几类定积分不等式的证明
利用定积分证明不等式
热点追踪Җ㊀广东㊀李文东㊀㊀不等式的证明是高考的重要内容,证明的方法多㊁难度大,特别是一些数列和型的不等式.这类不等式常见于高中数学竞赛题和高考压轴题中,由于证明难度较大,往往令人望而生畏.其中有些不等式若利用定积分的几何意义证明,则可达到以简驭繁㊁以形助数的解题效果.1㊀利用定积分证明数列和型不等式数列和型不等式的一般模式为ðni =1a i <g (n )(或ðni =1a i >g (n )),g (n )可以为常数.不失一般性,设数列a n =f (n )>0,此类问题可以考虑如下的定积分证明模式.(1)若f (x )单调递减.因为f (i )<ʏii -1f (x )d x ,从而ðni =1a i =ðn i =1f (i )<ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏi i -1f (x )d x <f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏi i-1f (x )d x <ðn +1i =2f (i -1)=ðni =1a i.㊀㊀(2)若f (x )单调递增.因为f (i )>ʏi i -1f (x )d x ,从而ðni =1a i=ðni =1f (i )>ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏii -1f (x )d x >f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏii-1f (x )d x >ðn +1i =2f (i -1)=ðni =1a i .例1㊀(2013年广东卷理19,节选)证明:1+122+132+ +1n2<74(n ɪN ∗).分析㊀本题证法大多采用裂项放缩来证明,为了得到更一般的结论,我们这里采用定积分来证明.证明㊀因为函数y =1xα(α>0且αʂ1)在(0,+ɕ)上单调递减,故ʏii -11x αd x >1iα(i ȡ3),从而当αʂ1时,ðni =11i α<1+12α+ðni =3ʏii -11x αd x =1+12α+ʏn21x αd x =1+12α-1(α-1)x α-1n 2=1+12α+1(α-1)2α-1-1(α-1)nα-1.㊀㊀利用这个不等式可以得到一些常见的不等式.若α=12,则ðn i =11i<1-32+2n =2n -1+(2-32)<2n -1.㊀㊀当α>1时,ðni =11iα<1+12α+1(α-1)2α-1=1+α+1α-1 12α.特别地,若α=2,则ðni =11i 2<1+2+12-1 122=74;若α=3,则ðni =11i3<1+3+13-1 123=54;若α=32,则ðni =11ii<1+32+132-1 1232=1+524<3;若α=1,则1n<ʏnn -11x d x =l n x nn -1=l n n -l n (n -1),从而可以得到12+13+ +1n +1<ʏn +111xd x =l n (n +1),1n +1+1n +2+ +12n<ʏ2nn1xd x =l n2.㊀㊀另一方面,1n -1>ʏnn -11xd x =l n x n n -1=l n n -l n (n -1),则1+12+13+ +1n -1>ʏn11x d x =l n n .㊀㊀当α=1时,借助定积分的几何意义上述不等式42热点追踪还可以进一步加强.图1是函数y =1x的部分图象,显然S 曲边梯形A B C F <S 梯形A B C F ,于是ʏn +1n1x d x <12(1n +1n +1),得l n (1+1n )<12(1n +1n +1),令n =1,2, ,n ,并采用累加法可得1+12+13+ +1n>l n (n +1)+n2(n+1)(n ȡ1).图1例2㊀证明:l n 42n +1<ðni =1i4i 2-1(n ɪN ∗).分析㊀由于i 4i 2-1=14(12i -1+12i +1),l n 42n +1=14l n (2n +1),故证明l n (2n +1)<ðni =1(12i -1+12i +1).构造函数f (x )=12x +1,显然f (x )单调递减,考虑到ðni =1(12i -1+12i +1)的结构,对函数f (x )采用类似图1中的梯形面积放缩.证明㊀由分析得ʏii -112x +1d x <12(12i -1+12i +1),故12l n (2n +1)=ʏn012x +1d x =ðni =1ʏii -112x +1d x <12ðni =1(12i -1+12i +1),不等式两边除以12即为所证.例3㊀证明13+15+17+ +12n +1<12l n (n +1)(n ɪN ∗).分析㊀若考虑函数y =12x +1,则有12i +1<ʏii -112x +1d x ,则ðni =112i +1<ðni =1ʏii -112x +1d x =ʏn012x +1d x =12l n (2x +1)n0=12l n (2n +1),达不到所证的精度,必须改变定积分放缩的精度.证明㊀结合不等式的右边,考虑函数f (x )=1x.如图2所示,在区间[i ,i +1]上,取区间的中点i +12,并以1i +12为高作矩形A E F B ,则S 矩形A E F B <ʏi +1i 1x d x .于是有22i +1=1i +12<ʏi +1i1xd x ,则ðni =122i +1<ðni =1ʏi +1i1xd x =ʏn +111xd x =l n (n +1),即ðn i =112i +1<12ln (n +1).图2例4㊀设n 是正整数,r 为正有理数.(1)求函数f (x )=(1+x )r +1-(r +1)x -1(x >-1)的最小值;(2)证明:n r +1-(n -1)r +1r +1<n r<(n +1)r +1-nr +1r +1;(3)设x ɪR ,记[x ]为不小于x 的最小整数,例如[2]=2,[π]=4,[-32]=-1.令S =381+382+383+ +3125,求[S ]的值.(参考数据:8043ʈ344 7,8143ʈ350 5,12543ʈ625 0,12643ʈ631 7.)分析㊀出题者的本意是利用第(1)问中的伯努利不等式来证明后两问,但这里我们利用积分来证明.证明㊀(1)f m i n (x )=0(求解过程略).(2)因为r 为正有理数,函数y =x r 在(0,+ɕ)上单调递增,故ʏnn -1x r d x <nr,而52热点追踪ʏnn -1x rd x =x r +1r +1n n -1=n r +1-(n -1)r +1r +1,故n r +1-(n -1)r +1r +1<n r.同理可得n r<ʏn +1n x rd x =x r +1r +1n +1n =(n +1)r +1-n r +1r +1,从而n r +1-(n -1)r +1r +1<n r<(n +1)r +1-n r +1r +1.(3)由于i 13<ʏi +1i x 13d x <(i +1)13,故S =ð125i =81i13<ð125i =81ʏi +1ix 13dx =ʏ12681x 13dx =34x 4312681=34(12643-8143),34(12543-8043)=34x 4312580=ʏ12580x 13d x =ð124i =80ʏi +1ix 13d x <ð124i =80(i +1)13=S .34(12543-8043)<S <34(12643-8043).代入数据,可得34(12543-8043)ʈ210.2,34(12643-8143)ʈ210.9.由[S ]的定义,得[S ]=211.2㊀利用积分证明函数不等式我们知道ʏx 2x 1fᶄ(x )d x =f (x 2)-f (x 1),因此,对于与f (x 2)-f (x 1)有关的问题,可以从定积分的角度去思考.若f (x )的导数f ᶄ(x )在区间(a ,b )上单㊀图3调递减且f ᶄ(x )为凹函数,如图3所示.设A C 的中点为B ,过点B 作B G ʅx 轴与f (x )交于点G ,过点G 作f (x )的切线与直线AH 和C D 分别交于点F 和I .设A (x 1,0),C (x 2,0),则f (x 2)-f (x 1)=ʏx 2x 1fᶄ(x )d x =S 曲边梯形A C J H ,S 矩形A C D E =f ᶄ(x 2+x 12)(x 2-x 1).因为S 曲边三角形E G H >S әE F G =S әD I G >S 曲边三角形J D G ,S 曲边梯形A C J H -S 矩形A C D E =S 曲边三角形E G H -S 曲边三角形J D G >0,于是有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12).借助上述几何意义,一般地我们有如下结论.(1)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凹函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12);(2)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凸函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1<f ᶄ(x 2+x12).例5㊀(1)函数f (x )=l n x ,因为f ᶄ(x )=1x在(0,+ɕ)上为凹函数,则对任意0<x 1<x 2,有l n x 2-l n x 1x 2-x 1>1x 2+x 12,即x 2-x 1l n x 2-l n x 1<x 1+x 22,此为对数均值不等式.(2)函数f (x )=x l n x ,因为f ᶄ(x )=1+l n x 在(0,+ɕ)上为凸函数,则对任意0<x 1<x 2,有x 2l n x 2-x 1l n x 1x 2-x 1<1+l n x 2+x 12.许多考题都是以此为背景命题,比如,如下高三模拟考试的压轴题.例6㊀已知函数f (x )=l n x -a x 22+(a -1)x -32a(a >0),在函数f (x )的图象上是否存在不同两点A (x 1,y 1),B (x 2,y 2),线段A B 中点的横坐标为x 0,直线A B 的斜率为k ,使得k >f ᶄ(x 0).简证㊀由于f ᶄ(x )=1x-a x +a -1(a >0)在(0,+ɕ)上为凹函数,可见结论成立!例7㊀设函数f (x )=xex ,若x 1ʂx 2,且f (x 1)=f (x 2),证明:x 1+x 2>2.分析㊀本题的本质是极值点偏移问题,常见证法是利用对称性构造函数,这里采用定积分来证明.证明㊀不妨设x 1<x 2,由f ᶄ(x )=1-x ex ,可知f (x )在(-ɕ,1]上单调递增,在[1,+ɕ)上单调递减,且f (0)=0.当x >0时,f (x )>0,可知0<x 1<1<x 2.设x 1e x 1=x 2e x 2=t ,则x 1+x 2=t (e x 1+e x 2),x 2-x 1=t (e x 2-e x 1),考虑函数y =e x ,则根据定积分的梯形面积放缩有e x 2-e x 1=ʏx 2x 1e xd x <(e x 1+e x2)(x 2-x 1)2,则x 2-x 1t <12 x 2+x 1t(x 2-x 1),故x 1+x 2>2.(作者单位:广东省中山市中山纪念中学)62。
数学分析中几类证明不等式的方法
㊀㊀解题技巧与方法㊀㊀152㊀数学分析中几类证明不等式的方法数学分析中几类证明不等式的方法Һ郭㊀鑫㊀(天津师范大学,天津㊀300222)㊀㊀ʌ摘要ɔ在学习数学分析时我们常会见到一些不等式,当然,其中有一些著名的不等式无论是在解题还是在实际应用中都有重要的作用.笔者认为解决这些不等式的证明应该先找到对应的数学分析知识点,所以,本文中结合数学分析的知识点列举了四种常用的证明不等式的思路.本文中在每一种方法后附加了例题及解答,一些题目是选择了教材上的典型例题,还有一些是考研题目及其改编.不等式的证明往往有多种证明方法,还望读者多思考出更多不同的证明方法.ʌ关键词ɔ不等式;数学分析;积分;证明为了加深对数学分析中不等式证明的理解和掌握,本文在数学分析的基础上研究并整理了几种证明不等式的方法,也节选了典型例题辅助讲解.本文属于综述型论文,归纳总结了前人的理论成果并加上自己的理解与补充,希望本文可以帮助读者对于不等式问题有初步的解题思路,并借此探索更多的关于不等式的证明方法.一㊁几个著名不等式(一)Jensen不等式如果f(x)为[a,b]上的凸函数,那么对任何xiɪ[a,b],λi>0(i=1,2, ,n),ðni=1λi=1有f(ðni=1λixi)ɤðni=1λifxi().证明㊀当n=1时,结论显然成立;当n=2时,由凸函数的定义可以知道f(λ1x1+λ2x2)ɤλ1f(x1)+λ2f(x2)成立.假设n-1时命题成立,则对任意x1,x2, ,xnɪ[a,b],以及λi>0,ðni=1λi=1,令μi=λi1-λn>0(i=1,2, ,n-1),可以得到μ1+μ2+ +μn-1=1,由归纳假设得fðn-1i=1μixi()ɤðn-1i=1μif(xi),所以ðni=1λixi()=f((1-λn)㊃λ1x1+λ2x2+ +λn-1xn-11-λn+λnxn)ɤ(1-λn)㊃fλ1x1+λ2x2+ +λn-1xn-11-λnæèçöø÷+λnf(xn)ɤ(1-λn)㊃[μ1f(x1)+μ2f(x2)+ +μn-1f(xn-1)]+λnf(xn)=λ1f(x1)+λ2f(x2)+ +λnf(xn).由数学归纳法可知原命题成立.例1㊀求证:(abc)a+b+c3ɤaabbcc,其中a,b,c均为正数.提示㊀令f(x)=xlnx,运用Jensen不等式即证.(二)平均值不等式任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1 anɤa1+a2+ +ann.证明㊀设f(x)=lnx,则fᵡ(x)<0,从而f(x)为凹函数,所以由Jensen不等式可得fa1+a2+ +annæèçöø÷ȡf(a1)+f(a2)+ +f(an)n,即lnna1a2 an=1n(lna1+lna2+ +lnan)ɤlna1+a2+ +ann.因为f(x)为增函数,所以na1a2 anɤa1+a2+ +ann,同理n1a1㊃1a2㊃ ㊃1anȡ1a1+1a2+ +1ann,即得结论.注:此题还可运用条件极值证明.(三)Schwarz不等式若f(x)和g(x)在[a,b]上可积,则ʏbaf(x)g(x)dx()2ɤʏbaf2(x)dx㊃ʏbag2(x)dx.证明㊀因为f(x),g(x)在[a,b]上可积,所以f(x)+tg(x)在[a,b]上可积,从而ʏba(f(x)+tg(x))2dx=ʏbaf2(x)dx+ʏba2tf(x)g(x)dx+ʏbat2g2(x)dxȡ0,(∗)将(∗)式看作自变量t的一元二次函数,则Δ=4ʏbaf(x)g(x)dx()2-4ʏbaf2(x)dx㊃ʏbag2(x)dxɤ0,结论得证.推论㊀(柯西不等式)对任意ai,bi有ðni=1aibi()2ɤðni=1ai2㊃ðni=1bi2.例2㊀若f(x),g(x)都在[a,b]上可积,则有闵可夫斯基(Minkowski)不等式:ʏba(f(x)+g(x))2dx[]12ɤʏbaf2(x)dx[]12+ʏbag2(x)dx[]12.提示㊀不等式两边平方,化简,利用Schwarz不等式.(四)Hadamard不等式设f(x)为[a,b]上的连续凸函数.求证:fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.提示㊀利用凸函数的性质,证明详细过程见下页.二㊁利用函数单调性与极值解决不等式问题(一)利用单调性解决不等式问题函数的单调性是较为简单直接的证明不等式的方法,对于可导函数f(x)可以通过fᶄ(x)的正负判断f(x)的增减性,从而利用具体自变量的取值得到不等式.此类题目的关键在于构建合适的f(x).(例题中涉及几类常用的构造函数的方法)㊀㊀㊀解题技巧与方法153㊀㊀例3㊀(若尔当不等式)设0<xɤπ2,则2πɤsinxx<1.证明㊀设f(x)=sinxx,则fᶄ(x)=xcosx-sinxx2;再令g(x)=xcosx-sinx,则gᶄ(x)=-xsinx<0,从而g(x)递减.又因为g(0)=0,所以g(x)<0,则有fᶄ(x)<0,即f(x)递减.又因为limxң0f(x)=1,且fπ2()=π2,所以,由f(x)的单调性可得2πɤsinxx<1.(二)利用极值与最值解决不等式问题对于在定义域内不单调的函数,极值和最值是解决这类函数不等式的一个突破口,构造合适的函数利用极值的定义来证明.例4㊀(利用条件极值)任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1a2 anɤa1+a2+ +ann.证明㊀下面只证明na1a2 anɤa1+a2+ +ann(另一不等号的证明见上一页).设x1+x2+ +xn=a(∗),f(x1,x2, ,xn)=x1x2 xn,则只需证在条件(∗)下f(x)的最大值为annn.令L(x1,x2, ,xn,λ)=x1x2 xn+λ(x1+x2+ +xn-a),则Lxi=x1 xi-1xi+1 xn+λ=0,Lλ=x1+x2+ +xn-a=0,{解得λ=-na(x1x2 xn);xi=an.又因为f(x)有上界,所以所求点为最大值点,即最大值为annn,结论得证.三㊁利用微分中值定理和泰勒公式解决不等式问题(一)利用拉格朗日定理解决不等式问题拉格朗日定理可以将函数在区间端点的函数值与导函数在某一点的值联系起来,从而利用单调性或已知条件得到不等式.例5㊀求证:b-ab<lnba<b-aa,其中0<a<b.证明㊀原不等式等价于1b<lnb-lnab-a<1a,由拉格朗日定理,得lnb-lnab-a=1ξ,其中ξɪ(a,b).因为1b<1ξ<1a,所以1b<lnb-lnab-a<1a.(二)利用柯西定理解决不等式问题对于已知两个函数的端点函数值问题可利用柯西定理转换成导数比值形式,从而化简不等式.例6㊀设x>0,求证:2arctanx<3ln(1+x).证明㊀原不等式等价于arctanxln(1+x)<32;∀x>0,在[0,x]上由柯西中值定理,得∃ξɪ(0,x),使得arctanxln(1+x)=arctanx-arctan0ln(1+x)-ln(1+0)=1+ξ1+ξ2,设f(x)=1+x1+x2,则fᶄ(x)=1-2x-x2(1+x2)2,所以f(x)在x=2-1时取极大值(最大值),2+12<32,所以1+ξ1+ξ2<32,即arctanxln(1+x)<32,结论得证.(三)利用泰勒公式解决不等式问题对于一些不等式中涉及高阶导数及其范围的问题,可尝试利用泰勒公式的近似展开式,而利用泰勒公式的重点在于找到一个合适的点展开.四㊁函数凹凸性(一)函数凹凸性的简单推论推论1㊀f(x)为凸函数的充要条件为:对于定义域上,任意x1<x2<x3,则有f(x2)-f(x1)x2-x1ɤf(x3)-f(x1)x3-x1ɤf(x3)-f(x2)x3-x2.推论2㊀(此推论及其变形适用于许多涉及一阶导数的不等式证明)可导函数为凸(凹)函数当且仅当任意x1,x2有f(x2)ȡf(x1)+fᶄ(x1)(x2-x1)(f(x2)ɤf(x1)+fᶄ(x1)(x2-x1)).推论3㊀若f(x)为二阶可导函数,则f(x)是凸函数的充分必要条件为fᵡ(x)ȡ0.(此命题适用于涉及二阶导数的不等式证明)推论4㊀f(x)为[a,b]上的凸函数,则f(x)ȡ2fa+b2()-f(a)-f(b).(二)运用函数凹凸性证明不等式例7㊀证明Hadamard不等式.证明㊀设x=(1-t)a+tb=(b-a)t+a,则1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dt.同理可得1b-aʏbaf(x)dx=ʏ10f[ta+(1-t)b]dt.因为f(x)为凸函数,所以1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dtɤʏ10(1-t)f(a)+tf(b)dt=f(a)+f(b)2,且1b-aʏbaf(x)dx=12ʏ10f[(1-t)a+tb]dt+12ʏ10f[ta+(1-t)b]dt=ʏ1012f[(1-t)a+tb]+12f[ta+(1-t)b]dtȡʏ10f[12(1-t)a+t2b+t2a+12(1-t)b]dt=fa+b2(),所以fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.不等式的解法有许多,以上几种方法需要在数学分析的基础上研究不等式.在学习过程中抓住每种方法的要点并掌握相应的数学分析的基础知识才是关键.ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(上册):第4版[M].北京:高等教育出版社,2010.[2]陈守信.考研数学分析总复习:精选名校真题:第5版[M].北京:机械工业出版社,2018.[3]徐利治,王兴华.数学分析的方法及例题选讲:第2版[M].北京:高等教育出版社,2015.[4]蒙诗德.数学分析中证明不等式的常用方法[N].赤峰学院学报(自然科学版),2009(09):20-22.[5]舒斯会.数学分析选讲[M].北京:北京大学出版社,2007.[6]林源渠,方企勤.数学分析解题指南[M].北京:北京大学出版社,2003.。
几类定积分不等式的证明_王阳
(苏州大学外国语学院 江苏苏州 215006)
犹太人对自己的生活是有着传统性的恪守,男婴出生第八天要 举行割礼仪式,是对再生的追求,也是对性的约束。一直生活在异
[摘 要]现代美国犹太人在美国这块“应许之地”、“希望之乡”的生 乡的犹太人对自己的身份经历了尴尬、模糊和认定的全面过程。在
分法先求出 f (x) 在[a,b] 上的最大、最小值,再用估值定理即可。
∫ 例:求证
2 exp(− 1 ) ≤ 2
1
−
2 1
exp(− x2 )dx
≤
2
2。
证:先求被积函数
f (x) = exp(− x2 ) 在 ⎡⎢⎣−
1, 2
1 ⎤ 上的最大 2 ⎥⎦
和最小值。
∫ ∫ λ f ( x )dx ≥ λ 1 f ( x )dx 。
0
0
三、利用柯西-许瓦兹不等式证明定积分不等式
( ) ∫ ∫ 当 所 求 证 的 不 等 式 中 含 有 : b f 2 (x)dx, b f (x)dx 2 或
a
a
∫ ∫ b f (x)dx b g(x)dx 的形式时,可用柯西——许瓦兹不等式求证。
a
a
∵ f ′(x) = −2x exp(−x2 )
3.4 落地技术的对比研究
且经过 T 检验(p<0.01),它们之间存在显著性差异,体现出两个项
最佳着地技术是尽可能加大脚跟与身体重心之间的水平距离,
目的较大差别。众所周知,助跑速度和起跳能力是决定跳跃成绩的 尽量利用身体重心的抛物线轨迹使双脚落得更远。从起跳脚离地后,
两个最为重要的因素,而在实际情况中,则恰恰是由于主观上要求 运动员身体重心抛物线的移动轨迹就已被决定。但在实际跳跃中,
定积分不等式
第三章 一元积分学第三节 定积分值的估计及不等式定积分值的估计及不等式证明是一个较难的问题,方法多样,用到的知识(微分学的知识,积分学的知识等)也很多。
总的说来:(1)主要用积分学的知识,除了定积分的性质、积分中值定理、计算方法外,以下几个简单的不等式也是有用的:(i)若]),[( )()(b a x x g x f ∈≤,则⎰⎰≤babadx x g dx x f )()( .(ii )⎰⎰≤babadx x f dx x f |)(||)(|。
(iii )若b d c a b a x x f ≤≤≤∈≥]),,[( 0)(,则⎰⎰≤badcdx x f dx x f )()(.(iv )(柯西不等式)⎰⎰⎰≤b ababadx x g dx x f dx x g x f )()(])()([222(2)主要用微分学的知识,包括前面己讲过的利用微分学知识证明不等式的一切方法。
(3)利用二重积分、级数等.值得注意的是:题目的解法往往有多种,同一题目其解答过程中往往要用到各种知识和方法. 例1.判断积分⎰π202sin dx x 的符号分析:这个积分值是求不出来的.如果被积函数在积分区间上有确切的符号,那么积分值的符号很容易判断.如果被积函数在积分区间上有正、有负,那么应根据被积函数的正、负情况将积分区间分成部分区间,然后利用积分学等方面的知识比较在这些部分区间上的积分值(实际上是比较积分值的绝对值).本题中被积函数2sin x 在积分区间上有正、有负,先作换元:2x t =,把积分变为dt ttdx x ⎰⎰=ππ20202sin 21sin 后,问题更清晰,因而想到dt t t dx x ⎰⎰=ππ20202sin 21sin +=⎰π0sin (21dx tt)sin 2⎰ππdt tt至此积分的符号凭直觉已经能判断了.但严格说明还需做一些工作,上式右端两个积分的积分区间不一样,为了方便比较,应将两个积分放在同一积分区间上进行比较.有了这些分析和思路后,解答就容易了. 解:令2x t =,则dt t t dx x ⎰⎰=ππ20202sin 21sin =+=⎰π0sin (21dx tt)sin 2⎰ππdt tt对上式右端后一积分换元π+=u t 得⎰⎰⎰+-=+-=ππππππ2sin sin sin dt t t du u u dt tt从而=⎰π202sin dx x -=⎰π0sin (21dx tt)sin 0⎰+ππdt t t0sin )11(210>+-=⎰ππtdt t t 注:本题的解答过程不复杂,但其过程中有两个技巧很有用(1)将积分区间分成部分区间(尤其是等分区间,特别是二等分)(2)如要比较两个在不同积分区间上的积分的大小,可通过换元变成相同积分区间上的积分,然后比较. 例2.设0>a ,证明:4320sin 0sin πππ≥⎰⎰-dx adx xaxx分析:: 从形式上看很象柯西不等式,但两个积分的积分区间不一样,前面的积分可用教材上介绍的一个等式⎰⎰=200)(sin )(sin πππdx x f dx x xf 变为]2,0[π上的积分,再用柯西不等式便可得结论。
定积分不等式证明方法
f x dx 表示由曲线 y f x ,x
b a b a
轴及直线
x a , x b 所围成的曲边梯形的面积的相反数.
(3) 如果连续函数 f x 正负不定, 则
f x dx 表示由曲线 y f x ,x 轴及直
线 xa , xb 所 围 成 的 一 些 小 曲 边 梯 形 的 面 积 的 代 数 和 , 有
a c a
性质 5
d
[1]
若
f x 在 a, b 上可积,且 f x 0 , c, d a, b ,则
b
f x dx f x dx .
c a
性质 6
[1]
若
f x 在 a, b 上可积, x a, b ,则
b
b a i f a ,即 n
定积分
f x dx 为一序列和的极限,这样我们可由一些序列和的不等式得到积分不
[3]
等式,下面首先给出著名的 Jensen 不等式 ,即 设 f x 为 a , b 上 的 连 续 下 凸 函 数 , 证 明 对 于 任 意 xi a, b 和 i 0 , (i=1,2,……,n),
1.2 利用泰勒公式
定理 1
[2]
(泰勒定理)
若函数 f x 在 a , b 上存在直至 n 阶的连续导函数,在 x, x0 a, b ,至少存在一点 a, b ,
a, b 内存在{n+1}阶导函数,则对任意给定的
使得
f x f x0 f ' x0 x x0
f n x0 n!
f '' x0 2!
一个积分不等式的十种证明方法_倪华
a
∫
, ″( x)> 0 ( 0 ≤ x ≤ a) f 所以 f( 因此 x)的图形在 [ 0, a]上是凹的 ,
( 证法 8 利用一阶导数的单调性 ) 因为
x) a-x) a , +f( f( ≥ f( ) 2 2
故有
a
″( x)> 0, f
故有
∫
a
a a x) d x≥ 2 d x =a . f( f( ) f( ) 0 0 2 2
关键词 定积分 ; 不等式 ; 证明方法 中图分类号 O 1 7 8
积分不等式是微积分学中的一类常见而又重要 的不等式 , 其证明的方法灵活多样 , 通过对积分不等 式的多种不同证法 , 能对学生开阔解题思路 , 提高综 合应用数学知识的能 力 有 所 帮 助 , 有助于学生对高 ]分 别 讨 论 文[ 等数学知 识 体 系 的 理 解 和 掌 握 . 1- 2 了一个定积分不等式 的 多 种 证 法 . 本文也讨论另一 类积分不等式 , 并给出十种证明方法 . 江苏大学 2 0 0 8-2 0 0 9年 度 第 一 学 期 期 末 考 试 高等数学试卷中有一道定积分证明题 , 引为下例 . 例 1 设 f( x)在 [ 0, a]上二阶可导 , ″( x)> 0, f 证明
a
故有
a , ′( x)≤ f ′( a-x) 0≤x ≤ ) ( f 2
所以
a
x =t+
则有
a
a, 2
x) d x =a a) - f( f( ∫
0
∫
0
x) d x= f(
∫
a ( ) d t= +t af -2 2
0
a 2
∫
0
a 2
a
x ′( x) d x- f
数学分析9.4定积分的性质
第九章 定积分 4 定积分的性质一、定积分的基本性质性质1:若f 在[a,b]上可积,k 为常数,则kf 在[a,b]上也可积,且⎰bakf(x )dx=k ⎰baf(x )dx.证:当k=0时结论成立. 当k ≠0时,∵f 在[a,b]上可积,记J=⎰ba f(x )dx , ∴任给ε>0,存在δ>0,当║T ║<δ时,|i n1i i x △)ξ(f ∑=-J|<|k |ε; 又|i n 1i i x △)ξ(kf ∑=-kJ|=|k|·|i n1i i x △)ξ(f ∑=-J|<|k|·|k |ε=ε,∴kf 在[a,b]上可积, 且⎰b a kf(x )dx=k ⎰ba f(x )dx.性质2:若f,g 都在[a,b]上可积,则f ±g 在[a,b]上也可积,且⎰±bag(x )][f(x )dx=⎰b af(x )dx ±⎰bag(x )dx.证:∵f,g 都在[a,b]上可积,记J 1=⎰ba f(x )dx ,J 2=⎰ba g(x )dx. ∴任给ε>0,存在δ>0,当║T ║<δ时,有|i n1i i x △)ξ(f ∑=-J 1|<2ε,|i n1i i x △)ξ(g ∑=-J 2|<2ε.又|i n1i i i x △)]ξ(g )ξ([f ∑=+-(J 1+J 2) |=|(i n1i i x △)ξ(f ∑=-J 1)+(i n1i i x △)ξ(g ∑=-J 2)|≤|i n1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε;|i n 1i i i x △)]ξ(g )ξ([f ∑=--(J 1-J 2) |=|(i n 1i i x △)ξ(f ∑=-J 1)+( J 2-i n1i i x △)ξ(g ∑=)|≤|i n 1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε.∴f ±g 在[a,b]上也可积,且⎰±b a g(x )][f(x )dx=⎰b a f(x )dx ±⎰ba g(x )dx.注:综合性质1与性质2得:⎰±ba βg(x )]αf(x ) [dx=α⎰b a f(x )dx ±β⎰ba g(x )dx.性质3:若f,g 都在[a,b]上可积,则f ·g 在[a,b]上也可积.证:由f,g 都在[a,b]上可积,从而都有界,设A=]b ,a [x sup ∈|f(x)|,B=]b ,a [x sup ∈|g(x)|,当AB=0时,结论成立;当A>0,B>0时,任给ε>0,则存在分割T ’,T ”, 使得∑'T i i f x △ω<B 2ε,∑''T i i g x △ω<A 2ε. 令T=T ’+T ”,则对[a,b]上T 所属的每一个△i ,有 ωi f ·g =]b ,a [x ,x sup ∈'''|f(x ’)g(x ’)-f(x ”)g(x ”)|≤]b ,a [x ,x sup ∈'''[|g(x ’)|·|f(x ’)-f(x ”)|+|f(x ”)|·|g(x ’)-g(x ”)|]≤B ωi f +A ωi g .又∑⋅Ti g f i x △ω≤B ∑Ti f i x △ω+A ∑Ti g i x △ω≤B ∑'T i f i x △ω+A ∑''T i g i x △ω<B ·B 2ε+A ·A2ε=ε. ∴f ·g 在[a,b]上可积.注:一般情形下,⎰ba f(x )g(x )dx ≠⎰b af(x )dx ·⎰bag(x )dx.性质4:f 在[a,b]上可积的充要条件是:任给c ∈(a,b),f 在[a,c]与[c,b]上都可积. 此时又有等式:⎰ba f(x )dx=⎰c a f(x )dx+⎰bc f(x )dx. 证:[充分性]∵f 在[a,c]与[c,b]上都可积.∴任给ε>0,分别存在对[a,c]与[c,b]的分割T ’,T ”,使得∑'''T i i x △ω<2ε,∑''''''T i i x △ω<2ε. 令[a,b]上的分割T=T ’+T ”,则有∑Tiix△ω=∑'''Tiix△ω+∑''''''Tiix△ω<2ε+2ε=ε,∴f在[a,b]上可积.[必要性]∵f在[a,b]上可积,∴任给ε>0,存在[a,b]上的某分割T,使∑Tiix△ω<ε. 在T上增加分点c,得分割T⁰,有∑︒︒︒Tiix△ω≤∑Tiix△ω<ε.分割T⁰在[a,c]和[c,b]上的部分,分别构成它们的分割T’和T”,则有∑'' 'Tiix△ω≤∑︒︒︒Tiix△ω<ε,∑''''''Tiix△ω≤∑︒︒︒Tiix△ω<ε,∴f在[a,c]与[c,b]上都可积.又有∑︒︒︒Tiix)△f(ξ=∑'''Tiix)△ξf(+∑''''''Tiix)△ξf(,当║T⁰║→0时,同时有║T’║→0,║T”║→0,对上式取极限,得⎰b a f(x)dx=⎰c a f(x)dx+⎰b c f(x)dx. (关于积分区间的可加性)规定1:当a=b时,⎰baf(x)dx=0;规定2:当a>b时,⎰baf(x)dx=-⎰a b f(x)dx;以上规定,使公式⎰baf(x)dx=⎰c a f(x)dx+⎰b c f(x)dx对于a,b,c的任何大小顺都能成立.性质5:设f在[a,b]上可积. 若f(x)≥0, x∈[a,b],则⎰baf(x)dx≥0. 证:∵在[a,b]上f(x)≥0,∴f的任一积分和都为非负.又f在[a,b]上可积,∴⎰ba f(x)dx=in1iiTx△)f(ξlim∑=→≥0.推论:(积分不等式性)若f,g在[a,b]上都可积,且f(x)≤g(x), x∈[a,b],则有⎰baf(x)dx≤⎰b a g(x)dx.证:记F(x)=g(x)-f(x)≥0, x ∈[a,b],∵f,g 在[a,b]上都可积,∴F 在[a,b]上也可积.∴⎰b a F(x )dx=⎰b a g(x )dx-⎰b a f(x )dx ≥0,即⎰b a f(x )dx ≤⎰ba g(x )dx.性质5:若f 在[a,b]上可积,则|f|在[a,b]上也可积,且 |⎰b a f(x )dx|≤⎰ba |f(x )|dx.证:∵f 在[a,b]上可积,∴任给ε>0,存在分割T ,使∑Ti i f x △ω<ε,由不等式||f(x 1)|-|f(x 2)||≤|f(x 1)-f(x 2)|可得i ||f ω≤i f ω, ∴∑Ti i ||f x △ω≤∑Ti i f x △ω<ε,∴|f|在[a,b]上可积.又-|f(x)|≤f(x)≤|f(x)|,∴|⎰b a f(x )dx|≤⎰ba |f(x )|dx.例1:求⎰11-f(x )dx ,其中f(x)= ⎩⎨⎧<≤<≤.1x 0 ,e ,0x 1-1-2x x-, 解:⎰11-f(x )dx=⎰01-f(x )dx+⎰10f(x )dx=(x 2-x)01-+(-e -x )10=-2-e -1+1=-e -1-1.例2:证明:若f 在[a,b]上连续,且f(x)≥0,⎰ba f(x )dx =0,则 f(x)≡0, x ∈[a,b].证:若有x 0∈[a,b], 使f(x 0)>0,则由连续函数的局部保号性, 存在的x 0某邻域U(x 0,δ)(当x 0=a 或x 0=b 时,则为右邻域或左邻域), 使f(x)≥21f(x 0)>0,从而有⎰baf(x )dx =⎰δ-x a0f(x )dx+⎰+δx δ-x 00f(x)dx+⎰+bδx 0f(x)dx ≥0+⎰+δx δ-x 0002)f(x dx+0=δf(x 0)>0, 与⎰ba f(x )dx =0矛盾,∴f(x)≡0, x ∈[a,b].二、积分中值定理定理:(积分第一中值定理)若f 在[a,b]上连续,则至少存在一点 ξ∈[a,b],使得⎰ba f(x )dx =f(ξ)(b-a).证:∵f 在[a,b]上连续,∴存在最大值M 和最小值m ,由 m ≤f(x)≤M, x ∈[a,b],得m(b-a)≤⎰ba f(x )dx ≤M(b-a),即m ≤⎰baf(x)a -b 1dx ≤M. 又由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=⎰baf(x)a -b 1dx ,即⎰b a f(x )dx =f(ξ)(b-a).积分第一中值定理的几何意义:(如图)若f 在[a,b]上非负连续,则y=f(x)在[a,b]上的曲边梯形面积等于以f(ξ)为高,[a,b]为底的矩形面积.⎰ba f(x)a-b 1dx 可理解为f(x)在[a,b]上所有函数值的平均值.例3:试求f(x)=sinx 在[0,π]上的平均值. 解:所求平均值f(ξ)=⎰π0f(x)π1dx=π1(-cosx)π0|=π2.定理:(推广的积分第一中值定理)若f 与g 在[a,b]上连续,且g(x)在[a,b]上不变号,则至少存在一点ξ∈[a,b],使得g(x )f(x )ba⎰dx =f(ξ)⎰bag(x )dx.证:不妨设g(x)≥0, x ∈[a,b],M,m 分别为f 在[a,b]上的最大,最小值. 则有mg(x)≤f(x)g(x)≤Mg(x), x ∈[a,b],由定积分的不等式性质,有 m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰b a g(x )dx. 若⎰ba g(x )dx=0,结论成立.若⎰bag(x )dx>0,则有m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=dxg(x )g(x )dxf(x )b aba⎰⎰,即g(x )f(x )b a ⎰dx =f(ξ)⎰ba g(x )dx.习题1、证明:若f 与g 在[a,b]上可积,则i n1i i i 0T x △))g(ηf(ξlim ∑=→=⎰⋅ba g f , 其中ξi , ηi 是△i 内的任意两点. T={△i }, i=1,2,…,n.证:f 与g 在[a,b]上都可积,从而都有界,且fg 在[a,b]上可积. 设|f(x)|<M, x ∈[a,b],则对[a,b]上任意分割T ,有in 1i iix △))g(ηf(ξ∑==in1i iiiix△)]g(ξ-)g(η))[g(ξf(ξ∑=+=i n1i i i x △))g(ξf(ξ∑=+i g in1i i x △ω)f(ξ∑=≤i n1i i i x △))g(ξf(ξ∑=+M i n1i g i x △ω∑=.∴|i n 1i i i x △))g(ηf(ξ∑=-i n 1i i i x △))g(ξf(ξ∑=|≤M i n1i g i x △ω∑=.∴|i n 1i i i 0T x △))g(ηf(ξlim ∑=→-i n 1i i i 0T x △))g(ξf(ξlim ∑=→|≤0T lim →M i n1i g i x △ω∑==0 ∴i n 1i i i 0T x △))g(ηf(ξlim ∑=→=i n1i i i 0T x △))g(ξf(ξlim ∑=→=⎰⋅ba g f .2、不求出定积分的值,比较下列各对定积分的大小.(1)⎰10x dx 与⎰102x dx ;(2)⎰2π0x dx 与⎰2π0sinx dx.解:(1)∵x>x 2, x ∈(0,1),∴⎰10x dx>⎰102x dx.(2)∵x>sinx, x ∈(0,2π],∴⎰2π0x dx>⎰2π0sinx dx.3、证明下列不等式:(1)2π<⎰2π02x sin 21-1dx <2π;(2)1<⎰10x 2e dx<e ;(3)1<⎰2π0x sinx dx<2π;(4)3e <⎰4e e xlnx dx<6. 证:(1)∵1<x sin 21-112<21-11=2, x ∈(0,2π);∴⎰2π0dx <⎰2π02x sin 21-1dx <⎰2π02dx ,又⎰2π0dx =2π;⎰2π02dx=2π; ∴2π<⎰2π2x sin 21-1dx<2π.(2)∵1<2x e <e, x ∈(0,1);∴1=⎰10dx <⎰10x 2e dx<⎰10edx =e.(3)∵π2<x sinx <1,x ∈(0,2π);∴1=⎰2π0dx π2<⎰10x2e dx<⎰2π0dx =2π.(4)令'⎪⎭⎫ ⎝⎛x lnx =x 2lnx -2=0,得x lnx 在[e,4e]上的驻点x=e 2,又e x x lnx ==e 1,e 4x x lnx ==e 2ln4e ,∴在[e,4e]上e 1<x lnx <22elne =e 2;∴3e =⎰4eee1dx <⎰4eexlnx dx<⎰4eee2dx =6.4、设f 在[a,b]上连续,且f(x)不恒等于0. 证明:⎰ba 2[f(x )]dx>0. 证:∵f(x)不恒等于0;∴必有x 0∈[a,b],使f(x 0)≠0. 又由f 在[a,b]上连续,必有x ∈(x 0-δ, x 0+δ),使f(x)≠0,则⎰+δx δ-x 200f >0,∴⎰ba 2[f(x )]dx=⎰δ-x a20f +⎰+δx δ-x 200f +⎰+b δx 20f =⎰+δx δ-x 200f +0>0.注:当x 0为a 或b 时,取单侧邻域.5、若f 与g 都在[a,b]上可积,证明:M(x)=b][a,x max ∈{f(x),g(x)},m(x)=b][a,x min ∈{f(x),g(x)}在[a,b]上也都可积.证:M(x)=21(f(x)+g(x)+|f(x)-g(x)|);m(x)=21(f(x)+g(x)-|f(x)-g(x)|). ∵f 与g 在[a,b]上都可积,根据可积函数的和、差仍可积,得证.6、试求心形线r=a(1+cos θ), 0≤θ≤2π上各点极径的平均值.解:所求平均值为:f(ξ)=⎰2π0a 2π1(1+cos θ)d θ=2πa(θ+sin θ)2π=a.7、设f 在[a,b]上可积,且在[a,b]上满足|f(x)|≥m>0. 证明:f1在[a,b]上也可积. 证:∵f 在[a,b]上可积,∴任给ε>0,有∑Ti i x △ω<m 2ε.任取x ’,x ”∈△i ,则)x f(1''-)x f(1'=)x )f(x f()x f(-)x f(''''''≤2i mω.设f1在△i 上的振幅为ωi -,则ωi -≤2imω. ∴∑Ti -i x △ω≤∑Ti i 2x △ωm 1<2m1·m 2ε=ε,∴f 1在[a,b]上也可积.8、证明积分第一中值定理(包括定理和中的中值点ξ∈(a,b). 证:设f 在[a,b]的最大值f(x M )=M, 最小值为f(x m )=m , (1)对定理:当m=M 时,有f(x)≡m, x ∈[a,b],则ξ∈[a,b]. 当m<M 时,若m(b-a)=⎰b a f(x )dx ,则⎰ba m]-[f(x )dx=0,即f(x)=m , 而f(x)≥m ,∴必有f(x)≡m ,矛盾. ∴⎰ba f(x )dx >m(b-a). 同理可证:⎰ba f(x )dx <M(b-a).(2)对定理:不失一般性,设g(x)≥0, x ∈[a,b]. 当m=M 或g(x)≡0, x ∈[a,b]时,则ξ∈[a,b].当m<M 且g(x)>0, x ∈[a,b]时,若M ⎰ba g dx-⎰ba fg dx=⎰ba f)g -(M dx=0, 由(M-f)g ≥0,得(M-f)g=0. 又g(x)>0,∴f(x)≡M ,矛盾. ∴⎰ba fg dx <M ⎰ba g dx. 同理可证:⎰ba fg dx>m ⎰ba g dx. ∴不论对定理还是定理,都有ξ≠x M 且ξ≠x m .由连续函数介值定理,知ξ∈(x m ,x M )⊂(a,b)或ξ∈(x M ,x m )⊂(a,b),得证.9、证明:若f 与g 都在[a,b]上可积,且g(x)在[a,b]上不变号,M,m 分别为f(x)在[a,b]上的上、下确界,则必存在某实数μ∈[m,M],使得g(x )f(x )ba⎰dx =μ⎰bag(x )dx.证:当g(x)≡0, x ∈[a,b]时,g(x )f(x )ba ⎰dx =μ⎰bag(x )dx=0.当g(x)≠0时,不妨设g(x)>0,∵m ≤f(x)≤M, x ∈[a,b], ∴m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰bag(x )dx ,即m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.∴必存在μ∈[m,M],使g(x )f(x )b a ⎰dx =μ⎰ba g(x )dx.10、证明:若f 在[a,b]上连续,且⎰b a f(x )dx=⎰ba x f(x )dx=0,则在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0. 又若⎰ba 2f(x )x dx=0,则f 在(a,b)内是否至少有三个零点证:由⎰ba f =0知,f 在(a,b)内存在零点,设f 在(a,b)内只有一个零点f(x 1), 则由⎰ba f =⎰1x a f +⎰b x 1f 可得:⎰1x a f =-⎰bx 1f ≠0. 又f 在[a,x 1]与[x 1,b]不变号,∴⎰ba x f =⎰1x a x f +⎰b x 1xf =ξ1⎰1x a f +ξ2⎰b x 1f =(ξ2-ξ1)⎰bx 1f ≠0, (a<ξ1<x 1<ξ2<b),矛盾.∴f 在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0.记函数g=xf(x),则g 在[a,b]上连续,且⎰b a g(x )dx=⎰ba x f(x )dx=0, 又⎰ba x g(x )dx=⎰ba 2f(x )x dx=0,即有⎰b a g(x )dx=⎰ba x g(x )dx=0,∴g=xf(x)在(a,b)内至少存在两个零点,若f 在(a,b)内至少存在三个零点f(x 1)=f(x 2)=f(x 3)=0,则 g(x 1)=x 1f(x 1)=g(x 2)=x 2f(x 2)=g(x 3)=x 3f(x 3)=0,即g=xf(x)在(a,b)内至少存在三个零点g(x 1)=g(x 2)=g(x 3)=0,矛盾, ∴f 在[a,b]上连续,且⎰ba f(x )dx=⎰b a x f(x )dx=⎰ba 2f(x )x dx=0,则 f 在(a,b)内至少存在两个零点.11、设f 在[a,b]上二阶可导,且f ”(x)>0. 证明:(1)f ⎪⎭⎫⎝⎛+2b a ≤⎰-b a f(x)a b 1dx ; (2)又若f(x)≤0, x ∈[a,b],则有f(x)≥⎰-baf(x)a b 2dx, x ∈[a,b].证:(1)令x=a+λ(b-a), λ∈(0,1),则⎰-baf(x)a b 1dx=⎰+10a)]-λ(b f[a d λ, 同理,令x=b-λ(b-a),也有⎰-ba f(x)ab 1dx=⎰-10a)]-λ(b f[b d λ,则 ⎰-b a f(x)a b 1dx=⎰-++10a)]}-λ(b f[b a)]-λ(b {f[a 21d λ. 又f 在[a,b]上二阶可导,且f ”(x)>0,∴f 在[a,b]上凹,从而有21{f[a+λ(b-a)]+f[b-λ(b-a)]}≥f{21[a+λ(b-a)]+21f[b-λ(b-a)]}=f ⎪⎭⎫ ⎝⎛+2b a . ∴⎰-b a f(x)a b 1dx ≥⎰⎪⎭⎫ ⎝⎛+102b a f d λ=f ⎪⎭⎫⎝⎛+2b a . (2)令x=λb+(1-λ)a ,由f 的凹性得⎰-ba f(x)ab 1dx=⎰+10λ)a]}-f[(1b) {f(λd λ≤⎰+10λ)f(a)]-(1f(b) [λd λ =f(b)1022λ+ f(a)1022λ)-(1-=2f(b)f(a)+. 不妨设f(a)≤f(b),则f(a)≤f(x)≤0, x ∈[a,b],又f(b)≤0, ∴⎰-ba f(x)ab 2dx ≤f(a) +f(b)≤f(x).12、证明:(1)ln(1+n)<1+21+…+n1<1+lnn ;(2)lnnn 1211limn +⋯++∞→=1. 证:(1)对函数f(x)=x1在[1,n+1]上取△i =1作分割,并取△i 的左端点为ξi ,则和数∑=n1i i 1是一个上和,∴⎰+1n 1x 1dx<∑=n 1i i1,即ln(n+1)< 1+21+…+n1;同理,取△i 的右端点为ξi ,则和数∑=+1-n 1i 1i 1是一个下和,∴∑=+1-n 1i 1i 1<⎰n 1x 1dx , 即21+…+n 1<lnn ,∴1+21+…+n1<1+lnn. 得证.(2)由(1)知ln(1+n)<1+21+…+n 1<1+lnn ,∴lnn 1)ln(n +<lnnn 1211+⋯++<1+lnn 1; 又lnn 1)ln(n lim n +∞→=1n n lim n +∞→=1;∞→n lim (1+lnn 1)=1;∴lnnn 1211lim n +⋯++∞→=1.。
一个定积分不等式的几种不同证明方法及推广
关 键 词 : 积 分 ; 等 式 ;单 调 定 不
中 图分 类 号 : 1 5 5 0 7 . 文献标识码 : A 文 章 编 号 :0 7— 8 4 2 0 ) 3— 0 6— 2 10 0 3 ( 0 8 0 0 2 0
不 等式是 数学 分析 中在进 行计 算和证 明 时经常 用 到的非 常重要 的工 具 , 同时 也是 数 学 分 析 中 主要
r
方 法 3 构造 辅助 函数 用微 分法
令g ( )=J ()t J ()t ,£d — ,£d, ∈( ,) 01.
J o J O
由于 t [ , ] 连 续 , 以 g )在 ( , ) )在 0 1 上 所 ( 0 1
1 , 1
I (t t J ( d, ,q d ≥ , t t ) )
研究 的 问题之 一 . 不等 式 的研 究 对数 学 分 析 的发 展 起着 巨大 的推 动作 用 . 数 学 分 析 中有 关 不 等式 研 在
得
首 先 讨 论 0 < q < 1的 情 况 . 由
J ) J ) J ), = : + d = =
J 0
究 的主要 工具 和方 法有 : 函数 的 凹凸性 、 分 中值定 微 理、 积分 中值定 理 、 调性 、 单 极值 原 理 、 无穷 级数 和一 些重要 不 等式 等 ¨ . 文 就 定 积分 中 的一 个 不 等 ] 本 式分别 用定 积分 的换 元法 、 积分 中值 定理 、 构造辅 助
Vo .1 . 1 7 No 3 Se 2 08 p. 0
一
个 定 积分 不 等 式 的 几 种 不 同证 明 方 法及 推 广
田 立 平
( 京 物 资 学 院 信 息 学 院 , 京 1 14 ) 北 北 0 19
利用定积分证明数列和型不等式
利用定积分证明数列和型不等式数列和型不等式是数列中项的和与数列项的不等关系之间的一种定理。
利用定积分可以证明数列和型不等式。
首先我们先回顾一下数列和的定义。
对于n个实数a1, a2, ..., an,我们定义它们的和为S = a1 + a2 + ... + an。
数列和型不等式就是研究这种和与数列项的不等关系。
接下来我们将使用定积分来证明数列和型不等式。
定积分是微积分中一个重要的概念。
给定一个函数f(x),我们可以通过定积分来计算函数在一些区间上的面积。
假设我们有一个数列{an},其中每个项an都是一个非负实数。
我们可以定义一个函数f(x),其在区间[0, n]上的积分值就是数列{an}的和。
我们令S = ∫₀ⁿ f(x)dx。
现在我们来看定积分的性质。
对于一个非负函数f(x),如果在区间[a, b]上有f(x) ≤ g(x),那么∫ₐᵇf(x)dx ≤ ∫ₐᵇ g(x)dx。
也就是说,如果函数f(x)在整个区间上都小于等于另一个函数g(x),那么f(x)的积分值一定小于等于g(x)的积分值。
现在我们可以使用定积分来证明数列和型不等式了。
假设{an}是一个非负数列,且存在一个非负函数f(x),使得在整个区间[0, n]上都有0≤ an ≤ f(x)。
我们令S = ∫₀ⁿ f(x)dx。
根据定积分的性质,对于任意的项an,有0 ≤ an ≤ f(x)。
因此对于数列的和S,我们有0 ≤ S ≤ ∫₀ⁿ f(x)dx。
根据定义,∫₀ⁿ f(x)dx就是数列{an}的和。
因此我们得到了数列和型不等式:0 ≤ S ≤ a₁ + a₂ + ... + an。
数列和型不等式有一个重要的应用就是用来估计数列的和。
当我们能找到一个函数f(x),使得在整个区间[0, n]上都有an ≤ f(x)成立时,我们可以通过计算∫₀ⁿ f(x)dx来得到数列{an}的一个上界。
这个上界就是数列的和的一个估计值。
总结起来,利用定积分可以证明数列和型不等式。
定积分证明不等式例谈
中学数学月刊
ZI $ Z
定积分证明不等式例谈
刘祖希 江苏省苏州市第一中学 ! " # $ % % & ’ 定积分已进入现行高中教材( 以定积 分 为背景的试题近来在 高考 ) 竞赛中 屡 屡 出 现* 本 文即 将表明 ( 定积分在 比 较 大 小 ) 估计 和 式 上下界 ) 证 明不等式 问题中能 发 挥 很 大 作用 * + 利用定积分的保号性比大小 保号 性 是 指 ( 定义在, ( . /上 的 可 积 函 数 01 ! 则 01 ! 2’ % ( 2’ % * 例 + 证明几 何 4 算 术平均不 等式 5 6 2 76* 证明 不妨设 % 8( #2 "2 9 2 6 显然 存在 使得 ( :8 6 ( #2 5 62 6 :2 5 6 76 # 2( < #= : ;# 5 6 6
6
3
-
.
F 利用定积分估计和式的上下界 定积分产生和应用的一个主要背景是计 算 曲 边梯 形的面 积 ( 现在用 它来 估计 小 矩 形 的面积和 * # # 例 F 求证 G #; ; ;9; H" HI # M H6; #< # J" ! ’ ( ! 6J # ( 6K L ’ * H6 # 在区间 证明 考 虑函数 0 ! B ’= HB , ? ( ? ;# / ! ? =# ( " ( I ( 9( 6 ’上的定积分 * 如图 # 显然 ( # # = N#J H? H? 对? 求和 (
/ Q
+
/ Q
W
+ VC )& J / J / @/ 0 2 0 2 10 2 X / / / 说明 & 涉及对称问题求区域边界方程 $
定积分不等式的几种典型证法
定积分不等式的几种典型证法
(1) 分类讨论法
对定积分不等式的两侧进行分类讨论,其中一侧可能存在正无穷或者负无穷,另外一侧存在有界的定积分,把它们分为两类,再根据定积分不等式本身的性质进行讨论。
(2) 极限法
将定积分不等式转换为相应的极限问题,当极限取值小于零时,定积分不等式的左侧取最大值;当极限取值大于零时,定积分不等式的右侧取最小值。
(3) 变量变换法
定积分不等式的积分项中可能存在某些因子,通过变量变换,将定积分不等式化成简单的定积分不等式,再利用上面提到的方法进行证明。
定积分不等式及其最佳常数的两种证明方法
定积分不等式及其最佳常数的两种证明方法第一种方法是基于初等数学推导的证明。
我们首先利用定积分的性质,将不等式转化为对于一组非负实数的不等式。
然后,利用求导的方法,求出该组函数的最值,得到最佳常数。
第二种方法是基于分析数学的证明。
我们首先将定积分不等式化为一个关于函数的不等式,然后利用分析数学中的一些技巧,如利用极值原理和平均值不等式等,得到最佳常数。
两种方法各有优缺点,但都能证明定积分不等式及其最佳常数的存在性和唯一性。
在实际应用中,根据具体情况选择不同的证明方法。
- 1 -。
积分证明不等式的方法
积分证明不等式的方法例1、 证明不等式 n nn ln 1 1211 )1ln(+<+++<+ . 证:考虑函数, 2 , 1 , 1 , 1)(=+<≤=n n x n nx f ,) , 1[ , 1)(∞+∈=x xx g .易见对任何n , 在区间 ] 1 , 1 [+n 上)(x g 和)(x f 均单调, 因此可积,且有)(x g ≤)(x f , 注意到)(x g ≡/ )(x f , 就有⎰⎰++<1111)()(n n dx x f dx x g . 而∑⎰∑⎰∑⎰=+=+=+===n i i i n i i i ni n idx i dx x f dx x f 111111111)()(,⎰+=11)(n dx x g ⎰+++==1111)1ln(|ln n n n x xdx . 因此有 1211 1 )1ln(1n in ni +++=<+∑= .取, 2 , 1 , 1 , 11)(=+<≤+=n n x n n x f ,) , 1[ , 1)(∞+∈=x xx g .在区间] 1 , 1[+n 仿以上讨论, 有⎰⎰>nndx x f dx x g 11)()(. 而⎰=nn dx x g 1,ln )(n i i dx x f nn i n i i i 13121 1111)(111111+++=+=+=⎰∑∑⎰-=-=+ ,⇒ n nln 1 1211+<+++. 综上 , 有不等式n nn ln 1 1211 )1ln(+<+++<+ .例2、 求极限∞→n lim )21( 21333444n n n ++++++ .[3]P167 E19解:)21( 21333444n n n ++++++ =∑∑==⎪⎭⎫⎝⎛⋅⎪⎭⎫⎝⎛n i ni n i n n n i n 133144=∑∑==⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛ni ni n n i n n i 131411.∞→n lim ∑⎰===⋅⎪⎭⎫ ⎝⎛ni dx x n n i 11044511 ,∞→n lim ∑⎰=≠==⋅⎪⎭⎫ ⎝⎛ni dx x n n i 11330411 . 因此 , ∞→n lim )21( 21333444n n n ++++++ 54= .例3、 试证明: 对任何+∈Z n , 有不等式nn n n ++++++12111 < 2ln .证:n n n n ++++++12111 =∑=⋅+nk n nk 1111是函数)(x f =x+11在区间[ 0 , 1 ] 上相应于n 等分分法n T 的小和)(n T s . 由函数)(x f =x+11在区间[ 0 , 1 ]上可积, 有∞→n 时, )(n T s ↗⎰⎰=+=112ln 1)(x dxdx x f . 又易见)(n T s ↗↗. ⇒对任何n, 有)(n T s <2ln , 即nn n n ++++++12111 < 2ln . 例4、证明:当x x xxx <+<+>)1ln(1,0. 分析:所证不等式中的函数)1ln(x +的导数为x+11,即所证不等式中含有函数及其导数,因而可用拉格朗日中值定理试之.由于01ln =,因此可构造函数的改变量1ln )1ln(-+x ,则相应自变量的改变量为x,原不等式等价于:11)1(11)1ln(11<-+-+<+x n x x ,由不等式中间部分的形式可知,可利用拉格朗日中值定理去证明.证明:构造函数tt f ln )(=,因)(t f 在)0](1,1[>+x x 上连续,在)1,1(x +上可导,)(t f 在)0](1,1[>+x x 上满足拉格朗日条件,于是存在)1,1(x +∈ξ,使ξξ1)(1)1()1()1(='=-+-+f x f x f ,因1111),1ln(1ln )1ln()1()1(<<++=-+=-+ξx x x f x f ,所以1)1ln(11<+<+x x x . 即)0(,)1ln(1><+<+x x x xx. 例5、设20,π<<<>y x e a ,证明a a y x a a x x y ln )cos (cos ->-.分析:原不等式可等价于a a xy a a x xy ln cos cos -<--.可看出不等式左边可看成是函数t a t f =)(与t t g cos )(=在区间],[y x 上的改变量的商,故可用柯西中值定理证明之.证明:原不等式等价于a a xy a a x xy ln cos cos -<--,可构造函数t a t f =)(,t t g cos )(=,因),(t f )(t g均在],[y x 上连续,在),(y x 上可导,且0ln )(≠='a a t f t ,由于20π<<<y x ,则y y g x x g t t g c o s)(c o s )(,0s i n )(=≠=≠-=',所以),(t f )(t g 在],[y x 上满足柯西中值条件,于是存在),(y x ∈ξ,使得ξξξξsin ln cos cos )()()()()()(-=--=--=''aa x y a a x g y g x f y f g f x y ,又因),,(,y x e a∈>ξ,20π<<<y x 有1ln ,1sin 1,>><a a a x ξξ,得到ξξξξs i nln ln ,sin ln ln a a a a a a a a xx->-< ,因此 aa xy a a x xy ln cos cos -<--,即a a y x a a x x y ln )cos (cos ->-.例6:当)1,0(∈x ,证明x e xx211>-+. 证明:因xe x2,11-分别可写成幂级数展开式,有:=++++++=-+)1)(1(112 n x x x x xx)1,0(,22212∈+++++x x x x n .),(,!2!2221222+∞-∞∈+++++=x x n x x enn x.则左边的一般项为nx2,右边的一般项为!2n x nn ,因此当!22,3n n n>≥,所以)1,0(,112∈>-+x e xxx .。
定积分不等式公式总结
定积分不等式公式总结定积分不等式是微积分中的重要内容,通过定积分不等式可以解决许多实际问题,并且在数学理论中也有着重要的地位。
在定积分不等式的学习中,我们需要掌握一些重要的公式和定理,这些公式和定理可以帮助我们更好地理解和应用定积分不等式。
接下来,我们将对定积分不等式的相关公式进行总结和归纳。
首先,我们来看一些常用的定积分不等式公式:1. Cauchy不等式,设函数f(x)和g(x)在区间[a, b]上连续,且g(x)≠0,则有∫[a,b]f(x)g(x)dx ≤ (∫[a, b]f(x)²dx)^(1/2) (∫[a, b]g(x)²dx)^(1/2)。
2. Hölder不等式,设1/p + 1/q = 1,f(x)和g(x)在区间[a, b]上可积,则有∫[a,b]|f(x)g(x)|dx ≤ (∫[a, b]|f(x)|^pdx)^(1/p) (∫[a, b]|g(x)|^qdx)^(1/q)。
3. Minkowski不等式,设p ≥ 1,f(x)和g(x)在区间[a, b]上可积,则有(∫[a,b]|f(x) + g(x)|^pdx)^(1/p) ≤ (∫[a, b]|f(x)|^pdx)^(1/p) + (∫[a, b]|g(x)|^pdx)^(1/p)。
以上是一些常用的定积分不等式公式,它们在定积分不等式的证明和应用中起着重要的作用。
除了这些公式外,我们还需要了解一些定积分不等式的性质和定理,这些性质和定理可以帮助我们更好地理解和运用定积分不等式。
接下来,我们来看一些定积分不等式的性质和定理:1. 定积分的保号性,设f(x)在区间[a, b]上连续且f(x)≥0,则有∫[a, b]f(x)dx ≥0。
2. 定积分的线性性,设f(x)和g(x)在区间[a, b]上可积,a、b为常数,则有∫[a,b](af(x) + bg(x))dx = a∫[a, b]f(x)dx + b∫[a, b]g(x)dx。
积分不等式的证明方法
积分不等式的证明方法摘要在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明方法,还可以更好的将初等数学的知识和高等数学的结合起来.并且可以拓宽我们的视野、发散我们的思维、提高我们的创新能力,因此可以提高我们解决问题的效率.本文主要通过查阅有关的文献和资料的方法,对其中的内容进行对比和分析,并加以推广和补充,提出自己的观点.本文首先介绍了两个重要的积分不等式并给出了证明,然后分类讨论了证明积分不等式的八种方法,即利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用积分的性质、利用泰勒公式、利用重积分、利用微分中值定理,最后对全文进行了总结.关键词:积分不等式,定积分,中值定理,柯西-施瓦兹不等式,单调性ABSTRACTWhen we study mathematics,the proof of integer inequality has always been seen as a complex content both in difficulty and skill.In this paper the proof methods of integral inequality are organized systematically to combine the knowledge of elementary mathematics and higher mathematics better. Also our horizons can be broadened,thinking can be divergencied and innovation ability can be improved,so as to improve our efficiency of problem solving.The paper is completed by referring to relevant literature,comparing and analysing related content, complementing and promoting related content.In this paper ,two important integral inequalities along with their proof methods are given first,and then eight approaches to proof integral inequalities are introduced,such as concavity and convexity of function,method of auxiliary function,important integral inequality,integral mean value theorem, integral property, Taylor formula,double integral and differential mean value theorem.Finally,the full paper is summarized.Key words: Integral Inequality, Definite Integral,Mean Value Theorem,Cauchy-Schwarz Inequality, Monotonicty1.引言不等式在数学中有着重要的作用,在数量关系上,尽管不等关系要比相等关系更加普遍的存在于人们的现实世界里,然而人们对于不等式的认识要比方程迟的多.直到17世纪之后,不等式的理论才逐渐的成长起来,成为数学基础理论的一个重要组成部分.众所周知,不等式理论在数学理论中有着重要的地位,它渗透到了数学的各个领域中,因而它是数学领域中的一个重要的内容.其中积分不等式更是高等数学中的一个重要的内容.实际上关于定积分的概念起源于求平面图形的面积和一些其他的实际问题.有关定积分的思想在古代就有了萌芽,比如在公元前240年左右的古希腊时期,阿基米德就曾经用求和的方法计算过抛物线弓形和其他图形的面积.在历史上,积分观念的形成要比微分早.然而直到17世纪后半期,较为完整的定积分理论还没有能够形成,一直到Newton-Leibniz公式建立之后,有关计算的问题得以解决后,定积分才迅速的建立并成长起来.本论文研究的积分不等式结合了定积分以及不等式.关于它的证明向来是高等数学中的一个重点及难点.对积分不等式的证明方法进行研究,并使其系统化,在很大程度上为不同的数学分支之间架起了桥梁.深刻的理解及掌握积分不等式的证明方法可以提升我们对其理论知识的理解,同时可以提高我们的创造思维和逻辑思维.在论文的第三部分中对积分不等式的证明方法进行了详细的阐述.分别从利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用泰勒公式、利用重积分、利用微分中值定理、利用定积分的性质这八个方面给出了例题及证明方法.这样通过几道常见的积分不等式的证明题,从不同的角度,用不同的方法研究、分析了积分不等式的特点,归纳总结出了其证明方法.同时论文中也对有的题目给出了多种证明方法,这启示我们对于同一道积分不等式而言它的证明方法往往不止一种,我们需要根据实际情况采用合适的方法去证明,从而达到将问题化繁为简的目的.2.几个重要的积分不等式在高等数学的学习中我们遇到过许多重要的积分不等式,如Cauchy-Schwarz 不等式,Young 不等式等.它们的形式及证明方法都有很多种,在这一小结中我们将给出这两种积分不等式的证明方法.2.1 Cauchy-Schwarz 不等式无论是在代数还是在几何中Cauchy-Schwarz 不等式的应用都很广泛,它是不同于均值不等式的另一个重要不等式.其形式有在实数域中的、微积分中的、概率空间()P F ,,Ω中的以及n 维欧氏空间中的4种形式.接下来在这一部分中我们将对其在微积分中的形式进行研究.定理2.1[1] 设()f x , ()g x 在[,]a b 上连续,则有[()()b af xg x dx ⎰]2≤{2[()]b af x dx ⎰}⋅ {2[()]bag x dx ⎰}.证明:要证明原不等式成立,我们只需要证()()()()2220bbbaaa fx dx g x dx f x g x dx ⎡⎤⋅-≥⎢⎥⎣⎦⎰⎰⎰ 成立. 设()()()()()222tttaa a F t f x dx g x dx f x g x dx ⎡⎤=⋅-⎢⎥⎣⎦⎰⎰⎰,则只要证()()F b F a ≥成立,由()F t 在[,]a b 上连续,在(),a b 内可导,得()()()()()()()()()22222t t taaaF t f t g x dx g t f x dx f t g t f x g x dx'=+-⎰⎰⎰()()()()()()()()22222ta f t g x f t g t f x g x g t f x dx ⎡⎤=-+⎣⎦⎰()()()()20ta f t g x g t f x dx =-≥⎡⎤⎣⎦⎰.(2.1)由(2.1)式可知()F t 在[,]a b 上递增,由b a >,知()()F b F a >,故原不等式成立. 证毕实际上关于Cauchy-Schwarz 不等式的证明方法有很多,这里我们采用的证明方法是较为普遍的辅助函数法,它将要证明的原积分不等式通过移项转变为了判断函数在两个端点处函数值大小的问题.通过观察我们可以进一步发现原Cauchy-Schwarz 不等式能够改写成以下行列式的形式()()()()()()()()0b baabbaaf x f x dxg x f x dx f x g x dxg x g x dx≥⎰⎰⎰⎰,由此我们可以联想到是否可以将它进行推广?答案是肯定的.下面我们将给出Cauchy Schwarz -不等式的推广形式.定理2.2[2] 设()f x ,()g x ,()h x 在[],a b 上可积,则()()()()()()()()()()()()()()()()()()0bbbaaabbbaaabbbaaaf x f x dxg x f x dxh x f x dxf xg x dx g x g x dxh x g x dx f x h x dxg x h x dxh x h x dx≥⎰⎰⎰⎰⎰⎰⎰⎰⎰.证明:对任意的实数1t ,2t ,3t ,有()()()()2123bat f x t g x t h x dx ++⎰()()()222222123bbbaaat f x dx t g x dx t h x dx=++⎰⎰⎰()()()()()()1213232220bbb aaat t f x g x dx t t f x h x dx t t g x h x dx +++≥⎰⎰⎰.注意到关于1t ,2t ,3t 的二次型实际上为半正定二次型, 从而其系数矩阵行列式为()()()()()()()()()()()()()()()2220bbbaaab bba aabbbaaaf x dxg x f x dxh x f x dxf xg x dxgx dxh x g x dx f x h x dx g x h x dxh x dx≥⎰⎰⎰⎰⎰⎰⎰⎰⎰. 证毕以上的推广是将Cauchy-Schwarz 不等式的行列式由二阶推广到了三阶的形式,事实上Cauchy-Schwarz 不等式是一个在很多方面都很重要的不等式,例如在证明不等式,求函数最值等方面.若能灵活的运用它则可以使一些较困难的问题得到解决.下面我们会在第三部分给出Cauchy-Schwarz 不等式及其推广形式在积分不等式证明中的应用.除了Cauchy-Schwarz 不等式之外还有很多重要的积分不等式,例如Young 不等式,相较于Cauchy-Schwarz 不等式我们对Young 不等式的了解比较少,实际上它也具有不同的形式且在现代分析数学中有着广泛的应用.接着我们将对Young 不等式进行一些研究.2.2 Young 不等式Young 不等式,以及和它相关的Minkowski 不等式,HÖlder 不等式,这些都是在现代分析数学中应用十分广泛的不等式,在调和函数、数学分析、泛函分析以及偏微分方程中这三个不等式的身影随处可见,是使用得最为普遍,最为平凡的知识工具.下面我们将给出积分形式的Young 不等式的证明.定理 2.3[3] 设()f x 在[0,]c (0c >)上连续且严格递增,若(0)0f =,[0,]a c ∈且[0,()]b f c ∈,则100()()abf x dx f x dx ab -+≥⎰⎰,其中1f -是f 的反函数,当且仅当()b f a =时等号成立.证明:引辅助函数0()()ag a ab f x dx =-⎰, (2.2)把0b >看作参变量,由于()()g a b f a '=-,且f 严格递增,于是当 10()a f b -<<时,()0g a '>;当 1()a f b -=时,()0g a '=;当 1()a f b ->时,()0g a '<. 因此 当1()a f b -=时,()g a 取到g 的最大值,即()()()()b f g x g a g 1m ax -=≤ (2.3)由分部积分得11()()11(())()()()f b f b g f b bf b f x dx xdf x ----=-=⎰⎰,作代换()y f x =,上面积分变为110(())()bg f b f y dy --=⎰, (2.4)将(2.2)式和(2.4)式代入(2.3)式得110()()()a bbab f x dx f y dy f x dx ---≤=⎰⎰⎰,即10()()a bf x dx f x dx ab -+≥⎰⎰. 证毕3.定积分不等式常见的证明方法关于积分不等式的证明方法较为繁多,难度及技巧性也较大,因此对其进行系统的归纳总结是很有必要的.在这一部分中我们将归纳出利用辅助函数、微分中值定理、重要积分不等式及积分中值定理等证明积分不等式的方法.3.1 利用函数的凹凸性在数学分析以及高等数学中,我们常常会遇到一类特殊的函数—凸函数.凸函数具有重要的理论研究价值和广泛的实际应用,在有些不等式的证明中,若能灵活地利用凸函数的性质往往能够简洁巧妙的解决问题.下面给出一个例子加以说明.定理3.1 若()t ϕ定义在间隔(),m M 内,且()0t ϕ''>,则()t ϕ必为下凸函数.定理3.2 设()f x 在[,]a b 上为可积分函数,而()m f x M ≤≤.又设()t ϕ在间隔m t M ≤≤内为连续的下凸函数,则有不等式()()()11b b a af x dx f x dx b a b aϕϕ⎛⎫≤⎪--⎝⎭⎰⎰.例3.1[4] 设()f x 在[],a b 上连续,且()0f x >,求证:()()()21bba a f x dx dxb a f x ≥-⎰⎰. 证明: 取()u u 1=ϕ, 因为()210u u ϕ'=-<,()320u uϕ''=>,()0>u 即在0u >时,()y u ϕ=为凸函数,故有()()()11b b a a f x dx f x dx b a b a ϕϕ⎛⎫≤ ⎪--⎝⎭⎰⎰, 即()()1babadxf x b ab a f x dx-≤-⎰⎰,故()()()21b b a a f x dx dx b a f x ≥-⎰⎰. 证毕 在上述的题目中我们可以发现在证明中常常先利用导数来判断函数的凹凸性,然后再利用凹(凸)函数的性质来证明不等式.然而对于实际给出的题目,我们往往需要先构造一个凹(凸)函数,然后才能利用其性质来证明我们所要证明的问题.3.2 辅助函数法辅助函数法是积分不等式证明中的一种非常重要的方法,往往我们会根据不等式的特点,构造与问题相关的辅助函数,考虑在相同的区间上函数所满足的条件,从而得出欲证明的结论.在第二部分中我们用辅助函数法对Cauchy-Schwarz 不等式进行了证明,下面将对用辅助函数法证明积分不等式进行进一步的探讨.[5]设函数()f x 在区间[]0,1上连续且单调递减,证明:对)1,0(∈∀a 时,有: ()10()af x dx a f x dx ≥⎰⎰.证明:令()01()xF x f t dt x =⎰ ()01x <≤,由()x f 连续,得()x F 可导 则()()()02xf x x f t dtF x x ⋅-'=⎰ ()()2f x x f x xξ⋅-⋅=()()f x f x ξ-=, (0)x ξ<<. 因为()f x 在[0,1]上单调减少,而0x ξ<<,有()()f x f ξ<,从而()0F t '<,()F x 在(0,1]上单调减少,则对任意(0,1)a ∈,有()(1)F a F ≥. 即()1001()af x dx f x dx a≥⎰⎰,两边同乘a ,即得()100()a f x dx a f x dx ≥⎰⎰. 证毕 本题根据积分不等式两边上下限的特点,在区间)1,0(上构造了一个辅助函数,进一步我们可以思考对于一般的情形,该题的结论是否依然成立呢?答案是肯定的.设函数()f x 在区间[]0,1上连续且单调递减非负,证明:对)1,0(,∈∀b a ,且10<≤<b a 时,有: ()0()aba a f x dx f x dx b≥⎰⎰. 证明:令()01()xF x f t dt x=⎰,()01x <≤,由()x f 连续,得()x F 可导, 则 ()()()02x f x x f t dtF x x⋅-'=⎰ ()()2f x x f xx ξ⋅-⋅=()()f x f xξ-=,(0)x ξ<<.因为()f x 在[0,1]上单调减少,而0x ξ<<,有()()f x f ξ<,从而()0F t '<,()F x 在(0,1]上单调减少,则对任意10<≤<b a ,有()()F a F b ≥,即()()0011a bf t dt f t dt a b≥⎰⎰. (3.1)由f 非负,可得()()dx x f dx x f bab ⎰⎰≥0. (3.2)结合(3.1)式和(3.2)式可得()()011a ba f x dx f x dx a b≥⎰⎰.即()()0aba a f x dx f x dx b≥⎰⎰. 证毕 [6] 函数()f x 在[,]a b 上连续,且()0>x f 试证:21()()()bbaaf x dx dx b a f x ≥-⎰⎰. 在例3.1中我们给出了本题利用函数的凹凸性证明的过程,在这里我们将给出其利用辅助函数法证明的过程.证明: 构造辅助函数()()()()2xxa adt x f t dt x a f t φ=--⎰⎰, 则 ()()()()()()12xx aa dt x f x f t dt x a f t f x φ'=+⋅--⎰⎰()()()()2xx x aa a f x f t dt dt dt f t f x =+-⎰⎰⎰()()()()20xaf x f t dt f t f x ⎡⎤=+-≥⎢⎥⎣⎦⎰, 所以()x φ是单调递增的,即()()0b a φφ≥=,故()()()21bbaaf x dx dx b a f x ≥-⎰⎰. 证毕 [7]设()x f 在[]b a ,上连续且单调增加,证明:()()⎰⎰+≥babadx x f b a dx x xf 2. 证明: 原不等式即为()()02≥+-⎰⎰baba dx x fb a dx x xf ,构造辅助函数()()()2t ta a a t F t xf x dx f x dx +=-⎰⎰ ,[],t ab ∈, 则()()()()122t a a t F t tf t f x dx f t +'=--⎰ ()()()12t a t a f t f x dx ⎡⎤=--⎢⎥⎣⎦⎰ ()()()()12t a f t f ζ=-- , (),a t ζ∈.因为a t ζ≤≤,()f x 单调增加,所以()0F t '≥.故()F t 在[],a b 上单调递增,且()0F a =, 所以对(,]x a b ∀∈,有()()0F x F a ≥=.当x b =时,()0F b ≥.即()()02bbaaa b xf x dx f x dx +-≥⎰⎰,故原不等式成立, 证毕通过以上几道题目的观察我们可以发现:1.当已知被积函数连续时,我们可以把积分的上限或者是下限作为变量,从而构造一个变限积分,然后利用辅助函数的单调性加以证明.2.辅助函数法实际上是一种将复杂的问题转化为容易解决的问题的方法.在解题时通常表现为不对问题本身求解而是对与问题相关的辅助函数进行求解,从而得出原不等式的结论.3.3 利用重要积分不等式在第2部分中我们给出了Cauchy-Schwarz 不等式以及它的推广形式的证明过程,实际上Cauchy-Schwarz 不等式的应用也很广泛,利用它可以解决一些复杂不等式的证明.在这一小节中我们将通过具体的例子来加以说明它在证明积分不等式中的应用.[8]函数()f x 在[]0,1上一阶可导,()()100f f ==,试证明:()()112214f x dx f x dx '≤⎰⎰.证明:由()()()00xf x f t dt f '=+⎰和()()()11x f x f t dt f '=-+⎰可得()()()()()21222201xx xfx f t dtdt f t dt x f x dx '''=≤≤⎰⎰⎰⎰, 1(0,)2x ⎡⎤∈⎢⎥⎣⎦,()()()()()21111222201(1)x x x fx f t dtdt f t dt x f x dx '''=≤≤-⎰⎰⎰⎰, 1(,1)2x ⎡⎤∈⎢⎥⎣⎦. 因此()()112220018f x dx f x dx '≤⎰⎰,(3.3)()()112210218f x dx f x dx '≤⎰⎰. (3.4) 将(3.3)式和(3.4)式相加即可以得到()()112214f x dx f x dx '≤⎰⎰. 证毕[2]设()f x ,()g x 在[],a b 上可积且满足:()0m f x M <≤≤,()0ba g x dx =⎰,则以下两个积分不等式()()()()()()()22222bb b baaaaf xg x dxf x dxg x dx m b a g x dx ≤--⎰⎰⎰⎰及()()()()()2222bbbaaaM m f x g x dxf x dxg x dx M m -⎛⎫≤ ⎪+⎝⎭⎰⎰⎰成立.证明:取()1h x =,由()0b ag x dx =⎰及定理2.2知()()()()()()()()2200bbbaaab baabaf x dxg x f x dxf x dxf xg x dxg x dx f x dxb a-⎰⎰⎰⎰⎰⎰()()()()()()()()()()222220bbbbbaa a a ab a fx dx g x dx f x dx g x dx b a f x g x dx=-⋅---≥⎰⎰⎰⎰⎰.因此()()()()()()()()222221bbbbbaaaaaf xg x dxfx dx g x dx f x dxg x dx b a≤--⎰⎰⎰⎰⎰. (3.5)由()m f x ≤可知()()()222baf x dxm b a ≥-⎰,因而()()()()()()()22222bbbbaaa a f x g x dxfx dx g x dx m b a g x dx ≤--⎰⎰⎰⎰.由于()0m f x M <≤≤,因此()2222M m M m f x +-⎛⎫⎛⎫-≤ ⎪ ⎪⎝⎭⎝⎭.化简得()()()2f x Mm M m f x +≤+,两边同时积分得 ()()()()2bbaaf x dx Mm b a M m f x dx +-≤+⎰⎰,由算数-几何平均值不等式可知 ()()()()222bbaaf x dx Mm b a f x dx Mm b a ⋅-≤+-⎰⎰,于是()()()()()2224babab a f x dxM m Mmf x dx-+≤⎰⎰.则()()()221bbaaf x dxg x dx b a -⎰⎰()()()()()()2222bbbabaa af x dxfx dx g x dxb a f x dx=-⎰⎰⎰⎰()()()2224bbaaMmf x dxg x dx M m ≥+⎰⎰.(3.6)由式(3.5)和式(3.6)可知()()()()()2222bbbaaaM m f x g x dxf x dxg x dx M m -⎛⎫≤ ⎪+⎝⎭⎰⎰⎰. 证毕以上两道题分别利用了Cauchy-Schwarz 不等式及其推广形式.我们在证明含有乘积及平方项的积分不等式时应用Cauchy-Schwarz 不等式颇为有用,但要注意选取适当的()x f 与()x g ,有时还需对积分进行适当的变形.3.4 利用积分中值定理积分中值定理展现了将积分转化为函数值,或者是将复杂函数积分转变为简单函数积分的方法.其在应用中最重要的作用就是将积分号去掉或者是将复杂的被积函数转化为相比较而言较为简单的被积函数,从而使得问题能够简化.因此合理的利用积分中值定理能够有效的简化问题.下面将通过两道例题来说明.定理 3.3(积分第一中值定理) 若()f x 在[,]a b 上可积且()m f x M ≤≤,则存在[,]u m M ∈使()()ba f x dx ub a =-⎰成立.特别地,当()f x 在[,]a b 上连续,则存在[,]c a b ∈,使()()()baf x dx f c b a =-⎰成立.定理 3.4(积分第一中值定理的推广) 若函数()x f ,()x g 在区间[]b a ,上可积,()x f 连续,()x g 在[]b a ,上不变号,则在积分区间[]b a ,上至少存在一个点ε,使得下式成立()()()()⎰⎰=babadx x g f dx x g x f ε.定理3.5(积分第二中值定理的推广) 若函数()x f ,()x g 在区间[]b a ,上可积,且()x f 为单调函数,则在积分区间[]b a ,上至少存在一个点ε,使得下式成立 ()()()()()()⎰⎰⎰+=εεabbadx x g b f dx x g a f dx x g x f .设函数()f x 在区间[]0,1上连续单调递减,证明:对)1,0(,∈∀b a ,且10<≤<b a 时,有()0()aba a f x dx f x dx b≥⎰⎰,其中()0≥x f . 用辅助函数法证明的过程,实际上这道题目还可以用积分第一中值定理来证明,下面我们将给出证明过程.证明:由积分中值定理知 ()()10af x dx f a ξ=⋅⎰, []10,a ξ∈; ()()()2baf x dx f b a ξ=⋅-⎰,[]2,a b ξ∈;因为12ξξ≤,且()f x 递减,所以有()()12f f ξξ≥,即 ()()()0111a b ba a f x dx f x dx f x dx ab a b ≥≥-⎰⎰⎰, 故 ()()0a baa f x dx f x dxb ≥⎰⎰. 证毕设()x f 在[]b a ,上连续且单调增加,证明:()()⎰⎰+≥babadx x f b a dx x xf 2. 同样地,在之前的证明中我们给出了此题利用辅助函数法证明的过程,仔细分析观察这道题目我们还可以发现它可以用积分第一、第二中值定理的推广形式来证明,接着我们将给出此题在这两种方法下的证明过程.证法一证明: ()2ba ab x f x dx +⎛⎫- ⎪⎝⎭⎰()()2222a bb a b a a b a b x f x dx x f x dx ++++⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰. 由定理3.4可知,分别存在1,2a b a ξ+⎛⎫∈ ⎪⎝⎭,2,2a b b ξ+⎛⎫∈⎪⎝⎭, 使得 ()()22122a ba baa ab a b x f x dx f x dx ξ++++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰,()()22222b b a b a b a b a b x f x dx f x dx ξ++++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰, 因此()()()()()22128ba ab a b x f x dx f f ξξ-+⎛⎫-=- ⎪⎝⎭⎰,由于()x f 在[]1,0单调增加的,且1201ξξ<<<,所以有 ()()210f f ξξ-≥.从而()02ba ab x f x dx +⎛⎫-≥ ⎪⎝⎭⎰,故原不等式成立, 证毕 证法二证明:由定理3.5可知:存在(),a b ξ∈,使得 ()2ba ab x f x dx +⎛⎫- ⎪⎝⎭⎰()()22b a a b a b f a x dx f b x dx ξξ++⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()()()()f a f b a b ξξ=---⎡⎤⎡⎤⎣⎦⎣⎦.由()x f 单调增加及(),a b ξ∈知()()0f a f b -<,0a ξ->,0b ξ-<.可得()02ba ab x f x dx +⎛⎫-≥ ⎪⎝⎭⎰,故原不等式成立, 证毕 通过上述两道题目我们可以了解到积分中值定理在实际应用中起到的重要作用就是能够使积分号去掉,或者是将复杂的被积函数转化为相对而言较简单的被积函数,从而使问题得到简化.因此,对于证明有关结论中包含有某个函数积分的不等式,或者是要证明的结论中含有定积分的,可以考虑采用积分中值定理,从而去掉积分号,或者化简被积函数.3.5 利用积分的性质关于积分的性质在高等数学的学习中我们已经学到了很多,我们可以利用它来证明许多问题.在这里我们主要利用定积分的比较定理和绝对值不等式等性质对问题进行分析处理.[9]设()f x 在[]0,1上导数连续,试证:[]0,1x ∀∈,有()()()10f x f x f x dx ⎡⎤'≤+⎣⎦⎰. 证明:由条件知()f x 在[]0,1上连续,则必有最小值,即存在[]00,1x ∈,()()0f x f x ≤,由()()()00xx f t dt f x f x '=-⎰⇔()()()00xx f x f x f t dt '=+⎰,()()()00x x f x f x f t dt '=+⎰≤()()00x x f x f t dt '+⎰≤()()100f x f t dt '+⎰()()11000f x dt f t dt '=+⎰⎰≤()()1100f t dt f t dt '+⎰⎰()()10f t f t dt ⎡⎤'=+⎣⎦⎰()()10f x f x dx ⎡⎤'=+⎣⎦⎰.故原不等式成立, 证毕3.6 利用泰勒公式在现代数学中泰勒公式有着重要的地位,它在不等式的证明、求极限以及求高阶导数在某些点的数值等方面有着重要的作用.关于泰勒公式的应用已经有很多专家学者对其进行了深入的研究,下面我们将举例说明利用泰勒公式也是证明积分不等式的一种重要方法.定理 3.6(带有拉格朗日型余项的Taylor 公式) 设函数()f x 在点0x 处的某邻域内具有1n +阶连续导数,则对该邻域内异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得:20000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+ (1)其中(1)10()()()(1)!n n n f R x x x n ξ++=-+(ξ在x 与0x 之间)称为拉格朗日型余项,(1)式称为泰勒公式.[10] 设()f x 在[],a b 上有二阶连续导数,()()0f a f b ==,[](),max x a b M f x ∈''=,试证明:()()312bab a f x dx M -≤⎰.证明:对(),x a b ∀∈,由泰勒公式得()()()()()()212f a f x f x a x f a x ξ'''=+-+- , (),a x ξ∈,()()()()()()212f b f x f x b x f b x η'''=+-+-, (),x b η∈, 两式相加得 ()()()()()()22124a b f x f x x f a x f b x ξη+⎛⎫⎡⎤'''''=---+- ⎪⎣⎦⎝⎭, 两边积分得 ()()()()()()22124b bb aaa ab f x dx f x x dx f a x f b x dx ξη+⎛⎫⎡⎤'''''=---+- ⎪⎣⎦⎝⎭⎰⎰⎰, 其中 ()()()22b b b a a a a b a b f x x dx x df x f x dx ++⎛⎫⎛⎫'-=-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰, 于是有 ()()()()()2218bb a a f x dx f a x f b x dx ξη⎡⎤''''=-+-⎣⎦⎰⎰, 故()()()()223812bb aa M M f x dx a xb x dx b a ⎡⎤≤-+-=-⎣⎦⎰⎰. 证毕 [6]设()f x 在[],a b 上有二阶导数,且()0f x ''>,求证 ()()2b aa b f x dx b a f +⎛⎫≥- ⎪⎝⎭⎰. 证明:将()f x 在02a bx +=处作泰勒展开得到()()2122222a b a b a b a b f x f f x f x ξ++++⎛⎫⎛⎫⎛⎫⎛⎫'''=+-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ,2a b x ξ+⎛⎫∈ ⎪⎝⎭.因为()0f x ''>,所以可以得到 ()222a b a b a b f x f f x +++⎛⎫⎛⎫⎛⎫'≥+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 对不等式两边同时积分得到 ()()222b b a a a b a b a b f x dx f b a f x dx +++⎛⎫⎛⎫⎛⎫'≥-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰. 因为02b a a b x dx +⎛⎫-= ⎪⎝⎭⎰, 所以有()()2b a a b f x dx b a f +⎛⎫≥- ⎪⎝⎭⎰. 证毕通过这两道题目我们大致可以了解到当题目中出现被积函数在积分区间上有意义且有二阶及二阶以上连续导数时,是提示我们用泰勒公式证明的最明显的特征.一般情况下我们选定一个点o x ,并写出()x f 在这个点o x 处的展开公式,然后进行适当的放缩或与介值定理相结合来解决问题.3.7 利用重积分在一些积分不等式的证明中,由于被积函数的不确定,从而我们不能求出其具体的数值,这时我们可以将定积分转换为二重积分再利用其性质来求解.以下列举了3种利用重积分来证明积分不等式的方法,这种技巧在高等数学中虽然不常见,但却是很重要的,下面我们将通过3道例题来进一步说明.命题一[11]:若在区间[,]a b 上()()f x g x ≥,则()()bba a f x dx g x dx ≥⎰⎰.[11] 设()f x ,()g x 在[,]a b 上连续,且满足:()()xxaaf t dtg t dt ≥⎰⎰,[,]x a b ∈,()()b b a a f t dt g t dt =⎰⎰,证明:()()b ba axf x dx xg x dx ≤⎰⎰.证明:由题得()()x xaaf t dtg t dt ≥⎰⎰,从而可以得到()()b x b x aaaadx f t dt dx g t dt ≥⎰⎰⎰⎰,即[()()]0b xa adx f t g t dt -≥⎰⎰.左式[()()]b xaadx f t g t dt =-⎰⎰ [()()]Df tg t dxdt =-⎰⎰ (其中{(,)|,}D x t a x b a t x =≤≤≤≤)[()()]b b atdt f t g t dx =-⎰⎰ ()[()()]bab t f t g t dt =--⎰[()()][()()]b b b b aaaab f t dt g t dt tf t dt tg t dt =---⎰⎰⎰⎰[()()]0b baatf t dt tg t dt =--≥⎰⎰.则 ()()0b b aatf t dt tg t dt -≤⎰⎰ , 即()()b baaxf x dx xg x dx ≤⎰⎰. 证毕在本题中我们将一元积分不等式()()x xaaf x dxg x dx ≥⎰⎰的两边同时增加一个积分变量badx ⎰,使得一元积分不等式化为二元积分不等式,然后巧妙的运用转换积分变量顺序的方法达到证明一元积分不等式的方法.在利用重积分来证明积分不等式的时候,我们不但可以采用直接增元法,还可以采用转换法.关于转换法又分为将累次积分转换为重积分,以及将常数转换为重积分这两种形式.下面我们将依次来介绍这两种方法.1.将累次积分转为重积分命题二[11] 若()f x 在[,]a b 上可积,()g y 在[,]c d 上可积,则二元函数()()f x g y 在平面区域{(,)|,}D x y a x b c y d =≤≤≤≤上可积,且()()()()()()bd b dacacDf xg y dxdy f x dx g y dy f x dx g x dx ==⎰⎰⎰⎰⎰⎰.其中{(,)|,}D x y a x b c y d =≤≤≤≤[11] 设()p x ,()f x ,()g x 是[,]a b 上的连续函数,在[,]a b 上,()0p x >,()f x ,()g x 为单调递增函数,试证:()()()()()()()()bb b baaaap x f x dx p x g x dx p x dx p x f x g x dx ≤⎰⎰⎰⎰.证明:由()()()()()()()()b bbbaaaap x f x dx p x g x dx p x dx p x f x g x dx ≤⎰⎰⎰⎰可知:()()()()()()()()0bb b baaaap x dx p x f x g x dx p x f x dx p x g x dx -≥⎰⎰⎰⎰,令()()()()()()()()b bbbaaaaI p x dx p x f x g x dx p x f x dx p x g x dx =-⎰⎰⎰⎰,下证0I ≥;()()()()()()()()b b b baaaaI p x dx p x f x g x dx p x f x dx p x g x dx =-⎰⎰⎰⎰()()()()()()()()b b b baaaap x dx p y f y g y dy p x f x dx p y g y dy =-⎰⎰⎰⎰()()()()()()()()bbbba a aap x p y f y g y dxdy p x f x p y g y dxdy =-⎰⎰⎰⎰()()()[()()]bba ap x p y g y f y f x dxdy =-⎰⎰. (3.7)同理()()()()()()()()bbbbaaaaI p x dx p x f x g x dx p x f x dx p x g x dx =-⎰⎰⎰⎰()()()()()()()()b b b baaaap y dy p x f x g x dx p y f y dy p x g x dx =-⎰⎰⎰⎰()()()[()()]b baap y p x g x f x f y dxdy =-⎰⎰. (3.8)(3.7)+(3.8) 得2()()[()()][()()]bbaaI p x p y g y g x f y f x dxdy =--⎰⎰,因为()f x ,()g x 同为单调增函数,所以[()()][()()]0g y g x f y f x --≥ 又因为()0p x >,()0p y >,故2()()[()()][()()]0bbaaI p x p y g y g x f y f x dxdy =--≥⎰⎰,即0I ≥. 证毕2.将常数转换为重积分的形式在例中我们介绍了将累次积分转换为重积分,在下面的例中我们将对常数转换为重积分来进行说明.我们可以发现有这样一个命题,若在二重积分中被积函数(,)f x y k =,则可得到2()Dkd k b a σ=-⎰⎰,其中{(,)|,}D x y a x b a y b =≤≤≤≤.函数()f x 在[,]a b 上连续,且()0>x f 试证:21()()()b baaf x dx dx b a f x ≥-⎰⎰.本题与前面的例3.1以及例题目,在这里我们将利用重积分证明此题. 证明:原题即为 1()()bba aDf x dx dy d f y σ≥⎰⎰⎰⎰, 移项可得()(1)0()Df x d f y σ-≥⎰⎰,()()()2(1)(1)(1)0()()()DD Df x f x f y d d d f y f y f x σσσ-=-+-≥⎰⎰⎰⎰⎰⎰, 所以即为证()()(2)0()()Df x f y d f y f x σ+-≥⎰⎰,因为()0f x ≥,()0f y ≥,所以()()20()()f x f y f y f x +-≥. 故 ()()(2)0()()Df x f y d f y f x σ+-≥⎰⎰ 恒成立,即21()()()b b a a f x dx dx b a f x ≥-⎰⎰成立, 证毕通过以上三道例题我们可以大致了解到,在这一类定积分不等式的证明过程中我们一般先将所要证明的不等式转化为二次积分的形式,进一步再转换为二重积分,最后利用二重积分的性质或其计算方法得出结论.这种方法克服了数学解题过程中的高维数转化为低维数的思维定势,丰富了将二重积分与定积分之间互化的数学思想方法.3.8 利用微分中值定理微分中值定理是数学分析中的重要的一个基本定理,它是指罗尔中值定理、拉格朗日中值定理、柯西中值定理以及泰勒中值定理这四种定理.关于微分中值定理的应用也是很广泛的,证明不等式是微分中值定理最基本的应用之一.在这里我们将对利用柯西中值定理及拉格朗日中值定理证明积分不等式进行研究.下面将通过两个例子来具体说明这两个定理在证明积分不等式中的应用,以及不同的微分中值定理在证明不等式时的区别.[12] 设()0f a =,()f x 在区间[],a b 上的导数连续,证明:()()[]()2,11max 2bax a b f x dx f x b a ∈'≤-⎰. 证明:应用Lagrange 中值定理,(),a x ξ∃∈,其中a x b <<,使得 ()()()()f x f a f x a ξ'-=-, 因为()0f a =, 所以()f x M x a ≤-, [](),max x a b M f x ∈'=,从a 到b 积分得 ()bb aaf x dx M x a dx ≤-⎰⎰()()222bab M M x a dx x a =-=-⎰()()()221max 22M b a f x b a '=-=-.即()()[]()2,11max 2bax a b f x dx f x b a ∈'≤-⎰. 证毕 [13] 设函数()f x 在[]0,1上可微,且当()0,1x ∈时,()01f x '<<,()00f =试证:()()()21130f x dxf x dx >⎰⎰.证明:令()()()2xF x f t dt =⎰,()()30xG x f t dt =⎰,()(),F x G x 在[]0,1上满足柯西中值定理,则()()()()()()()()()211301010f x dxF F FG G G f x dxξξ'-=='-⎰⎰()()()()()003222f f t dt f t dt f f ξξξξξ==⎰⎰()01ξ<< ()()()()02220f t dt f t dtf fξξ-=-⎰⎰()()()22f f f ηηη='()11f η=>' , ()01ηξ<<<.所以()()()21120f x dxf x dx >⎰⎰. 证毕通过以上两道题目可以发现:1.在应用Lagrange 中值定理时先要找出符合条件的函数()f x ,并确定()x f 在使用该定理的区间[]b a ,,对()x f 在区间[]b a ,上使用该定理.若遇到不能用该定理直接证明的,则从结论出发,观察并分析其特征,构造符合条件的辅助函数之后再应用Lagrange 中值定理.2.在研究两个函数的变量关系时可以应用Cauchy 中值定理,在应用该定理证明不等式时关键是要对结果进行分析,找出满足Cauchy 中值定理的两个函数()x f ,()x g ,并确定它们应用柯西中值定理的区间[]b a ,,然后在对()x f ,()x g 在区间[]b a ,上运用Cauchy 中值定理.无论是Cauchy 中值定理还是Lagrange 中值定理在积分不等式的证明中都各具特色,都为解题提供了有力的工具.总之在证明不等式时需要对结论认真的观察有时还需要进行适当的变形,才能构造能够应用中值定理证明的辅助函数,进而利用微分中值定理证明不等式.4.总结我们通过查阅有关积分不等式的文献和资料,并对其中的相关内容进行对比和分析后,将有关的内容加以整理并扩充形成了本文.在论文中给出了两个重要的积分不等式的证明以及总结了八种积分不等式的证明方法.然而由于自己的参考资料面不够广,参考的大多数文献都是仅给出了例题及其证明方法,而并没有给出进一步的分析,同时自己的知识面较窄,能力有限,导致还有很多难度较大的问题尚未解决.例如,在实际的问题中,还有一些证明方法是我们所不知道的,并且还有一些不等式并不能用本文所给出的八种方法来证明,这就需要我们进一步的思考与研究.今后我们应该更多的参考其他资料,充分拓展思路,以便于提出新的观点.参考文献[1]王宇,代翠玲,江宜华.一个重要积分不等式的证明、推广及应用[J].荆州师范学院学报(自然科学版),2000,23(5):106[2] 张盈.Cauchy-Schwarz不等式的证明、推广及应用[J].高师理科学刊,2014,34(3):34-37[3] 黄群宾.积分不等式的证明[J].川北教育学院学报,1996,6(4):22-27[4] 李志飞.积分不等式的证明[J].高等数学研究,2014,17(6):50-51[5]郝涌,王娜,王霞,郭淑利.数学分析选讲[M].北京:国防工业出版社,2014[6]张瑞,蒋珍.定积分不等式证明方法的研究[J].河南教育学院学报(自然科学版),2011,20(2):18[7]林忠.一个积分不等式的几种证明方法[J].成都教育学院学报,2006,20(12):66[8]刘法贵.证明积分不等式的几种方法[J].高等数学研究,2008,11(1):122[9] 苏德矿,李铮,铁军.数学强化复习全书[M].北京:中国证法大学出版社,2015[10] 李小平,赵旭波.定积分不等式几种典型证法[J].高等数学研究,2009,12(6):13-17[11] 黄云美.重积分在积分不等式证明中的应用[J].杨凌职业技术学院学报,2014,13(3):27-33[12] 葛亚平.积分不等式证明的再认识[J].河南教育学院学报(自然科学版),2015,24(3):18-20[13] 王丽颖,张芳,吴树良.积分不等式的证法[J].白城师范学院学报,2007,21(3): 19-22。
探讨定积分不等式的证明方法
探讨定积分不等式的证明方法定积分不等式是数学中的一种重要的不等式,它在数学分析、微积分和概率论等领域中具有广泛的应用。
证明定积分不等式的方法也非常多样,下面将介绍几种常用的证明方法。
对于给定的定积分不等式,我们可以通过研究被积函数的性质来进行证明。
常用的方法有以下几种。
1.利用导数和极值的性质对于被积函数f(x),我们可以通过研究f'(x)的符号和f(x)的极值来判断f(x)在给定区间上的大小关系。
通过推导f'(x)的性质和计算f(x)的极值点,可以得到定积分不等式的证明。
2.利用函数的凸性或凹性凸函数具有性质:对于给定的区间上任意两个点,函数在这两个点之间的值不大于这两个点处的函数值的线性插值。
而凹函数则相反,函数在这两个点之间的值不小于这两个点处的函数值的线性插值。
通过研究函数的凸性或凹性,我们可以得到定积分不等式的证明。
3.利用函数的连续性和单调性如果被积函数f(x)在给定区间上是连续的,且在该区间上单调递增或单调递减,则可以利用这些性质来进行证明。
通过推导f(x)的导数或利用中值定理,可以得到定积分不等式的证明。
定积分不等式的证明通常需要对积分区间进行适当的分割,以便研究被积函数的性质。
常用的方法有以下几种。
1.利用分段函数的性质进行分割被积函数f(x)在给定区间上可能是分段定义的,在不同的区间段上具有不同的性质。
通过将给定区间分成几个子区间,并对每个子区间上的被积函数进行分析,可以得到定积分不等式的证明。
2.利用辅助函数进行分割如果被积函数f(x)难以分割或分析,我们可以引入辅助函数g(x)来研究定积分不等式。
通过将f(x)与g(x)进行比较,可以将定积分不等式转化为对辅助函数g(x)的定积分的不等式来进行证明。
积分中值定理是微积分中的基本定理之一,它为定积分不等式的证明提供了有力的工具。
常用的方法有以下几种。
1.利用平均值定理平均值定理是积分中值定理的一种特殊形式,它将定积分转化为函数的平均值与函数在给定区间上的其中一点处的函数值的乘积。
积分不等式公式
积分不等式公式
积分不等式公式是一种用于求解积分不等式的数学工具。
它的基本思想是利用积分的性质,将不等式中的积分项进行简化,并对积分区间进行适当的变换,最终得到一组简单的不等式,从而解决原始不等式。
2. 常见的积分不等式公式:
(1) 积分中值定理:
若f(x)在区间[a,b]上连续,且在(a,b)内可导,则存在c∈(a,b),使得
∫a^bf(x)dx=f(c)(b-a)
(2) 积分比较定理:
若f(x)≥0,g(x)≥0,且在区间[a,b]上f(x)≤g(x),则有
∫a^bf(x)dx≤∫a^bg(x)dx
(3) 积分平均值定理:
若f(x)在区间[a,b]上连续,则存在c∈(a,b),使得
∫a^bf(x)dx=(b-a)f(c)
(4) 积分中的柯西-施瓦茨不等式:
若f(x)和g(x)在区间[a,b]上连续,则有
|∫a^bf(x)g(x)dx|≤[∫a^bf^2(x)dx×∫a^bg^2(x)dx]^0.5
(5) 积分中的霍尔德不等式:
若f(x)和g(x)在区间[a,b]上连续,则有
|∫a^bf(x)g(x)dx|≤[∫a^bf^p(x)dx]1/p×[∫
a^bg^q(x)dx]1/q
其中p和q是满足1/p+1/q=1的正实数。
3. 积分不等式公式的应用:
积分不等式公式广泛应用于微积分、数学分析、概率论、统计学等领域中。
它可以用于求解函数的极限、面积、弧长、体积等问题,也可以用于证明不等式、推导概率分布函数、估计统计量等。
在实际应用中,积分不等式公式往往与其他数学工具相结合,以求解更复杂的问题。
积分不等式的证明及应用
积分不等式的证明及应用一、积分不等式的证明首先考虑一个函数f(x),如果在一个区间[a,b]上f(x)≥0,并且在[a,b]上f(x)连续,则我们可以利用微积分中的定义,将该区间[a,b]分成n个小区间,每个小区间长度为△x=(b-a)/n。
假设在每个小区间上,取fx*为小区间中的一个点,记为xi,则有f(xi)≥0。
因此,我们可以得到以下不等式:f(x1)△x+f(x2)△x+...+f(xn)△x ≥ 0当n趋向于无穷大时,△x趋近于0,即得到积分不等式的形式:∫[a,b] f(x) dx≥ 0这就是积分不等式的一个简单证明。
二、积分不等式的应用1.利用积分不等式证明函数的性质通过使用积分不等式,我们可以证明函数的单调性、凹凸性等性质。
例如,要证明函数f(x)在区间[a,b]上是递增的,可以假设a≤x1≤x2≤b,并证明f(x1)≤f(x2)。
根据积分不等式,我们可以推导出以下结论:∫[a,x1] f'(x) dx ≥ 0∫[a,x2] f'(x) dx ≥ 0将两式相减,可以得到以下不等式:∫[x1,x2] f'(x) dx ≥ 0根据积分的定义,可以得到:f(x2)-f(x1)≥0即f(x2)≥f(x1),证明了函数f(x)在区间[a,b]上是递增的。
2.求解不等式利用积分不等式,我们可以求解各种类型的不等式。
例如,考虑不等式∫[0,π] sin(x) dx ≥ 0。
我们可以通过求解积分来解决这个问题。
由于sin(x)在[0,π]上是非负的,所以这个不等式成立。
另一个例子是求解不等式∫[0,1] ln(1+x) dx ≥ ln2、我们可以通过计算积分的值,来判断不等式的成立性。
利用积分公式,计算得到∫[0,1] ln(1+x) dx = xln(1+x),[0,1] - ∫[0,1] x/(1+x) dx = ln2因此,不等式∫[0,1] ln(1+x) dx ≥ ln2是成立的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万方数据
万方数据
几类定积分不等式的证明
作者:王阳, 崔春红
作者单位:河北农业大学中兽医学院,河北定州,073000
刊名:
和田师范专科学校学报
英文刊名:JOURNAL OF HOTAN TEACHERS COLLEGE
年,卷(期):2009,28(3)
被引用次数:0次
1.白银凤微积分及其应用 2001
2.刘连福.许文林高等数学 2007
3.詹瑞清高等数学全真课堂 2003
4.沈燮吕.邵品宗数学分析纵横谈 1991
1.期刊论文杜红敏.Du Hong-min浅谈定积分在不等式证明与因式分解中应用-中国科教创新导刊2009,""(3)
定积分是高中新课程体系中一个新增加的重要内容,很多教师在该部分内容的教学时都与高中其他知识点割裂开未,殊不知,定积分在高中阶段解题中具有广泛的应用,本文以定积分在不等式证明和因式分解中应用为例,探讨定积分在高中解题中的应用.
2.期刊论文陈欢定积分的一个不等式及其应用-福州大学学报(自然科学版)2003,31(6)
线性是定积分最重要的性质之一,在此基础上定性地分析了形如gfn的函数的定积分的随着n的变化趋势,得到一个定理,并利用这个定理重新证明了Holder不等式.
3.期刊论文嵇国平.Ji Guoping定积分在不等式上的应用-常州师范专科学校学报2003,21(2)
不等式的证明是中学教学的一个重要内容,同时也是一个数学难点.由于微积分部分内容逐步渗透到中学数学中,用定积分方法解决不等式证明已成为可能.
4.期刊论文张惠玲.ZHANG Hui-ling定积分中不等式性质的研究-西安航空技术高等专科学校学报2009,27(3)
关于不等式的性质结论中等号成立的问题,在定积分中,进行了研究与探讨,并举例说明了它的应用.
5.期刊论文冯其明含∑nk=1f(k/n)的不等式的一种证法-高等数学研究2003,6(4)
利用定积分的定义及其几何意义可证明一些含∑nk=1f(k)/(n)的不等式.
6.期刊论文侯晓星.HOU Xiao-xing含定积分的不等式证明-泰州职业技术学院学报2005,5(4)
定积分不等式的证明是常见的一种题型.通过对典型例题的分析,利用换元法将被积函数转化为非负函数,或将定积分不等式视为数值不等式,再利用函数的单调性等,论述了含定积分的不等式证明的一般规律及求证方法.
7.期刊论文程仁华.李丽定积分的定义与某些重要不等式的推广应用-景德镇高专学报2004,19(4)
本文通n个正数的调和平均值、几何平均值、算术平均值及k次幂平均值的关系,并利用定积分的定义和连续函数极限的性质推导出函数的上述四种平均值之间的类似关系.
8.期刊论文沈凤英.孙存金.SHEN Feng-ying.SUN Cun-jin Schwarz不等式及旋转体侧面积的计算问题-苏州市职业大学学报2006,17(4)
文章应用Schwarz不等式的知识,给出了旋转体侧面积计算公式的一个新颖的证明,并同时指出用定积分计算旋转体侧面积时应该避免发生的错误. 9.期刊论文林银河关于Minkowski不等式的讨论-丽水师范专科学校学报2003,25(5)
在有关定积分不等式中,Minkowski不等式占有重要地位.将<数学分析>中提到的Minkowski不等式推广到更加一般的情形,从而改进已有的结论. 10.期刊论文刘放不等式(1/n+1+1/n+2+…+1/2n)2《1/2的六种不同证法-宜宾学院学报2003,6(6)
给出了不等式((1)/(n+1)+(1)/(n+2)+…+(1)/(2n))2<(1)/(2)的六种不同证法.
本文链接:/Periodical_htsfgdzkxxxb-hwb200903135.aspx
授权使用:中共汕尾市委党校(zgsw),授权号:05ca550e-ea59-4c55-8af2-9da600b00ff2,下载时间:2010年7月
1日。