3第三章 扭转分析

合集下载

第三章 扭转

第三章 扭转
46
三、切应变 剪切胡克定律 1、切应变 l
a
´
c
´
b
d t
为扭转角 r0 l
r0 即
l
纵轴 T——
T
2r02t
纯剪切单元体的相对两侧面 发生微小的相对错动,
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
横轴
r0
l
47
2、剪切虎克定律
做薄壁圆筒的扭转试验可得
在弹性范围内切应力 与切应变成正比关系。
切应力与扭矩同向的顺流
51
切应变的变化规律:
Me
pq
Me
pq p
q
d
a
d
c
a' O b
R
p
b′ q
dx
_ 扭转角(rad)
x
d _ dx微段两截面的
相对扭转角
边缘上a点的错动距离:
aa' Rd dx
边缘上a点的切应变:
R d
dx
发生在垂直于半径的平面内。
52
p
q
d
ae
d
c
a ' e′O b
③ 结论:①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相对转动。
②各纵向线均倾斜了同一微小角度 ,仍为直线。
③所有矩形网格均歪斜成同样大小的平行四边形。
40
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
41
2、切应力分布规律假设
Me2
Me1
n
Me3
从动轮
主动轮
从动轮
求: 作用在该轮上的外力偶矩Me。

材料力学第三章

材料力学第三章
解 ϕ = Tl0 = M el0 GI p GI p
33
G=
M el0 ϕI p
= M el0 ϕ ⋅ πd 4
=
150 × 0.1× 32 0.012π × 204 ×10−12
= 79.6 GPa
3-8 设有 1 圆截面传动轴,轴的转速 n = 300 r/min,传递功率 P = 80 kW,轴材料的 许用切应力[τ ] = 80 MPa,单位长度许用扭转角[θ ] = 1.0° / m ,切变模量 G = 80 GPa。试
τ max
= Tmax Wp
≤ [τ ]
3-6 金属材料圆轴扭转破坏有几种形式? 答 塑性金属材料和脆性金属材料扭转破坏形式不完全相同。塑性材料试件在外力偶作 用下,先出现屈服,最后沿横截面被剪断,如图 a 所示;脆性材料试件受扭时,变形很小, 最后沿与轴线约 45°方向的螺旋面断裂,如图 b 所示。
(2)用简化公式
τ max
=
8FD πd 3
=
8 ×1.5 ×103 × 50 ×10−3 π × 83 ×10−9
= 373 MPa
< [τ ],安全。
讨论:由于 c = D d = 50 8 = 6.25 < 10 ,故应用解(1)中修正公式计算((1)(2)计算
值相差较大)。
3-7 一圆截面等直杆试样,直径 d = 20 mm,两端承受外力偶矩 M e = 150 N⋅ m 作用。 设由试验测得标距 l0 = 100 mm 内轴的相对扭转角ϕ = 0.012 rad,试确定切变模量 G 。
设计轴的直径。
解 T = 9549 × P = 9549 × 80 = 2546 N ⋅ m
n
300

材料力学第四版课件 第三章 扭转

材料力学第四版课件 第三章 扭转
2
例1:图示空心圆轴外径D=100mm,内径 图示空心圆轴外径D=100mm,内径 d=80mm, M1=6kN·m, M2=4kN·m, 材料的切变 =6kN· 模量 G=80GPa. (1) 试画轴的扭矩图; 试画轴的扭矩图; (2) 求轴的最大切应力,并指出其位置. 求轴的最大切应力,并指出其位置.
平面假设:圆轴扭转后各横截面仍保持为平面, 平面假设:圆轴扭转后各横截面仍保持为平面, 各横截面如同刚性平面仅绕轴线作相对转动。 各横截面如同刚性平面仅绕轴线作相对转动。
横截面上无σ 1)横截面上无σ 2)横截面上只有τ
F O1 a d dφ d1 dx O2
dd1 ρdφ γ ρ ≈ tanγ ρ = = ad dx
4
πd
3 0
(
)
16T ∴d0 ≥ 3 = 76.3mm 4 π (1−α )[τ ]
取 d0 = 76.3mm、 、 (3)比较空心轴与实心轴的重量 比较空心轴与实心轴的重量 积之比: 二者重量之比等于横截面 积之比:
π (d − di ) 4 = 0.395 β= 2 4 πd
2 0 2
可见空心轴比实心轴的重量轻 可见空心轴比实心轴的重量轻
任一点处的切应变 切应变与到 距圆心为 ρ 任一点处的切应变与到 成正比。 圆心的距离ρ成正比。
2. 物理方面
dφ γρ = ρ dx
dφ τ ρ = Gρ dx
3. 静力学方面
dφ 2 T = ∫ ρτ ρ dA = G ∫ ρ dA dx A A
Ip = ∫ ρ dA 称为极惯性矩
2 A
ρ
dA
MB
1
MC
MA
2 2
A
3
MD

材料力学-第三章扭转

材料力学-第三章扭转

3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件

0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析




圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16


强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3

4
3
d 0.886 d
2
Mn
a
2

Mn 0.208 0.886 d
b
6.913

材料力学第3章扭转

材料力学第3章扭转

τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx

dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy

τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理

材料力学-第三章

材料力学-第三章

21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:


u
n
n为安全系数。
强度条件为:
max
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量

河海大学 , 材料力学 , 课件 , 第3章 , 扭转

河海大学 , 材料力学 , 课件 , 第3章 , 扭转

Mx 2 2r0
(a)
l r0
r0 l
b
τ b τs a τp O
τp——剪切比例极限 τs——剪切屈服极限
γ
α
低碳钢τ-γ曲线
切变模量 G = τ/ γ= tanα
α——直线的倾角
各向同性材料:
E G 21
铸铁扭转破坏试验:
τ
τb——剪切强度极限
∴ 横截面上最大切应力发生在厚度δi 最大的狭 长矩形的长边中点处。
max
MX 1 3 max 3 hi i
例3-5:两薄壁钢管。(a)为闭口薄同,且δ / D0= 1 / 10,试求在相同的外力偶
矩作用下,哪种截面形式较好。
P(kW) T 9.55 (kN m) n(rpm)
§3-2 圆杆扭转时的应力
一、横截面上的应力
Mx
分析步骤?
变形分析→应变分布
应力应变关系→应力分布 静力学关系→应力值
周线 T
纵线 T υ 轴线
1、几何方面
a
b
c
γ
d
(1)变形现象
A、周线大小、形状和周线间距不变,只是绕
轴线作相对转动。
d dx
—单位长度相对扭转角
γρ——切应变

2、物理方面
γρ
e e`
弹性变形时: τ= Gγ
——剪切胡克定律。 G—材料的切变模量。
d G G ---(a) dx
τmax τ
O
3、静力学方面

A
dA M x
2
τ
r
ρ
dA
d (b )式代入, A G dA M x dx

工程力学材料力学(3)

工程力学材料力学(3)

§3-1 工程实际中的扭转问题
在工程实际中,尤其是在机械传动中的许多构件,其主要变形是 扭转。例如丝锥攻丝和转动轴的工作情况。
受力特点: 受力特点 : 在垂直于扭转构件轴线的平面内作用有两个大小相等, 转向相反的力偶。 变形特点: 变形特点 : 在上述两力偶的作用下,各横截面绕轴线发生相对转 动。这时任意两横截面间将有相对的角位移,这种角位移称为扭转 扭转 角。图中的φAB就是截面B相对于截面A的转角
∑M
x
= 0, T = M A
取右段为研究对象,可得相同的结果 由此可见,杆扭转时,其横截面上的内力,是一个在截面平面内 的力偶,其力偶矩称为扭矩 扭矩。 扭矩 左右两截面上的扭矩是一对作用和反作用力,它们的大小相等、转 向相反。为了使轴的同一截面上的扭矩的正负号相同,可采用右手螺 右手螺 旋法则规定其正负号。 旋法则
工程力学课件
2、静力学关系 、 圆轴扭转时,平衡外力偶矩的扭矩,是由横截面上无数的微剪力 组成的。如图所示,设距圆心ρ处的切应力为τp,如在此处取一微面 积dA,则此微面积上的微剪力为τρdA 。各微剪力对轴线之矩的总和, 即为该截面上的扭矩,即
T = ∫ ρτ ρ dA
dφ τ ρ = Gρ dx 因此 T = Gρ 2 dφ dA = G dφ ∫A dx dx
(a)
(b)
(c)
工程力学课件
由图可知:当切应力不超过材料的 剪切比例极限 (τp)时,切应力与切应变 之间成正比关系,这个关系称为剪切 剪切 胡克定律,可用下式表示: 胡克定律
τ = G ⋅γ
式中,G为材料的剪切弹性模量 剪切弹性模量,单位与弹性模量E相同,其 剪切弹性模量 数值可通过试验确定,钢材的G值约为80 GPa。 理论与试验表明:剪切弹性模量、弹性模量和泊松比是表明材料 弹性性质的三个常数。对各向同性材料,这三个弹性常数之间存在如 下关系:

材料力学 第三章 扭转

材料力学  第三章  扭转

为一很小的量,所以
tan 1.0103rad
G
(80 109 Pa)(1.0 103rad) 80 MPa
注意: 虽很小,但 G 很大,切应力 不小
例 3-3 一薄壁圆管,平均半径为R0,壁厚为,长度为l, 横截面上的扭矩为T,切变模量为G,试求扭转角。
解:
T
2πR02
G
T
2πGR02
塑性材料:[] =(0.5~0.6)[s] 脆性材料:[] = (0.8~1.0)[st]
例 3-1 已知 T=1.5 kN . m,[τ] = 50 MPa,试根据强度条 件设计实心圆轴与 a = 0.9 的空心圆轴,并进行比较。 解:1. 确定实心圆轴直径
max [ ]
max
T Wp
T πd 3
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
Tmax ml
[例3-1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW, 从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
解:1、计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
一、薄壁圆筒扭转时的应力
t
1、试验现象
壁厚
t
1 10
r0(r0:平均半径)
rO
各圆周线的形状不变,仅绕轴线作相对转动,距离不变。 当变形很小时,各纵向平行线仍然平行,倾斜一定的角度。
由于管壁薄,可近似认 为管内变形与管表面相 同,均仅存在切应变γ 。
2、应力公式 微小矩形单元体如图所示:
´
①无正应力
d T
dx GI p

材料力学 第 三 章 扭转

材料力学 第 三 章 扭转
扭转平面假设:变形前的横截面,变形后仍为平面,且形状 、大小
以及间距不变,半径仍为直线。
定性分析横截面上的应力
(1)∵ε = 0∴σ = 0
(2)∵ γ ≠ 0∴τ ≠ 0
因为同一圆周上切应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
切应变的变化规律:
D’
取楔形体
O1O2ABCD 为 研究对象
γ ≈ tgγ = DD' = Rdϕ
dx dx
微段扭转
变形 dϕ
γ ρ ≈ tgγ ρ = dd′ = ρ ⋅ dϕ
dx dx
γ
ρ
=
ρ

dx
dϕ / dx-扭转角变化率
圆轴横截面上任一点的切应变γρ
与该点到圆心的距离ρ成正比。
(二)物理关系:由应变的变化规律→应力的分布规律
弹性范围内 τ max ≤ τ P
τ max
=
T
2π r 2t
=
180 ×103
2π × 0.132× 0.03
= 56.5MPa
(2) 利用精确的扭转理论可求得
τ max
=
π D3
T
(1−α 4 )
16
=
180 ×103
π×
0.293
⎡ ⎢1 −
⎜⎛
230
⎟⎞
4
⎤ ⎥
16 ⎢⎣ ⎝ 290 ⎠ ⎥⎦
= 62.2MPa
思考题
由两种不同材料组成的圆轴,里层和外层材料的 切变模量分别为G1和G2,且G1=2G2。圆轴尺寸如 图所示。圆轴受扭时,里、外层之间无相对滑动。 关于横截面上的切应力分布,有图中(A)、(B)、 (C)、(D)所示的四种结论,请判断哪一种是正 确的。

第三章 扭转

第三章 扭转

三、剪切胡克定律
d a
p
d c a b
q
Me
c d’ b
Me
q q
γ
a’ d’ c’
p p
c’ b’
Me
a’ b’
Me
p
q
:直角的改变量 切应变 γ :直角的改变量
φ
圆筒两端面的相对扭转角
p
d’ c’ a’ b’
q
γ
r ϕ = l
对于线弹性材料, 对于线弹性材料, 或者对于
φ
τ
≤τ p 时,有
d’
§3-2 薄壁圆筒的扭转
一、薄壁圆筒的扭转应力 二、切应力互等定理 三、剪切胡克定律
一、薄壁圆筒的扭转应力
1、变形观察 2、横截面上扭转应力分布规律的分析 3、扭转应力的大小
1、变形观察
p q
a b
(1)圆周线不变 大小、 (大小、间距都 Me 不变)。 不变)。 纵向线倾斜, (2)纵向线倾斜, 倾斜角相同。 倾斜角相同。 (3)表面矩形变 成平行四边形。 成平行四边形。 Me
T =−M −M +M 3 2 3 1 = 6.37kN⋅ m
4.78
6.37
9.56
M =15.9 kN⋅m 1
M =4.78 kN⋅m 2
M1 2
B
1
2 M 3
M 1
A
3
M 4
D
M =4.78 kN⋅m 3
C
2 2
3 3
M4 =6.37 kN⋅m
M 2
B
1
M 3
C
M 4
A
M 1
D
3
1
2
若将主动轮A和从动轮 调换 若将主动轮 和从动轮D调换, 和从动轮 调换, 求轴的扭矩图。 求轴的扭矩图。

材料力学第三章知识点总结

材料力学第三章知识点总结

直升机的旋转轴
电机每秒输入功:外力偶作功完成:
×
=P W
M W
e

=
形状、大小、间距不变,各圆周线只是绕轴线转动了一个角度。

倾斜了同一个角度,小方格变成了平行四边形。

τdα
τ
l
ϕ
做薄壁圆筒的扭转试验可得
l
是材料的一个弹性常数,称为剪切弹性模量,G的量纲各向同性材料,三个弹性常数之间的关系:
ρργγtg ≈x
d d d ′=x d d ϕρ⋅=O 1O 2ABCD 为研究对象
D’
微段扭转变形d dx Rd dx DD tg ϕγγ==≈'d ϕ/ d x -扭转角沿x 轴的变化率
扭转变形计算式
O d A ρTρ⋅
(实心截面)
1、横截面上角点处,切应力为零;
2、横截面边缘各点处,切应力
3、切应力沿横截面周边形成与
4、横截面周边长边中点处,切应力最大。

有关,见教材P93 之表3.2。

材料力学第5版(孙训方编)第三章

材料力学第5版(孙训方编)第三章

A t dA T

G dj 2dA T dx A
其中 2 d A A
称为横截面的极惯性矩Ip,
单位 m4。它是横截面几何性质。
以Ip
2 d A 代入上式得:
A
dj T
d x GI p
从而得等直圆杆在线弹性范围内扭转时,横截面上任一点
处切应力计算公式


3. 作扭矩图
第三章 扭转
由扭矩图可见,传动轴的最大扭矩Tmax在CA段内,其 值为9.56 kN·m。
第三章 扭转
思考:如果将从动轮D与C的位置对调,试作该传动轴的扭 矩图。这样的布置是否合理?
第三章 扭转
4.78
6.37
15.9
4.78
第三章 扭转
§3-4 等直圆杆扭转时的应力·强度条件

{M
e }Nm



{n} r m in 60
103
因此,在已知传动轴的转速n(亦即传动轴上每个轮的
转速)和主动轮或从动轮所传递的功率P之后,即可由下式
计算作用于每一轮上的外力偶矩:
{M e}Nm

{P}kw 103 2π{n} r
60

9.55 103
{P}kw {n} r
m in
本章研究杆件发生除扭转变形外,其它变形可忽略的
情况,并且以圆截面(实心圆截面或空心圆截面)杆为主要
研究对象。此外,所研究的问题限于杆在线弹性范围内工
作的情况。
水轮发电机
第三章 扭转
§3-2 薄壁圆筒的扭转
薄壁圆筒——通常指 r0 的圆筒
10
Me
m
Me

第三章 扭转

第三章 扭转


传动轴,已知转速 n=300r/min,主动轮A输入功 率PA=45kW,三个从动轮输出功率分别为PB=10kW, PC=15kW,PD=20kW。试绘轴的扭矩图.
解: (1)计算外力偶矩
由公式 M 9549P / n e
(2)计算扭矩
(3) 扭矩图
MB
MC
MD
MA
B
C
D
A
T3 M A 1432N m
M e Nm
PkW 103 60 PkW 9549 nrpm 2πnrpm
§3.2 外力偶矩的计算 扭矩和扭矩图
2.扭矩和扭矩图 用截面法研究横 截面上的内力
T = Me T:截面上的扭矩
§3.2 外力偶矩的计算 扭矩和扭矩图
扭矩正负规定
右手螺旋法则
右手大拇指指向横截面外法线方向为正,反之为负
2、应力分析 取微单元体abcd
A、存在剪(切)应力 有剪切变形,单元体的两 恻必然有剪应力。
a d
B、不存在正应力 扭转过程中,圆筒的周边 线形状、大小、相邻周边线的距 离都不变, →无线应变 无轴相或周相变形 →无正应力
b c
a
b
d
c

C、剪(切)应力大小
(1)由于沿圆周线方向各点的
变形相同,同一圆周线上各点
max
注意:计算 max 应综合考虑T和WP。
5

Tmax [ ] WP
极惯性矩和抗扭截面系数的计算 实心圆轴
D Ip , 32
4
Ip d A
2 A
3

空心圆轴
其中:
D 4 (1 ) Ip (1 ), WP 16 32

第3章 扭转

第3章 扭转
(2) BC段:在截面Ⅱ−Ⅱ处将轴截开,取左段为脱离 体,如图d,由平衡条件 M
å

e4
M
e1
M
x
= 0
T2 + M 4 - M 1 = 0
(d)
A
B
Ⅱ T2 Ⅱ
T 2 = - M 4 + M 1 = - 6 .3 7 + 1 5 .9 = 9 .5 3
(3) CD段:在截面Ⅲ-Ⅲ处将轴截开,取右段为脱离 体,如图e,由平衡条件 M e3 M = 0 Ⅲ å T3 - M 3 = 0
Me n n (a) Me
x
Me
n T x n (b) n
T
n (c) Me
x
12
传动轴的外力偶矩
功率、转速与力偶矩的转换关系:在工程实际中,给出 轴所传递的功率和轴的转速。需要将其换算为力偶矩。 轴转动1分钟力偶所作的功为:
W = 2π 鬃 M e n
A B
电动机每分钟所作的功为:
W ' = 60
t
a
= t co s 2 a
28
s
a
= - t sin 2 a
t
a
= t co s 2 a
讨论:
a = 0
0
s 00 = 0
t 00 = t
max
= t
τ
τ
a = - 45
0
st-
45
0
= s max = t
= 0
τ
45
0
σmin
τ
σmax
a = 45
0
s 450 = s min = - t
t
45
27
e

化机基础(力学)_第三章轴扭转

化机基础(力学)_第三章轴扭转

【5.3】一轴以300转/分的转速传递331kW的功率,如 [ ]=40MPa,[ ]=0.5°/m,G=80GPa,求轴的直径。
解:
(1)计算扭矩:
P 331 M e 9550 9550 10537 N m n 300
T M e 10537 m N
(2)设计轴径 T T 由强度条件: max W 3 [ ] t d 16
轴扭转时,横截面上的扭矩T引起切应力 ,故横截面 上各点只有切应力,与该点所在半径垂直,方向与截 面扭矩转向保持一致。
第三节 纯剪切
一、切应力互等定理
围绕横截面上某点取一微小六面体,称为单元体。 y

dy x dx z
由平衡条件:
M 0
dy dz dx
'dx dz dy
二、扭矩和扭矩图
1. 研究AB轴各横截面上的内力 me me
1
A me
1 T1-1 1 x 1 T1-1
B
求AB段内的任 一横截面上的内 力:用截面法计 算内力。
m 0
T11 me 0
me
T11 me
注:
1. 内力名称——扭矩T 2. 扭矩正负号规定,利用右手螺旋法则,当拇指背离截 面时,T为正;反之,为负。 不论取截面的哪一侧研究,所得结果的正负号一致。 T1-1 mB mA 1 T1-1
轴:工程上将以扭转变形为主的构件称为轴
第二节
扭转时力偶和内力的计算
一、外力偶矩的计算
作用于轴上的外力偶矩一般不是直接给出的,而是给出 轴的转速n和传递的功率P。
n1 27.5kW 7.5kW A n B
C
n=960r/min
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T
Ip
— 横截面上距圆心为处任一点剪应力计算公式。
4. 公式讨论:
① 仅适用于各向同性、线弹性、小变形的等圆截面直杆。 ② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
r0
(r0:为平均半径)
一、实验:
1.实验前: ①绘纵向线,圆周线; ②施加一对外力偶 m。
10
φ
1.实验前: ①绘纵向线,圆周线;
②施加一对外力偶 m。
2.实验后: ①圆周线不变;
②纵向线变成斜直线。
3.结论:①圆筒表面的各圆周线的形状、大小和间距均未改变,只是绕轴 线作了相对转动,纵向截面上无正应力;轴线长度不变,横截面无正应力。
石油钻机中的钻杆等。 扭转:杆件两端作用两个大小相等、方向相反作用面与直杆
的轴线垂直的力偶,使杆的任意两个横截面发生绕轴线的相
对转动的变形称为扭转变形。
A
B O
A
BO
m
m
扭转角():任意两截面绕轴线转动而发生的角位移。
剪应变():直角的改变量。
3
工 程 实 例
4
§3–2 传动轴的外力偶矩 ·扭矩及扭矩图
1
第三章 扭 转
§3–1 概述 §3–2 传动轴的外力偶矩 ·扭矩及扭矩图 §3–3 纯剪切 §3–4 等直圆杆在扭转时的应力 ·强度分析 §3–5 等直圆杆在扭转时的变形 ·刚度条件 §3–6 圆柱形密圈螺旋弹簧的应力和变形 §3–7 非圆截面等直杆在自由扭转时的应力和变形
2
§3–1 概 述
轴:工程中以扭转为主要变形的构件。如:机器中的传动轴、
1. 横截面变形后仍为平面; 2. 轴向无伸缩; 3. 纵向线变形后仍为平行。
17
二、等直圆杆扭转时横截面上的应力:
1. 变形几何关系:
tg
G1G dx
d
dx
d
dx
距圆心为 任一点处的与到圆心的距离成正比。
d —— 扭转角沿长度方向变化率。
dx
18
2. 物理关系:
虎克定律:
G
变形几何关系:
单元体的四个侧面上只有剪应力而无正应力作用,这种应力状态称为纯剪 切应力状态。
13
四、剪切虎克定律:
T=m
T
( 2 A0t)
( R )
L
剪切虎克定律:当剪应力不超过材料的剪切比例极限时(τ ≤τp),剪应力与 剪应变成正比关系。
G
式中:G是材料的一个弹性常数,称为材料的切变模量, 无量纲,故G的
目 ①扭矩变化规律;
的 ②|T|max值及其截面位置
强度计算(危险截面)。
T
6.37
– –
4.78
x
9.56
7
[例1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW,
从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩
图。
m2
m3
m1
m4
解:①计算外力偶矩
量纲与 相同,不同材料的G值可通过实验确定,钢材的G值约为80GPa。
14
剪切弹性模量、弹性模量和泊松比是表明材料弹性性质的三 个常数。对各向同性材料,这三个弹性常数之间存在下列关系 (推导详见后面章节例题7.10):
G
E 2(1
)
可见,在三个弹性常数中,只要知道任意两个,第三个量 就可以推算出来。
T2 m2 m3 0 ,
A1
T2 m2 m3 9.56kN m
m3 2 m1 B2C
3 m4
n 3D
T3 m4 0 , T3 m4 6.37kN m
③绘制扭矩图
T
– 4.78
6.37
x

T 9.56 kN m max
9.56
9
§3–3 薄壁圆筒的扭转
薄壁圆筒:壁厚
t
1 10
´ b
L
´
A dA r0 T
c
d
r0 AdA r0 2 r0 t T
dx
T
2 r02
t
12
三、切应力互等定理:
mz 0
t dxdy t dxdy 故
上式称为切应力互等定理。
a
dy
´
c
z
dx
´
b
d t
该定理表明:在单元体相互垂直的两个平面上,剪应力必然成对 出现,且数值相等,两者都垂直于两平面的交线,其方向则共同指向 或共同背离该交线。
d
dx
G
G
d
dx
G
d
dx
G
d
dx
19
3. 静力学关系:
dA
T A dA
A
G
2
d
dx
dA
O
G
d
dx
A
2dA
令 I p A 2dA (Ip为极惯性矩,与横截面的几何尺寸有关)
T
GI p
d
dx
d
dx
T GI p
代入物理关系式
G
d
dx
得:
T
Ip
横截面上距圆心为处任一点剪应力计算公式。
20
15
五、 应变能与应变能能密度
y
单元体微功:
a
dy
´
c
z
dx
´
b
d dz
dW
1 2
(dzdy)(dx
)
12 dV
x 应变比能:
u dU dW 1
dV dV 2
16
§3–4 等直圆杆在扭转时的应力 ·强度条件
①变形几何方面
等直圆杆横截面应力
②物理关系方面
一、等直圆杆扭转实验观察:
③静力学方面
m1
9.55

P1 n
9.55
500 300
A
15.9(kN m)
n
B
C
D
m2
m3
9.55
P2 n
9.55
150 300
4.78 (kN m)
m4
9.55
P4 n
9.55
200 300
6.37
(kN m)
8
②求扭矩(扭矩按正方向设)
mC 0 , T1 m2 0
m2 1
T1 m2 4.78kN m
一、传动轴的外力偶矩
传递轴的传递功率、转速与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m 7.024 P (kN m) 其中:P — 功率,马力(PS,公制)
n
n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP,英制) n — 转速,转/分(rpm)
②各纵向线均倾斜了同一微小角度 ,即 切应变。
③所有矩形网格均歪斜成同样大小的平行四边形。
11
φφ
4二. 、(薄圆壁筒两圆端筒的剪相应对力扭转 大角)小与: 的关系:
微小矩形单元体如图所示:
①横截面上无正应力 L R
②横截面上各点处,只产生垂直于半径的
均匀分布的剪应力 ,沿周R向大小不变
a
dy
1PS=0.735kW , 1HP=0.746kW , 1kW=1.36PS
5
二、扭矩及扭矩图 1 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。 2 截面法求扭矩
mx 0 T m0
m
m
T m
3 扭矩的符号规定:
x
m
T
“T”的转向与截面外法线方向满足右手螺旋规则为正,
反之为负。
6
4 扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。
相关文档
最新文档