求定积分的四种方法

合集下载

定积分的计算方法总结

定积分的计算方法总结

定积分的计算方法总结引言定积分是微积分中重要的概念之一,它可以用于求取曲线下的面积、求解物理问题中的积分以及解决各种与变化量有关的问题。

本文将总结定积分计算的常用方法,包括基本定积分公式、换元积分法和分部积分法。

基本定积分公式基本定积分公式是计算定积分时最基础也是最常用的方法之一。

以下为常见的基本定积分公式:1.$\\int x^m dx = \\frac{1}{m+1}x^{m+1}$,其中m为常数,m eq−1。

2.$\\int \\frac{1}{x} dx = \\ln|x|$,其中x为正实数。

3.$\\int e^x dx = e^x$。

4.$\\int \\sin x dx = -\\cos x$。

5.$\\int \\cos x dx = \\sin x$。

6.$\\int \\tan x dx = -\\ln|\\cos x|$。

换元积分法换元积分法是一种常用的定积分计算方法,它通过引入一个新的变量来简化被积函数的形式。

具体步骤如下:1.选择一个适当的变量代换,通常选择与题目给定的被积函数中具有根号、三角函数等特殊形式相关的变量。

2.根据选择的变量代换,将被积函数中的所有变量都用新的变量表示。

3.计算新的被积函数的导数,并将被积函数转换为对新变量的积分。

4.计算新的积分。

以下是换元积分法的一个例子:求解定积分$\\int 2x(x^2+1)^3 dx$。

解:设u=x2+1,则du=2xdx。

将被积函数中的所有x用u表示,则原积分变为$\\int u^3 du$。

计算新的积分得$\\frac{1}{4}u^4 + C$,其中C为常数。

最后,将u替换回x得到最终结果$\\frac{1}{4}(x^2+1)^4 + C$。

分部积分法分部积分法是解决定积分问题中的另一种常用方法,它是利用乘积的导数公式来简化积分计算的步骤。

具体步骤如下:1.选择一个适当的分部积分公式。

分部积分公式为$\\int u dv = uv -\\int v du$。

求定积分的四种方法

求定积分的四种方法

求定积分的四种方法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March定积分的四种求法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法例1 用定义法求230x dx ⎰的值. 分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限. 解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n. (2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222n n n i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ =443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n→∞++==4. ∴230x dx ⎰=4.. 评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲. 二、微积分基本定理法例2 求定积分221(21)x x dx ++⎰的值. 分析:可先求出原函数,再利用微积分基本定理求解.解:函数y =221x x ++的一个原函数是y =323x x x ++.所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.三、几何意义法例3求定积分11dx -⎰的值. 分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积. 因为2S π=半圆,又在x 轴上方.所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.四、性质法例4 求下列定积分: ⑴44tan xdx ππ-⎰;⑵22sin 1x x dx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x x x +是奇函数,所以在对称区间的积分值均为零.所以⑴ 44tan xdx ππ-⎰=0; ⑵22sin 1x x dx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -⎰=20()a f x dx ⎰;②当f (x )为奇函数时,()aa f x dx -⎰=0.小结通过这几个例题分析,让我明白并牢固记住了如何求定积分的方法,懂得在什么情况该用何种方法解决问题;它有非常重要的意义,并且应用也非常广泛,因此掌握此四种方法可以为学好其他比如物理学应用打下良好的基础。

求定积分的方法总结

求定积分的方法总结

求定积分的方法总结1. 引言在微积分中,定积分是一个重要的概念。

它可以用来计算曲线下的面积、求解曲线的弧长、重心以及解决一系列与变化率相关的问题。

本文将总结几种常用的方法,帮助读者更好地理解和应用定积分的求解过程。

2. 几何法几何法是定积分求解的最直观方法之一。

通过几何图形来理解定积分的意义和求解过程,可以更好地把握其基本思想。

例如,若要求解函数 f(x) 在区间 [a, b] 上的定积分:∫[a,b] f(x) dx可以将 f(x) 的图像和 x 轴围成的区域视为一个几何图形,通过求解这个图形的面积来得到定积分的值。

常见的几何图形可以是长方形、梯形、圆形等。

根据具体情况,选择合适的图形进行面积计算。

3. 微元法微元法是定积分求解的一种基本方法。

它基于函数的微分和积分之间的关系,将区间 [a, b] 分割为无穷多的微小区间,然后在每个微小区间上进行求和,最后通过取极限的方式得到定积分的值。

微元法的关键是确定微小区间的宽度,即将区间 [a, b] 分割成若干个小区间的长度。

常用的分割方法有等分法、等差数列法和等比数列法。

一般情况下,分割的区间越小,计算结果越准确。

在微元法中,需要确定每个微小区间上的函数值,可以通过函数曲线上的点来确定。

例如,可以取每个小区间的左端点、右端点或中点来表示该区间上的函数值。

通过求和并取极限,最终可以得到定积分的值。

4. 牛顿-莱布尼茨公式牛顿-莱布尼茨公式是定积分求解的一种重要工具。

它建立了定积分和不定积分之间的关系,可以通过求解不定积分来得到定积分的值。

牛顿-莱布尼茨公式的表达式为:∫[a,b] f(x) dx = F(b) - F(a)其中,F(x) 是 f(x) 的一个原函数。

通过求解 f(x) 的不定积分,可以得到一个原函数 F(x),再根据公式将上下限值代入,即可得到定积分的值。

牛顿-莱布尼茨公式的优点是可以直接得到定积分的值,无需进行复杂的计算。

但前提是需要知道 f(x) 的一个原函数。

求定积分的四种方法

求定积分的四种方法

求定积分的四种方法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法.一、定义法例1 用定义法求230x dx ⎰的值.分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n. (2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222n n n i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ =443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n→∞++==4. ∴230x dx ⎰=4..评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.二、微积分基本定理法例2 求定积分221(21)x x dx ++⎰的值.分析:可先求出原函数,再利用微积分基本定理求解.解:函数y =221x x ++的一个原函数是y =323x x x ++.所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.三、几何意义法例3 求定积分11dx -⎰的值.分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积.因为2S π=半圆,又在x 轴上方. 所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.四、性质法例4 求下列定积分: ⑴44tan xdx ππ-⎰;⑵22sin 1x x dx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x x x +是奇函数,所以在对称区间的积分值均为零.所以⑴ 44tan xdx ππ-⎰=0;⑵22sin 1x x dx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -⎰=20()a f x dx ⎰;②当f (x )为奇函数时,()a a f x dx -⎰=0.。

求定积分的四种方法

求定积分的四种方法

定积分的四种求法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法.一、定义法例1 用定义法求230x dx ⎰的值.分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n. (2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222n n n i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ =443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n→∞++==4. ∴230x dx ⎰=4..评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.二、微积分基本定理法例2 求定积分221(21)x x dx ++⎰的值.分析:可先求出原函数,再利用微积分基本定理求解.解:函数y =221x x ++的一个原函数是y =323x x x ++. 所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.三、几何意义法例3 求定积分1211)x dx --⎰的值.分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:1211x dx --⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积. 因为2S π=半圆,又在x 轴上方. 所以1211x dx --⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.四、性质法例4 求下列定积分:⑴44tan xdx ππ-⎰;⑵22sin 1x x dx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x x x +是奇函数,所以在对称区间的积分值均为零.x y o 1-11所以⑴ 44tan xdx ππ-⎰=0; ⑵22sin 1x x dx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -⎰=20()a f x dx ⎰;②当f (x )为奇函数时,()aa f x dx -⎰=0.小结通过这几个例题分析,让我明白并牢固记住了如何求定积分的方法,懂得在什么情况该用何种方法解决问题;它有非常重要的意义,并且应用也非常广泛,因此掌握此四种方法可以为学好其他比如物理学应用打下良好的基础。

定积分计算方法总结

定积分计算方法总结

定积分计算方法总结
一、定积分的计算方法
1. 利用函数奇偶性
2. 利用函数周期性
3. 参考不定积分计算方法
二、定积分与极限
1. 积和式极限
2. 利用积分中值定理或微分中值定理求极限
3. 洛必达法则
4. 等价无穷小
三、定积分的估值及其不等式的应用
1. 不计算积分,比较积分值的大小
1) 比较定理:若在同一区间[a,b]上,总有
f(x)=g(x),则= ()dx
2) 利用被积函数所满足的不等式比较之a)
b) 当0 x 兀/2时,2/兀 1
2. 估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则
M(b-a) = =M(b-a)
3. 具体函数的定积分不等式证法
1) 积分估值定理
2) 放缩法
3) 柯西积分不等式
≤ %
4. 抽象函数的定积分不等式的证法
1) 拉格朗日中值定理和导数的有界性
2) 积分中值定理
3) 常数变易法
4) 利用泰勒公式展开法
四、不定积分计算方法
1. 凑微分法
2. 裂项法
3. 变量代换法
1) 三角代换
2) 根幂代换
3) 倒代换
4. 配方后积分
5. 有理化
6. 和差化积法
7. 分部积分法(反、对、幂、指、三)
8. 降幂法。

三角函数定积分的四种求解方法

三角函数定积分的四种求解方法

三角函数定积分的四种求解方法三角函数定积分是高等数学中一个重要的知识点,常常涉及到三角函数的性质和定积分的运算法则。

在解题过程中,我们可以使用四种不同的方法来求解三角函数定积分,分别是换元法、分部积分法、平均值定理和特殊代换法。

一、换元法换元法,也称为代换法,是求解不定积分的常用方法之一、对于三角函数定积分,我们可以通过选择一个合适的换元变量,将原问题转化为一个更容易求解的形式。

换元法的基本思想是将被积函数中的变量进行替换,以达到简化问题的目的。

在求解三角函数定积分的过程中,我们常常选择正弦函数和余弦函数作为换元变量。

具体而言,我们可以使用以下的换元公式:1. 用tan(x/2)来换元:利用tan(x/2) = sin(x) / (1 + cos(x)) 或者 cos(x) / (1 +sin(x))的换元公式,将题目中的三角函数进行替换,从而将问题转化为一个更容易处理的形式。

2. 用sec(x)来换元:利用sec(x) = 1 / cos(x) 的换元公式,将题目中的三角函数进行替换,得到一个与原函数结构相似但更容易求解的新函数。

二、分部积分法分部积分法是求解不定积分的另一种常用方法。

对于三角函数定积分,我们可以通过选择合适的u和v来进行分部积分,以求得积分结果。

具体使用分部积分法求解三角函数定积分时,我们可以根据需要选择不同的u和v:1. 选择u = f(x),dv = g(x)dx:这种情况下,我们需要计算u和v的导数,然后代入分部积分公式:∫[u(x)dv(x)]dx = u(x)v(x) - ∫[v(x)du(x)]dx,从而求得积分结果。

2. 选择du = f(x)dx,v = g(x):这种情况下,我们需要计算du和v的导数,然后代入分部积分公式:∫[u(x)dv(x)]dx = u(x)v(x) - ∫[v(x)du(x)]dx,从而求得积分结果。

三、平均值定理平均值定理是一个重要的数学定理,可以用来求解定积分的近似值。

求解定积分的技巧与方法

求解定积分的技巧与方法

求解定积分的技巧与方法求解定积分是高中数学和大学数学中不可避免的一个内容。

对于许多学生和学者来说,求解定积分是一个比较棘手的问题,需要灵活的思维和丰富的数学知识。

本文将为大家介绍一些求解定积分的技巧和方法,帮助大家更好地理解和掌握这一内容。

1. 分段函数法分段函数法是解决经典定积分求解的常用技巧之一。

当我们面对一个比较复杂的积分时,可以尝试将其分解成多个简单的分段函数,进而分别求解。

例如,对于一个形如$y=|x|$ 的函数图像,我们可以将其分区间来讨论,即:当$x\leq0$ 时,$y=-x$,则:$\int_{-1}^{1}|x|\,\mathrm{d}x=\int_{-1}^{0}-x\,\mathrm{d}x+\int_{0}^{1}x\,\mathrm{d}x$当$x>0$ 时,$y=x$,则:$\int_{-1}^{1}|x|\,\mathrm{d}x=\int_{0}^{1}x\,\mathrm{d}x-\int_{-1}^{0}x\,\mathrm{d}x$这样的分段讨论可以使我们更加清晰地理解函数的特性,并且更加方便地求解原函数。

2. 换元法换元法是求解复杂定积分的常用方法之一。

通常我们会利用简单的变量替换,将原积分转化为易于处理的形式。

例如,对于$\int_{-\pi}^{\pi} \frac{1}{1+\sin x}\,\mathrm{d}x$这样的积分,我们可以利用以下替换:设$t=\tan\frac{x}{2}$,则有:$\sin x=\frac{2t}{1+t^{2}},\cos x=\frac{1-t^{2}}{1+t^{2}},\mathrm{d}x=\frac{2\mathrm{d}t}{1+t^{2}}$将上述变量替换代入原式中,则有:$\int_{-1}^{1}\frac{2}{1+(2t/(1+t^{2}))}\frac{2\mathrm{d}t}{1+t^{2}}=4\in t_{-1}^{1}\frac{\mathrm{d}t}{1+t^{2}}=4\pi$所以原式的解为$4\pi$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分的四种求法
定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法.
一、定义法 例1 用定义法求
2
30
x dx ⎰
的值.
分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.
解:(1)分割:把区间[0,2] 分成n 等分,则△x =
2
n
. (2)近似代替:△3
2()i i i S f x x n ξ⎛⎫
=∆=∆ ⎪⎝⎭
(3)求和:3
3
111222n
n
n
i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫
∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭∑∑∑.
(4)取极限:S=333
2242lim n n n n n n →∞⎡⎤
⎛⎫⎛⎫⎛⎫
+++⎢⎥ ⎪ ⎪ ⎪
⎝⎭⎝⎭
⎝⎭⎢⎥⎣⎦
L =4433322
44221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦L =22
4(21)
lim n n n n →∞++==4.

2
30
x dx ⎰
=4..
评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.
二、微积分基本定理法
例2 求定积分
2
21
(21)x x dx ++⎰
的值.
分析:可先求出原函数,再利用微积分基本定理求解.
解:函数y =2
21x x ++的一个原函数是y =3
23
x x x ++. 所以.2
2
1
(21)x x dx ++⎰
=322
1()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭
=193.
评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.
三、几何意义法 例3 求定积

1
1
dx -⎰
的值.
分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.

:1
1dx -⎰表示圆x 2+y 2=1在第一、
二象限的上半圆的面积.
因为2
S π
=半圆,又在x 轴上方.


1
1
dx -⎰

2
π
. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.
四、性质法
例4 求下列定积分: ⑴
44
tan xdx π
π-⎰;⑵22
sin 1
x x
dx x π
π
-
+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很

找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.
解:由被积函数tan x 及22sin 1
x x
x +是奇函数,所以在对称区间的积分
值均为零.
所以⑴
44
tan xdx π
π-⎰=0;

22sin 1
x x
dx x π
π
-
+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a
a
f x dx -⎰=20
()a
f x dx ⎰;②当f (x )为奇函数时,()a
a
f x dx -⎰=
0. 小结
通过这几个例题分析,让我明白并牢固记住了如何求定积分的方法,懂得在什么情况该用何种方法解决问题;它有非常重要的意义,并且应用也非常广泛,因此掌握此四种方法可以为学好其他比如物理学应用打下良好的基础。

参考文献:
[1]《数学分析》上册(第二版)复旦大学数学系编.高等教育出版社,1983.07
[2]《数学分析》下册(第二版)复旦大学数学系编.高等教育出版社,1983.11
感谢下载!
欢迎您的下载,资料仅供参考。

相关文档
最新文档