数,
1 f 2r 1 cos Di 2 cos
t 0.5 pc
fpc Di
,其值列于表3-21。
—— 折边锥形封头小端厚度计算
当锥形封头半顶角
45
时,若采用小端无折边,其小端厚度与无折边锥形封
e n C n C1 C2
凸形封头强度计算和校核 半球形封头:
d
4 pc
t
pc Di
C2
适用范围: pc 0.6 t
椭圆和碟形封头:

Kp c Di 2 t 0 .5 pc
2 t e pw KDi 0.5 e
t
dc

p c Dc 1 C2 t 2 pc cos
(3-20)
充分考虑边缘应力的影响和自限性的特点,采用局部加强结构,并引
入与半顶角 、p / 的影响的应力增强系数Q,计算壁厚:
c
—— 封头大端与圆筒连接,确定连接处锥壳大端的厚度:
① 根据半顶角 及 缘处的加强;
径不等的圆筒,使气流均匀,如图3-6所示 。
结构与特点 锥形封头有两种结构形式,进行结构设计时需要分别考虑: 当锥形封头半顶角 30 ,可以选用无折边结构,如图3-7(a)所示; 当 30 ,应采用带有过渡段的折边结构,如图3-7(b)(c)所示。 —— 大端:若折边,过渡段的转角半径r应不小于封头大端内直径Di的10%,且 不小于该过渡段厚度的3倍; —— 小端:当半顶角 45 时,可以采用无折边结构;
pc /
t
,按图3-8(P75)判定是否需要在封头大端连接边

内压薄壁容器设计

内压薄壁容器设计

内压薄壁容器设计
欢迎来到本次演讲,今天我们将探讨内压薄壁容器设计。通过深入研究,我 们将分享一些关键信息,以帮助您在设计内压容器时做出明智的决策。
设计目的
设计内压薄壁容器的目的是确保容器在内部压力的作用下能够安全运行,并 满足特定的工程要求。我们将关注容器的结构、材料和生产制造方法。
内压薄壁容器结构
生产制造方法
1
焊接制造
焊接是制造内压薄壁容器最常用的方法,确保焊缝的质量和强度。
2
锻造制造
锻造的生产方法适用于制造高强度和高负荷要求的内压容器。
3
复合材料制造
复合材料具有较好的强度和耐腐蚀性能,适用于某些特殊工程要求的内压容器。
应用领域
化学工厂
内压薄壁容器广泛应用于化学工厂,用于储存 和处理各种化学产品。
1 圆筒形式设计
圆筒形式设计在内压下具有较好的均匀应力分布和刚度。
2 底部形式
选择合适的底部形式,如圆形底或鼓形底,以在内部压力下具有良好的强度和稳定性。
3 增强结构
在容器结构关键部位添加补强筋, 缓冲区和法兰连接以增加容器的刚性和稳定性。
容器选择
压力容器
选择适合高压遇到的应用的压力容器,以保 持安全运行。
电站
在发电过程中,内压容器用于储存和处理各种 介质,如水蒸和化学品。
食品加工
内压薄壁容器在食品加工领域中被广泛应用, 用于储存和加工各种食品和液体。
总结
通过理解内压薄壁容器的设计目的、结构、选择和制造方法,我们可以确保 容器在工作过程中的安全运行,并满足特定应用的工程要求。
壳管换热器
选用壳管换热器可以满足热交换、冷却和加 热的需求。
储气罐
对于需要储存气体和液化气体的应用,选择 合适的储气罐。

压力容器的设计—内压薄壁容器圆筒的强度设计

压力容器的设计—内压薄壁容器圆筒的强度设计
1.容器的设计压力?
2.若容器安放有安全阀,设计压力?
19
(5)外压容器——取 p≥正常操作下可能产生的 最大压差。
注意:“正常操作”——含空料,真空检漏, 稳定生产,中间停车等情况。 (6)真空容器— ※不设安全阀时,取0.1MPa ; ※设有安全阀时 取Min(1.25×△p ,0.1MPa) 。
16
设计压力p:设定的容器顶部的最高压力---设计载荷。
取值方法:
(1)容器上装有安全阀
取不低于安全阀开启压力 : p ≤(1.05~1.1)pw
系数取决于弹簧起跳压力 。
17
防爆膜装置示意图
(2)容器内有爆炸性介质,安装有防爆膜时:
取 设计压力为爆破片设计爆破压力加制造范围上限。 P44 表3-1。
当 s
4
2、强度安全条件
为了保证结构安全可靠地工作,必须留有一定的安 全裕度,使结构中的最大工作应力与材料的许用应 力之间满足一定的关系,即

0
n
=
0 —极限应力(由简单拉伸试验确定)
当 —— 相当应n 力—,安M全Pa,系可数由强度理论确定
0 —— 极限应力,—M许P用a,应可力由简单拉伸试验确定
2、当钢材的厚度负偏差不大于0.25mm,且 不超过名义厚度的6%时,负偏差可以忽略不 计。
42
(2)腐蚀裕量C2
容器元件由于腐蚀或机械磨损——厚度减薄。
——在设计壁厚时要考虑容器使用寿命期内的安全性!
具体规定如下:
对有腐蚀或磨损的元件:
C2=KaB
Ka---腐蚀速率(mm/a),由材料手册或实验确定。
要知道!
(1)需要焊后热处理的容器,须热处理后进行 压力试验和

化工设备设计基础--内压薄壁容器设计

化工设备设计基础--内压薄壁容器设计

化工设备设计基础–内压薄壁容器设计引言内压薄壁容器是化工设备中常见的一种结构,广泛应用于石油、化工、医药等行业。

其设计合理与否直接影响到化工设备的使用效果和安全性。

本文将介绍内压薄壁容器设计的基础知识和设计要点,以帮助读者更好地理解和掌握该方面的知识。

1. 薄壁容器的定义与分类薄壁容器是指在工作条件下,容器壁厚度相对较小,其内压应力主要由壁板引起的容器。

根据容器的形态可分为圆筒形、球形、圆锥形、矩形等多种类型。

根据容器的用途可分为储存容器、反应容器、传热容器等。

2. 内压薄壁容器的设计计算内压薄壁容器的设计计算主要包括以下几个方面:2.1 材料选择内压薄壁容器的材料选择至关重要,直接影响容器的强度和耐腐蚀性。

常用的材料包括碳钢、不锈钢、合金钢等。

在选择材料时,要充分考虑工作介质的性质和工艺条件。

2.2 壁厚计算壁厚是内压薄壁容器设计中的一个关键参数。

根据ASME(美国机械工程师协会)等标准,可以通过以下公式计算容器的最小壁厚:t = (P * r) / (S * F)其中,t为壁厚,P为设计压力,r为容器的内部半径,S为材料的允许应力,F为安全系数。

2.3 结构设计内压薄壁容器的结构设计需要考虑容器的强度和稳定性。

常用的结构形式有圆筒形、球形、圆锥形等。

在设计过程中,要合理选择结构形式,同时考虑容器的受力特点,确保容器在工作条件下能够承受住内压力的影响。

2.4 衬里设计针对一些特殊介质,内压薄壁容器常需要进行衬里设计。

衬里材料一般为耐腐蚀的塑料或橡胶材料,用于保护容器壁免受介质的侵蚀。

3. 内压薄壁容器的安全考虑内压薄壁容器的安全性是设计过程中必须考虑的重要因素。

下面介绍几个与安全相关的要点:3.1 压力容器的安全阀内压薄壁容器常常需要配备安全阀,用于控制容器内部的压力,一旦超过设计压力,安全阀就会自动打开释放压力,避免容器爆炸等事故的发生。

3.2 检漏装置为了及时发现容器的泄漏情况,常常需要在容器上设置检漏装置。

《化工设备基础》王绍良 第三版 课件 内压薄壁容器设计参数确定 水压试验

《化工设备基础》王绍良 第三版 课件 内压薄壁容器设计参数确定 水压试验
许用应力的一种系数
(五)厚度附加量 在设计容器时预先给壁厚一个增量,这就是
厚度附加量
3. 设计参数的确定—Pw P Pc PT
3. 设计参数的确定—Pw P Pc PT
3.1 设计压力
工作压力Pw:是指在正常情况下,容器顶部可能达到的最高压力 ;由工艺过程决定的; 设计压力P:标注在设备铭牌上的压力,其值不低于工作压力; 根据具体条件而规定的; 计算压力Pc:在相应设计条件下,用以确定元件厚度的压力,包 括液体静压力。
化工设备基础(王绍良)(第三版)
容器参数确定 水压试验
思路:
1、壁厚计算公式 2、壁厚水压试验校核 3、封头壁厚计算及对比
δ pcDi 2[σ]tφ - pc
PT
1.25
P
[ ] [ ]t
T
(PT
PL)Di
2δe
δe
0.9
S 0.2
δ
Pc Di
2[ ]t 0.5Pc
球形、 标准椭圆形、 碟形
在运输过程中为了保持必要的刚度,都必须使用大量的辅助钢材,将圆筒撑 圆,而这些钢材所需费用都要计入设备的制造成本中去,所以规定容器的最 小壁厚在经济上是合理的。
GB150-1998规定: • 碳素钢和低合金钢制容器,取 δmin 3mm • 高合金钢制容器,取 δmin 2mm
内压薄壁筒体的强度
其值的大小有焊接接头的形式及无损检测的长度比例确定
3. 设计参数的确定—ф
3.4 焊接接头系数
焊接接头系数是指对接焊接接头强度与母材强 度之比值。用以反映由于焊接材料、焊接缺陷 和焊接残余应力等因素使焊接接头强度被削弱 的程度,是焊接接头力学性能的综合反映。 (实际上焊接接头系数并不真正反映焊缝处材 料强度被削弱的程度,而是一个经验数据,表 示焊缝质量的可靠程度。)

压力容器设计

压力容器设计

设计厚度 计算厚度 腐蚀裕度
td
pDi
2[ ]t P
C2
2.51200 1.0 11.47mm 2170 0.85 2.5
8.3 内压薄壁容器的设计
名义厚度 设计厚度 钢板厚度负偏差 圆整值
tn td C1 11.47 0.8 12.27 14mm
该厚度同时满足最小壁厚要求。 储罐的水压实验压力:
F
F=Fcr


临界载荷


T



6.1 压杆失稳的概念
稳定性:构件保持原有形状的能力。
失稳:构件失去原有形状的平衡。失稳现象 的发生决定于构件及其作用载荷。
压杆的临界载荷Fcr:压杆保持直线稳定平衡时所 能承受的最大轴向压力。当轴向压力达到Fcr时, 压杆随时有失稳的可能,一旦失稳变弯,将不可能 恢复。
d 环向应力为:
pD 2t
• 球形壳体的应力分析
• 环向应力和经向应力相等:
PR PD 2t 4t
椭球形壳体的应力分析
x
M
b
a
P 2tb
a4 x2 (a2 b2 )
P 2tb
a4
x 2 (a2
b2
)
2
a4
a4 x 2 (a 2
b2
)

顶点:
Pa a 2t b
薄壁壳体: R0 / Ri 1.2或 tn / Di 0.1
p
B
二向应力状态:经向应力、周向应力
Di
1. 经向应力 (轴向应力)
截面法求 取右半部分受力分析:
p
Di
列平衡方程:
Fx 0
4
D2

压力容器的设计—内压薄壁容器应力分析及公式推导

压力容器的设计—内压薄壁容器应力分析及公式推导

dl2
-
2
m Sdl2
sin
d1
2
-
2
Sdl1
sin
d
2
2
=0
((式31-8))
式体 )角( d,ml的 Sd2并 式3d--因夹 l18对 2代 12 与) 各为角 各 s入 ,dmin项微项 Sd式 并 d2d均2体 均很 l1( 对 12ss除除 与 的 小 -iin3n各 s2以d-i, 夹 ddn8微22项 S)因d2S角 12d元,d2均 l1此 很 ldd11体并 ss2d除 d整取小 -iis112的lnn对i22n理2以 与, dd, 夹=各 d=22得dS22整d因 2角S1d2项 d2RlRld12l1理 2=1此 2dl均 d01很 得1和2dd取 ss除 s1小 2lii( nni2n2以, ddd, 很3=d=22-S2822因 小整 12d2d) dR2RlRll1,1此m1理 12=d220d可d取得 12l2取2( , R==223整 d2dR-lRl181理 22)得p
两个相邻的,与壳体 正交的园锥法截面 图3-6 确定环向应力微元体的取法
4
微元体abcd 的受力
上下面: m 内表面:p
环向截面:
微元体受力放大图
图3-7 微小单元体的应力及几何参数
5
2、回转壳体的经向环向应力分析
图3-8 回转壳体的环向应力分析
内压力p在微体abcd上所产生的外力 的合力在法线n上的投影为Pn
建立静力平衡方程式。
思考:为什么不能用横截面?
2
2、回转壳体的经向应力分析
⒈Z轴上的合力为Pz
Pz
4
D2
p
⒉作用在截面上应力的合力 在Z轴上的投影为Nz

第三章 内压薄壁容器及封头的强度设计

第三章 内压薄壁容器及封头的强度设计

回转壳体: 回转壳体: 是指壳体中间面是由直线或平面曲线绕其同一平面的轴线旋转一周而形成的壳体。 是指壳体中间面是由直线或平面曲线绕其同一平面的轴线旋转一周而形成的壳体。例如与回转轴 平行的直线绕轴旋转一周形成圆柱壳;半圆形曲线绕直径旋转一周形成球壳。 平行的直线绕轴旋转一周形成圆柱壳;半圆形曲线绕直径旋转一周形成球壳。 中间面: 中间面: 具有一定厚度的旋转壳体,平分其厚度的面称为中间面。 具有一定厚度的旋转壳体,平分其厚度的面称为中间面。
siห้องสมุดไป่ตู้ θ = D 2 R2
σm =
pR2 2S
(MPa)
(3-1)
这就是计算回转壳体在任意纬线上经向应力的一般计算公式,既区域平衡方程式。 这就是计算回转壳体在任意纬线上经向应力的一般计算公式, 既区域平衡方程式。 式中, :气体压力, 式中,p:气体压力,MPa;S:厚度,mm; ; :厚度, ; R2:壳体中曲面在所求应力点的第二曲率半径, 壳体中曲面在所求应力点的第二曲率半径, σm:经向应力,MPa。 经向应力, 。
第三章 内压薄壁圆筒与封头的强度设计
1. 内压薄壁容器的应力分析 1.1 基本概念
薄壁容器: 薄壁容器: 压力容器按厚度可以分为薄壁容器和厚壁容器。通常按容器的外径 与内径D 之比K来分 来分: 压力容器按厚度可以分为薄壁容器和厚壁容器。通常按容器的外径D0与内径 i之比 来分: K=D0/Di≤1.2为薄壁容器(也即壁厚与内径之比小于等于 ),超过这一范围的为厚壁容器。 为薄壁容器( ),超过这一范围的为厚壁容器 为薄壁容器 也即壁厚与内径之比小于等于0.1),超过这一范围的为厚壁容器。 中低压容器均为薄壁容器。 中低压容器均为薄壁容器。 无力矩理论与薄膜应力: 无力矩理论与薄膜应力: 考虑到容器的器壁很薄,壳体只能承受拉应力或压应力,无法承受弯曲应力。 考虑到容器的器壁很薄,壳体只能承受拉应力或压应力,无法承受弯曲应力。无力矩理论又称 薄膜理论,按无力矩理论计算的壳体应力称为薄膜应力。 薄膜理论,按无力矩理论计算的壳体应力称为薄膜应力。容器常规设计主要是以薄膜应力为基 础建立设计公式的。 础建立设计公式的。 有力矩理论与边缘应力: 有力矩理论与边缘应力: 认为壳体虽然很薄,但仍有一定的厚度,因而壳体除承受拉应力或压应力外,还存在弯曲应力。 认为壳体虽然很薄,但仍有一定的厚度,因而壳体除承受拉应力或压应力外,还存在弯曲应力。 例如筒体与封头连接处的边缘应力可用有力矩理论计算。 例如筒体与封头连接处的边缘应力可用有力矩理论计算。

第七章 压力容器设计

第七章  压力容器设计

常压、低压计算的壁厚可能很小,GB150 规定了最小壁厚(不包括腐蚀裕量) 对碳素钢、低合金钢容器不小于3mm; 对高合金钢制容器不小于2mm 时,取 为 ; C 时, C 可以为0 ; C 时, C 必须计入 中去,
第七章 内压薄壁容器设计
本章重点介绍设计压力不大于35Mpa的内压容器 的筒体和封头的设计计算,容器的设计计算通常是 根据工艺条件和要求,选择使用材料、确定设计参 数,并计算容器筒体和封头等受压元件的强度尺寸。 压力容器设计以GB150《钢制压力容器》为依据 的,该标准以弹性失效为设计准则,这种设计主要 是控制壳体主体的基本(薄膜)应力不超过材料的 许用应力值,对于结构不连续引起的边缘应力主要 以结构的局部处理为主,必要时则以应力增强系数 的形式引入设计计算式予以考虑。
2K
4 p
t
pc Di

2 0.5 p
t
Kpc Di
标准封头:K=1

2 0.5 p
t
pc Di
2 Di 1 K 2 6 2hi
碟形封头(带直边球形封头)
碟形封头由三部分组成, 即以R为半径的球面部分, 以高度为 h2 的圆筒形部 分及以r为半径的过渡区, 在这三部分的连接处经线 曲率半径有突变,连接处附 近将产生边缘应力,为减少 边缘应力,碟形封头均有过 渡区,碟形封头设计有圆筒 部分,目的是为了避免边缘 应力作用在封头和筒体连 接的焊缝上.
7.1设计参数的确定
根据GB150的有关规定正确选定设计参数。 两个基本参数: 公称直径DN:指标准化以后的标准直径, 以DN表示,单位mm,例如内径1200mm 的容器的公称直径标记为DN1200。 公称压力PN:容器及管道的操作压力经标准 化以后的标准压力称为公称压力,以PN表 示,单位MPa。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 径向(轴向)应力: 圆筒形容器,当 起承受内压力作用后,筒体的“纵向纤 维”也要伸长,在筒体的横向截面内必 定也有应力产生,此应力称为径向应力 以表示σm。
二、内压圆筒的应力计算
1. 环向应力的计算公式 采用截面法,用一通过
圆筒轴线的假想截面B-B 将圆筒刨开,移走上半部, 再从下半个圆筒上截取 长度为L的一段筒体作为 脱离体,合力为Py。 建立静力平衡方程。 外力在y轴方向上投影的
m
PD 4S
(3-2)
P---内压,Mpa;
D---圆筒平均直径,亦称中径,mm;
S---壁厚,mm;
σm---轴向应力,Mpa。
对比(3-1)和(3-2)式,可 以看出:薄壁圆筒承受内压 时,其环向应力是轴向应力 的两倍。因此在设计过程中, 必须注意:如果需要在圆筒 上开设椭筒形孔时,应使椭 圆孔之短轴平行于筒体的轴 线(图3-5),以尽量减小纵截 面的削弱程度,从而使环向 应力增加少一些。
与介质内压合力Py相平衡的是作用在单 元体筒壁纵截面上的内力的合力Ny
显然
Ny=2Siσθ
Py=Ny

DiLP=2Siσθ
由此得
PD 2S
(3-1)
式中的DL是承压曲面在假想纵截面上的投影面 积。由此可得如下结论:作用在任一曲面上的 介质压力,其合力等于压办P与该曲面沿合力 方向所得投影面积的乘积,而与曲面形状无 关.由于承压不同的圆筒其壁厚与直径相比很 小,对于这类圆筒的受力分析均以中径(即平
(2)联接边缘区的变形与应力。所谓联 接边缘是指壳体与法兰、封头或不同厚 度、不同材料的筒节、群式支座与壳体 相联接的边缘等。圆筒形容器受内压时, 由于联接边缘区的刚性不同,连接处二 者的变形大小亦不同,如图所示。
二、边缘应力的特点
如图所示是一内径为Di=1000 mm,壁厚 S=10 mm的钢制内压圆筒,其一端为平 板封头,且封头厚度远远大于筒体壁厚。 内压为P=1MPa。经理论计算和实测其 内、外壁轴向应力(薄膜应力与边缘弯 曲应力的叠加值)分布情况。
这个容器上的各部分应力分布是不相 同的,对于离开封头和平底盖稍远的圆 筒中段①处,受压前后经线仍近似保持 直线(图中虚线),故这部分只承受拉 应力,没有显著的弯曲应力;这里可以 忽略薄壁圆筒变形前后圆周方向曲率半 径变大所引起的弯曲应力。
在凸形封头、平底盖与筒体连接处② 和③,则因封头与平底盖的变形小于筒 体部分的变形,边缘连接处由于变形谐 调形成一种机械约束,从而导致在边缘 附近产生附加的弯曲应力。
均直径)为准,故上式可以写成:
1. 径向应力的计算公式 同样采用截面法,用一假想截面B-B
将圆筒刨开,移走右半部。 建立静力平衡方程。
外力作用在圆筒环形截面上的应力的合 力为:Nz
NPxz==πDSσDm2 P
4
由平衡条件得

Px-Nx=0

Px=Nx

D2P
4
=πDSσm
由此得:
三、对边缘应力的处理
由于边缘应力具有局部性,在设计中可以 在结构上只作局部处理。例如改变连接边缘的 结构,在边缘应力区进行局部加强;保证边缘 区内焊缝质量;降低边缘区的残余应力(进行 消除应力的热处理);避免边缘区附加局部应 力或应力集中,如不在连接边缘区开孔等。
大多数塑性较好的材料制成的容器,除结 构上作某些处理外,一般并不对边缘应力作特 别处理。
由上述例子可以看到,边缘应力具有以 下两个特点:
尽管边缘应力有时相当大,但其作 用的范围是很小的。随着离开边缘处的 距离的增大,边缘应力则迅速衰减。且 壳壁越薄,衰减的越快,这一特征称为 边缘应力的局部性。
边缘应力的另一特性是自限性。发 生边缘弯曲的原因是由于薄膜变形不连 续而引起的。但是当边缘处的局部材料 发生屈服进人塑性变形阶段时,上述这 种弹性约束就开始缓解,因而原来不同 的薄膜变形便趋于谐调,结果边缘应力 就自动限制。边缘应力的这一特性决定 了它的危害性没有薄膜应力大。
m
P 2S
D
m
P 4S
D
同时从(3-1)和(3-2)式还可以看出, 筒体承受内压时,器壁内所产生的应力 是与圆筒的S/D成反比的,即 S/D越大, 应力越小。
例题3-1有一外径为D0=206 mm的压力 容器最小壁厚为S=6.0,材质为20Mn。 工作压力为10MPa,试求容器筒身壁内 的应力是多少?
在任何一个压力容器中,总是存在 这样两类不同性质的应力。前者称为薄 膜应力,可用简单的无力矩理论来计算; 后者称为边缘应力,要用比较复杂的有 力矩理论及变形谐调条件才能计算。
薄壁容器及其应力分析
1. 环向应力:圆筒形容器,当起承受内 压力作用后,其直径要稍微增大,故筒 壁内的“环向纤维”要伸长,因此在筒 体的纵截面上必定有应力产生,此应力 称为环向应力以表示σθ。
解:容器筒身平均直径为:
D=D0-S=206-6.0=200mm
m
PD 2S
= 10 200 4 6.0
=83.3 MPa
PD 2S
= 10 200 2 6.0
=166.6 MPa
第二节 内压圆筒边缘应力及其处理
一、边缘应力的概念
上述对典型圆筒壳体的应力分析是在将薄 壁内压圆筒简化成薄膜,忽略了两种变形与应 力,圆筒受内压作用直径要增大,而且它的曲 率半径由原来的R变到R+△R,根据力学可知, 有曲率变化就有弯曲应力。所以在内压圆筒壁 的纵向截面上,除作用有环向应力外,还存在 着弯曲应力。但由于这一应力数值相对很小, 可以忽略不计。
第三章 内压薄壁容器的设计
第一节 内压薄壁圆筒的应力分析
一、薄壁容器及其应力特点 压力容器按壁厚可分为薄壁容器和厚壁容器。
通常K=D0/Di ≤1.2的称为薄壁容器,超过这一 范围的为厚壁容器。D0为外径,Di为内径。 化工与石油化学工业中,应用最多的是薄壁 容器。对压力容器各部分进行应力分析,是强 度设计中首先需要解决的问题。
相关文档
最新文档