等差数列性质经典题

合集下载

等差数列经典试题(含答案) 百度文库

等差数列经典试题(含答案) 百度文库
A.9B.12C.15D.18
16.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列 ,已知 , ,且满足 ( ),则该医院30天入院治疗流感的共有()人
A.225B.255C.365D.465
17.已知数列 满足 且 ,则 时,使得不等式 恒成立的实数a的最大值是()
A.19B.20C.21D.22
故选:D.
【点睛】
方法点睛:
判断数列是不是等差数列的方法:定义法,等差中项法.
12.C
【分析】
令 , ,求出 , ,进而求出 , ,则 可得.
【详解】
令 , ,
可得当 时, ,

当 , ,符合 ,
故 , ,
故 .
【点睛】
由 求 时, ,注意验证a1是否包含在后面an的公式中,若不符合要单独列出,一般已知条件含an与Sn的关系的数列题均可考虑上述公式求解.
一、等差数列选择题
1.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加()尺
A. B. C. D.
2.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为()
A.4B.5C.7D.8
25.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列面两个数的和,后来人们把这样的一列数组成的数列{an}称为“斐波那契数列”,记Sn为数列{an}的前n项和,则下列结论正确的是()

等差数列题目100道

等差数列题目100道

等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。

- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。

根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。

2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。

- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。

由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。

那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。

3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。

- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。

4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。

- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。

5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。

- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。

二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。

- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。

等差数列知识点、例题。练习

等差数列知识点、例题。练习

等差数列知识点、例题。

练习数列的概念和性质(一)练习一、定义:按一定次序排成的一列数叫做数列.:1. 从函数的角度看,数列可以是定义域为N*(或它的有限子集)的函数,当自变量从小到大依次取值时对应的一列函数值;2. 如果两个数列的数完全相同而顺序不同,则它们不是相同的数列;3. 在同一个数列中,一个数可以重复出现;4. 数列中的每一个数叫做这个数列的项,各项依次叫做第1项,第2项。

. 二、数列的表示:通项公式:an f(n)1.解析法递推公式:an 1 f(an)一、巩固提高1. 数列1,3,6,10,15,。

的通项an可以等于( ) (A)n2 (n 1) (B)n(n 1)n(n+1)2(C) (D) n 2n+2 222. 数列-1,0,-13,0,-25,0,-37,0,。

的通项an可以等于( )nn(-1)1(-1)1(6n 5) (B)(6n 5) (A)22nn(-1)1(-1)1(6n 5) (D) (6n 5) (C)223..巳知数列{an}的首项a1=1,an 1 2an 1(n 2),则a5为( )(A) 7 (B)15 (C)30 (D)31 二、能力提升5. 根据数列的前几项,写出数列{an}的一个通项公式: (1)__,,,,,。

; 3__4,,,。

; __(2)2,-6,12,-20,30,。

; (3)一、巩固提高数列的概念和性质(二)练习1.若数列{an}的前n项和Sn 2n 1,则a1与a5的值依次为( )2(A) 2,14 (B)2,18 (C)3,4 (D)3,18 2.若数列{an}的前n项和Sn 4n2 n 2,则该数列的通项公式为( ) (A)an 8n 5 (n N*) (B) an 8n 5(n N*)(n 1) 5(C)an 8n 5(n 2) (D)an *8n 5(n 2,n N)5.已知数列{an}满足a1=1,当n 2时,恒有a1a2。

(完整版)经典等差数列练习题(含答案),推荐文档

(完整版)经典等差数列练习题(含答案),推荐文档

A.13 项 B.14 项 C.15 项 D.16 项
3.已知等差数列的通项公式为an 3n a, a为常数,则公差 d=( )
4.首项为24 的等差数列从第10 项起开始为正数,则公差d 的取值范围是( )
A. d 8 3
B. d 3
C. 8 d 3 3
D. 8 d 3 3
A.第 22 项 B.第 21 项 C.第 20 项 D.第 19 项 6. 已知数列a,-15,b,c,45 是等差数列,则 a+b+c 的值是( )
4.在等差数列{an}中,若 a4 a6 a8 a10 a12 120 ,则 2a10 a12
.
5.在首项为 31,公差为-4 的等差数列中,与零最接近的项是
6. 如果等差数列 an的第 5 项为 5 ,第 10 项为 5 ,则此数列的第 1个负数项
是第项.
7.已知{an }是等差数列,且 a4 a7 a10 57, a4 a5 a6 a14 77, 若ak 13, 则 k=
2 4 8 16
( 6) 1 1 1 ,,
1 ,

1
…….
3 8 15 24 35
2. 成等差数列的四个数的和为 26 ,第二数与第三数之积为 40 ,求这四个数。
3. 已知等差数列{ an }中, a3 a7 16, a4 a6 0, 求{ an }的 通项公式
4. 数列通项公式为 an=n2-5n+4,问(1)数列中有多少项是负数?(2)n 为何值时,an 有最小值?并求出最小值.
5.
在等差数列a
中,公差 d
n
1 ,前100 项的和 S 2
100
45Βιβλιοθήκη ,则 a1a3a

等差数列典型例题及详细解答

等差数列典型例题及详细解答

1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项 如果A =a +b2,那么A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n a 1+a n2或S n =na 1+n n -12d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ ) (3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × ) (5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.(2015·重庆)在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,选B.2.(2014·福建)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 答案 C解析 由题意知a 1=2,由S 3=3a 1+3×22×d =12,解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( ) A .58 B .88 C .143 D .176 答案 B 解析 S 11=11a 1+a 112=11a 4+a 82=88.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( ) A .2 B .10(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10等于( ) A .100 B .210 C .380 D .400答案 (1)C (2)B解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×10-12×12=52.(2)因为a 2=7,a 4=15,所以d =4,a 1=3, 故S 10=10×3+12×10×9×4=210.思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(1)(2015·课标全国Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5等于( )A .5B .7C .9D .11(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )B .1C .2D .3 答案 (1)A (2)C解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3, ∴a 1+a 3+a 5=3a 3=3,得a 3=1, ∴S 5=5a 1+a 52=5a 3=5.故选A.(2)∵S n =n a 1+a n2,∴S n n =a 1+a n 2,又S 33-S 22=1,得a 1+a 32-a 1+a 22=1,即a 3-a 2=2,∴数列{a n }的公差为2.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 (1)C (2)A解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列. (2)由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n=n ,即a n =1n.题型三 等差数列的性质及应用命题点1 等差数列的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-30=10+2×10=30,∴S 30=60. 命题点2 等差数列前n 项和的最值例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.方法一 由a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653. 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.方法二 S n =20n +n n -12·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n=-56⎝ ⎛⎭⎪⎫n -2522+3 12524.∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,并求出最小值.解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0, ∴a 13=0.又a 1=-20,∴a 12<0,a 14>0, ∴当n =12或13时,S n 取得最小值, 最小值S 12=S 13=13a 1+a 132=-130.思维升华 (1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.②和的性质:在等差数列{a n }中,S n 为其前n 项和,则a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解. ②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .(1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( ) A .5 B .6 C .7 D .8(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( )A .5B .6C .5或6D .11(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)B (2)C (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6,选B.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大,选C. (3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,S n =na 1+n n -12d =20n -n n -12×2=-n 2+21n =-⎝⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.6.等差数列的前n 项和及其最值典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( ) A .45 B .60 C .75D .90(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( ) A .S 4 B .S 5 C .S 6 D .S 7思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项. 解析 (1)由题意得a 3+a 8=9, 所以S 10=10a 1+a 102=10a 3+a 82=10×92=45.(2)方法一 设数列{a n }的公差为d ,首项为a 1,则⎩⎪⎨⎪⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=a 11+a 100×902=-90,所以a 11+a 100=-2, 所以S 110=a 1+a 110×1102=a 11+a 100×1102=-110.(3)因为⎩⎪⎨⎪⎧a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎪⎨⎪⎧a 5>0,a 6<0,所以S n 的最大值为S 5. 答案 (1)A (2)-110 (3)B温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *; (2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.[方法与技巧]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定. [失误与防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数. 2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A 组 专项基础训练 (时间:35分钟)1.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,故选B.2.(2015·北京)设{a n }是等差数列,下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0 答案 C解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,所以a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故选项D 错.3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m 等于( ) A .3 B .4 C .5 D .6答案 C解析 ∵数列{a n }为等差数列,且前n 项和为S n , ∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0,解得m =5,经检验为原方程的解,故选C.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11答案 B解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2. ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6. ∴b 1+b 2+…+b 7=7b 1+7×62d=7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.故选B.5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( ) A .7 B .8 C .7或8 D .8或9 答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8,故选C. 6.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14.7.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 答案 2n -1解析 设等差数列的公差为d , ∵a 3=a 22-4,∴1+2d =(1+d )2-4, 解得d 2=4,即d =±2.由于该数列为递增数列,故d =2. ∴a n =1+(n -1)×2=2n -1.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.9.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12n -1=n -1-n 2n n -1=-12n n -1.当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n n -1,n ≥2.10.等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大解 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -1⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得≤n ≤,故当n =7时,S n 最大. 方法四 由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大.B 组 专项能力提升 (时间:20分钟)11.设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( ) A .S n 的最大值是S 8 B .S n 的最小值是S 8 C .S n 的最大值是S 7 D .S n 的最小值是S 7答案 D解析 由条件得S n n <S n +1n +1,即n a 1+a n 2n <n +1a 1+a n +12n +1,所以a n <a n +1,所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零,所以S n 的最小值为S 7,故选D.12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =________.答案 13解析 S k +1=S k +a k +1=-12+32=-212,又S k +1=k +1a 1+a k +12=k +1⎝⎛⎭⎪⎫-3+322=-212,解得k =13.13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.答案1941解析 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________. 答案 (-8,-7)解析 依题意得b n =1+1a n,对任意的n ∈N *,都有b n ≥b 8,即数列{b n }的最小项是第8项,于是有1a n ≥1a 8.又数列{a n }是公差为1的等差数列,因此有⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧a +7<0,a +8>0,由此解得-8<a <-7,即实数a 的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117, 所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4, 所以S n =na 1+n n -12×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小, 最小值为S 1=a 1=1. (3)由(2)知S n =2n 2-n , 所以b n =S nn +c =2n 2-nn +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c, 所以2c 2+c =0,所以c =-12或c =0(舍去),经验证c =-12时,{b n }是等差数列,故c =-12.。

等差数列的性质(含解析)

等差数列的性质(含解析)

等差数列的性质班级______________ 姓名______________一、选择题1.在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( )A .12B .16C .20D .242.在等差数列{a n }中,a 2 016=log 27,a 2 022=log 217,则a 2 019=( ) A .0B .7C .1D .493.下列说法中正确的是( )A .若a ,b ,c 成等差数列,则a 2,b 2,c 2成等差数列B .若a ,b ,c 成等差数列,则log 2a ,log 2b ,log 2c 成等差数列C .若a ,b ,c 成等差数列,则a +2,b +2,c +2成等差数列D .若a ,b ,c 成等差数列,则2a,2b,2c 成等差数列4.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( )A .5B .8C .10D .14 5.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 等于( )A .8B .4C .6D .126.已知数列{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( )A .-12B .-22C.12D.32 7.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1B.34C.12D.388.《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:今有五人分六钱,令前三人所得与后二人等,各人所得均增,问各得几何?其意思是“已知A ,B ,C ,D ,E五个人分重量为6钱(‘钱’是古代的一种重量单位)的物品,A ,B ,C 三人所得钱数之和与D ,E 二人所得钱数之和相同,且A ,B ,C ,D ,E 每人所得钱数依次成递增等差数列,问五个人各分得多少钱的物品?”在这个问题中,C 分得物品的钱数是( )A.25B.45C.65D.75二、填空题9.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.10.已知数列{a n }是等差数列,若a 4+a 7+a 10=17,a 4+a 5+a 6+…+a 12+a 13+a 14=77,且a k =13,则k =________.三、解答题11.在等差数列{a n }中,若a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.12.数列{a n }为等差数列,n a n b ⎪⎭⎫ ⎝⎛=21,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求数列{a n }的通项公式.等差数列的性质(解析)班级______________ 姓名______________一、选择题1.在等差数列{a n}中,已知a4+a8=16,则a2+a10=()A.12B.16C.20D.24解析:选B因为数列{a n}是等差数列,所以a2+a10=a4+a8=16.2.在等差数列{a n}中,a2 016=log27,a2 022=log217,则a2 019=()A.0 B.7C.1 D.49解析:选A∵数列{a n}是等差数列,∴由等差数列的性质可知2a2 019=a2 016+a2 022=log27+log217=log21=0,故a2 019=0.3.下列说法中正确的是()A.若a,b,c成等差数列,则a2,b2,c2成等差数列B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列D.若a,b,c成等差数列,则2a,2b,2c成等差数列解析:选C因为a,b,c成等差数列,则2b=a+c,所以2b+4=a+c+4,即2(b+2)=(a+2)+(c+2),所以a+2,b+2,c+2成等差数列.4.在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.14解析:选B由等差数列的性质可得a1+a7=a3+a5=10,又a1=2,所以a7=8.5.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m等于()A.8B.4C.6D.12解析:选A因为a3+a6+a10+a13=4a8=32,所以a8=8,即m=8.6.已知数列{a n}为等差数列,若a1+a5+a9=π,则cos(a2+a8)的值为()A .-12B .-22C.12D.32 解析:选A ∵数列{a n }为等差数列,a 1+a 5+a 9=π,∴a 1+a 5+a 9=3a 5=π,解得a 5=π3, ∴a 2+a 8=2a 5=2π3, ∴cos(a 2+a 8)=cos2π3=-cos π3=-12.故选A. 7.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1B.34C.12D.38解析:选C 设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2, 再设此等差数列的公差为d ,则2a 1+3d =2,∵a 1=14,∴d =12, ∴a 2=14+12=34,a 3=14+1=54,a 4=14+32=74, ∴|m -n |=|a 1a 4-a 2a 3|=⎪⎪⎪⎪14×74-34×54=12.8.《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:今有五人分六钱,令前三人所得与后二人等,各人所得均增,问各得几何?其意思是“已知A ,B ,C ,D ,E 五个人分重量为6钱(‘钱’是古代的一种重量单位)的物品,A ,B ,C 三人所得钱数之和与D ,E 二人所得钱数之和相同,且A ,B ,C ,D ,E 每人所得钱数依次成递增等差数列,问五个人各分得多少钱的物品?”在这个问题中,C 分得物品的钱数是( ) A.25B.45C.65D.75解析:选C 设5个人分得的物品的钱数为等差数列中的项a 1,a 2,a 3,a 4,a 5,则a 1+a 2+a 3=a 4+a 5,a 1+a 2+a 3+a 4+a 5=6=5a 3,a 3=65. 二、填空题9.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.解析:设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧ a -d +a +a +d =9,(a -d )2+a 2+(a +d )2=59. 解得⎩⎪⎨⎪⎧ a =3,d =4或⎩⎪⎨⎪⎧a =3,d =-4. ∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21.答案:-2110.已知数列{a n }是等差数列,若a 4+a 7+a 10=17,a 4+a 5+a 6+…+a 12+a 13+a 14=77,且a k =13,则k =________.解析:∵a 4+a 7+a 10=3a 7,∴a 7=173.∵a 4+…+a 14=11a 9,∴a 9=7,d =23. ∴a k -a 9=(k -9)d ,即13-7=(k -9)×23,解得k =18. 答案:18三、解答题11.在等差数列{a n }中,若a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.解:法一:由等差数列的性质得a 1+a 11=2a 6,a 2+a 12=2a 7,…,a 5+a 15=2a 10.∴(a 1+a 2+…+a 5)+(a 11+a 12+…+a 15)=2(a 6+a 7+…+a 10). ∴a 11+a 12+…+a 15=2(a 6+a 7+…+a 10)-(a 1+a 2+…+a 5)=2×80-30=130. 法二:∵数列{a n }是等差数列,∴a 1+a 2+…+a 5,a 6+a 7+…+a 10,a 11+a 12+…+a 15也成等差数列,即30,80,a 11+a 12+…+a 15成等差数列.∴30+(a 11+a 12+…+a 15)=2×80,∴a 11+a 12+…+a 15=130.12.数列{a n }为等差数列,b n =⎝⎛⎭⎫12an ,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求数列{a n }的通项公式.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18, ∴a 1+a 2+a 3=3.∵a 1,a 2,a 3成等差数列,∴a 2=1,故可设a 1=1-d ,a 3=1+d , 由⎝⎛⎭⎫121-d +12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2. 当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3;当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5.。

等差数列的性质练习 含答案

等差数列的性质练习 含答案

时间:45分钟满分:100分课堂训练1.若一个数列的通项公式是a n=k·n+b(其中b,k为常数),则下列说法中正确的是( )A.数列{a n}一定不是等差数列B.数列{a n}是以k为公差的等差数列C.数列{a n}是以b为公差的等差数列D.数列{a n}不一定是等差数列【答案】B【解析】a n+1-a n=k(n+1)+b-kn-b=k.2.等差数列中,若a3+a4+a5+a6+a7+a8+a9=420,则a2+a10等于( )A.100 B.120C.140 D.160【答案】B【解析】∵a3+a4+a5+a6+a7+a8+a9=7a6=420,则a6=60,∴a2+a10=2a6=2×60=120.3.在等差数列{a n}中,a15=33,a25=66,则a35=________.【答案】99【解析】a15,a25,a35成等差数列,∴a35=2a25-a15=99.4.已知单调递增的等差数列{a n}的前三项之和为21,前三项之积为231,求数列{a n}的通项公式.【分析】关键是求出数列{a n}的首项和公差.【解析】由于数列为等差数列,因此可设等差数列的前三项为a -d ,a ,a +d ,于是可得⎩⎪⎨⎪⎧a -d +a +a +d =21,a -d a a +d =231,即⎩⎪⎨⎪⎧3a =21,a a 2-d2=231,即⎩⎪⎨⎪⎧a =7,d 2=16,由于数列为单调递增数列,因此d =4,a 1=3,从而{a n }的通项公式为a n =4n -1.【规律方法】 此解法恰到好处地设定等差数列的项,为我们的解题带来了极大的方便,特别是大大降低了运算量.一般来说,已知三个数成等差数列时,可设成:a -d ,a ,a +d ,四个数成等差数列时,可设成:a -3d ,a -d ,a +d ,a +3d ,其余依此类推,如五个可设成:a -2d ,a -d ,a ,a +d ,a +2d .课后作业一、选择题(每小题5分,共40分)1.在等差数列{a n }中,a 5=3,a 9=5,则a 7=( ) A .4 B .-4 C .7 D .1【答案】 A【解析】 由题意知a 7为a 5,a 9的等差中项,故a 7=12(a 5+a 9)=12×(3+5)=4.2.在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13的值为( )A .20B .30C .40D .50 【答案】 C【解析】 ∵a 3+a 11=a 5+a 9=2a 7,∴a 3+a 5+a 7+a 9+a 11=5a 7=100, ∴a 7=20.∴3a 9-a 13=3(a 7+2d )-(a 7+6d )=2a 7=40.3.在等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为( )A .30B .27C .24D .21【答案】 B【解析】 方法一:由等差数列的性质知,a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,所以(a 1+a 4+a 7)+(a 3+a 6+a 9)=2(a 2+a 5+a 8),则a 3+a 6+a 9=2×33-39=27. 方法二:(a 2+a 5+a 8)-(a 1+a 4+a 7) =3d (d 为数列{a n }的公差),则d =-2,a 3+a 6+a 9=(a 2+a 5+a 8)+3d =33-6=27.4.把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的 17是较小的两份之和,问最小的1份是( )【答案】 C【解析】 设这5份为a -2d ,a -d ,a ,a +d ,a +2d , 由已知得a =20,且17(a +a +d +a +2d )=a -2d +a -d ,∴d =556,∴a -2d =53. 5.等差数列{a n }的公差d <0,且a 2a 4=12,a 1+a 5=8,则其通项公式为( )A .a n =2n -2B .a n =2n +4C .a n =-2n +12D .a n =-2n +10【答案】 D【解析】 由等差数列的性质得a 2+a 4=a 1+a 5=8. 又a 2a 4=12,所以a 2,a 4为方程x 2-8x +12=0的两根,解得⎩⎪⎨⎪⎧a 2=2,a 4=6或⎩⎪⎨⎪⎧a 2=6,a 4=2.当a 2=2,a 4=6时,d =a 4-a 24-2=2>0(舍去), 当a 2=6,a 4=2时,d =a 4-a 24-2=-2.所以数列的通项公式为a n =a 2+(n -2)d =6+(n -2)×(-2)=-2n +10.即a n =-2n +10.6.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37【答案】 C【解析】 设{a n },{b n }的公差分别是d 1,d 2,∴(a n +1+b n +1)-(a n+b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列. 又∵a 1+b 1=a 2+b 2=100, ∴a 37+b 37=100. 故正确答案为C.7.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A .-2B .-3C .-4D .-5【答案】 C【解析】 设该数列的公差为d ,则由题设条件知:a 6=a 1+5d >0,a 7=a 1+6d <0.又∵a 1=23,∴⎩⎪⎨⎪⎧d >-235,d <-236,即-235<d <-236.又∵d 是整数,∴d =-4,故选C.8.已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1,b 1∈N +.设c n =ab n (n ∈N +),则数列{c n }的前10项和等于( )A .55B .70C .85D .100【答案】 C【解析】 由题c n =ab n (n ∈N +),则数列{c n }的前10项和等于ab 1+ab 2+…+ab 10=ab 1+ab 1+1+…+ab 1+9.∵ab 1=a 1+(b 1-1)=4,∴ab 1+ab 1+1+…+ab 1+9=4+5+…+13=85. 二、填空题(每小题10分,共20分)9.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=________.【答案】1【解析】∵a1+a3+a5=105,即3a3=105,∴a3=35,同理a4=33,∴d=a4-a3=-2,∴a20=a4+(20-4)d=1.10.等差数列{a n}中,a1+a4+a10+a16+a19=150,则a18-2a14=________.【答案】-30【解析】由a1+a4+a10+a16+a19=5a10=150,得a10=30,a18-2a14=(a10+8d)-2(a10+4d)=-a10=-30.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)已知数列{a n}为等差数列,若a1-a5+a9-a13+a17=117,求a3+a15.(2)在等差数列{a n}中,已知a2+a5+a8=9,a3a5a7=-21,求数列{a n}的通项公式.【解析】(1)方法一:∵数列{a n}是等差数列,∴设数列{a n}的首项为a1,公差为d,则由题意得a1-(a1+4d)+(a1+8d)-(a1+12d)+(a1+16d)=117,∴a1+8d=117.从而a3+a15=(a1+2d)+(a1+14d)=2(a1+8d)=234.方法二:由等差数列的性质知,a1+a17=a5+a13=a3+a15=2a9.∵a1-a5+a9-a13+a17=117,∴a9=117,∴a3+a15=2a9=234.(2)∵a2+a5+a8=9,a3a5a7=-21,a2+a8=a3+a7=2a5,∴a5=3,∴a3+a7=2a5=6,a3a7=-7,解得a3=-1,a7=7或a3=7,a7=-1.又a7=a3+4d,∴当a3=-1,a7=7时,可得d=2;当a3=7,a7=-1时,可得d=-2.根据a n=a3+(n-3)d,可得当a3=-1,d=2时,a n=2n-7;当a3=7,d=-2时,a n=-2n+13.12.已知无穷等差数列{a n}中,首项a1=3,公差d=-5,依次取出序号能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第503项是{a n}的第几项?【解析】数列{b n}是数列{a n}的一个子数列,其序号构成以3为首项,4为公差的等差数列,由于{a n}是等差数列,则{b n}也是等差数列.(1)∵a1=3,d=-5,∴a n=3+(n-1)(-5)=8-5n.数列{a n}中序号能被4除余3的项是{a n}中的第3项,第7项,第11项,…,∴b1=a3=-7,b2=a7=-27.(2)设{a n}中的第m项是{b n}的第n项,即b n=a m,则m=3+4(n-1)=4n-1,∴b n=a m=a4n-1=8-5(4n-1)=13-20n.即{b n}的通项公式为b n=13-20n.(3)b503=13-20×503=-10 047,设它是{a n}中的第m项,则-10 047=8-5m,则m=2 011,即{b n}中的第503项是{a n}中的第2 011项.。

等差数列性质基础练习题

等差数列性质基础练习题

等差数列性质基础练习题一、填空题1. 等差数列的通项公式为:an = a1 + (n 1)d,其中a1是首项,d是公差,n是项数。

若等差数列的首项为3,公差为2,则第五项的值为______。

2. 在等差数列{an}中,已知a3 = 7,a7 = 19,则公差d为______。

3. 已知等差数列的前三项分别为2,5,8,则第10项的值为______。

4. 等差数列的前n项和公式为:Sn = n(a1 + an)/2,若等差数列的前5项和为35,公差为3,则首项a1的值为______。

5. 在等差数列{an}中,若a4 = 16,a10 = 44,则第8项的值为______。

二、选择题A. an = a1 + (n 1)dB. an = a1 (n 1)dC. an = a1 / (n 1)dD. an = a1 (n 1)dA. 公差为4B. 公差为8C. 公差为12D. 公差为163. 在等差数列{an}中,若a1 = 3,d = 2,则第6项的值为()。

A. 9B. 11C. 13D. 15A. 首项为3B. 首项为5C. 首项为7D. 首项为95. 在等差数列{an}中,若a3 = 6,a7 = 18,则第5项的值为()。

A. 10B. 12C. 14D. 16三、解答题1. 已知等差数列的前4项分别为2,5,8,11,求第10项的值。

2. 在等差数列{an}中,已知a5 = 15,a10 = 35,求首项a1和公差d。

3. 已知等差数列的前7项和为49,公差为3,求第4项的值。

4. 在等差数列{an}中,若a1 = 4,d = 5,求前8项的和。

5. 已知等差数列的前5项和为55,公差为7,求第6项的值。

四、判断题1. 等差数列的任意两项之间的差都是相同的。

()2. 等差数列的通项公式中,n表示项数,而不是项的位置。

()3. 在等差数列中,如果首项为负数,公差为正数,那么数列中的项会逐渐减小。

经典等差数列性质练习试题[含答案解析]

经典等差数列性质练习试题[含答案解析]

|等差数列基础习题选(附有详细解答)一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1|C.D.﹣12.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.*以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列<3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23B.24C.(25D.264.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1}B.2C.3D.一25.两个数1与5的等差中项是()》A.1B.3C.2D.&6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2B.﹣3…C.﹣4D.﹣57.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.!1B .2C.3D.4:8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3!D.119.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25B.>24C.20D.1910.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=(),5B.3C.﹣1D.1$11.(2005•黑龙江)如果数列{a n}是等差数列,则()D.a1a8=a4a5A.a1+a8>a4+a5B.a1+a8=a4+a5C.#a1+a8<a4+a512.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1:﹣1C.2D.B.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a 2+a4+a6=99,则a20等于()!A.﹣1B.1C.3D.》714.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()D.A.B.?C.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()B.7C.8D.9A.~6~16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()24A.30B.35C.36¥D.17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()C.5或6D.6或7A.5B.—618.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()58B.88C.143D.176;A.~19.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1B.0C.^D.2120.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()7C.8D.9A.6…B.21.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()(A.4或5B.5或6C.4D.·522.等差数列{a n}中,a n=2n﹣4,则S4等于()8D.4A.12B.10|C.23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()B.140C.115D.95A./230》24.等差数列{a n}中,a3+a8=5,则前10项和S10=()100A.5B.25C.50:D.25.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()C.3D.4A.1B.¥226.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()第10项B.第11项C.第10项或11项D.第12项%A.—二.填空题(共4小题)27.如果数列{a n}满足:=_________.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=_________.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为_________.-30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若数列{a}和数列{b}满足等式:a=(n为正整数),求数列{b}的前n项和S.参考答案与试题解析一.选择题(共26小题):1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.、﹣1D .考点:等差数列.专题:计算题.分析:…本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.}2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列以5为首项,公差为2的等差数列D.不是等差数列<C.考点:等差数列.专题:·计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,所以a1=2×1+5=7;a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.故此数列是以7为首项,公差为2的等差数列.@故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.24C.25D.26A.23$B.考点:。

等差数列性质练习题

等差数列性质练习题

等差数列性质1、已知数列{}n a 中,1*2(,2)n n a a n N n --=∈≥,若3,1a =则此数列的第10项是2、在等差数列中,1a 与11a 是方程2270x x --=的两根,则6a 为3、在x 和y 之间插入n 个实数,使它们与x y ,组成等差数列,则此数列的公差为4、首相为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围5、已知数列{a n }中,a 3=2,a 7=1,又数列{11n a +}为等差数列,则a n =________ 6、数列{}n a 满足:36n 12n+2n+1a a a a a ===-,,,2004a =7、在等差数列{}n a 中,n a m =,m a n = (m ,n ∈N +),则=+n m a8、等差数列{}n a 中,已知1251,4,33,3n a a a a n =+==则为 9.已知在数列{a n }中,a 1=-10,a n+1=a n +2,则|a 1|+|a 2|+|a 3|+…+|a 10|等于10、设数列{a n }和{b n }都是等差数列,其中a 1=24, b 1=75,且a 2+b 2=100,则数列{a n +b n }的第100项为11、设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=12.在等方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则|m -n|= 13、若{}n a 为等差数列,2a ,10a 是方程0532=--x x 的两根,则=+75a a ____________。

14、若lg2,lg(2x -1),lg(2x+3)成等差数列,则x 等于________15、等差数列{}n a 的前n 项和为n s ,若1845a a =-,则8s 等于16、等差数列{}n a 共有21n +项,所有奇数项之和为132,所有偶数项之和为120,则n 等于17、已知等差数列{}n a 中,前15项之和为9015S =,则8a 等于18、已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是19.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是第 项.20、三个数成等差数列,和为12,积为48,求这三个数.21.在等差数列{a n }中,如果a 4+a 7+a 10=17,a 4+a 5+a 6+…+a 14=77,(1)求此数列的通项公式a n ;(2)若a k =13,求k 的值。

等差数列经典试题(含答案)

等差数列经典试题(含答案)

一、等差数列选择题1.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n -=,则55a b =( ) A .3415B .2310C .317D .62272.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7B .12C .14D .213.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13B .14C .15D .164.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10-B .8C .12D .145.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50 C .60 D .80 6.在等差数列{a n }中,a 3+a 7=4,则必有( )A .a 5=4B .a 6=4C .a 5=2D .a 6=27.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a n b n =+,则2121S T 的值为( )A .1315B .2335C .1117 D .498.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -B .322n - C .3122n - D .3122n +9.题目文件丢失!10.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S11.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( ) A .54钱 B .43钱 C .23钱 D .53钱 12.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2mB .21m +C .22m +D .23m +13.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=( )A .10B .145C .300D .32014.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a=,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人A .225B .255C .365D .46515.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21B .15C .10D .616.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25 B .11 C .10 D .9 17.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )A .24B .23C .17D .1618.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<19.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .520.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( ) A .21B .20C .19D .19或20二、多选题21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n nF n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦D .()1122n nF n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦22.题目文件丢失!23.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .224.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.25.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .826.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=27.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤D .当且仅当0nS <时,26n ≥28.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2229.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 30.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】 由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯. 故选:D 2.C 【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()1422a a a a S ++===. 故选:C 3.A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A 4.D利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】147446=32a a a a a ++=∴=,则()177477142a a S a +=== 故选:D 5.C 【分析】利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解 【详解】{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =1158158()15215156022a a a S a +⨯⨯====故选:C 【点睛】本题考查等差数列性质及前n 项和公式,属于基础题 6.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 7.C 【分析】利用等差数列的求和公式,化简求解即可 【详解】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C 8.C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-.9.无10.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 11.C 【分析】根据甲、乙、丙、丁、戊所得依次成等差数列,设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,然后再由五人钱之和为5,甲、乙的钱与与丙、丁、戊的钱相同求解. 【详解】设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +, 则根据题意有(2)()()(2)5(2)()()(2)a d a d a a d a d a d a d a a d a d -+-+++++=⎧⎨-+-=++++⎩,解得116a d =⎧⎪⎨=-⎪⎩,所以戊所得为223a d +=, 故选:C . 12.C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+,()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C.【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 13.C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。

1.2等差数列(讲义+典型例题+小练)(原卷版)

1.2等差数列(讲义+典型例题+小练)(原卷版)

1.2等差数列(讲义+典型例题+小练)1、定义:(1)文字表示:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. (2)符号表示:11(2)(1)n n n n a a d n a a d n -+-=≥-=≥或2、通项公式:若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-. 通项公式的变形:①()n m a a n m d =+-;②n ma a d n m-=-.通项公式特点:1()na dn a d =+-),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。

例1:1.在等差数列{}n a 中,已知28a =-,44a =-,则12a =( ) A .10B .12C .14D .162.已知等差数列{n a },43n a n =-,则公差d 的值是( ) A .4 B .-6C .8D .-10举一反三1.已知等差数列{}n a 中,131,5a a ==,则2a =( ) A .3-B .5-C .5D .32.已知等差数列{}n a 中,12a =,2313a a +=,则456a a a ++等于( ) A .40B .42C .43D .453.已知数列{}n a 是等差数列,若12a =,342a a =,则公差d =_____. 3、等差中项若三个数a ,A ,b 组成等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.即a 、b 、c 成等差数列<=>2a cb +=例2:1.在等差数列{}n a 中,已知4816a a +=,则该数列第6项6a =( ) A .6 B .8C .12D .16举一反三1.已知等差数列{}n a ,且4610a a +=,则5a =( )A .3B .5C .7D .92.已知等差数列{}n a 的前n 项和为n S ,且34567150a a a a a ++++=,则9S =_________. 3.已知132a =+,132b =-,则a ,b 的等差中项为( )A .3B .2C .33D .24、等差数列{}n a 的基本性质),,,(*∈N q p n m 其中(1)q p n m a a a a q p n m +=++=+,则若。

证明等差数列的经典例题

证明等差数列的经典例题

证明等差数列的经典例题
例题:已知数列{a_n}满足a_n + 1-a_n=d(d为常数),n∈ N^+,证明{a_n}是等差数列。

证明:
嘿呀,咱要证明一个数列是等差数列,得先知道等差数列是个啥。

等差数列呢,简单说就是从第二项起,每一项与它的前一项的差都等于同一个常数,这个常数就叫公差。

那咱看看这个数列{a_n}哈。

对于这个数列,已知a_n + 1-a_n=d(d是个常数哦)。

咱先看a_2-a_1=d。

再看a_3-a_2,因为a_3 - a_2=(a_2+d)-a_2=d。

接着a_4-a_3,a_4=a_3+d,所以a_4-a_3=(a_3+d)-a_3=d。

咱就这么一路推下去哈。

假设n = k(k≥slant2,k∈ N^+)的时候,a_k-a_k - 1=d成立。

那当n=k + 1的时候呢,a_k + 1-a_k,因为a_k + 1=a_k+d,所以a_k + 1-
a_k=(a_k+d)-a_k=d。

这就说明啊,不管是第几项和它前一项的差都是d这个常数。

所以呢,数列{a_n}就是等差数列啦。

就像排着队的士兵,前后两个人之间的距离(差)都一样,整整齐齐的等差数列就这么成了。

等差数列经典试题(含答案)百度文库

等差数列经典试题(含答案)百度文库

一、等差数列选择题1.已知等差数列{}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是( )A .7B .8C .7或8D .92.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72B .90C .36D .453.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤B .6斤C .9斤D .12斤4.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .05.定义12nnp p p +++为n 个正数12,,,n p p p 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为12n,又2n n a b =,则1223910111b b b b b b +++=( ) A .817 B .1021C .1123 D .9196.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4B .a 6=4C .a 5=2D .a 6=27.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -B .322n - C .3122n - D .3122n + 8.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为( ) A .89B .910C .1011D .11129.题目文件丢失!10.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n -=,则55a b =( )A .3415B .2310C .317D .622711.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18B .19C .20D .2112.已知数列{}n a 的前n 项和为n S ,112a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列说法中错误的是( ) A .214a =-B .648211S S S =+ C .数列{}12n n n S S S +++-的最大项为712D .1121n n n n nT T T n n +-=++ 13.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .5514.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48B .60C .72D .2415.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21B .15C .10D .6 16.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则99S a =( ) A .9B .5C .1D .5917.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19B .20C .21D .2218.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .7219.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S >D .70S <,且80S <20.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 二、多选题21.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >22.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =23.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =24.题目文件丢失!25.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23 C .32D .326.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =27.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <28.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <C .80a =D .n S 的最大值是8S 或者9S29.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( )A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列30.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.【详解】22152251524n S n n n ⎛⎫=-=--⎪⎝⎭,∴数列{}n S 的图象是分布在抛物线21522524y x ⎛⎫=--⎪⎝⎭上的横坐标为正整数的离散的点.又抛物线开口向上,以152x =为对称轴,且1515|7822-=-|, 所以当7,8n =时,n S 有最小值. 故选:C 2.B 【分析】由题意结合248,,a a a 成等比数列,有2444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,∴2444(4)(8)a a a =-+,解之得48a =,∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,∴99(229)902S ⨯+⨯==,故选:B【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2k m n a a a =; 2、等差数列前n 项和公式1()2n n n a a S +=的应用. 3.C 【分析】根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++. 【详解】由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,根据等差数列的性质可知1533263a a a a +==⇒=, 中间三尺为234339a a a a ++==. 故选:C 【点睛】本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型. 4.A 【分析】 转化条件为122527n na a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解.5.D 【分析】由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n=,则:22n S n =, 当1n =时,112a S ==,当2n ≥时,142n n n a S S n -=-=-, 且14122a =⨯-=,据此可得 42n a n =-,故212nn a b n ==-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:12239101111111111233517191.21891919b b b b b b +++⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=⨯= 故选:D 6.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 7.C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-. 故选:C. 8.C 【分析】首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】当1n =时,111a S ==, 当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =. 设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…. 故选:C9.无10.D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯.故选:D 11.B 【分析】由已知判断出数列{}n a 是以1为首项,以2为公差的等差数列,求出通项公式后即可求得10a .【详解】()122n n a a n --=≥,且11a =,∴数列{}n a 是以1为首项,以2为公差的等差数列,通项公式为()12121n a n n =+-=-,10210119a ∴=⨯-=,故选:B.12.D 【分析】当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120n n n a S S -+=可推导出数列1n S ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫⎨⎬⎩⎭的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得111112020n n n n n nS S S S S S ----+=⇒-+=, 整理得1112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫⎨⎬⎩⎭为以2为首项,以2为公差的等差数列()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111424a S S =-=-=-,A 选项正确; B 中,1n S ⎧⎫⎨⎬⎩⎭为等差数列,显然有648211S S S =+,B 选项正确; C 中,记()()1212211221n n n n b S S n n n S ++=+-=+-++, ()()()1123111212223n n n n b S S S n n n ++++=+-=+-+++,()()()1111602223223n n n b b n n n n n n ++∴-=--=-<++++,故{}n b 为递减数列, ()1123max 111724612n b b S S S ∴==+-=+-=,C 选项正确; D 中,12n n S =,()()2212n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()11112112111n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.故选:D . 【点睛】关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩来求解,在变形过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解. 13.D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D. 14.A 【分析】根据条件列方程组,求首项和公差,再根据107891093S S a a a a -=++=,代入求值. 【详解】由条件可知114832362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得:102a d =⎧⎨=⎩, ()10789109133848S S a a a a a d -=++==+=.故选:A 15.C 【分析】根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】 因为134222a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,所以5154550101102S a d ⨯=+=⨯+⨯=, 故选:C. 16.B 【分析】由已知条件,结合等差数列通项公式得1a d =,即可求99S a . 【详解】4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,∴1999()452a a S d ⨯+==,99a d =,且0d ≠, ∴995S a =. 故选:B 17.B 【分析】由等差数列的性质可得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,再由等差数列的通项公式可得1nn a ,进而可得1n a n=,再结合基本不等式即可得解. 【详解】因为*121210,n n n n a a a ++-+=∈N ,所以12211n n n a a a ++=+, 所以数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d ,由25111,25a a a ==可得25112,115a a a ==⋅, 所以111121145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111a d ⎧=⎪⎨⎪=⎩,所以()1111n n d n a a =+-=,所以1n a n=,所以不等式100n n a a +≥即100n a n+≥对任意的*n N ∈恒成立,又10020n n +≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 18.A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=,所以5312a =,即54a =,所以()1999983622a a S +⨯===. 故选:A .【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.19.A【分析】根据已知条件,结合等差数列前n 项和公式,即可容易判断.【详解】依题意,有170a a +>,180a a +<则()177702a a S +⋅=> ()()188188402a a S a a +⋅==+<故选:A .20.D【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项.【详解】解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅,又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错.故选:D.【点睛】方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力.二、多选题21.ABC【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=, 对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <, 所以614a a <,故选项D 不正确,故选:ABC【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.22.ABD【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=,∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确,故选:ABD.【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果. 23.AD【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =.【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确; 对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2n S n n a =-+,则11a S a ==,2n ≥时,221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确.故选:AD【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.24.无25.BD【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.【详解】因为数列{}n a 满足112a =-,111n na a +=-, 212131()2a ∴==--; 32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD .【点睛】 本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.26.BCD【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解.【详解】设等差数列{}n a 的公差为d , 由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确;因为()()2211168642n n n a n d n n n S -=+=-+=--+, 所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈,所以使得0n S >的最大整数15n =,故D 正确.故选:BCD.27.ABD【分析】结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案.【详解】由67S S =,可得7670S S a -==,故B 正确;由56S S <,可得6560S S a -=>,由78S S >,可得8780S S a -=<,所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确;又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确; 又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <,所以()117179171702a a S a +==<,故D 正确.故选:ABD.【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及()12n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题.28.BD【分析】 由6111160S S S S =⇒-=,即950a =,进而可得答案.【详解】解:1167891011950S S a a a a a a -=++++==,因为10a >所以90a =,0d <,89S S =最大,故选:BD .【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.29.ABD【分析】 首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121n n n a a a +=+,11a =, 所以121112n n n n a a a a ++==+,即1112n na a +-= 所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确. 对选项B ,由A 知:112121n n n a 数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121n n a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD【点睛】本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.30.AC【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =, ∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-== 故选:AC .【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.。

等差数列经典题型

等差数列经典题型

等差数列经典题型1、在等差数列{an}中,已知d=2,an=11,Sn=35,求a1和n。

根据等差数列求和公式Sn = n * (a1 + an) / 2,代入已知条件可得:35 = n * (a1 + 11) / 22 * a1 + 20 = n * (a1 + 11)2 * a1 = n * (11 - 2) - 20a1 = (9n - 20) / 2又因为an = a1 + (n - 1) * d,代入已知条件可得:11 = a1 + (n - 1) * 211 = (9n - 20) / 2 + 2n - 2n = 7将n代入a1的公式可得:a1 = 3因此,a1 = 3,n = 7.2、设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{an}的前n项和,求Tn。

由等差数列求和公式可得:S7 = 7 * (a1 + a7) / 2S15 = 15 * (a1 + a15) / 2Tn = n * (a1 + an) / 2将S7和S15带入可得:a1 + a7 = 2a1 + a15 = 10将a1 + a7 = 2代入Tn的公式可得:T7 = 7 * (2a1 + 6d) / 2 = 7a1 + 21d将a1 + a15 = 10代入Tn的公式可得:T15 = 15 * (2a1 + 14d) / 2 = 15a1 + 105d将T7和T15带入可得:T7 = 7a1 + 21d = S7 = 7T15 = 15a1 + 105d = S15 = 75解得:a1 = -1,d = 2将a1和d代入Tn的公式可得:Tn = n * (-1 + (n - 1) * 2) / 2 = n^2 - n因此,Tn = n^2 - n。

3、已知等差数列{an}的前m项和为30,前2m项和为100,求数列{an}的前3m项的和S3m。

设数列{an}的公差为d,代入已知条件可得:m * (2a1 + (m - 1) * d) / 2 = 302m * (2a1 + (2m - 1) * d) / 2 = 100解得:a1 = 3 - m * dd = 20 / (3m^2 - 2m)将a1和d代入S3m的公式可得:S3m = 3m * (6 - 3m * d + 3m * (3m - 1) * d / 2) / 29m^2 - 3m因此,S3m = 9m^2 - 3m。

等差数列性质习题(含答案)

等差数列性质习题(含答案)

b=m+n.
所以 am+n=a(m+n)+b=0. 三、解答题
12.已知{an}为等差数列,且 a1+a3+a5=18,a2+a4+a6=24. (1)求 a20 的值; (2)若 bn=3an-41,试判断数列{bn}从哪一项开始大于 0.
22
考点 等差数列的性质
题点 利用等差数列项数的规律解题
解 (1)因为 a1+a3+a5=18,a2+a4+a6=24,所以 a3=6,a4=8,则公差 d=2,所以 a20=
a4=14+32=74,
| | ∴|m-n|=|a1a4-a2a3|=
1×7-3×5 4444
=1
2
二、填空题
9.设{an}是公差为正数的等差数列,若 a1+a2+a3=15,a1a2a3=80,则 a11+a12+a13=________. 考点 等差数列的性质
题点 利用等差数列项数的规律解题
答案 105
题点 利用等差数列项数的规律解题
答案 C
解析 ∵a3+a4+a5+a6+a7 =(a3+a7)+(a4+a6)+a5=5a5=450,∴a5=90. ∴a2+a8=2a5=180. 7.已知数列{an}为等差数列且 a1+a7+a13=4π,则 tan(a2+a12)的值为( )
A. 3 B.± 3 C.- 3 D.- 3 3
考点 等差数列的判定
题点 判断数列是否为等差数列
答案 C
5.在等差数列-5,-31,-2,-1,…中,每相邻两项之间插入一个数,使之组成一个新的
2
2
等差数列,则新数列的通项公式为( )
A.an=3n-23 44
B.an=-5-3(n-1) 2
C.an=-5-3(n-1) D.an=5n2-3n

等差数列经典试题(含答案)百度文库

等差数列经典试题(含答案)百度文库

一、等差数列选择题1.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .1002.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .23.设数列{}n a 的前n 项和21n S n =+. 则8a 的值为( ).A .65B .16C .15D .14 4.在等差数列{a n }中,a 3+a 7=4,则必有( )A .a 5=4B .a 6=4C .a 5=2D .a 6=25.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a n b n =+,则2121S T 的值为( )A .1315B .2335C .1117 D .496.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=( )A .350B .351C .674D .6757.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .248.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .859.题目文件丢失!10.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48B .60C .72D .2411.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333122n n n a a a ++=+,则10a 等于( ) A .10BC .64D .412.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )13.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21B .15C .10D .614.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13B .26C .52D .5615.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .7216.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15B .30C .3D .6417.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 18.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60B .120C .160D .24019.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019 B .4040 C .2020 D .4038 20.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )A .9B .12C .15D .18二、多选题21.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =22.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >23.题目文件丢失!24.题目文件丢失!25.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( )26.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+27.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 28.定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .2020202320202S = D .2S ,4S ,6S 成等差数列29.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为2130.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17aB .35SC .1719a a -D .1916S S -【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.B 【分析】由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B. 2.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 3.C 【分析】利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】由21n S n =+得,12a =,()2111n S n -=-+,所以()221121n n n a S S n n n -=-=--=-,所以2,121,2n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.故选:C. 【点睛】本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 4.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 5.C 【分析】利用等差数列的求和公式,化简求解即可 【详解】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C 6.A 【分析】先利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值.【详解】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式,2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选:A. 【点睛】易错点睛:利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.7.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 8.C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴1215(6121)71(4151)59a kb k ⨯-==⨯-, 故选:C .9.无10.A 【分析】根据条件列方程组,求首项和公差,再根据107891093S S a a a a -=++=,代入求值. 【详解】由条件可知114832362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得:102a d =⎧⎨=⎩, ()10789109133848S S a a a a a d -=++==+=.故选:A 11.D 【分析】利用等差中项法可知,数列{}3n a 为等差数列,根据11a =,22a =可求得数列{}3n a 的公差,可求得310a 的值,进而可求得10a 的值. 【详解】对*n N ∀∈都有333122n n n a a a ++=+,由等差中项法可知,数列{}3n a 为等差数列,由于11a =,22a =,则数列{}3n a 的公差为33217d a a =-=,所以,33101919764a a d =+=+⨯=,因此,104a .故选:D. 12.B 【分析】先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到21212k k b --=,结合等差数列的求和公式,即可求解. 【详解】由题意,等差数列{}n a 的前n 项和为n S ,且2n S n =,可得21n a n =-,因为n a m ≥,即21n m -≥,解得12m n +≥, 当21m k =-,(*k N ∈)时,1m m b k m+=,即()()11212m m m mk m b m m +===++, 即21212k k b --=, 从而()13519113519502b b b b ++++=++++=.故选:B. 13.C 【分析】根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】因为134222a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,所以5154550101102S a d ⨯=+=⨯+⨯=, 故选:C. 14.B 【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B. 15.A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =,所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键. 16.A 【分析】设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,12111a a d =+,即可求解.【详解】设等差数列{}n a 的公差为d ,则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174174d a ⎧=⎪⎪⎨⎪=-⎪⎩,所以12117760111115444a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 17.C 【分析】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案.【详解】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+故选:C 18.B 【分析】利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】因为7916+=a a ,所以由等差数列的性质得978216a a a +==, 解得88a =,所以()11515815151581202a a S a +===⨯=. 故选:B 19.B 【分析】由等差数列的性质可得52012016024a a a a +==+,则()15202020202016202010102a a a a S +=⨯=⨯+可得答案. 【详解】 等差数列{}n a 中, 52012016024a a a a +==+()12020202052016202010104101040402a a a a S +===⨯=+⨯⨯ 故选:B 20.A 【分析】在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,所以139522639a a a =-=⨯-=, 故选:A二、多选题21.BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确.故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题. 22.ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.23.无 24.无25.AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误, 故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题. 26.BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题. 27.AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断. 28.AC 【分析】 由题意可知112222n n nn a a a H n-+++==,即112222n n n a a a n -+++=⋅,则2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误. 【详解】解:由112222n n nn a a a H n-+++==,得112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错, 所以()32n n n S +=,所以2020202320202S =,故C 正确.25S =,414S =,627S =,故D 错,故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般. 29.BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题. 30.BD 【分析】 由1718S S =得180a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确. 【详解】因为1718S S =,所以18170S S -=,所以180a =,因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确;13518351835()35235022a a a S a +⨯====,故B 正确; 171920a a d -=-≠,故C 不正确;19161718191830S S a a a a -=++==,故D 正确.故选:BD. 【点睛】本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.。

等差数列的性质练习题

等差数列的性质练习题

等差数列的性质练习题等差数列是数学中常见的一种数列形式,它具有一些独特的性质和规律。

在本文中,我们将通过练习题的形式来深入探讨等差数列的性质,并解答一些相关问题。

练习题一:已知等差数列的首项为a,公差为d,第n项为an。

若a=2,d=3,an=20,求n的值。

解答一:根据等差数列的通项公式an = a + (n-1)d,代入已知条件可以得到20 = 2 + (n-1)3。

简化方程可以得到18 = (n-1)3,进一步化简得到6 = n-1。

因此,n的值为7。

练习题二:已知等差数列的首项为a,公差为d,前n项和为Sn。

若a=1,d=4,Sn=45,求n的值。

解答二:根据等差数列的前n项和公式Sn = (n/2)(2a + (n-1)d),代入已知条件可以得到45 = (n/2)(2 + 4(n-1))。

简化方程可以得到45 = (n/2)(2 + 4n - 4)。

进一步化简得到45 = (n/2)(4n - 2)。

再次化简得到45 = 2n^2 - n。

将方程变为二次方程的标准形式,得到2n^2 - n - 45 = 0。

通过求解这个二次方程,可以得到n的值为5或-4。

由于数列的项数不能为负数,因此n的值为5。

练习题三:已知等差数列的首项为a,公差为d,第m项为am,第n项为an。

若a=3,d=2,am=11,an=23,求m和n的值。

解答三:根据等差数列的通项公式an = a + (n-1)d,代入已知条件可以得到23 = 3 + (n-1)2。

简化方程可以得到20 = (n-1)2,进一步化简得到10 = n-1。

因此,n的值为11。

同样地,代入已知条件可以得到11 = 3 + (m-1)2。

简化方程可以得到8 = (m-1)2,进一步化简得到4 = m-1。

因此,m的值为5。

通过解答以上练习题,我们可以看出等差数列的性质和规律。

首先,等差数列的通项公式an = a + (n-1)d可以用来求解数列的任意一项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列的性质
例1.等差数列{}n a 的前n 项和为,已知2
110m m m a a a -++-=,2138m s -=,则m =( )A 38 B 20 C 10 D 9分析:根据等差中项的性质112m m m a a a -++= ,列方程解题
解:由得2
110m m m a a a -++-=和
112m m m
a a a -++=,得,0m
a =或者2m a =,又2138m s -= ,故
2
m a =


()()()()()12121212122121238
2
2
10
m m
m m m a a m a S m a m m ---+-=
==-=-=⇒=
总结:找到21m S -和m a 的关系是解题的关键 例2.若19122020a a a a +++=,则20S ;
分析:利用等差数列的下标和公式:()p q m n p q m n a a a a +=++=+
解:由
()191220120220
a a a a a a +++=+=,所以12010
a a +=。

()
()20
1201202010100
2
a a S a a +=
=+=
总结:等差数列的求和公式有两个:
()12
n n n a a S +=

()112
n n n n d
S a -=+,要选择合适的
公式去解题。

例3.等差数列{}n a 、{}n b 的前n 项和为n S 、n T .若()71427n n n n N n S T +
+=∈+求77
a b ; 分析:将项的比值转化为前n 和的比值;
解:()()()()1131137113137113131131131
713192221413277922
n
a a a a a a a S n
b b b T b b
b b ++++======++++ 总结:要注意用的差数列的等差中项的性质以及n a 和
n
S 之间的转换

()()121121122n n n n n
a a S a a a n n
--+=+==
例4.已知等差数列{}n a 的前n 项之和记为n S ,10301070S S ==,,则40S
等于 。

分析:n S 是等差数列{}n a 的前n 项之和,则有,2,,3,2,m m m m m S S S S S --也是等差数列; 解:设20S x =,则10,20,10,30,20,S S S S S --也是等差数列;
∴()()20101030202S S S S S -=+-
∴()()2101070x x -=+-
∴1003x =
也即是20100
3S =
∴()()()302020104030402120S S S S S S S -=-+-⇒=
法二:由题意:111
2109101052302923070215a a d a d d ⋅⎧⎧
=+=⎪⎪⎪⎪⇒⎨⎨⋅⎪⎪+==⎪⎪⎩⎩
代入得1404039
401202
a S d ⋅=+
=。

总结:题目有时候不一定只有一种情况,要注意思考其他的解题思路
例5已知数列{}n a 为等差数列,若11
10
1a a <-,且它们的前n 项和n S 有最大值,则使0n S >的n 的最大值为多少? 分析:要估计数列{}n a 从哪一项开始正负变化了。

然后用
n
a 去表示
n
S ,从而推知
n
S 的正
负。

解:由前n 项和n S 有最大值可知10,0
a d ><,又因为11
10
1a a <-,所以10110,0a a ><,且
()11910
19101919219022
a a a S a +⋅=
==>
()()
()1201011201011202010022
a a a a S a a ++===+<
所以使得0n S >的n 的最大值19n =, 故答案为19.
总结:要结合等差数列的等差中项性质和下标和公式去解题。

例6.设等差数列前n 项和为n S ,已知312131200a S S =,>,<
, (1)求公差d 的取值范围;
(2)指出12312S S S S ⋯,,,
,中哪一个值最大,并说明理由。

分析:由121300S S >,<
列出有关于1a 和d 的不等式去解题
n a 中,n S 为前n 项和:若已知首项131a =,且311S S =,则此数列前 项的和最大 7。

相关文档
最新文档