考研数学多元函数微分学的知识点总结讲解
多元函数微分学知识点梳理
多元函数微分学知识点梳理
第九章多元函数微分学
内容复
一、基本概念
1.多元函数的基本概念包括n维空间、n元函数、二重极限、连续等。
其中,偏导数和全微分也是重要的概念。
2.重要定理:
1)二元函数中,可导、连续、可微三者的关系为偏导数
连续→可微。
同时,偏导数存在和函数连续是可微的必要条件。
2)二元函数的极值必须满足必要条件和充分条件。
二、基本计算
一)偏导数的计算
1.偏导数值的计算有三种方法:先代后求法、先求后代法
和定义法。
2.偏导函数的计算包括简单的多元初等函数和复杂的多元
初等函数。
对于复杂的函数,可以使用链式法则,或者隐函数求导法。
3.高阶导数的计算需要注意记号表示和求导顺序。
二)全微分的计算
1.叠加原理可以用于计算全微分,即dz=∂z/∂x dx+∂z/∂y dy。
2.一阶全微分形式不变性对于自变量和中间变量均成立。
三、偏导数的应用
在优化方面,多元函数的极值和最值是常见的应用。
1.无条件极值可以用必要条件和充分条件来求解。
2.条件极值可以使用Lagrange乘数法来求解。
3.最值可以通过比较区域内部驻点处函数值和区域边界上最值的大小来确定。
关于多元微分学的几点注记
关于多元微分学的几点注记多元微分学是微积分中的一个重要分支,主要研究多元函数的微分、导数、极限和微分方程等相关问题。
下面是关于多元微分学的几点注记。
一、多元函数的概念1. 多元函数是指依赖于多个变量的函数,常用的表示方法为f(x1,x2,...,xn)。
2. 多元函数的定义域是指多个变量的取值范围,一般表示为D⊆R^n,其中R^n表示n 维实数空间。
二、偏导数的定义1. 偏导数是多元函数在某一点上对某个变量的变化率,表示为∂f/∂xi或f(xi)',其中xi是自变量。
2. 偏导数的计算方法类似于一元函数的导数,将其他变量视为常数,对该变量求导即可。
三、全微分的概念1. 全微分是多元函数在某一点上的线性逼近,表示为df=f1dx1+f2dx2+...+fndxn,其中f1,f2,...,fn为偏导数,dx1,dx2,...,dxn为自变量的微小变化量。
2. 全微分可以用来估计多元函数在某一点附近的变化情况,是求解微分方程的重要工具之一。
四、多元函数的连续性与可微性1. 多元函数在某一点上连续,意味着函数在该点的极限存在,并且与该点的函数值相等。
2. 多元函数在某一点上可微,意味着函数在该点的偏导数存在,并且全微分存在。
五、多元函数的极值与最优化1. 多元函数的局部极值是指函数在某一点附近的最大值或最小值。
2. 多元函数的全局极值是指函数在整个定义域内的最大值或最小值。
3. 最优化问题是通过求解极值来确定多元函数的最优解,可以通过对偏导数进行求解来找到极值点。
六、多元微分方程的求解1. 多元微分方程是指包含多个未知函数的微分方程。
2. 多元微分方程的求解方法包括分离变量法、齐次化法、线性代数法等。
七、多元函数的泰勒展开1. 多元函数的泰勒展开是将多元函数在某一点附近用幂函数逼近的方法。
2. 多元函数的泰勒展开可用于近似计算、数值求解等问题。
总结:多元微分学是微积分的重要分支,研究多元函数的微分、导数、极限和微分方程等问题。
多元函数微分知识点总结
多元函数微分知识点总结一、多元函数的梯度在多元函数微分学中,梯度是一个非常重要的概念。
梯度是一个向量,表示函数在某一点的变化率最快的方向。
对于一个二元函数f(x, y),梯度可以表示为:∇f = (∂f/∂x, ∂f/∂y)其中,∂f/∂x和∂f/∂y分别表示函数f对x和y的偏导数。
梯度的方向即为函数在该点变化率最快的方向,而梯度的模即为函数在该点的变化率。
因此,梯度可以帮助我们确定函数在某一点的最大变化率和变化的方向。
在实际应用中,梯度可以帮助我们求解多元函数的最值问题。
通过求解梯度为0的点,可以找到函数的极值点。
梯度的方向还可以告诉我们函数在某一点的最快下降方向,从而帮助我们优化函数的取值。
二、多元函数的链式法则链式法则是多元函数微分学中的一个重要概念。
链式法则是用来计算复合函数的导数的方法。
对于一个复合函数f(g(x)), 链式法则可以表示为:(d(f(g))/dx) = (dg/dx)*(df/dg)链式法则的应用十分广泛。
在实际问题中,我们经常会遇到复合函数,通过链式法则,我们可以求解复合函数的导数,从而解决实际问题。
三、多元函数的偏导数多元函数的偏导数是多元函数微分学中的一个基本概念。
对于一个二元函数f(x, y),其关于变量x的偏导数可以表示为∂f/∂x,而关于变量y的偏导数可以表示为∂f/∂y。
偏导数表示了函数在某一点的变化率。
通过偏导数,我们可以确定函数在某一点的变化率和变化的方向,从而帮助我们解决实际问题。
四、多元函数的泰勒展开泰勒展开是多元函数微分学中的一个重要概念。
泰勒展开可以将一个函数在某一点处展开为一个无穷级数。
对于一个n次可导的函数f(x),它在点a处的泰勒展开可以表示为:f(x) = f(a) + f'(a)*(x-a) + f''(a)*(x-a)^2/2! + ... + f^(n)(a)*(x-a)^n/n!泰勒展开的应用非常广泛。
通过泰勒展开,我们可以将一个函数在某一点处近似为一个多项式,从而方便我们进行数值计算和求解。
考研高数二全部知识点总结
考研高数二全部知识点总结一、多元函数微分学1. 多元函数的概念多元函数是指自变量有两个以上的函数。
在多元函数微分学中,需要掌握多元函数的定义、取值范围、图像等知识。
2. 偏导数偏导数是多元函数微分学的基础,偏导数的概念、性质、计算方法是高数二中的重点内容。
在复习过程中,需要重点掌握偏导数的计算方法,包括利用定义求偏导数、隐函数求导、高阶偏导数等内容。
3. 方向导数和梯度方向导数是用来表示函数在某一点沿着某一方向的变化率,梯度是方向导数的一种特殊情况,是多元函数在某一点的变化率最大的方向。
复习时需要掌握方向导数和梯度的定义、性质、计算方法等知识点。
4. 隐函数与参数方程在高数二中,隐函数与参数方程是重要的内容,需要掌握隐函数的存在性与偏导数求法、参数方程的导数、相关方程的结论等知识点。
5. 全微分全微分是多元函数微分学中的重要概念,包括全微分的定义、性质、计算方法等内容,需要在复习过程中重点掌握。
6. 泰勒公式泰勒公式是多元函数微分学中的重要内容,需要掌握泰勒公式的一阶、二阶、多元泰勒公式等内容。
二、多元函数积分学1. 重积分重积分是多元函数积分学的重要内容,包括重积分的定义、性质、计算方法等内容。
复习时需要重点掌握二重积分、三重积分的计算方法,包括直角坐标系下的积分、极坐标系下的积分、柱坐标系下的积分等内容。
2. 曲线、曲面积分曲线积分和曲面积分是高数二中的难点内容,需要复习时掌握曲线积分和曲面积分的定义、性质、计算方法等知识。
3. 格林公式格林公式是多元函数积分学中的重要内容,复习时需要掌握格林公式的定义、性质、应用等知识点。
4. 散度和旋度在多元函数积分学中,散度和旋度是重要的内容,需要掌握散度和旋度的定义、性质、计算方法等知识。
5. 曲线积分公式和斯托克斯定理曲线积分公式和斯托克斯定理是多元函数积分学中的重要内容,需要复习时掌握曲线积分公式和斯托克斯定理的定义、性质、应用等知识点。
总结:多元函数微分学和多元函数积分学是高数二的重要内容,在复习高数二的过程中,需要掌握多元函数微分学和多元函数积分学的全部知识点,包括偏导数、方向导数、梯度、全微分、泰勒公式、重积分、曲线、曲面积分、格林公式、散度和旋度、曲线积分公式和斯托克斯定理等内容。
多元函数微分学及其应用归纳总结
多元函数微分学及其应用归纳总结一、多元函数的微分与偏导数1. 多元函数的微分定义为函数在其中一点上的线性逼近。
对于二元函数,微分为 dz=f_x*dx+f_y*dy,其中 f_x 和 f_y 分别为函数的偏导数。
对于一般的 n 元函数也可类似定义。
2.多元函数的偏导数表示函数沿着其中一个变量的变化率。
对于二元函数f(x,y),其偏导数f_x表示x方向上的变化率,f_y表示y方向上的变化率。
一般而言,当存在偏导数且连续时,函数在该点可微分。
3.偏导数的计算方法与一元函数相似,利用极限的定义求出偏导数表达式,对于高阶偏导数,可以反复求导。
4.混合偏导数表示函数在二个或二个以上变量上求偏导数后再对另外一个或另外几个变量求偏导数,其次序不影响结果。
二、多元函数的求导法则1. 多元函数的和、差、常数倍法则:设函数 f 和 g 在其中一点连续可导,则(f±g)'=f'±g',(kf)'=kf'。
2.多元函数的乘积法则:设函数f和g在其中一点连续可导,则(f·g)'=f'·g+g'·f。
3.多元函数的商法则:设函数f和g在其中一点连续可导且g不为零,则(f/g)'=(f'·g-g'·f)/g^24. 复合函数求导法则:设函数 y=f(u) 和 u=g(x) 在其中一点可导,则复合函数 y=f(g(x)) 的导数为dy/dx=f'(u)·g'(x),其中 x 和 u 为中间变量。
三、多元函数的极值与梯度1.多元函数的极值包括极大值和极小值。
在二元函数中,极值的必要条件为偏导数为零,充分条件为偏导数存在且满足一定条件。
2.多元函数的梯度是一个向量,其方向与函数在其中一点上变化最快的方向一致,大小表示变化率的大小。
梯度为零的点可能为极值点。
D2_3多元函数微分学(32p)
处可微(全微分存在) 存在; (必要但不充分) 连续. (充分但不必要)
(2)全微分形式的不变性: 设 自变量还是中间变量都有 (3)可导函数z = f (x ,y) 在点 只需验证: 若等于零,则z 若等于零,则z = f (x , y) 在点 则z 若不等于零, = f (x , y) 在点
则不论u与v是
则称 z = f (x ,y) 在点
3.有界闭区域上二元连续函数的性质 最值定理、有界性定理、介值定理 4.偏导数的概念与计算法 (1) 概念:
(2) 计算法: 计算偏导函数 计算偏导函数 5.全微分
时把 y 当作常数, 时把 x 当作常数.
(1)二元函数z = f (x, y) 在点 必要条件: 在点 充分条件:在点 处 处
解得
或
根据几何意义,曲线 C 上存在距离 xoy 面最远的点和 最近的点. 故所求的点依次为(–5 ,–5 , 5) 和 (1 ,1 , 1). 注释 : 本题考查求条件极值的拉格朗日乘数法.
的极小值点, 极小值为z (9,3) = 3.
∂2z 1 ∂2z 1 类似地: 由于 A = 2 |(−9,−3,−3) =− , B = |(−9,−3,−3) = , ∂x 6 ∂x∂y 2
∂2z 5 C = 2 |(−9,−3,−3) =− . 所以 ∂y 3
从而点(–9,–3)是 z = z (x , y)的极大值点, 极大值为 z (–9,–3) = –3. 注释:本题考查方程决定的二元隐函数的极值点与 注释 极值. 解题的关键是求方程确定的隐函数的一阶与二 阶偏导数.
k = . 2 k 取不 x→ x + (kx)2 0 x→ y→ x + y 0, 0 1+ k xy k lim 同值时, 1+ k2 的值不同, 故极限 x→0, y→0 x2 + y2 不存在,
(完整word版)多元函数微分学及其应用归纳总结,推荐文档
第八章 多元函数微分法及其应用一、多元函数的基本概念1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念2、多元函数的极限✧00(,)(,)lim (,)x y x y f x y A →=(或0lim (,)P P f x y A →=)的εδ-定义✧ 掌握判定多元函数极限不存在的方法:(1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言函数极限不存在;(2)找两种不同趋近方式,若00(,)(,)lim (,)x y x y f x y →存在,但两者不相等,此时也可断言极限不存在。
✧ 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商,等价无穷小替换,夹逼法则等)与一元类似:例1.用εδ-定义证明2222(,)(0,0)1lim ()sin0x y x y x y →+=+例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数222222()+++-x y x y x y 的极限是否存在?证明你的结论。
例3 设222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩ ,讨论(,)(0,0)lim (,)x y f x y →是否存在?例4(07年期末考试 一、2,3分)设2222422,0(,)0,0⎧+≠⎪+=⎨⎪+=⎩xy x y x y f x y x y ,讨论(,)(0,0)lim (,)→x y f x y 是否存在?例5.求222(,)(0,0)sin()lim x y x y x y →+3、多元函数的连续性0000(,)(,)lim(,)(,)x y x y f x y f x y →⇔=✧ 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含在定义域内的区域或闭区域。
✧ 在定义区域内的连续点求极限可用“代入法”例1. 讨论函数33222222,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩ 在(0,0)处的连续性。
攻克北京市考研数学难点多元函数微分学重点整理
攻克北京市考研数学难点多元函数微分学重点整理多元函数微分学是北京市考研数学中的一大难点,考生们在备考过程中需要重点整理相关知识和技巧。
本文将对多元函数微分学的重点内容进行整理,帮助考生提升备考效率和应试能力。
一、偏导数多元函数的偏导数是多元函数微分学的基础,也是考研中的重点内容之一。
偏导数的定义为:对于多元函数$f(x,y)$,关于$x$的偏导数表示为$\frac{\partial f}{\partial x}$,关于$y$的偏导数表示为$\frac{\partial f}{\partial y}$。
在求偏导数时,可以将其他自变量看作常数进行计算。
偏导数的计算需要注意以下几点:1. 偏导数的计算步骤与一元函数的求导类似,将其他自变量看作常数。
2. 偏导数的次序可以交换,即$\frac{\partial^2 f}{\partial x \partial y}$与$\frac{\partial^2 f}{\partial y \partial x}$相等。
3. 求高阶偏导数时,可以逐次对偏导数进行求导,例如$\frac{\partial^3 f}{\partial x \partial y^2}$。
二、全微分与多元函数的微分全微分是多元函数微分学中的重要概念,表示函数在某一点附近的近似变化。
对于二元函数$f(x,y)$,全微分表示为$d f = \frac{\partial f}{\partial x} d x + \frac{\partial f}{\partial y} d y$,其中$d x$和$d y$分别表示$x$和$y$的增量。
利用全微分可以推导出多元函数的微分公式,包括链式法则和隐函数求导等。
在应用全微分时,需要注意以下几点:1. 全微分公式适用于一切可微函数。
2. 利用全微分进行近似计算时,可以将高阶无穷小忽略不计。
三、多元函数的极值与条件极值多元函数的极值和条件极值是考研中的难点之一,对于一般函数而言,极值点通常是在偏导数为零或不存在的点求得。
考研数学多元函数微分学的应用知识点总结
考研数学高数知识点总结多元函数微分学的应用一、无条件极值1、基本概念设是二元函数的定义域,是的内点,若存在的邻域,使得对任意异于的点均有(或),则称函数在点处取得极大值(或极小值),点称为函数的极大值点(或极小值点),极大值点与极小值点统称为极值点.2、常用公式、定理(1)极值的必要条件:定理:设函数在点具有偏导数,且在该点能够取到极值,则有.(2)极值的充分条件:定理:设函数在点的某邻域内具有连续的一阶及二阶偏导数,又设.令(1)若,则函数在点具有极值.当时取得极小值;当时取得极大值.(2)若,则函数在点不能取到极值.(3)若,则函数在点可能有极值,也可能没有极D (,)z f x y =()000,P x y D 0P 0()U P 0P ()0,()x y U P ∈()00,(,)f x y f x y <()00,(,)f x y f x y >(,)z f x y =0P 0P (,)z f x y =(,)z f x y =00(,)x y 0000(,)0,(,)0x y f x y f x y ''==(,)z f x y =00(,)x y 0000(,)0,(,)0x y f x y f x y ''==000000(,),(,),(,)xx xy yy f x y A f x y B f x y C ,''''''===20AC B ->(,)z f x y =00(,)x y 0A >0A <20AC B -<(,)z f x y =00(,)x y 20AC B -=(,)z f x y =00(,)x y值.【例1】:设可微函数在点取得极小值,则下列结论中正确的是().在处的导数等于0在处的导数大于0在处的导数小于0在处的导数不一定存在答案:【例2】:设函数的全微分为,则点不是的连续点;不是的极值点是的极大值点;的极小值点答案:【例3】:计算下列函数的极值(1);(2)答案:(1)8 极大值;(2)极小值.【例4】:求二元函数的极值.答案:极小值. 【例5】:设函数,证明:函数有无穷多个极大值点,而无极小值点.(,)u f x y =00(,)x y ()A 0(,)f x y 0y y =()B 0(,)f x y 0y y =()C 0(,)f x y 0y y =()D 0(,)f x y 0y y =().A (,)z f x y =dz xdx ydy =+(0,0).()A (,)z f x y =()B (,)z f x y =()C (,)z f x y =()D (,)z f x y =().D 22(,)4()f x y x y x y =---222(,)(2).x f x y e x y y =++1515e ()22(,)2ln f x y x y y y =++1e-()1cos y y z e x ye =+-(,)z f x y =。
多元函数微积分知识点
多元函数微积分知识点
1.多元函数的极限:多元函数的极限是在多个自变量趋于一些点时函
数的极限。
多元函数的极限可以通过分量法、夹逼法等方法计算。
2.多元函数的连续性:多元函数的连续性是指函数在定义域内的任意
一点上都存在极限并与函数值相等。
可以利用多元函数的分量函数连续来
判断多元函数的连续性。
3.多元函数的偏导数:多元函数的偏导数是指多元函数对自变量的偏
导数。
求多元函数的偏导数时,只对一个自变量求导,把其他自变量视为
常数。
4.多元函数的全微分:多元函数的全微分是指函数在特定点的微分。
全微分可以理解为函数在该点的线性逼近。
5.多元函数的方向导数:方向导数是指多元函数在其中一点沿着给定
方向的变化速率。
方向导数的计算可以通过梯度来进行。
6.多元函数的梯度:梯度是多元函数在其中一点的导数,其方向与函
数在该点取得最大值的方向相同,数值上等于方向导数的最大值。
7.多元函数的积分:多元函数的积分是指对多元函数进行求和或求定
积分。
与一元函数积分类似,多元函数积分需要确定积分区域和积分方法。
8.曲线积分:曲线积分是指沿着曲线进行的积分,曲线积分可以对向
量场和标量场进行。
9.曲面积分:曲面积分是指对曲面上的函数进行积分。
曲面积分可以
对向量场和标量场进行。
10.格林定理:格林定理是指曲线与曲面积分之间的关系,即把曲面积分转化为曲线积分的定理。
11.斯托克斯定理:斯托克斯定理是格林定理的推广,是把曲线积分转化为曲面积分的定理。
多元函数的微分学(第九讲)
第九讲 多元函数的微分一、主要知识点1.主要概念(以二元函数为主)(1)函数的极限与连续定义极限定义(εδ-定义)A y x f y y x x =→→),(lim 00:如果对于任意给定0ε>,总存在0δ>,使得对于适合不等式00pp δ<=的一切点(,)p x y ,都有ε<-A y x f ),(成立.连续函数定义 设函数),(y x f z =在区域D 内有定义,且000(,)p x y D ∈,若),(),(lim 0000y x f y x f y y x x =→→则称函数),(y x f 在点000(,)p x y 处连续. 注意:二元函数与一元函数的差异. (2)偏导数的定义设函数),(y x f z =在点),(y x p 的某邻域内有定义,函数的偏导数为0(,)(,)lim x z f x x y f x y x x ∆→∂+∆-=∂∆,0(,)(,)lim y z f x y y f x y y y∆→∂+∆-=∂∆. 注意:分段函数在分段点的偏导数用偏导数定义计算. (3)全微分定义设函数),(y x f z =在点),(y x p 的某邻域内有定义,若()z A x B y o ρ∆=∆+∆+,其中22)()(y x ∆+∆=ρ,全微分dy yzdx x z y B x A dz ∂∂+∂∂=∆+∆=. 2. 主要理论(1)定理1(求偏导数与次序无关的定理)若函数),(y x f z =的两个混合偏导数x y z y x z ∂∂∂∂∂∂22,在区域D 内连续,则xy zy x z ∂∂∂=∂∂∂22.(2)定理2(可微与偏导数存在关系定理)若函数),(y x f z =在点),(y x p 可微,则在该点处yzx z ∂∂∂∂,存在,且 dy yzdx x z dz ∂∂+∂∂=. (3)定理3(偏导连续与可微的关系定理)若函数),(y x f z =偏导数yzx z ∂∂∂∂,在点),(y x p 的某邻域内存在且连续,则),(y x f 在点),(y x p 可微.3.主要公式(1) 全导数公式设函数),(v u f z =偏导数连续,而)(),(t v t u ψϕ==导数连续,则)](),([t t f z ψϕ=的全导公式为dtdvv f dt du u f dt dz ⋅∂∂+⋅∂∂=. (2)显函数 ),,(z y x f u =的偏导数求u 对x 的偏导数xu∂∂时,将z y ,视作常数,利用一元函数求导公式及法则求之. 求u 对y 的偏导数yu∂∂时,将z x ,视作常数,利用一元函数求导公式及法则求之. 求u 对z 的偏导数zu∂∂时,将y x ,视作常数,利用一元函数求导公式及法则求之. (3)复合函数的偏导数1)设),(),,(),,(y x v y x u v u f z ψϕ===的偏导数连续,则)],(),,([y x y x f z ψϕ=偏导数为xv v x x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 2)设),,,(v u y x f z =,),(),,(y x v y x u ψϕ==的偏导数连续,则函数)],(),,(,,[y x y x y x f z ψϕ=的偏导数为x v v f x u u f x f x z ∂∂∂∂+∂∂∂∂+∂∂=∂∂,yv v f y u u f y f y z ∂∂∂∂+∂∂∂∂+∂∂=∂∂.注意:1)偏导函数yzx z ∂∂∂∂,的复合关系同原函数一样,求二阶偏导数方法同一阶方法类似.2)抽象函数的二阶偏导数的求法及其重要. (4)隐函数的偏导数1) 由方程0),(=y x F 确定的隐函数)(x y y =的导数公式为),(),(y x F y x F dx dyy x''-= , (0),(≠y x F y ). 2)由方程0),,(=z y x F 确定的隐函数),(y x z z =的偏导数公式为),(),(,),(),(y x F y x F y z y x F y x F x zz y z x ''-=∂∂''-=∂∂ , (0),(≠'y x F z ). 3)由三个变量两个方程所构成的方程组⎩⎨⎧==0),,(0),,(z y x G z y x F 确定的隐函数),(x y y =)(x z z =,求导数dx dz dx dy ,可通过解关于dxdzdx dy ,的线性方程组来完成,即解方程组⎪⎪⎩⎪⎪⎨⎧'-=+'-='+'x z y x z y G dx dz G dxdy G F dxdz F dx dy F ''. 4)由四个变量两个方程所构成的方程组⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F , 确定的隐函数(,),(,)u u x y v v x y ==,求偏导数yvx v y u x u ∂∂∂∂∂∂∂∂,,,,可通过解关于x v x u ∂∂∂∂,),(yvy u ∂∂∂∂的线性方程组来完成,即解方程组 ⎪⎪⎩⎪⎪⎨⎧'-=∂∂+∂∂''-=∂∂'+∂∂'x v u x v u G x v G xu G F xv F x u F ' , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎩⎪⎪⎨⎧'-=∂∂'+∂∂''-=∂∂'+∂∂'y v u y v u G y v G y u G F y vF y u F . 4.主要计算方法(1)显函数求偏导数的方法(包含二阶偏导数,抽象函数); (2)隐函数求偏导数的方法(包含二阶偏导数,抽象函数,方程组);二、例题分析1.二元函数极限、连续、偏导数与全微分之间的联系例1.设223222(,)()0x y f x y x y ⎧⎪=⎨+⎪⎩2222,0,0x y x y +≠+=,证明函数),(y x f 在点)0,0(连续且偏导数存在,但不可微分. 证明:(1)证明连续性因为32240cos sin 232222)0,0(),()0,0(),(cos sin lim )(lim),(lim rr y x yx y x f r r x r y y x y x θθθθ→==→→====+=2220lim sin cos 0r r θθ→==)0,0(f =. 所以),(y x f 在点)0,0(连续.(2)证明偏导数存在.因为 232200()0(0,0)(0,0)(()0)(0,0)limlim 0x x x x f x f x f x x∆→∆→∆⋅-+∆-∆+'===∆∆22200()0(0,0)(0,0)(0())(0,0)limlim 0y y y y f y f y f y y∆→∆→⋅∆-+∆-+∆'===∆∆所以函数(,)(0,0)f x y 在处偏导数存在且为0. (3)证明(,)f x y 在点(0,0)不可微.因为 223222()()[(0,0)(0,0)][()()]x y x y z f x f y z x y ∆∆''∆-∆-∆=∆=∆+∆,所以41])(2[)(lim ])()[()()(lim ])()[()()(lim224,0222220,02322220,0=∆∆=∆+∆∆∆=∆+∆∆∆∆=∆→∆→∆→∆→∆→∆x x y x y x y x y x x y x y x y x ρ于是函数)0,0(),(o y x f 在点不可微.说明:通常判断函数(,)f x y 在点00(,)x y 是否可微,可以按以下步骤考虑:(1)考察函数(,)f x y 在点00(,)x y 是否连续.若不连续,则函数(,)f x y 在点00(,)x y 不可微;(2)若函数(,)f x y 在点00(,)x y 连续,再考察偏导数0000(,),(,)x y f x y f x y 是否存在.若两个偏导数有一个不存在,则函数(,)f x y 在点00(,)x y 不可微;(3)若函数(,)f x y 在点00(,)x y 连续,偏导数0000(,),(,)x y f x y f x y 存在,再考察偏导数0000(,),(,)x y f x y f x y 是否连续,若偏导数0000(,),(,)x y f x y f x y 连续,则函数(,)f x y 在点00(,)x y 可微;(4)若偏导数0000(,),(,)x y f x y f x y 不连续,则利用全微分定义判别,如例1.练习题:设222222(0(,)00x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩,证明函数),(y x f 在点)0,0(连续且偏导数存在,但是偏导数在点)0,0(不连续,而函数点)0,0(可微分.二元函数),(y x f z =连续,偏导存在与可微三者关系函数连续 偏导数存在2.多元复合显函数求导问题例2.设函数(,,)f x y z 是k 次齐次函数,即(,,)(,,)kf tx ty tz t f x y z =,k 为某一常数,求证:(,,)f f f xy z kf x y z x y z∂∂∂++=∂∂∂. 证明:令,,u tx v ty w tz ===,则(,,)(,,)k f tx ty tz t f x y z =化为(,,)(,,)k f u v w t f x y z =,上式两边对t 求导得1(,,)k f u f v f wkt f x y z u t v t w t -∂∂∂∂∂∂++=∂∂∂∂∂∂, 又 ,u v w x y z t t t ∂∂∂===∂∂∂ 有 1(,,)k f f f x y z k t f x y z u v w-∂∂∂++=∂∂∂上式两边同乘以t ,得(,,)k f f f txty tz kt f x y z u v w ∂∂∂++=∂∂∂ 即有 (,,)f f f u v w kf u v w u v w∂∂∂++=∂∂∂ 于是得 (,,)f f fxy z kf x y z x y z∂∂∂++=∂∂∂. 例3.已知函数(,)u u x y =,满足方程2222()0u u u u a x y x y∂∂∂∂-++=∂∂∂∂ (1)试选择参数α,β,利用变量(,)(,)x y u x y v x y e αβ+=,将原方程变形使得新方程中不含一阶偏导数项;(2)再令x y ξ=+,x y η=-,使新方程变换形式 解:(1)()x y x y x y u v v e v e v e x x xαβαβαβαα+++∂∂∂=+=+∂∂∂ 2222()()x y x y u v v ve v e x x x xαβαβααα++∂∂∂∂=+++∂∂∂∂ 222(2)x y v vv e x xαβαα+∂∂=++∂∂, ()x y u vv e y yαββ+∂∂=+∂∂, 22222(2)x yu v v v e y y yαβββ+∂∂∂=++∂∂∂ 将上述式子代入已知方程中,消去x yeαβ+变得到222222(2)(2)()0u u v va a a a v x y x yαβαβαβ∂∂∂∂-+++-++-++=∂∂∂∂, 由题意,令2020a a αβ+=⎧⎨-+=⎩,解出22a a αβ⎧=-⎪⎪⎨⎪=⎪⎩,故原方程为 22220u ux y∂∂-=∂∂.(2)令x y ξ=+,x y η=-,则v v v v vx x x ξηξηξη∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂, v v v v vy y y ξηξηξη∂∂∂∂∂∂∂=+=-∂∂∂∂∂∂∂ 22222222v v v v v x x x x xξηξηξξηξηη∂∂∂∂∂∂∂∂∂=+++∂∂∂∂∂∂∂∂∂∂∂ 222222v v vξξηη∂∂∂=++∂∂∂∂ 同理 2222222v v v v y ξξηη∂∂∂∂=-+∂∂∂∂∂ 将上面式子代入22220u ux y∂∂-=∂∂中得到20vξη∂=∂∂. 例4.证明:若u =20d u ≥.(二阶全微分)记号:222222(),(),()dx dx dy dy dz dz ===,()0,()0,()0d dx d dy d dz ===. 证明:因为一阶全微分为xdx ydy zdzdu u++=则 22222()()u dx dy dz xdx ydy zdz dud u u++-++= 2222()()xdx ydy zdzu dx dy dz xdx ydy zdz u u ++++-++=222223()()u dx dy dz xdx ydy zdz u ++-++=22222223()()()x y z dx dy dz xdx ydy zdz u++++-++= 2223()()()0xdy ydx ydz zdy zdx xdz u -+-+-=≥于是有20d u ≥.练习题:1.设函数(,,),(,,),(,),(,)u f x y z x z s t y x t z s t ϕψω====偏导数存在,求,u u s t∂∂∂∂. 2.设函数(,)()z f x y x y g x ky =-+++,其中,f g 具有二阶连续偏导数,且"0g ≠,如果222"222224z z z f x x y y∂∂∂++=∂∂∂∂,求常数k 的值.(2120k k ++=,故1k =-) 3.设z =,求二阶全微分20d z ≥.(222223222()()()()x y dx dy xdx ydy x y ++-++)3.隐函数的求导问题例5.设),(t x f y =,而t 是由方程0),,(=t y x G 所确定的y x ,的隐函数,求dxdy(其中),,(),,(t y x G t x f 为可微函数).解:设方程组⎩⎨⎧==0),,(),(t y x G t x f y 确定t y ,皆为x 的函数,将方程组对x 求导数,得0x t dy t f f dx x G G dy G tx y dx t x∂⎧''=+⎪∂⎪⎨∂∂∂∂⎪++=∂∂∂∂⎪⎩或 t x dy tf f dx xG dy G t G ydx t x x∂⎧''-=⎪∂⎪⎨∂∂∂∂⎪+=-∂∂∂∂⎪⎩解方程组,得1x t x t t t f f G G G G f f dy x t t x G G f dx f t y G Gy t''-∂∂∂∂-''-∂∂∂∂==∂∂'-'+∂∂∂∂∂∂. 例6.设(,,)u f x y z =,2(,,)0yx e z ϕ=,sin y x =,其中,f ϕ具有一阶连续偏导数,且0x ϕ∂≠∂,求dudx. 解:这是有显函数,隐函数构成的复合函数的求导问题,x yzxyxu从复合关系图看出复合关系后求导,有x y z du u u dy u dz dy dz f f f dx x y dx z dx dx dx∂∂∂'''=++=++∂∂∂ 由2(,,)0y x e z ϕ=两边对x 求导,得12320ydy dzx e dx dxϕϕϕ'''++= , 又cos dyx dx=,代入上式得 1231(2cos )y dz x e x dx ϕϕϕ''=-+'于是123cos (2cos )y z x y f duf f x x e x dx ϕϕϕ'''''=+-+'. 例7.设(,)z z x y =是由方程(,)z z f xy e =确定的隐函数,求偏导数,z zx y∂∂∂∂. 解法1:设(,,)(,)z F x y z f xy e z =-,求偏导数1x F f y''=⋅,1y F f x ''=⋅,21z z F f e '=⋅-, 应用公式得112211x z zz F yf yf zx F f e e f '''∂=-=-='''∂--,112211y z zz F xf xf zy F f e e f '''∂=-=-='''∂--. 方法2:直接应用复合函数求导法则,方程两边关于x 求偏导数,此时z 是,x y 得函数,于是12(,)(,)z z z z zf xy e y f xy e e x x∂∂''=⋅+⋅∂∂, 从上述方程中解出z x ∂∂,即得121z yf zx e f '∂='∂-.方程两边关于y 求偏导数,此时z 是,x y 得函数, 于是12(,)(,)z z z z z f xy e x f xy e e y y∂∂''=⋅+⋅∂∂,从上述方程中解出z y ∂∂,即得121zxf zy e f '∂='∂-. 方法3:应用一阶全微分形式不变性12(,)()z z dz df xy e f d xy f de ''==⋅+⋅ 112z f ydx f xdy f e dz '''=⋅+⋅+⋅,移项得 211(1)zf e d z y f d x x f d y '''-⋅=⋅+⋅, 解出112211z zyf yf dz dx dy e f e f ''=+''--, 因此121z yf z x e f '∂='∂-,121z xf zy e f '∂='∂-. 例8.设sin ,sin u xu v x y v y+=+=,求22,,,du dv d u d v . 解:方程组sin sin u v x yy u x v+=+⎧⎨=⎩对x 求微分,得sin cos sin cos du dv dx dy udy y udu vdx x vdv +=+⎧⎨+=+⎩(1)解方程组的1[(sin cos )(sin cos )]cos cos du v x v dx u x v dy x v y u=+--+1[(sin cos )(sin cos )]cos cos dv u y u dy v y u dx x v y u=+--+(1) 式方程组再微分一次,得222222cos 2cos sin cos 2cos sin d u d v y ud u udydu y udu x vd v vdxdv x vdv⎧+=⎨+-=+-⎩ (2) 解方程组(2),得221[(2cos sin )(2cos sin )]cos cos d u d v vdx x vdv dv udy y udu du x v y u=-=---+.例9.设函数(,)z f x y =有连续的一阶偏导数,(,)w w u v =是由方程组2211w x y u x y v x y z e++⎧=+⎪⎪=+⎨⎪⎪=⎩所确定的隐函数,试将方程()()z z y x y x z x y x y∂∂-=-≠∂∂化为,w w u v ∂∂∂∂所满足的关系式. 解:由方程组可以看出(,,),(,)w x y z f x y w e w w u v ++===,则1321()(2)w x y w x y z w u w v w w z z e e x x u x v x u x v++++∂∂∂∂∂∂∂=++=+-∂∂∂∂∂∂∂ 2321()(2)w x y w x y z w u w v w w z z e e y y u y v y u y v++++∂∂∂∂∂∂∂=++=+-∂∂∂∂∂∂∂ 因此 左边22()()w x y y x z z v y x∂=-+-∂,右边()y x z =-, 于是方程()()z z y x y x z x y x y∂∂-=-≠∂∂化为 22()0w x y z v y x∂-=∂, 又由于3322220x y x y y x x y--=≠,故0w v ∂=∂. 例10.设)(u f 有连续的二阶导数,且)sin (y e f z x=满足方程z e y z x z x 22222=∂∂+∂∂,求)(u f .解:设sin xu e y =,则 '()'()sin '()x z u f u f u e y uf u x x∂∂===∂∂, '()'()cos x z u f u f u e y y y∂∂==∂∂, 222"()'()z f u u f u u x∂=+∂,(u u x ∂=∂), 2222'()sin cos "()'()"()cos x x x z u f u e y e yf u uf u f u e y y y∂∂=-+=-+∂∂,所以 22222"()x z z e f u x y∂∂+=∂∂. 由已知条件,得22"()()x x e f u e f u =,即"()()0f u f u -=,这是二阶常系数线性微分方程,其特征方程为210r -=,特征根为1r =±,则12()u u f u c e c e -=+为所求.练习题:1.已知ty y e x =+,而t 是由方程2221y t x +-=所确定的,x y 的函数,求dy dx. (22()tytydy t xye dx t y t e +=+-) 2.设2222221x y z a b c++=,求全微分2,dz d z . 3.设函数222),(z y x r r f u ++==,在0>r 内满足0222222=∂∂+∂∂+∂∂zu y u x u , 其中)(r f 为二阶可导函数,且1)1()1(='=f f ,试将方程化为以y 为自变量的常微分方程,并求)(r f .(1()2f r r=-+)。
考研数学多元函数微分学的知识点总结讲解优秀版
点总结讲解优秀版2020 考研数学多元函数微分学的知识点总结讲解多元函数微分学是考研数学大题考查的重点,同学们在复习的过程中需掌握基本概念、公式及定量,并会熟练计算。
下面小编对该章的知识点进行总结性讲解,以帮助广大考生更好的复习掌握这部分知识。
二次函数一、知识点梳理1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.二次函数y a x h k =-+的性质3.用待定系数法求二次函数的解析式 (1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. 求抛物线的顶点、对称轴的方法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(ab ac a b 4422--,对称轴是直线a b x 2-=. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴以及最值,通常选择顶点式. ①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律 概括成八个字“左加右减,上加下减”.(3)交点式:()()21x x x x a y --=。
已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故a c x x ab x x =⋅-=+2121, ()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=4442221221221214.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小:a >0,开口向上;a <0,开口向下;α越大,开口越小(2)b 和a 决定抛物线对称轴(左同右异)①0=b 时,对称轴为y 轴; ②0>ab (即a 、b 同号)时,对称轴在y 轴左侧; ③0<ab (即a 、b 异号)时,对称轴在y 轴右侧. (3)c 决定抛物线与y 轴交点的位置. ①0=c ,抛物线经过原点;②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.(4)ac b 42-=∆决定抛物线与x 轴的交点个数△①0 ∆,有2个交点②,0=∆ 有1个交点;③0 ∆,无交点5、二次函数图象的对称:二次函数图象的对称一般有四种情况,可以用一般式或顶点式表达➢ 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;➢ 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;➢ 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;➢ 关于顶点对称()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.一元二次函数知识点汇总1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的一元二次函数. 2ax y =的性质(1)抛物线2ax y =)(0≠a 的顶点是原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系:①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. 5.抛物线c bx ax y ++=2的三要素:开口方向、对称轴、顶点.①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越小,抛物线的开口越大,a 越大,抛物线的开口越小。
《数学分析》第四章多元函数微分学
《数学分析》第四章多元函数微分学第四章多元函数微分学一、本章知识脉络框图极限连续重极限与累次极限基本概念有界性极限存在的判别方法极值和最值基本性质极限与连续介值性偏导数可微性概念可微和连续可微的必要条件可微的充分条件复合函数微分隐函数微分计算参数方程微分多元函数微分学全微分(三元为例)df=f x dx+f y dy+f z dz 条件极值应用高阶导数与微分多元极值切线、法线、法平面、切平面泰勒公式二、本章重点及难点本章需要重点掌握以下几个方面内容:● 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式.● 隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换. ● 几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线. ● 极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法.三、本章的基本知识要点(一)平面点集与多元函数1.任意一点A 与任意点集E 的关系.1) 内点. 若存在点A 的某邻域()U A ,使得()U A E ?,则称点A 是点集E 的内点。
2) 外点. 若存在点A 的某邻域()U A ,使得()U A E ?=?,则称点A 是点集E 的外点。
3) 界点(边界点). 若在点A 的任何邻域内既含有属于E 得的点,又含有不属于E 的点,则称点A 是点集E 的界点。
4) 聚点. 若在点A 的任何空心邻域()oUA 内部都含有E 中的点,则称点A 是点集E的聚点。
5) 孤立点. 若点A E ∈,但不是E 的聚点,则称点A 是点集E 的孤立点。
2. 几种特殊的平面点集.1) 开集. 若平面点集E 所属的每一点都是E 的内点,则称E 为开集。
2)闭集. 若平面点集E 的所有聚点都属于E ,则称E 为闭集。
考研多元函数微分学笔记
多元函数微分学1.概念(5个)2.计算3.极值与最值1.概念(5个,难点)!极限的存在性1.公说公有理理婆说婆有理理——对于⼆二重积分有两种极限定义,⼀一种数学专业(⾃自然排除⽆无定义的路路径)⼀一种是⾮非数学专业(要求任意⽅方向趋向),但考研巧妙地回避了了这个⽭矛盾2.极限的计算除了了洛洛必达,单调有界准则,穷举法不不能使⽤用,⼀一元函数的求极限的⽅方法都可以使⽤用,如:极限的三⼤大性质—唯⼀一性,局部保号性,局部有界性,极限值与⽆无穷⼩小的关系,⽆无穷⼩小量量与有界变量量的乘积仍为⽆无穷⼩小量量,等价⽆无穷⼩小,四则运算,夹逼准则⚠3.做题经验对于上下均是次⽅方的极限,分三种情况1.上下次⽅方相等——⼀一般极限不不存在(利利⽤用反⾯面论证,取不不同路路径)(注意全书P148⻚页的反例例)2.上⾯面次⽅方⾼高于下⾯面——极限存在⼀一般为0(利利⽤用夹逼准则,加绝对值)3.上⾯面次⽅方低于下⾯面——极限⼀一般不不存在为∞#连续性与⼀一元函数的定义相同Note:1.如果极限不不存在,则叫不不连续或间断,但不不讨论间断点的类型2.⼀一元连续函数在闭区间的性质,依然适⽤用于多元连续函数在闭区域上的性质,如有界性,最值定理理,介值定理理$偏导数的存在性——偷懒的概念,实际上是⼀一元极限,是⽚片⾯面的注意定义法求偏导数Note:1.连续不不⼀一定可导(偏导数存在)的反例例(详⻅见查缺补漏漏本)2.可导不不⼀一定连续的反例例3.⼀一元函数的导数的⼏几何意义仍然适⽤用于多元函数偏导数的⼏几何意义如,f'x(x0,y0)表示曲线f(x,y)=0与y=y0(平⾯面)在(x0,y0)处的切线对于x轴的斜率同理理另⼀一个也是4.定理理1:若存在⼆二阶连续偏导数,则其下标可以互换(即可以进⾏行行合并)%可微性可微的定义(与⼀一元微分定义⼀一致),全增量量,线性增量量,求极限(注意两个定义)Note:1.可微的必要条件可微则偏导数存在(⼀一般不不常⽤用),逆否命题——偏导数不不存在⼀一定不不可微(常⽤用于不不可微的情况)2.可微的充分条件偏导数连续则可微,逆否命题——不不可微,则偏导数⼀一定不不连续,注意偏导数不不连续⽆无法推可微还是不不可微3.可微的充要条件判别——定义法求极限(误差)是否为04.由可微可以推出的那个式⼦子。
多元函数微分学知识点梳理2页
多元函数微分学知识点梳理2页一、偏导数定义:对于多元函数$f(x_1,x_2,\cdots,x_n)$,当其自变量$x_i$在某一点固定而其他自变量发生变化时,函数值的变化量与$x_i$的变化量之比,称为$f$对$x_i$的偏导数,记为$\dfrac{\partial f}{\partial x_i}$。
计算方法:将$x_i$看作变量,其他自变量视为常数,对$f(x_1,x_2,\cdots,x_n)$以$x_i$为自变量求导。
二、全微分定义:当$f(x,y)$在$(x_0,y_0)$的某一邻域内具有一阶连续偏导数时,存在常数$A,B$,使得$$\Delta z=A\Delta x+B\Delta y+\alpha\Delta x+\beta\Delta y$$其中$\lim\limits_{\Delta x\rightarrow 0,\Delta y\rightarrow0}\alpha=\lim\limits_{\Delta x\rightarrow 0,\Delta y\rightarrow 0}\beta=0$,则称$f(x,y)$在点$(x_0,y_0)$可微分,$\Delta z$称为$f(x,y)$在点$(x_0,y_0)$的全增量,$A\Delta x+B\Delta y$称为$\Delta z$的一次主部,记作$dz$,称为$f(x,y)$在点$(x_0,y_0)$的全微分。
计算方法:$$df=\dfrac{\partial f}{\partial x}dx+\dfrac{\partial f}{\partial y}dy$$三、隐函数及其求导法定义:设有方程$F(x,y)=0$,如果在点$(x_0,y_0)$的某一邻域内,恒有一函数$y=\varphi(x)$,使得$F(x,\varphi(x))=0$,则称方程$F(x,y)=0$在该邻域内以$x$为自变量,$y$为因变量确定着一函数$\varphi(x)$。
03高数——多元函数微分学要点速记
多元函数微分学1、极限与连续性平面上的点列的极限:设{}n M 为平面点列,20M R ∈,若()0lim ,0n M M ρ=,则称{}n M 是收敛点列,0M 是点列的极限,记做0lim n n M M→∞=(00lim ,lim n n x x y y ⇔==)。
极限:设n 元函数()f P ,n P D R ∈⊂,0P 是D 的聚点,若存在常数A ,对0ε∀>,0,δ∃>对一切0(,δ)oP D U P ∈ ,有()f P A ε-<,则称常数A 为函数()f x 当0P P →时的极限,记做()0lim P P f P A →=(也叫n 重极限)。
二元函数的极限可写作:()()000,lim (,)lim (,)lim (,)x x x y x y y y f x y f x y f x y A ρ→→→→→===。
连续性:0M 为D 的聚点时,0lim ()()M M f M f M →=;或0M 为D 的孤立点时,也是连续点。
2、微分和偏导数微分:0000(,)(,)()f x x y y f x y A x B y o ρ+∆+∆-=∆+∆+⇒00(,)dz df x y A x B y ==∆+∆。
偏导数:设(),z f x y =在点()000,M x y 的某邻域中有极限00000(,)(,)lim x f x x y f x y x∆→+∆-∆(将y 当作常数)存在,则称此极限高 数多元函数微分学知识点速记为函数(),z f x y =在点()000,M x y 对x 的偏导数,即0000000(,)(,)(,)limx x f x x y f x y f x y x∆→+∆-'=∆;同理,函数(),z f x y =在点()000,M x y 对y 的偏导数0000000(,)(,)(,)limy y f x y y f x y f x y y∆→+∆-'=∆。
多元函数知识点总结考研
多元函数知识点总结考研1. 多元函数的概念多元函数通常表示为f(x1, x2, ..., xn),其中x1, x2, ..., xn是自变量,而f是因变量。
多元函数有多个自变量,而且每个自变量可以取不同的数值,因此它的取值不再是唯一确定的,而是由多个自变量的取值共同决定的。
在多元函数中,自变量的取值空间可以是一维、二维、三维甚至更高维的空间,因此多元函数的图像往往是一个多维空间中的曲面。
2. 多元函数的性质与一元函数不同,多元函数的性质更加复杂,由于有多个自变量,因此需要考虑多个方面的性质。
常见的多元函数的性质包括:(1) 定义域和值域:多元函数的定义域是自变量的取值范围,而值域是因变量的取值范围。
在处理多元函数时,需要特别注意定义域的限制条件,以免出现无定义的情况。
(2) 连续性和可导性:多元函数的连续性和可导性是关于函数导数的性质,需要通过极限的方法来进行分析和判断。
特别是在多维空间中,函数的导数更加复杂,需要用到偏导数、方向导数等概念。
(3) 偏导数和全微分:偏导数是多元函数在某一方向上的导数,而全微分则是对所有自变量的导数的线性组合。
偏导数和全微分是多元函数的重要概念,它们可以帮助我们对多元函数的性质进行更详细的分析。
3. 多元函数的求导对多元函数进行求导是微积分学科中的重要内容,它可以帮助我们研究函数的增减性、极值、拐点等性质。
与一元函数不同,多元函数的求导需要考虑多个自变量的变化对因变量的影响,因此在求导的过程中需要使用偏导数的概念。
对于一个多元函数f(x1, x2, ..., xn),其偏导数表示为∂f/∂xi,表示在第i个自变量上的导数。
而多元函数的全微分df可以表示为df = ∂f/∂x1 dx1 + ∂f/∂x2 dx2 + ... + ∂f/∂xn dxn,这里dx1, dx2, ..., dxn是自变量的微小变化量。
在求多元函数的极值时,需要利用多元函数的偏导数来进行分析,可以通过偏导数为零的条件来求得函数的驻点,再利用二次导数的信息来确定驻点的性质。
第9章多元函数微分学知识点总结
第9章多元函数微分学知识点总结1.多元函数的偏导数:-定义:对于多元函数来说,当变量除了要考虑沿着自变量方向变化外,还要考虑其他自变量是否保持不变,用偏导数来表示。
-计算方法:求各个偏微分时,将其他自变量视为常数,只对需要求的变量求导即可。
2.全微分:-定义:全微分是多元函数在其中一点上沿各个偏导数方向的和所对应的微分形式。
-计算方法:使用偏导数对各个自变量求导数,并乘以相应的变化量,再相加得到全微分。
3.方向导数:-定义:方向导数是函数在其中一点上沿着指定方向的变化率,表征了函数沿着该方向上变化的快慢程度。
-计算方法:先对多元函数求偏导数,然后将其与方向向量进行点积运算,再乘以方向向量的模长。
4.梯度:-定义:梯度是一个向量,其方向是函数在其中一点增大最快的方向,大小表示函数在该点变化率的大小。
-计算方法:求多元函数在其中一点的各个偏导数,并写成一个向量,即为该点的梯度。
5.方向导数与梯度的关系:-定理:函数在其中一点上的方向导数等于该点的梯度向量与方向向量的点积。
6.极值点:-定义:多元函数的极值点是指函数取得极大值或极小值的点。
-判定方法:通过求偏导数等于零的点,再利用二阶导数进行判定。
7.拉格朗日乘数法:-定义:拉格朗日乘数法是求解给定条件下多元函数的极值问题的一种方法。
-使用方法:通过构造拉格朗日函数,利用偏导数为零和给定条件进行求解。
8.海森矩阵:-定义:海森矩阵是多元函数的二次导数在其中一点上的矩阵形式。
-计算方法:对多元函数的各个偏导数再次求偏导数,并按照顺序组成矩阵。
9.二次型:-定义:二次型是多元函数二阶偏导数在其中一点上的二次齐次多项式。
-判定方法:通过海森矩阵的特征值进行判别,判断其正负来决定函数在该点上的行为。
以上是第9章多元函数微分学的主要知识点总结。
掌握了这些知识点,我们可以更好地理解多元函数的变化规律,求解问题时也能够更有效地运用微分学的方法进行分析和计算。
4考研数学大纲知识点解析(第四章多元函数的微分学-数一
满足 .
.则
【解析】由题设
可知,当
时,有
且
,从而有
由二元函数全微分的定义, 有
在点
处可微,且
. ,
. ,故
【全微分存在的必要条件和充分条件】 【极限,连续,偏导数,可微分之间的关系】 一元函数:
二元函数:
【例题】(02 年,数学一)考虑二元函数
的下面 条性质:
①
在点
处连续. ②
在点
处的两个偏导数连续,
确.
选项(C),(D)取 不存在,故排除(C),(D).
,显然
在点
处可微,但
【综合题】设
在
点处( ).
(A)不连续. (B)偏导函数不存在. (C)不可微. (D)可微.
【解析】(1)
,
在
点连续.
(2)
同理
(3)
从而
不存在.
在
点不可微. 故选(C).
【综合题】设
则在
(A)偏导不存在. (B)偏导函数连续. (C)可微. (D)不可微.
第四章 多元函数的微分学 【多元函数的概念】 【二元函数的定义】
类似的可以定义三元函数 【二元函数的几何意义】 二元函数
. 一般表示空间直角坐标系下的一个空间曲面.
【二元函数极限的概念】
【注】二元函数极限存在,是指 以所有路径趋于
时,对应的函数值趋于相同
的一个常数.如果 沿着两条不同路径趋于
时,对应的函数值趋于不同的值,
设
有连续的一阶偏导数,又函数
及
分别由下列两式确定
:
求.
和
,
【解析】
由
两边对 求导,得
即
.
关于多元微分学的几点注记
2010年12月9日河南省政法干警招录考试(面试)真题试卷(题后含答案及解析)题型有:1. 面试题面试题1.交警执法过程中,发现一个违章司机,交警给司机多次敬礼,司机才慢吞吞地掏出了驾驶证,对此。
你有什么看法?正确答案:对于题目中所提到的现象,在我国社会中确实是存在的。
这种现象大量出现的话,我想会造成很严重的影响。
首先会带来交通拥堵。
交警在执法过程中,如果司机在面对交警时有慢吞吞不配合的情况,会耽误交警执法的顺利进行,严重的话会带来交通拥堵。
其次也会在社会上形成不尊重交警、不遵守交通法规的恶劣影响。
对此,我想对题目中存在的这种社会现象提出几点改进的意见。
第一,加大宣传力度。
在社会中广泛宣传交通安全法,使广大的司机能够熟悉掌握交通法规,尊重交警的执法工作,从心里愿意并积极配合交警的工作。
第二,制定相关的配套措施。
司机不配合交警的执法工作,可能是我国在与此相关的法律法规中存在漏洞,使得司机的行为不会受到追究。
因此,我们应当尽快完善相关的法律法规,从法律源头上减少进而杜绝这种行为的产生。
第三,加大处罚力度。
对于不配合交警执法、影响交通正常运行的司机加大处罚的力度,使得一些违法司机能够从心理上重视这件事情,积极配合交警的工作。
我想,通过各方面的努力,我们的司机会积极配合交警执法,建设更加和谐的警民关系。
解析:本题为综合分析类题目,具体属于对某一社会现象进行综合分析。
分析过程中,一般可以围绕以下方面来谈:产生这一现象的原因,这一现象对社会造成的影响(有利的或不利的),改善这种现象的对策等。
本题中所涉及的社会现象产生原因不明显,因此没有谈及。
2.你是一名警察,在值班过程中,一群众打电话说他家宠物狗丢了,要你现在就去帮他处理,倘若处理不好就要投诉你,可此时值班室里只有你一个人,此时你怎么处理?正确答案:作为一名警察,应当将群众的事情时刻放在心上,帮群众解决日常生活中的事情。
对于题目中这种情况,我会做如下处理:首先,我会耐心地听取并记录下群众反映的情况。