定积分不等式的证明方法

合集下载

探讨定积分不等式的证明方法

探讨定积分不等式的证明方法

探讨定积分不等式的证明方法定积分是微积分中重要的概念之一,它在数学和其他学科中有着广泛的应用。

定积分不等式是对定积分的一种推广和扩展,它可以用来证明数学中的很多重要不等式。

定积分不等式的证明方法有很多种。

下面将介绍其中的几种常见证明方法。

1.利用积分的定义定积分的定义是通过极限来定义的,可以用积分和极限的性质来证明定积分不等式。

一般的证明步骤如下:(1)通过积分的定义,将定积分转化为极限的形式。

(3)利用极限的性质,对被积函数和不等式进行变换和处理,最终得到待证不等式。

2.利用积分的性质和中值定理(1)利用中值定理,将定积分表示为导数的形式。

(3)利用中值定理和被积函数的性质,对待证不等式进行变换和处理,最终得到待证不等式。

3.利用积分的性质和数学归纳法数学归纳法是数学中常用的证明方法之一,可以用来证明定积分不等式。

具体的证明方法如下:(1)利用积分的性质,将待证不等式转化为一系列具有相似性质的子不等式。

(2)对待证不等式的子不等式进行归纳证明,即先证明基本情况,然后假设第n个不等式成立,再通过已知的前n个不等式得到第n+1个不等式。

(3)通过数学归纳法的证明,得到待证不等式。

这种证明方法的优点是简单直接,能够通过归纳证明得到待证不等式,但需要对数学归纳法的性质和待证不等式的子不等式非常熟悉。

除了以上的方法,还可以利用几何意义、特殊函数的性质、不等式的基本性质等进行证明。

不同的证明方法适用于不同的场合和问题,需要根据具体情况选择合适的方法。

综上所述,定积分不等式的证明方法有很多种,可以利用积分的定义、性质和中值定理,数学归纳法等进行证明。

不同的证明方法有不同的优点和适用范围,需要根据具体情况选择合适的方法。

对于定积分不等式的证明方法的深入理解和熟练应用,对于深化对定积分的理解和掌握具有重要意义。

利用定积分证明不等式

利用定积分证明不等式

热点追踪Җ㊀广东㊀李文东㊀㊀不等式的证明是高考的重要内容,证明的方法多㊁难度大,特别是一些数列和型的不等式.这类不等式常见于高中数学竞赛题和高考压轴题中,由于证明难度较大,往往令人望而生畏.其中有些不等式若利用定积分的几何意义证明,则可达到以简驭繁㊁以形助数的解题效果.1㊀利用定积分证明数列和型不等式数列和型不等式的一般模式为ðni =1a i <g (n )(或ðni =1a i >g (n )),g (n )可以为常数.不失一般性,设数列a n =f (n )>0,此类问题可以考虑如下的定积分证明模式.(1)若f (x )单调递减.因为f (i )<ʏii -1f (x )d x ,从而ðni =1a i =ðn i =1f (i )<ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏi i -1f (x )d x <f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏi i-1f (x )d x <ðn +1i =2f (i -1)=ðni =1a i.㊀㊀(2)若f (x )单调递增.因为f (i )>ʏi i -1f (x )d x ,从而ðni =1a i=ðni =1f (i )>ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏii -1f (x )d x >f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏii-1f (x )d x >ðn +1i =2f (i -1)=ðni =1a i .例1㊀(2013年广东卷理19,节选)证明:1+122+132+ +1n2<74(n ɪN ∗).分析㊀本题证法大多采用裂项放缩来证明,为了得到更一般的结论,我们这里采用定积分来证明.证明㊀因为函数y =1xα(α>0且αʂ1)在(0,+ɕ)上单调递减,故ʏii -11x αd x >1iα(i ȡ3),从而当αʂ1时,ðni =11i α<1+12α+ðni =3ʏii -11x αd x =1+12α+ʏn21x αd x =1+12α-1(α-1)x α-1n 2=1+12α+1(α-1)2α-1-1(α-1)nα-1.㊀㊀利用这个不等式可以得到一些常见的不等式.若α=12,则ðn i =11i<1-32+2n =2n -1+(2-32)<2n -1.㊀㊀当α>1时,ðni =11iα<1+12α+1(α-1)2α-1=1+α+1α-1 12α.特别地,若α=2,则ðni =11i 2<1+2+12-1 122=74;若α=3,则ðni =11i3<1+3+13-1 123=54;若α=32,则ðni =11ii<1+32+132-1 1232=1+524<3;若α=1,则1n<ʏnn -11x d x =l n x nn -1=l n n -l n (n -1),从而可以得到12+13+ +1n +1<ʏn +111xd x =l n (n +1),1n +1+1n +2+ +12n<ʏ2nn1xd x =l n2.㊀㊀另一方面,1n -1>ʏnn -11xd x =l n x n n -1=l n n -l n (n -1),则1+12+13+ +1n -1>ʏn11x d x =l n n .㊀㊀当α=1时,借助定积分的几何意义上述不等式42热点追踪还可以进一步加强.图1是函数y =1x的部分图象,显然S 曲边梯形A B C F <S 梯形A B C F ,于是ʏn +1n1x d x <12(1n +1n +1),得l n (1+1n )<12(1n +1n +1),令n =1,2, ,n ,并采用累加法可得1+12+13+ +1n>l n (n +1)+n2(n+1)(n ȡ1).图1例2㊀证明:l n 42n +1<ðni =1i4i 2-1(n ɪN ∗).分析㊀由于i 4i 2-1=14(12i -1+12i +1),l n 42n +1=14l n (2n +1),故证明l n (2n +1)<ðni =1(12i -1+12i +1).构造函数f (x )=12x +1,显然f (x )单调递减,考虑到ðni =1(12i -1+12i +1)的结构,对函数f (x )采用类似图1中的梯形面积放缩.证明㊀由分析得ʏii -112x +1d x <12(12i -1+12i +1),故12l n (2n +1)=ʏn012x +1d x =ðni =1ʏii -112x +1d x <12ðni =1(12i -1+12i +1),不等式两边除以12即为所证.例3㊀证明13+15+17+ +12n +1<12l n (n +1)(n ɪN ∗).分析㊀若考虑函数y =12x +1,则有12i +1<ʏii -112x +1d x ,则ðni =112i +1<ðni =1ʏii -112x +1d x =ʏn012x +1d x =12l n (2x +1)n0=12l n (2n +1),达不到所证的精度,必须改变定积分放缩的精度.证明㊀结合不等式的右边,考虑函数f (x )=1x.如图2所示,在区间[i ,i +1]上,取区间的中点i +12,并以1i +12为高作矩形A E F B ,则S 矩形A E F B <ʏi +1i 1x d x .于是有22i +1=1i +12<ʏi +1i1xd x ,则ðni =122i +1<ðni =1ʏi +1i1xd x =ʏn +111xd x =l n (n +1),即ðn i =112i +1<12ln (n +1).图2例4㊀设n 是正整数,r 为正有理数.(1)求函数f (x )=(1+x )r +1-(r +1)x -1(x >-1)的最小值;(2)证明:n r +1-(n -1)r +1r +1<n r<(n +1)r +1-nr +1r +1;(3)设x ɪR ,记[x ]为不小于x 的最小整数,例如[2]=2,[π]=4,[-32]=-1.令S =381+382+383+ +3125,求[S ]的值.(参考数据:8043ʈ344 7,8143ʈ350 5,12543ʈ625 0,12643ʈ631 7.)分析㊀出题者的本意是利用第(1)问中的伯努利不等式来证明后两问,但这里我们利用积分来证明.证明㊀(1)f m i n (x )=0(求解过程略).(2)因为r 为正有理数,函数y =x r 在(0,+ɕ)上单调递增,故ʏnn -1x r d x <nr,而52热点追踪ʏnn -1x rd x =x r +1r +1n n -1=n r +1-(n -1)r +1r +1,故n r +1-(n -1)r +1r +1<n r.同理可得n r<ʏn +1n x rd x =x r +1r +1n +1n =(n +1)r +1-n r +1r +1,从而n r +1-(n -1)r +1r +1<n r<(n +1)r +1-n r +1r +1.(3)由于i 13<ʏi +1i x 13d x <(i +1)13,故S =ð125i =81i13<ð125i =81ʏi +1ix 13dx =ʏ12681x 13dx =34x 4312681=34(12643-8143),34(12543-8043)=34x 4312580=ʏ12580x 13d x =ð124i =80ʏi +1ix 13d x <ð124i =80(i +1)13=S .34(12543-8043)<S <34(12643-8043).代入数据,可得34(12543-8043)ʈ210.2,34(12643-8143)ʈ210.9.由[S ]的定义,得[S ]=211.2㊀利用积分证明函数不等式我们知道ʏx 2x 1fᶄ(x )d x =f (x 2)-f (x 1),因此,对于与f (x 2)-f (x 1)有关的问题,可以从定积分的角度去思考.若f (x )的导数f ᶄ(x )在区间(a ,b )上单㊀图3调递减且f ᶄ(x )为凹函数,如图3所示.设A C 的中点为B ,过点B 作B G ʅx 轴与f (x )交于点G ,过点G 作f (x )的切线与直线AH 和C D 分别交于点F 和I .设A (x 1,0),C (x 2,0),则f (x 2)-f (x 1)=ʏx 2x 1fᶄ(x )d x =S 曲边梯形A C J H ,S 矩形A C D E =f ᶄ(x 2+x 12)(x 2-x 1).因为S 曲边三角形E G H >S әE F G =S әD I G >S 曲边三角形J D G ,S 曲边梯形A C J H -S 矩形A C D E =S 曲边三角形E G H -S 曲边三角形J D G >0,于是有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12).借助上述几何意义,一般地我们有如下结论.(1)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凹函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12);(2)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凸函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1<f ᶄ(x 2+x12).例5㊀(1)函数f (x )=l n x ,因为f ᶄ(x )=1x在(0,+ɕ)上为凹函数,则对任意0<x 1<x 2,有l n x 2-l n x 1x 2-x 1>1x 2+x 12,即x 2-x 1l n x 2-l n x 1<x 1+x 22,此为对数均值不等式.(2)函数f (x )=x l n x ,因为f ᶄ(x )=1+l n x 在(0,+ɕ)上为凸函数,则对任意0<x 1<x 2,有x 2l n x 2-x 1l n x 1x 2-x 1<1+l n x 2+x 12.许多考题都是以此为背景命题,比如,如下高三模拟考试的压轴题.例6㊀已知函数f (x )=l n x -a x 22+(a -1)x -32a(a >0),在函数f (x )的图象上是否存在不同两点A (x 1,y 1),B (x 2,y 2),线段A B 中点的横坐标为x 0,直线A B 的斜率为k ,使得k >f ᶄ(x 0).简证㊀由于f ᶄ(x )=1x-a x +a -1(a >0)在(0,+ɕ)上为凹函数,可见结论成立!例7㊀设函数f (x )=xex ,若x 1ʂx 2,且f (x 1)=f (x 2),证明:x 1+x 2>2.分析㊀本题的本质是极值点偏移问题,常见证法是利用对称性构造函数,这里采用定积分来证明.证明㊀不妨设x 1<x 2,由f ᶄ(x )=1-x ex ,可知f (x )在(-ɕ,1]上单调递增,在[1,+ɕ)上单调递减,且f (0)=0.当x >0时,f (x )>0,可知0<x 1<1<x 2.设x 1e x 1=x 2e x 2=t ,则x 1+x 2=t (e x 1+e x 2),x 2-x 1=t (e x 2-e x 1),考虑函数y =e x ,则根据定积分的梯形面积放缩有e x 2-e x 1=ʏx 2x 1e xd x <(e x 1+e x2)(x 2-x 1)2,则x 2-x 1t <12 x 2+x 1t(x 2-x 1),故x 1+x 2>2.(作者单位:广东省中山市中山纪念中学)62。

定积分的计算和积分不等式 数学

定积分的计算和积分不等式  数学

定积分的计算和积分不等式摘要:本文首先介绍了定积分的几种计算方法:牛顿—莱布尼兹公式,分部积分法,换元积分法,积分值的估计。

其次再介绍了积分不等式的几种证明:用微分学的方法证明积分不等式,利用被积函数的不等式证明积分不等式,在不等式两端取变限积分证明新的不等式,利用积分性质证明不等式,利用积分中值定理证明不等式。

关键字:定积分;牛顿—莱布尼兹公式;分部积分法;换元积分法The Definite Integral Compute and Integral InequalityAbstract: In this paper, firstly, mainly introduced a few kinds computational method of definite integral: Newton-Leibniz, definite integration by parts, integration by substitution, definite integral by estimate value. Secondly, this paper also introduced a few kinds of integral invariant: using the method of differential calculus to prove integral invariant; making use of integrand invariant to prove integral invariant; using transfinite integrate to prove integral invariant; using integral characteristic to prove integral invariant; making use of integral mean value theorem to prove integral invariant.Key word:Definite integral; Newton-Leibniz; definite integration by parts; integration by substitution.引言数学分析是数学专业中一门重要的基础课,定积分的计算和积分不等式无疑是数学分析中一个重要的方面。

积分不等式证明技巧解析

积分不等式证明技巧解析


2 f ( x ) dx ≤

0
b a
1
f(
1) 1 ( ) d x + f′ 3 3
(x ∫
0
1
2
-
1) 1 dx = f ( ) . 3 3
6 借助于参数表达式来证明积分不等式
引入参数 t , 构造辅助函数
[ f ( x) ∫
- tg ( x ) ] d x ≥ 0 , 得到关于 t 的二次多项式 , 利用判别
n- 1 n- 2
+ … + 6 cn- 3 x + …
例 4 求 ( x 4 - x3 + 2 x 2 - x + 1) co s x d x. 解 列竖式计算 :
x x
4 4 3

- x - x
+ 2x
2 2 2
- x - 6x + 5x
+1 - 20 + 21
3 2
12 x
3
- 10 x

第 12 卷第 6 期
杨和稳 : 积分不等式证明技巧解析
27
1 ( ξ ) < 0 , x ∈ [ 0 , 1 ] , 所以 , 其中ξ介于 与 x 之间 . 因为 f ″ 3
f ( x) < f (
1 0
1) 1 1) 1 1 1) 2 ( ) (x ( ) ( x2 + f′ , f ( x ) < f ( ) + f ′ , 3 3 3 3 3 3
a x
例 4 设 f ( x ) 在 [ a , b] 上有连续导数 , 且 f ( a) = f ( b) = 0 , 证明 : b 4 ( x) | ≥ max | f ′ | f ( x ) | d x. 2

定积分不等式证明方法

定积分不等式证明方法

定积分不等式证明方法要证明一个定积分的不等式,通常可以使用下面的方法:1.使用函数的性质:a.利用函数的递增性或递减性:如果能够证明被积函数在积分区间上是递增函数或递减函数,那么可以利用这个性质来证明不等式。

b.利用函数的凸性或凹性:如果被积函数在积分区间上是凸函数或凹函数,那么可以利用这个性质来证明不等式。

c.利用函数的导数性质:如果能够证明被积函数的导数在积分区间上具有一些特定的性质,比如非负或非正,那么可以利用这个性质来证明不等式。

2.使用定积分的性质:a.利用定积分的线性性质:如果能够将被积函数表示为两个或多个可积函数的线性组合,那么可以利用定积分的线性性质来证明不等式。

b.利用定积分与函数极限的关系:如果被积函数是一个收敛函数序列的极限函数,那么可以利用定积分与函数极限的关系来证明不等式。

c.利用平均值定理:如果能够找到一个介于被积函数在积分区间上的最大值和最小值之间的常数函数,那么可以利用平均值定理来证明不等式。

3.使用面积比较法:a.利用图形的几何性质:将被积函数与一个已知函数或图形进行比较,通过比较图形的面积大小来证明不等式。

b.利用图形的对称性:如果能够将积分区间对称分割,或者利用函数的对称性,那么可以利用对称性来证明不等式。

4.使用特殊技巧:a.利用变量替换:通过对积分变量进行适当的代换,可以将原来的不等式转化为更加简单的形式,从而更容易证明。

b.利用积分的可加性:如果被积函数具有可加性的性质,即可以将积分区间分成多个子区间进行求积分,那么可以利用这个性质来证明不等式。

以上是一些常用的定积分不等式证明方法,但并不是穷尽的。

在实际问题中,根据具体的情况可能需要结合多种方法来证明不等式。

最后,需要强调的是,在证明中需要合理运用数学工具和定义、定理,推导过程要严密,逻辑要清晰,以确保证明的正确性和严谨性。

积分不等式的证明方法及其应用

积分不等式的证明方法及其应用

积分不等式的证明方法及其应用一、积分不等式的证明方法:1.使用定积分定义证明:对于一个函数f(x),如果在[a,b]上f(x)≥0,那么可以使用定积分的定义进行证明。

将[a,b]分成n个小区间,每个小区间长度为Δx=(b-a)/n,那么对于每个小区间,存在一个ξi ∈ [x_{i-1}, x_i],使得f(ξi)Δx_i≤∫_{x_{i-1}}^{x_i} f(x)dx。

对于所有小区间,将不等式相加并取极限即可得到定积分不等式。

2.使用导数的性质证明:对于一个函数f(x),如果能够表示出它的导数f'(x),那么可以使用导数的性质进行证明。

首先计算f'(x),然后判断f'(x)的正负性,再根据函数在[a,b]上的取值情况,可以得到相应的不等式。

例如,如果f'(x)≥0,那么f(x)在[a,b]上是单调递增的,可以得到∫_a^bf(x)dx≥∫_a^b f(a)dx=f(a)(b-a)。

3.使用恒等式和变量替换证明:对于一个复杂的积分不等式,有时可以通过引入合适的恒等式或进行变量替换来简化证明过程。

例如,对于形如∫_a^b f(x)g(x)dx≥0的不等式,可以通过将f(x)g(x)拆分为两个函数的平方和,然后应用恒等式a^2+b^2≥0进行证明。

或者,可以通过进行变量替换将不等式转化为更简单的形式,然后再进行证明。

二、积分不等式的应用:1.极值问题:2.凸函数与切线问题:3.平均值不等式:平均值不等式是积分不等式的一种特殊情况,它可以用于证明平均值与极值之间的关系。

例如,对于一个连续函数f(x),可以通过证明(1/(b-a))∫_a^b f(x)dx≥ƒ(ξ)来得到平均值与极值之间的关系。

4.泛函分析问题:总结起来,积分不等式的证明方法包括定积分定义证明、导数性质证明、恒等式和变量替换证明等等。

而积分不等式的应用包括解决极值问题、研究凸函数的性质、平均值不等式以及泛函分析问题等。

定积分不等式word文档良心出品

定积分不等式word文档良心出品

第三章一元积分学第三节定积分值的估计及不等式定积分值的估计及不等式证明是一个较难的问题,方法多样,用到的知识(微分学的知识,积分学的知识等)也很多。

总的说来:(1)主要用积分学的知识,除了定积分的性质、积分中值定理、计算方法外,以下几个简单的不等式也是有用的:b b(i)若f(x) <g(x)(x 引a,b]),则J f (x)dx < J g(x)dx .a ab b(ii) I f f(x)dx| 兰f l f (x) |dx.ad b(iii )若f(X)>0(X 引a,b]), a<c<d<b,则f f (x)dx < f f (x)dx.9 £(iv)(柯西不等式)[f f (x)g(x)dxr < a f 2(x)dx a g2(x)dx(2)主要用微分学的知识,包括前面己讲过的利用微分学知识证明不等式的一切方法.(3)利用二重积分、级数等.值得注意的是:题目的解法往往有多种,同一题目其解答过程中往往要用到各种知识和方法.、■莎 2例1.判断积分[sin x dx的符号分析:这个积分值是求不出来的.如果被积函数在积分区间上有确切的符号,那么积分值的符号很容易判断.如果被积函数在积分区间上有正、有负,那么应根据被积函数的正、负情况将积分区间分成部分区间,然后利用积分学等方面的知识比较在这些部分区间上的积分值(实际上是比较积分值的绝对值).本题中被积函数si nx2在积分区间上有正、有负,先作,一2*烦2 1 ^sin t换兀:t =x ,把积分变为(sinx dx=5t -^dt后,问题更清晰,因而想到/莎 2 1 2;rs int 1 F兀sin t ,^si ntsinxdx=?0 ;r dt=2d寅dx+J兀至此积分的符号凭直觉已经能判断了. 但严格说明还需做一些工作,上式右端两个积分的积分区间不一样,为了方便比较,应将两个积分放在同一积分区间上进行比较. 有了这些分析和思路后,解答就容易了.解:令t =x2,则0 sin/dx^L 于dt—2(0 于dx+J兀于dt)2兀sin t 兀一sin u 兀sin t对上式右端后一积分换元,u*得d r 右du—0右dt从而广sinx2dx—丄(f字dx-f严dt) 0 2 0JT看V u +兀1兀1 1=-f (k -- )sintdt >02 J t+J注:本题的解答过程不复杂,但其过程中有两个技巧很有用(1)将积分区间分成部分区间 (尤其是等分区间,特别是二等分) (2)如要比较两个在不同积分区间上的积分的大小,可通过换元变成相同积分区间上的积分,然后比较.迟. 3例 2 .设a A 0,证明:(xa sinx dx『a ■sinx dx > 亍分析::从形式上看很象柯西不等式,但两个积分的积分区间不一样,前面的积分可用教材上介绍的一个等式0,f(sinx)dx = jr 02 f(sinx)dx变为[0,亍]上的积分,再用柯西不等式便可得结论。

几类定积分不等式的证明_王阳

几类定积分不等式的证明_王阳
二、美国犹太人的过去与现在的颠覆
(苏州大学外国语学院 江苏苏州 215006)
犹太人对自己的生活是有着传统性的恪守,男婴出生第八天要 举行割礼仪式,是对再生的追求,也是对性的约束。一直生活在异
[摘 要]现代美国犹太人在美国这块“应许之地”、“希望之乡”的生 乡的犹太人对自己的身份经历了尴尬、模糊和认定的全面过程。在
分法先求出 f (x) 在[a,b] 上的最大、最小值,再用估值定理即可。
∫ 例:求证
2 exp(− 1 ) ≤ 2
1

2 1
exp(− x2 )dx

2
2。
证:先求被积函数
f (x) = exp(− x2 ) 在 ⎡⎢⎣−
1, 2
1 ⎤ 上的最大 2 ⎥⎦
和最小值。
∫ ∫ λ f ( x )dx ≥ λ 1 f ( x )dx 。
0
0
三、利用柯西-许瓦兹不等式证明定积分不等式
( ) ∫ ∫ 当 所 求 证 的 不 等 式 中 含 有 : b f 2 (x)dx, b f (x)dx 2 或
a
a
∫ ∫ b f (x)dx b g(x)dx 的形式时,可用柯西——许瓦兹不等式求证。
a
a
∵ f ′(x) = −2x exp(−x2 )
3.4 落地技术的对比研究
且经过 T 检验(p<0.01),它们之间存在显著性差异,体现出两个项
最佳着地技术是尽可能加大脚跟与身体重心之间的水平距离,
目的较大差别。众所周知,助跑速度和起跳能力是决定跳跃成绩的 尽量利用身体重心的抛物线轨迹使双脚落得更远。从起跳脚离地后,
两个最为重要的因素,而在实际情况中,则恰恰是由于主观上要求 运动员身体重心抛物线的移动轨迹就已被决定。但在实际跳跃中,

定积分不等式

定积分不等式

第三章 一元积分学第三节 定积分值的估计及不等式定积分值的估计及不等式证明是一个较难的问题,方法多样,用到的知识(微分学的知识,积分学的知识等)也很多。

总的说来:(1)主要用积分学的知识,除了定积分的性质、积分中值定理、计算方法外,以下几个简单的不等式也是有用的:(i)若]),[( )()(b a x x g x f ∈≤,则⎰⎰≤babadx x g dx x f )()( .(ii )⎰⎰≤babadx x f dx x f |)(||)(|。

(iii )若b d c a b a x x f ≤≤≤∈≥]),,[( 0)(,则⎰⎰≤badcdx x f dx x f )()(.(iv )(柯西不等式)⎰⎰⎰≤b ababadx x g dx x f dx x g x f )()(])()([222(2)主要用微分学的知识,包括前面己讲过的利用微分学知识证明不等式的一切方法。

(3)利用二重积分、级数等.值得注意的是:题目的解法往往有多种,同一题目其解答过程中往往要用到各种知识和方法. 例1.判断积分⎰π202sin dx x 的符号分析:这个积分值是求不出来的.如果被积函数在积分区间上有确切的符号,那么积分值的符号很容易判断.如果被积函数在积分区间上有正、有负,那么应根据被积函数的正、负情况将积分区间分成部分区间,然后利用积分学等方面的知识比较在这些部分区间上的积分值(实际上是比较积分值的绝对值).本题中被积函数2sin x 在积分区间上有正、有负,先作换元:2x t =,把积分变为dt ttdx x ⎰⎰=ππ20202sin 21sin 后,问题更清晰,因而想到dt t t dx x ⎰⎰=ππ20202sin 21sin +=⎰π0sin (21dx tt)sin 2⎰ππdt tt至此积分的符号凭直觉已经能判断了.但严格说明还需做一些工作,上式右端两个积分的积分区间不一样,为了方便比较,应将两个积分放在同一积分区间上进行比较.有了这些分析和思路后,解答就容易了. 解:令2x t =,则dt t t dx x ⎰⎰=ππ20202sin 21sin =+=⎰π0sin (21dx tt)sin 2⎰ππdt tt对上式右端后一积分换元π+=u t 得⎰⎰⎰+-=+-=ππππππ2sin sin sin dt t t du u u dt tt从而=⎰π202sin dx x -=⎰π0sin (21dx tt)sin 0⎰+ππdt t t0sin )11(210>+-=⎰ππtdt t t 注:本题的解答过程不复杂,但其过程中有两个技巧很有用(1)将积分区间分成部分区间(尤其是等分区间,特别是二等分)(2)如要比较两个在不同积分区间上的积分的大小,可通过换元变成相同积分区间上的积分,然后比较. 例2.设0>a ,证明:4320sin 0sin πππ≥⎰⎰-dx adx xaxx分析:: 从形式上看很象柯西不等式,但两个积分的积分区间不一样,前面的积分可用教材上介绍的一个等式⎰⎰=200)(sin )(sin πππdx x f dx x xf 变为]2,0[π上的积分,再用柯西不等式便可得结论。

定积分不等式证明方法

定积分不等式证明方法

f x dx 表示由曲线 y f x ,x
b a b a
轴及直线
x a , x b 所围成的曲边梯形的面积的相反数.
(3) 如果连续函数 f x 正负不定, 则
f x dx 表示由曲线 y f x ,x 轴及直
线 xa , xb 所 围 成 的 一 些 小 曲 边 梯 形 的 面 积 的 代 数 和 , 有
a c a
性质 5
d
[1]

f x 在 a, b 上可积,且 f x 0 , c, d a, b ,则
b
f x dx f x dx .
c a
性质 6
[1]

f x 在 a, b 上可积, x a, b ,则
b
b a i f a ,即 n
定积分
f x dx 为一序列和的极限,这样我们可由一些序列和的不等式得到积分不
[3]
等式,下面首先给出著名的 Jensen 不等式 ,即 设 f x 为 a , b 上 的 连 续 下 凸 函 数 , 证 明 对 于 任 意 xi a, b 和 i 0 , (i=1,2,……,n),
1.2 利用泰勒公式
定理 1
[2]
(泰勒定理)
若函数 f x 在 a , b 上存在直至 n 阶的连续导函数,在 x, x0 a, b ,至少存在一点 a, b ,
a, b 内存在{n+1}阶导函数,则对任意给定的
使得
f x f x0 f ' x0 x x0
f n x0 n!
f '' x0 2!

浅谈定积分不等式证明中辅助函数的构造方法

浅谈定积分不等式证明中辅助函数的构造方法

浅谈定积分不等式证明中辅助函数的构造方法构造辅助函数法是高等数学中解决问题的一种重要方法,在解决实际问题中有着广泛的应用,通过研究微积分学中辅助函数的构造法,构造与问题相关的辅助函数,从而得出欲证明的结论。

尤其关于定积分不等式的证明在近几年的研究生数学考试中又频繁出现。

借助适当的辅助函数来证明定积分不等式是一种非常重要且行之有效的方法。

本文对某些定积分不等式中辅助函数的构造方法简单探讨。

标签:定积分不等式;构造;辅助函数;变限法当某些数学问题使用通常办法去考虑而很难奏效时,可根据题设条件和结论特征、性质展开联想,进而构造出解决问题的特殊模式——构造辅助函数。

辅助函数构造法是高等数学中一个重要的思想方法,在高等数学中广泛应用。

构造辅助函数是把复杂问题转化为已知的容易解决问题的一种方法,在解题时,常表现为不对问题本身求解,而是构造一个与问题有关的辅助问题进行求解。

微积分学中辅助函数的构造是在一定条件下利用微积分中值定理求解数学问题的方法。

可以解决高等数学中众多难题,尤其是在微积分证明题中应用颇广,可达到事半功倍的效果。

特别是定积分不等式的证明,往往需要借助恰当的辅助函数才能顺利完成,然而,对基础一般的学生来说,构造恰当的辅助函数是相当有难度的。

笔者在教学中进行探索,找到一些可行的方法,在此与广大读者进行交流。

一、构造辅助函数的原则辅助函数的构造是有一定规律的。

当某些数学问题使用通常的方法按定势思维去考虑很难奏效时,可根据题设条件和结论的特征、性质展开联想,进而构造出解决问题的特殊模式,这就是构造辅助函数解题的一般思路。

二、构造辅助函数方法探讨1.仅告知被积函数连续的命题的证法一般来说,这类命题的证明要做辅助函数(或者说用辅助函数法更简便)。

在定积分不等式中,辅助函数φ(x)的构造方法是将定积分不等式中,积分上限(或下限)及相同字母换成x,移项使不等式一端为0,则另一端即为所设的辅助函数φ(x)。

这类命题的证明思路:(1)做辅助函数φ(x);(2)求φ(x)的导数φ’(x),并判别φ(x)的单调性;(3)求φ(x)在积分区间[a,b]的端点值φ(a),φ(b),其中必有一个值为“0”,由第2条思路可推出φ(b)>φ(a)(或φ(b)<φ(a)),从而得出命题的证明。

定积分证明不等式例谈

定积分证明不等式例谈
" % % U年第 # %期
中学数学月刊
ZI $ Z
定积分证明不等式例谈
刘祖希 江苏省苏州市第一中学 ! " # $ % % & ’ 定积分已进入现行高中教材( 以定积 分 为背景的试题近来在 高考 ) 竞赛中 屡 屡 出 现* 本 文即 将表明 ( 定积分在 比 较 大 小 ) 估计 和 式 上下界 ) 证 明不等式 问题中能 发 挥 很 大 作用 * + 利用定积分的保号性比大小 保号 性 是 指 ( 定义在, ( . /上 的 可 积 函 数 01 ! 则 01 ! 2’ % ( 2’ % * 例 + 证明几 何 4 算 术平均不 等式 5 6 2 76* 证明 不妨设 % 8( #2 "2 9 2 6 显然 存在 使得 ( :8 6 ( #2 5 62 6 :2 5 6 76 # 2( < #= : ;# 5 6 6
6
3
-
.
F 利用定积分估计和式的上下界 定积分产生和应用的一个主要背景是计 算 曲 边梯 形的面 积 ( 现在用 它来 估计 小 矩 形 的面积和 * # # 例 F 求证 G #; ; ;9; H" HI # M H6; #< # J" ! ’ ( ! 6J # ( 6K L ’ * H6 # 在区间 证明 考 虑函数 0 ! B ’= HB , ? ( ? ;# / ! ? =# ( " ( I ( 9( 6 ’上的定积分 * 如图 # 显然 ( # # = N#J H? H? 对? 求和 (
/ Q
+
/ Q
W
+ VC )& J / J / @/ 0 2 0 2 10 2 X / / / 说明 & 涉及对称问题求区域边界方程 $

定积分不等式公式总结

定积分不等式公式总结

定积分不等式公式总结定积分不等式是微积分中的重要内容,通过定积分不等式可以解决许多实际问题,并且在数学理论中也有着重要的地位。

在定积分不等式的学习中,我们需要掌握一些重要的公式和定理,这些公式和定理可以帮助我们更好地理解和应用定积分不等式。

接下来,我们将对定积分不等式的相关公式进行总结和归纳。

首先,我们来看一些常用的定积分不等式公式:1. Cauchy不等式,设函数f(x)和g(x)在区间[a, b]上连续,且g(x)≠0,则有∫[a,b]f(x)g(x)dx ≤ (∫[a, b]f(x)²dx)^(1/2) (∫[a, b]g(x)²dx)^(1/2)。

2. Hölder不等式,设1/p + 1/q = 1,f(x)和g(x)在区间[a, b]上可积,则有∫[a,b]|f(x)g(x)|dx ≤ (∫[a, b]|f(x)|^pdx)^(1/p) (∫[a, b]|g(x)|^qdx)^(1/q)。

3. Minkowski不等式,设p ≥ 1,f(x)和g(x)在区间[a, b]上可积,则有(∫[a,b]|f(x) + g(x)|^pdx)^(1/p) ≤ (∫[a, b]|f(x)|^pdx)^(1/p) + (∫[a, b]|g(x)|^pdx)^(1/p)。

以上是一些常用的定积分不等式公式,它们在定积分不等式的证明和应用中起着重要的作用。

除了这些公式外,我们还需要了解一些定积分不等式的性质和定理,这些性质和定理可以帮助我们更好地理解和运用定积分不等式。

接下来,我们来看一些定积分不等式的性质和定理:1. 定积分的保号性,设f(x)在区间[a, b]上连续且f(x)≥0,则有∫[a, b]f(x)dx ≥0。

2. 定积分的线性性,设f(x)和g(x)在区间[a, b]上可积,a、b为常数,则有∫[a,b](af(x) + bg(x))dx = a∫[a, b]f(x)dx + b∫[a, b]g(x)dx。

定积分不等式及其最佳常数的两种证明方法

定积分不等式及其最佳常数的两种证明方法

定积分不等式及其最佳常数的两种证明方法定积分不等式指的是如下形式的不等式:$\left(\int_{a}^{b} f(x)g(x) dx\right)^2 \leq \int_{a}^{b} f(x)^2 dx \int_{a}^{b} g(x)^2 dx$其中,$f(x)$ 和$g(x)$ 是$[a,b]$ 区间上的可积函数。

这个不等式在数学分析、物理学、经济学等领域都有广泛的应用。

下面介绍两种证明方法:方法一:使用柯西-施瓦茨不等式定积分不等式可以通过柯西-施瓦茨不等式来证明。

具体地,考虑如下积分:$\int_{a}^{b} \left[f(x) - \frac{\int_{a}^{b} f(x)g(x) dx}{\int_{a}^{b} g(x)^2 dx} g(x)\right]^2 dx$其中,$f(x)$ 和$g(x)$ 是$[a,b]$ 区间上的可积函数。

这个积分可以表示为:$\int_{a}^{b} \left[f(x)^2 -2f(x) \frac{\int_{a}^{b} f(x)g(x) dx}{\int_{a}^{b} g(x)^2 dx}g(x) + \left(\frac{\int_{a}^{b} f(x)g(x) dx}{\int_{a}^{b} g(x)^2 dx}\right)^2 g(x)^2 \right] dx$对于第二项,由于柯西-施瓦茨不等式,有:$\int_{a}^{b} 2f(x) \frac{\int_{a}^{b} f(x)g(x) dx}{\int_{a}^{b} g(x)^2 dx}g(x) dx \leq 2\sqrt{\int_{a}^{b} f(x)^2 dx \int_{a}^{b} g(x)^2 dx}$对于第三项,由于$\int_{a}^{b} g(x)^2 dx > 0$,所以它是非负的。

因此,将这三个积分的结果加起来,得到:$\int_{a}^{b} \left[f(x) - \frac{\int_{a}^{b} f(x)g(x) dx}{\int_{a}^{b} g(x)^2 dx}\right]^2 dx \geq 0$展开后即可得到定积分不等式。

定积分不等式的证明

定积分不等式的证明

定积分不等式的证明1. 引入定积分的定义: 首先回顾定积分的定义,对于函数f(x)在区间[a,b]上的定积分记为∫[a,b]f(x)dx。

在区间[a,b]上划分任意n个子区间,每个子区间的长度为Δx,选取任意的代表点ξ_i,那么定积分可以近似表示为∑[i=1->n]f(ξ_i)Δx。

2. 引入上和下和: 上和S_n表示将子区间的长度无限逼近为0时,以ξ_i为代表点的定积分的极限值。

即S_n = lim[n->∞](∑[i=1->n]f(ξ_i)Δx)。

同理,我们可以引入下和I_n = lim[n->∞](∑[i=1->n]f(η_i)Δx),其中η_i为每个子区间内的最小值。

3.证明下和的单调性:为了证明定积分的不等式,我们首先证明了下和的单调性。

假设f(x)在区间[a,b]上是单调增加的函数,那么我们可以得到下面的不等式:a<x_1<η_1<f(x_1)(1)x_2<η_2<f(x_2)(2).....x_n<η_n<f(x_n)(n)根据定义我们知道,η_i是每个子区间内的最小值,那么对于上面的不等式,我们可以将其累加得到:a<x_1<η_1<f(x_1)a+x_1<x_1+η_1<η_1+f(x_1)a+x_1+x_2<x_1+x_2+η_2<η_1+η_2+f(x_2).....a+x_1+x_2+...+x_n<x_1+x_2+...+x_n+η_n<η_1+η_2+...+η_n+f( x_n)上面的不等式可以简化为:a+b_n<S_n<I_n+b_n其中b_n=f(x_1)+f(x_2)+...+f(x_n)。

根据定积分的性质,极限的运算可以通过分别求逐项求极限来进行。

那么我们可以得到:lim[n->∞](a + b_n) < lim[n->∞]S_n < lim[n->∞](I_n + b_n)。

定积分不等式的证明方法

定积分不等式的证明方法

定积分不等式的证明方法【摘要】高等数学中定积分不等式的证明,难度都比较大,涉及的知识面广泛,计巧性比较强,但又十分的重要。

因而它是学习“高等数学”的重点和难点。

本文介绍了定积分不等式的十二种常用证明方法,加深对定积分不等式证明的理解。

【关键词】分部积分法积分中值定理凹凸性变限积分变量代换法1.利用分部积分法。

析:分部积分证题法就是通过运用分部积分法公式(分部积分法公式:),并结合运用其他方法以达到证明的目的。

例题1:设在上具有非负连续导数,求证对任意的自然数n有不等式因为,故是单调增函数,因而故而:小结:当见到积分不等式证明题时,首先考虑是否可以用分部积分法来简化积分,特别是当含有时,更要慎重。

利用积分中值定理证明例题2:设在上连续,证明:证:由积分中值定理可知:存在使得,然而,即对等式两边取绝对值得:3.利用泰勒公式证明。

析:当题设或者是题断中给出了被积函数二阶或者二阶以上导函数符号时,一般可以采用泰勒公式证明有关积分不等式。

例题3:在上有二次可导,并且,证明:证:将在处展为一阶泰勒公式,注意到,所以有:对上式两边同时求定积分可得:4.利用凹凸性证明。

析:当题中含有或者时,可以考虑是否可以利用图形的凹凸性来证明。

例题4:设在上有二阶导数,并且,证明:证:因为,故是单调增函数,进而可知在上是凹的,因在上,有。

故:对上式两边同时求积分可得:5.利用变限积分证明。

析:利用变限积分证明积分不等式是一种行之有效的方法,特别是在当已知了被积函数导数性质的积分不等式,为了能够借助求导法证明,常常引入变限积分来证明。

例题5:设证明证:先证明左边因为,故而当时有证明右边:引入变限积分,归结证明,事实上再由拉格朗日中值定理可以得到:因,故是单调增函数。

而,故。

因而,于是在上单调增函数,即所以:6.利用二次三项式的判别式的性质证明。

析:在做证明题的时候,对于非负(正)或者恒负(正)的实二次三项式,常常利用其判别式来证明积分不等式例题6:设在上连续,证:且等号仅当或时成立(c为常数)证:令,则:两边同时平方后,在同时对两边求积分,可得显然可知上式右边为一个关于的非负的实二次三项式,其判别式为,即:故:7.利用被积函数所满足的不等式证明。

积分不等式的证明方法

积分不等式的证明方法

积分不等式的证明方法摘要在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明方法,还可以更好的将初等数学的知识和高等数学的结合起来.并且可以拓宽我们的视野、发散我们的思维、提高我们的创新能力,因此可以提高我们解决问题的效率.本文主要通过查阅有关的文献和资料的方法,对其中的内容进行对比和分析,并加以推广和补充,提出自己的观点.本文首先介绍了两个重要的积分不等式并给出了证明,然后分类讨论了证明积分不等式的八种方法,即利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用积分的性质、利用泰勒公式、利用重积分、利用微分中值定理,最后对全文进行了总结.关键词:积分不等式,定积分,中值定理,柯西-施瓦兹不等式,单调性ABSTRACTWhen we study mathematics,the proof of integer inequality has always been seen as a complex content both in difficulty and skill.In this paper the proof methods of integral inequality are organized systematically to combine the knowledge of elementary mathematics and higher mathematics better. Also our horizons can be broadened,thinking can be divergencied and innovation ability can be improved,so as to improve our efficiency of problem solving.The paper is completed by referring to relevant literature,comparing and analysing related content, complementing and promoting related content.In this paper ,two important integral inequalities along with their proof methods are given first,and then eight approaches to proof integral inequalities are introduced,such as concavity and convexity of function,method of auxiliary function,important integral inequality,integral mean value theorem, integral property, Taylor formula,double integral and differential mean value theorem.Finally,the full paper is summarized.Key words: Integral Inequality, Definite Integral,Mean Value Theorem,Cauchy-Schwarz Inequality, Monotonicty1.引言不等式在数学中有着重要的作用,在数量关系上,尽管不等关系要比相等关系更加普遍的存在于人们的现实世界里,然而人们对于不等式的认识要比方程迟的多.直到17世纪之后,不等式的理论才逐渐的成长起来,成为数学基础理论的一个重要组成部分.众所周知,不等式理论在数学理论中有着重要的地位,它渗透到了数学的各个领域中,因而它是数学领域中的一个重要的内容.其中积分不等式更是高等数学中的一个重要的内容.实际上关于定积分的概念起源于求平面图形的面积和一些其他的实际问题.有关定积分的思想在古代就有了萌芽,比如在公元前240年左右的古希腊时期,阿基米德就曾经用求和的方法计算过抛物线弓形和其他图形的面积.在历史上,积分观念的形成要比微分早.然而直到17世纪后半期,较为完整的定积分理论还没有能够形成,一直到Newton-Leibniz公式建立之后,有关计算的问题得以解决后,定积分才迅速的建立并成长起来.本论文研究的积分不等式结合了定积分以及不等式.关于它的证明向来是高等数学中的一个重点及难点.对积分不等式的证明方法进行研究,并使其系统化,在很大程度上为不同的数学分支之间架起了桥梁.深刻的理解及掌握积分不等式的证明方法可以提升我们对其理论知识的理解,同时可以提高我们的创造思维和逻辑思维.在论文的第三部分中对积分不等式的证明方法进行了详细的阐述.分别从利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用泰勒公式、利用重积分、利用微分中值定理、利用定积分的性质这八个方面给出了例题及证明方法.这样通过几道常见的积分不等式的证明题,从不同的角度,用不同的方法研究、分析了积分不等式的特点,归纳总结出了其证明方法.同时论文中也对有的题目给出了多种证明方法,这启示我们对于同一道积分不等式而言它的证明方法往往不止一种,我们需要根据实际情况采用合适的方法去证明,从而达到将问题化繁为简的目的.2.几个重要的积分不等式在高等数学的学习中我们遇到过许多重要的积分不等式,如Cauchy-Schwarz 不等式,Young 不等式等.它们的形式及证明方法都有很多种,在这一小结中我们将给出这两种积分不等式的证明方法.2.1 Cauchy-Schwarz 不等式无论是在代数还是在几何中Cauchy-Schwarz 不等式的应用都很广泛,它是不同于均值不等式的另一个重要不等式.其形式有在实数域中的、微积分中的、概率空间()P F ,,Ω中的以及n 维欧氏空间中的4种形式.接下来在这一部分中我们将对其在微积分中的形式进行研究.定理2.1[1] 设()f x , ()g x 在[,]a b 上连续,则有[()()b af xg x dx ⎰]2≤{2[()]b af x dx ⎰}⋅ {2[()]bag x dx ⎰}.证明:要证明原不等式成立,我们只需要证()()()()2220bbbaaa fx dx g x dx f x g x dx ⎡⎤⋅-≥⎢⎥⎣⎦⎰⎰⎰ 成立. 设()()()()()222tttaa a F t f x dx g x dx f x g x dx ⎡⎤=⋅-⎢⎥⎣⎦⎰⎰⎰,则只要证()()F b F a ≥成立,由()F t 在[,]a b 上连续,在(),a b 内可导,得()()()()()()()()()22222t t taaaF t f t g x dx g t f x dx f t g t f x g x dx'=+-⎰⎰⎰()()()()()()()()22222ta f t g x f t g t f x g x g t f x dx ⎡⎤=-+⎣⎦⎰()()()()20ta f t g x g t f x dx =-≥⎡⎤⎣⎦⎰.(2.1)由(2.1)式可知()F t 在[,]a b 上递增,由b a >,知()()F b F a >,故原不等式成立. 证毕实际上关于Cauchy-Schwarz 不等式的证明方法有很多,这里我们采用的证明方法是较为普遍的辅助函数法,它将要证明的原积分不等式通过移项转变为了判断函数在两个端点处函数值大小的问题.通过观察我们可以进一步发现原Cauchy-Schwarz 不等式能够改写成以下行列式的形式()()()()()()()()0b baabbaaf x f x dxg x f x dx f x g x dxg x g x dx≥⎰⎰⎰⎰,由此我们可以联想到是否可以将它进行推广?答案是肯定的.下面我们将给出Cauchy Schwarz -不等式的推广形式.定理2.2[2] 设()f x ,()g x ,()h x 在[],a b 上可积,则()()()()()()()()()()()()()()()()()()0bbbaaabbbaaabbbaaaf x f x dxg x f x dxh x f x dxf xg x dx g x g x dxh x g x dx f x h x dxg x h x dxh x h x dx≥⎰⎰⎰⎰⎰⎰⎰⎰⎰.证明:对任意的实数1t ,2t ,3t ,有()()()()2123bat f x t g x t h x dx ++⎰()()()222222123bbbaaat f x dx t g x dx t h x dx=++⎰⎰⎰()()()()()()1213232220bbb aaat t f x g x dx t t f x h x dx t t g x h x dx +++≥⎰⎰⎰.注意到关于1t ,2t ,3t 的二次型实际上为半正定二次型, 从而其系数矩阵行列式为()()()()()()()()()()()()()()()2220bbbaaab bba aabbbaaaf x dxg x f x dxh x f x dxf xg x dxgx dxh x g x dx f x h x dx g x h x dxh x dx≥⎰⎰⎰⎰⎰⎰⎰⎰⎰. 证毕以上的推广是将Cauchy-Schwarz 不等式的行列式由二阶推广到了三阶的形式,事实上Cauchy-Schwarz 不等式是一个在很多方面都很重要的不等式,例如在证明不等式,求函数最值等方面.若能灵活的运用它则可以使一些较困难的问题得到解决.下面我们会在第三部分给出Cauchy-Schwarz 不等式及其推广形式在积分不等式证明中的应用.除了Cauchy-Schwarz 不等式之外还有很多重要的积分不等式,例如Young 不等式,相较于Cauchy-Schwarz 不等式我们对Young 不等式的了解比较少,实际上它也具有不同的形式且在现代分析数学中有着广泛的应用.接着我们将对Young 不等式进行一些研究.2.2 Young 不等式Young 不等式,以及和它相关的Minkowski 不等式,HÖlder 不等式,这些都是在现代分析数学中应用十分广泛的不等式,在调和函数、数学分析、泛函分析以及偏微分方程中这三个不等式的身影随处可见,是使用得最为普遍,最为平凡的知识工具.下面我们将给出积分形式的Young 不等式的证明.定理 2.3[3] 设()f x 在[0,]c (0c >)上连续且严格递增,若(0)0f =,[0,]a c ∈且[0,()]b f c ∈,则100()()abf x dx f x dx ab -+≥⎰⎰,其中1f -是f 的反函数,当且仅当()b f a =时等号成立.证明:引辅助函数0()()ag a ab f x dx =-⎰, (2.2)把0b >看作参变量,由于()()g a b f a '=-,且f 严格递增,于是当 10()a f b -<<时,()0g a '>;当 1()a f b -=时,()0g a '=;当 1()a f b ->时,()0g a '<. 因此 当1()a f b -=时,()g a 取到g 的最大值,即()()()()b f g x g a g 1m ax -=≤ (2.3)由分部积分得11()()11(())()()()f b f b g f b bf b f x dx xdf x ----=-=⎰⎰,作代换()y f x =,上面积分变为110(())()bg f b f y dy --=⎰, (2.4)将(2.2)式和(2.4)式代入(2.3)式得110()()()a bbab f x dx f y dy f x dx ---≤=⎰⎰⎰,即10()()a bf x dx f x dx ab -+≥⎰⎰. 证毕3.定积分不等式常见的证明方法关于积分不等式的证明方法较为繁多,难度及技巧性也较大,因此对其进行系统的归纳总结是很有必要的.在这一部分中我们将归纳出利用辅助函数、微分中值定理、重要积分不等式及积分中值定理等证明积分不等式的方法.3.1 利用函数的凹凸性在数学分析以及高等数学中,我们常常会遇到一类特殊的函数—凸函数.凸函数具有重要的理论研究价值和广泛的实际应用,在有些不等式的证明中,若能灵活地利用凸函数的性质往往能够简洁巧妙的解决问题.下面给出一个例子加以说明.定理3.1 若()t ϕ定义在间隔(),m M 内,且()0t ϕ''>,则()t ϕ必为下凸函数.定理3.2 设()f x 在[,]a b 上为可积分函数,而()m f x M ≤≤.又设()t ϕ在间隔m t M ≤≤内为连续的下凸函数,则有不等式()()()11b b a af x dx f x dx b a b aϕϕ⎛⎫≤⎪--⎝⎭⎰⎰.例3.1[4] 设()f x 在[],a b 上连续,且()0f x >,求证:()()()21bba a f x dx dxb a f x ≥-⎰⎰. 证明: 取()u u 1=ϕ, 因为()210u u ϕ'=-<,()320u uϕ''=>,()0>u 即在0u >时,()y u ϕ=为凸函数,故有()()()11b b a a f x dx f x dx b a b a ϕϕ⎛⎫≤ ⎪--⎝⎭⎰⎰, 即()()1babadxf x b ab a f x dx-≤-⎰⎰,故()()()21b b a a f x dx dx b a f x ≥-⎰⎰. 证毕 在上述的题目中我们可以发现在证明中常常先利用导数来判断函数的凹凸性,然后再利用凹(凸)函数的性质来证明不等式.然而对于实际给出的题目,我们往往需要先构造一个凹(凸)函数,然后才能利用其性质来证明我们所要证明的问题.3.2 辅助函数法辅助函数法是积分不等式证明中的一种非常重要的方法,往往我们会根据不等式的特点,构造与问题相关的辅助函数,考虑在相同的区间上函数所满足的条件,从而得出欲证明的结论.在第二部分中我们用辅助函数法对Cauchy-Schwarz 不等式进行了证明,下面将对用辅助函数法证明积分不等式进行进一步的探讨.[5]设函数()f x 在区间[]0,1上连续且单调递减,证明:对)1,0(∈∀a 时,有: ()10()af x dx a f x dx ≥⎰⎰.证明:令()01()xF x f t dt x =⎰ ()01x <≤,由()x f 连续,得()x F 可导 则()()()02xf x x f t dtF x x ⋅-'=⎰ ()()2f x x f x xξ⋅-⋅=()()f x f x ξ-=, (0)x ξ<<. 因为()f x 在[0,1]上单调减少,而0x ξ<<,有()()f x f ξ<,从而()0F t '<,()F x 在(0,1]上单调减少,则对任意(0,1)a ∈,有()(1)F a F ≥. 即()1001()af x dx f x dx a≥⎰⎰,两边同乘a ,即得()100()a f x dx a f x dx ≥⎰⎰. 证毕 本题根据积分不等式两边上下限的特点,在区间)1,0(上构造了一个辅助函数,进一步我们可以思考对于一般的情形,该题的结论是否依然成立呢?答案是肯定的.设函数()f x 在区间[]0,1上连续且单调递减非负,证明:对)1,0(,∈∀b a ,且10<≤<b a 时,有: ()0()aba a f x dx f x dx b≥⎰⎰. 证明:令()01()xF x f t dt x=⎰,()01x <≤,由()x f 连续,得()x F 可导, 则 ()()()02x f x x f t dtF x x⋅-'=⎰ ()()2f x x f xx ξ⋅-⋅=()()f x f xξ-=,(0)x ξ<<.因为()f x 在[0,1]上单调减少,而0x ξ<<,有()()f x f ξ<,从而()0F t '<,()F x 在(0,1]上单调减少,则对任意10<≤<b a ,有()()F a F b ≥,即()()0011a bf t dt f t dt a b≥⎰⎰. (3.1)由f 非负,可得()()dx x f dx x f bab ⎰⎰≥0. (3.2)结合(3.1)式和(3.2)式可得()()011a ba f x dx f x dx a b≥⎰⎰.即()()0aba a f x dx f x dx b≥⎰⎰. 证毕 [6] 函数()f x 在[,]a b 上连续,且()0>x f 试证:21()()()bbaaf x dx dx b a f x ≥-⎰⎰. 在例3.1中我们给出了本题利用函数的凹凸性证明的过程,在这里我们将给出其利用辅助函数法证明的过程.证明: 构造辅助函数()()()()2xxa adt x f t dt x a f t φ=--⎰⎰, 则 ()()()()()()12xx aa dt x f x f t dt x a f t f x φ'=+⋅--⎰⎰()()()()2xx x aa a f x f t dt dt dt f t f x =+-⎰⎰⎰()()()()20xaf x f t dt f t f x ⎡⎤=+-≥⎢⎥⎣⎦⎰, 所以()x φ是单调递增的,即()()0b a φφ≥=,故()()()21bbaaf x dx dx b a f x ≥-⎰⎰. 证毕 [7]设()x f 在[]b a ,上连续且单调增加,证明:()()⎰⎰+≥babadx x f b a dx x xf 2. 证明: 原不等式即为()()02≥+-⎰⎰baba dx x fb a dx x xf ,构造辅助函数()()()2t ta a a t F t xf x dx f x dx +=-⎰⎰ ,[],t ab ∈, 则()()()()122t a a t F t tf t f x dx f t +'=--⎰ ()()()12t a t a f t f x dx ⎡⎤=--⎢⎥⎣⎦⎰ ()()()()12t a f t f ζ=-- , (),a t ζ∈.因为a t ζ≤≤,()f x 单调增加,所以()0F t '≥.故()F t 在[],a b 上单调递增,且()0F a =, 所以对(,]x a b ∀∈,有()()0F x F a ≥=.当x b =时,()0F b ≥.即()()02bbaaa b xf x dx f x dx +-≥⎰⎰,故原不等式成立, 证毕通过以上几道题目的观察我们可以发现:1.当已知被积函数连续时,我们可以把积分的上限或者是下限作为变量,从而构造一个变限积分,然后利用辅助函数的单调性加以证明.2.辅助函数法实际上是一种将复杂的问题转化为容易解决的问题的方法.在解题时通常表现为不对问题本身求解而是对与问题相关的辅助函数进行求解,从而得出原不等式的结论.3.3 利用重要积分不等式在第2部分中我们给出了Cauchy-Schwarz 不等式以及它的推广形式的证明过程,实际上Cauchy-Schwarz 不等式的应用也很广泛,利用它可以解决一些复杂不等式的证明.在这一小节中我们将通过具体的例子来加以说明它在证明积分不等式中的应用.[8]函数()f x 在[]0,1上一阶可导,()()100f f ==,试证明:()()112214f x dx f x dx '≤⎰⎰.证明:由()()()00xf x f t dt f '=+⎰和()()()11x f x f t dt f '=-+⎰可得()()()()()21222201xx xfx f t dtdt f t dt x f x dx '''=≤≤⎰⎰⎰⎰, 1(0,)2x ⎡⎤∈⎢⎥⎣⎦,()()()()()21111222201(1)x x x fx f t dtdt f t dt x f x dx '''=≤≤-⎰⎰⎰⎰, 1(,1)2x ⎡⎤∈⎢⎥⎣⎦. 因此()()112220018f x dx f x dx '≤⎰⎰,(3.3)()()112210218f x dx f x dx '≤⎰⎰. (3.4) 将(3.3)式和(3.4)式相加即可以得到()()112214f x dx f x dx '≤⎰⎰. 证毕[2]设()f x ,()g x 在[],a b 上可积且满足:()0m f x M <≤≤,()0ba g x dx =⎰,则以下两个积分不等式()()()()()()()22222bb b baaaaf xg x dxf x dxg x dx m b a g x dx ≤--⎰⎰⎰⎰及()()()()()2222bbbaaaM m f x g x dxf x dxg x dx M m -⎛⎫≤ ⎪+⎝⎭⎰⎰⎰成立.证明:取()1h x =,由()0b ag x dx =⎰及定理2.2知()()()()()()()()2200bbbaaab baabaf x dxg x f x dxf x dxf xg x dxg x dx f x dxb a-⎰⎰⎰⎰⎰⎰()()()()()()()()()()222220bbbbbaa a a ab a fx dx g x dx f x dx g x dx b a f x g x dx=-⋅---≥⎰⎰⎰⎰⎰.因此()()()()()()()()222221bbbbbaaaaaf xg x dxfx dx g x dx f x dxg x dx b a≤--⎰⎰⎰⎰⎰. (3.5)由()m f x ≤可知()()()222baf x dxm b a ≥-⎰,因而()()()()()()()22222bbbbaaa a f x g x dxfx dx g x dx m b a g x dx ≤--⎰⎰⎰⎰.由于()0m f x M <≤≤,因此()2222M m M m f x +-⎛⎫⎛⎫-≤ ⎪ ⎪⎝⎭⎝⎭.化简得()()()2f x Mm M m f x +≤+,两边同时积分得 ()()()()2bbaaf x dx Mm b a M m f x dx +-≤+⎰⎰,由算数-几何平均值不等式可知 ()()()()222bbaaf x dx Mm b a f x dx Mm b a ⋅-≤+-⎰⎰,于是()()()()()2224babab a f x dxM m Mmf x dx-+≤⎰⎰.则()()()221bbaaf x dxg x dx b a -⎰⎰()()()()()()2222bbbabaa af x dxfx dx g x dxb a f x dx=-⎰⎰⎰⎰()()()2224bbaaMmf x dxg x dx M m ≥+⎰⎰.(3.6)由式(3.5)和式(3.6)可知()()()()()2222bbbaaaM m f x g x dxf x dxg x dx M m -⎛⎫≤ ⎪+⎝⎭⎰⎰⎰. 证毕以上两道题分别利用了Cauchy-Schwarz 不等式及其推广形式.我们在证明含有乘积及平方项的积分不等式时应用Cauchy-Schwarz 不等式颇为有用,但要注意选取适当的()x f 与()x g ,有时还需对积分进行适当的变形.3.4 利用积分中值定理积分中值定理展现了将积分转化为函数值,或者是将复杂函数积分转变为简单函数积分的方法.其在应用中最重要的作用就是将积分号去掉或者是将复杂的被积函数转化为相比较而言较为简单的被积函数,从而使得问题能够简化.因此合理的利用积分中值定理能够有效的简化问题.下面将通过两道例题来说明.定理 3.3(积分第一中值定理) 若()f x 在[,]a b 上可积且()m f x M ≤≤,则存在[,]u m M ∈使()()ba f x dx ub a =-⎰成立.特别地,当()f x 在[,]a b 上连续,则存在[,]c a b ∈,使()()()baf x dx f c b a =-⎰成立.定理 3.4(积分第一中值定理的推广) 若函数()x f ,()x g 在区间[]b a ,上可积,()x f 连续,()x g 在[]b a ,上不变号,则在积分区间[]b a ,上至少存在一个点ε,使得下式成立()()()()⎰⎰=babadx x g f dx x g x f ε.定理3.5(积分第二中值定理的推广) 若函数()x f ,()x g 在区间[]b a ,上可积,且()x f 为单调函数,则在积分区间[]b a ,上至少存在一个点ε,使得下式成立 ()()()()()()⎰⎰⎰+=εεabbadx x g b f dx x g a f dx x g x f .设函数()f x 在区间[]0,1上连续单调递减,证明:对)1,0(,∈∀b a ,且10<≤<b a 时,有()0()aba a f x dx f x dx b≥⎰⎰,其中()0≥x f . 用辅助函数法证明的过程,实际上这道题目还可以用积分第一中值定理来证明,下面我们将给出证明过程.证明:由积分中值定理知 ()()10af x dx f a ξ=⋅⎰, []10,a ξ∈; ()()()2baf x dx f b a ξ=⋅-⎰,[]2,a b ξ∈;因为12ξξ≤,且()f x 递减,所以有()()12f f ξξ≥,即 ()()()0111a b ba a f x dx f x dx f x dx ab a b ≥≥-⎰⎰⎰, 故 ()()0a baa f x dx f x dxb ≥⎰⎰. 证毕设()x f 在[]b a ,上连续且单调增加,证明:()()⎰⎰+≥babadx x f b a dx x xf 2. 同样地,在之前的证明中我们给出了此题利用辅助函数法证明的过程,仔细分析观察这道题目我们还可以发现它可以用积分第一、第二中值定理的推广形式来证明,接着我们将给出此题在这两种方法下的证明过程.证法一证明: ()2ba ab x f x dx +⎛⎫- ⎪⎝⎭⎰()()2222a bb a b a a b a b x f x dx x f x dx ++++⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰. 由定理3.4可知,分别存在1,2a b a ξ+⎛⎫∈ ⎪⎝⎭,2,2a b b ξ+⎛⎫∈⎪⎝⎭, 使得 ()()22122a ba baa ab a b x f x dx f x dx ξ++++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰,()()22222b b a b a b a b a b x f x dx f x dx ξ++++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰, 因此()()()()()22128ba ab a b x f x dx f f ξξ-+⎛⎫-=- ⎪⎝⎭⎰,由于()x f 在[]1,0单调增加的,且1201ξξ<<<,所以有 ()()210f f ξξ-≥.从而()02ba ab x f x dx +⎛⎫-≥ ⎪⎝⎭⎰,故原不等式成立, 证毕 证法二证明:由定理3.5可知:存在(),a b ξ∈,使得 ()2ba ab x f x dx +⎛⎫- ⎪⎝⎭⎰()()22b a a b a b f a x dx f b x dx ξξ++⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()()()()f a f b a b ξξ=---⎡⎤⎡⎤⎣⎦⎣⎦.由()x f 单调增加及(),a b ξ∈知()()0f a f b -<,0a ξ->,0b ξ-<.可得()02ba ab x f x dx +⎛⎫-≥ ⎪⎝⎭⎰,故原不等式成立, 证毕 通过上述两道题目我们可以了解到积分中值定理在实际应用中起到的重要作用就是能够使积分号去掉,或者是将复杂的被积函数转化为相对而言较简单的被积函数,从而使问题得到简化.因此,对于证明有关结论中包含有某个函数积分的不等式,或者是要证明的结论中含有定积分的,可以考虑采用积分中值定理,从而去掉积分号,或者化简被积函数.3.5 利用积分的性质关于积分的性质在高等数学的学习中我们已经学到了很多,我们可以利用它来证明许多问题.在这里我们主要利用定积分的比较定理和绝对值不等式等性质对问题进行分析处理.[9]设()f x 在[]0,1上导数连续,试证:[]0,1x ∀∈,有()()()10f x f x f x dx ⎡⎤'≤+⎣⎦⎰. 证明:由条件知()f x 在[]0,1上连续,则必有最小值,即存在[]00,1x ∈,()()0f x f x ≤,由()()()00xx f t dt f x f x '=-⎰⇔()()()00xx f x f x f t dt '=+⎰,()()()00x x f x f x f t dt '=+⎰≤()()00x x f x f t dt '+⎰≤()()100f x f t dt '+⎰()()11000f x dt f t dt '=+⎰⎰≤()()1100f t dt f t dt '+⎰⎰()()10f t f t dt ⎡⎤'=+⎣⎦⎰()()10f x f x dx ⎡⎤'=+⎣⎦⎰.故原不等式成立, 证毕3.6 利用泰勒公式在现代数学中泰勒公式有着重要的地位,它在不等式的证明、求极限以及求高阶导数在某些点的数值等方面有着重要的作用.关于泰勒公式的应用已经有很多专家学者对其进行了深入的研究,下面我们将举例说明利用泰勒公式也是证明积分不等式的一种重要方法.定理 3.6(带有拉格朗日型余项的Taylor 公式) 设函数()f x 在点0x 处的某邻域内具有1n +阶连续导数,则对该邻域内异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得:20000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+ (1)其中(1)10()()()(1)!n n n f R x x x n ξ++=-+(ξ在x 与0x 之间)称为拉格朗日型余项,(1)式称为泰勒公式.[10] 设()f x 在[],a b 上有二阶连续导数,()()0f a f b ==,[](),max x a b M f x ∈''=,试证明:()()312bab a f x dx M -≤⎰.证明:对(),x a b ∀∈,由泰勒公式得()()()()()()212f a f x f x a x f a x ξ'''=+-+- , (),a x ξ∈,()()()()()()212f b f x f x b x f b x η'''=+-+-, (),x b η∈, 两式相加得 ()()()()()()22124a b f x f x x f a x f b x ξη+⎛⎫⎡⎤'''''=---+- ⎪⎣⎦⎝⎭, 两边积分得 ()()()()()()22124b bb aaa ab f x dx f x x dx f a x f b x dx ξη+⎛⎫⎡⎤'''''=---+- ⎪⎣⎦⎝⎭⎰⎰⎰, 其中 ()()()22b b b a a a a b a b f x x dx x df x f x dx ++⎛⎫⎛⎫'-=-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰, 于是有 ()()()()()2218bb a a f x dx f a x f b x dx ξη⎡⎤''''=-+-⎣⎦⎰⎰, 故()()()()223812bb aa M M f x dx a xb x dx b a ⎡⎤≤-+-=-⎣⎦⎰⎰. 证毕 [6]设()f x 在[],a b 上有二阶导数,且()0f x ''>,求证 ()()2b aa b f x dx b a f +⎛⎫≥- ⎪⎝⎭⎰. 证明:将()f x 在02a bx +=处作泰勒展开得到()()2122222a b a b a b a b f x f f x f x ξ++++⎛⎫⎛⎫⎛⎫⎛⎫'''=+-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ,2a b x ξ+⎛⎫∈ ⎪⎝⎭.因为()0f x ''>,所以可以得到 ()222a b a b a b f x f f x +++⎛⎫⎛⎫⎛⎫'≥+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 对不等式两边同时积分得到 ()()222b b a a a b a b a b f x dx f b a f x dx +++⎛⎫⎛⎫⎛⎫'≥-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰. 因为02b a a b x dx +⎛⎫-= ⎪⎝⎭⎰, 所以有()()2b a a b f x dx b a f +⎛⎫≥- ⎪⎝⎭⎰. 证毕通过这两道题目我们大致可以了解到当题目中出现被积函数在积分区间上有意义且有二阶及二阶以上连续导数时,是提示我们用泰勒公式证明的最明显的特征.一般情况下我们选定一个点o x ,并写出()x f 在这个点o x 处的展开公式,然后进行适当的放缩或与介值定理相结合来解决问题.3.7 利用重积分在一些积分不等式的证明中,由于被积函数的不确定,从而我们不能求出其具体的数值,这时我们可以将定积分转换为二重积分再利用其性质来求解.以下列举了3种利用重积分来证明积分不等式的方法,这种技巧在高等数学中虽然不常见,但却是很重要的,下面我们将通过3道例题来进一步说明.命题一[11]:若在区间[,]a b 上()()f x g x ≥,则()()bba a f x dx g x dx ≥⎰⎰.[11] 设()f x ,()g x 在[,]a b 上连续,且满足:()()xxaaf t dtg t dt ≥⎰⎰,[,]x a b ∈,()()b b a a f t dt g t dt =⎰⎰,证明:()()b ba axf x dx xg x dx ≤⎰⎰.证明:由题得()()x xaaf t dtg t dt ≥⎰⎰,从而可以得到()()b x b x aaaadx f t dt dx g t dt ≥⎰⎰⎰⎰,即[()()]0b xa adx f t g t dt -≥⎰⎰.左式[()()]b xaadx f t g t dt =-⎰⎰ [()()]Df tg t dxdt =-⎰⎰ (其中{(,)|,}D x t a x b a t x =≤≤≤≤)[()()]b b atdt f t g t dx =-⎰⎰ ()[()()]bab t f t g t dt =--⎰[()()][()()]b b b b aaaab f t dt g t dt tf t dt tg t dt =---⎰⎰⎰⎰[()()]0b baatf t dt tg t dt =--≥⎰⎰.则 ()()0b b aatf t dt tg t dt -≤⎰⎰ , 即()()b baaxf x dx xg x dx ≤⎰⎰. 证毕在本题中我们将一元积分不等式()()x xaaf x dxg x dx ≥⎰⎰的两边同时增加一个积分变量badx ⎰,使得一元积分不等式化为二元积分不等式,然后巧妙的运用转换积分变量顺序的方法达到证明一元积分不等式的方法.在利用重积分来证明积分不等式的时候,我们不但可以采用直接增元法,还可以采用转换法.关于转换法又分为将累次积分转换为重积分,以及将常数转换为重积分这两种形式.下面我们将依次来介绍这两种方法.1.将累次积分转为重积分命题二[11] 若()f x 在[,]a b 上可积,()g y 在[,]c d 上可积,则二元函数()()f x g y 在平面区域{(,)|,}D x y a x b c y d =≤≤≤≤上可积,且()()()()()()bd b dacacDf xg y dxdy f x dx g y dy f x dx g x dx ==⎰⎰⎰⎰⎰⎰.其中{(,)|,}D x y a x b c y d =≤≤≤≤[11] 设()p x ,()f x ,()g x 是[,]a b 上的连续函数,在[,]a b 上,()0p x >,()f x ,()g x 为单调递增函数,试证:()()()()()()()()bb b baaaap x f x dx p x g x dx p x dx p x f x g x dx ≤⎰⎰⎰⎰.证明:由()()()()()()()()b bbbaaaap x f x dx p x g x dx p x dx p x f x g x dx ≤⎰⎰⎰⎰可知:()()()()()()()()0bb b baaaap x dx p x f x g x dx p x f x dx p x g x dx -≥⎰⎰⎰⎰,令()()()()()()()()b bbbaaaaI p x dx p x f x g x dx p x f x dx p x g x dx =-⎰⎰⎰⎰,下证0I ≥;()()()()()()()()b b b baaaaI p x dx p x f x g x dx p x f x dx p x g x dx =-⎰⎰⎰⎰()()()()()()()()b b b baaaap x dx p y f y g y dy p x f x dx p y g y dy =-⎰⎰⎰⎰()()()()()()()()bbbba a aap x p y f y g y dxdy p x f x p y g y dxdy =-⎰⎰⎰⎰()()()[()()]bba ap x p y g y f y f x dxdy =-⎰⎰. (3.7)同理()()()()()()()()bbbbaaaaI p x dx p x f x g x dx p x f x dx p x g x dx =-⎰⎰⎰⎰()()()()()()()()b b b baaaap y dy p x f x g x dx p y f y dy p x g x dx =-⎰⎰⎰⎰()()()[()()]b baap y p x g x f x f y dxdy =-⎰⎰. (3.8)(3.7)+(3.8) 得2()()[()()][()()]bbaaI p x p y g y g x f y f x dxdy =--⎰⎰,因为()f x ,()g x 同为单调增函数,所以[()()][()()]0g y g x f y f x --≥ 又因为()0p x >,()0p y >,故2()()[()()][()()]0bbaaI p x p y g y g x f y f x dxdy =--≥⎰⎰,即0I ≥. 证毕2.将常数转换为重积分的形式在例中我们介绍了将累次积分转换为重积分,在下面的例中我们将对常数转换为重积分来进行说明.我们可以发现有这样一个命题,若在二重积分中被积函数(,)f x y k =,则可得到2()Dkd k b a σ=-⎰⎰,其中{(,)|,}D x y a x b a y b =≤≤≤≤.函数()f x 在[,]a b 上连续,且()0>x f 试证:21()()()b baaf x dx dx b a f x ≥-⎰⎰.本题与前面的例3.1以及例题目,在这里我们将利用重积分证明此题. 证明:原题即为 1()()bba aDf x dx dy d f y σ≥⎰⎰⎰⎰, 移项可得()(1)0()Df x d f y σ-≥⎰⎰,()()()2(1)(1)(1)0()()()DD Df x f x f y d d d f y f y f x σσσ-=-+-≥⎰⎰⎰⎰⎰⎰, 所以即为证()()(2)0()()Df x f y d f y f x σ+-≥⎰⎰,因为()0f x ≥,()0f y ≥,所以()()20()()f x f y f y f x +-≥. 故 ()()(2)0()()Df x f y d f y f x σ+-≥⎰⎰ 恒成立,即21()()()b b a a f x dx dx b a f x ≥-⎰⎰成立, 证毕通过以上三道例题我们可以大致了解到,在这一类定积分不等式的证明过程中我们一般先将所要证明的不等式转化为二次积分的形式,进一步再转换为二重积分,最后利用二重积分的性质或其计算方法得出结论.这种方法克服了数学解题过程中的高维数转化为低维数的思维定势,丰富了将二重积分与定积分之间互化的数学思想方法.3.8 利用微分中值定理微分中值定理是数学分析中的重要的一个基本定理,它是指罗尔中值定理、拉格朗日中值定理、柯西中值定理以及泰勒中值定理这四种定理.关于微分中值定理的应用也是很广泛的,证明不等式是微分中值定理最基本的应用之一.在这里我们将对利用柯西中值定理及拉格朗日中值定理证明积分不等式进行研究.下面将通过两个例子来具体说明这两个定理在证明积分不等式中的应用,以及不同的微分中值定理在证明不等式时的区别.[12] 设()0f a =,()f x 在区间[],a b 上的导数连续,证明:()()[]()2,11max 2bax a b f x dx f x b a ∈'≤-⎰. 证明:应用Lagrange 中值定理,(),a x ξ∃∈,其中a x b <<,使得 ()()()()f x f a f x a ξ'-=-, 因为()0f a =, 所以()f x M x a ≤-, [](),max x a b M f x ∈'=,从a 到b 积分得 ()bb aaf x dx M x a dx ≤-⎰⎰()()222bab M M x a dx x a =-=-⎰()()()221max 22M b a f x b a '=-=-.即()()[]()2,11max 2bax a b f x dx f x b a ∈'≤-⎰. 证毕 [13] 设函数()f x 在[]0,1上可微,且当()0,1x ∈时,()01f x '<<,()00f =试证:()()()21130f x dxf x dx >⎰⎰.证明:令()()()2xF x f t dt =⎰,()()30xG x f t dt =⎰,()(),F x G x 在[]0,1上满足柯西中值定理,则()()()()()()()()()211301010f x dxF F FG G G f x dxξξ'-=='-⎰⎰()()()()()003222f f t dt f t dt f f ξξξξξ==⎰⎰()01ξ<< ()()()()02220f t dt f t dtf fξξ-=-⎰⎰()()()22f f f ηηη='()11f η=>' , ()01ηξ<<<.所以()()()21120f x dxf x dx >⎰⎰. 证毕通过以上两道题目可以发现:1.在应用Lagrange 中值定理时先要找出符合条件的函数()f x ,并确定()x f 在使用该定理的区间[]b a ,,对()x f 在区间[]b a ,上使用该定理.若遇到不能用该定理直接证明的,则从结论出发,观察并分析其特征,构造符合条件的辅助函数之后再应用Lagrange 中值定理.2.在研究两个函数的变量关系时可以应用Cauchy 中值定理,在应用该定理证明不等式时关键是要对结果进行分析,找出满足Cauchy 中值定理的两个函数()x f ,()x g ,并确定它们应用柯西中值定理的区间[]b a ,,然后在对()x f ,()x g 在区间[]b a ,上运用Cauchy 中值定理.无论是Cauchy 中值定理还是Lagrange 中值定理在积分不等式的证明中都各具特色,都为解题提供了有力的工具.总之在证明不等式时需要对结论认真的观察有时还需要进行适当的变形,才能构造能够应用中值定理证明的辅助函数,进而利用微分中值定理证明不等式.4.总结我们通过查阅有关积分不等式的文献和资料,并对其中的相关内容进行对比和分析后,将有关的内容加以整理并扩充形成了本文.在论文中给出了两个重要的积分不等式的证明以及总结了八种积分不等式的证明方法.然而由于自己的参考资料面不够广,参考的大多数文献都是仅给出了例题及其证明方法,而并没有给出进一步的分析,同时自己的知识面较窄,能力有限,导致还有很多难度较大的问题尚未解决.例如,在实际的问题中,还有一些证明方法是我们所不知道的,并且还有一些不等式并不能用本文所给出的八种方法来证明,这就需要我们进一步的思考与研究.今后我们应该更多的参考其他资料,充分拓展思路,以便于提出新的观点.参考文献[1]王宇,代翠玲,江宜华.一个重要积分不等式的证明、推广及应用[J].荆州师范学院学报(自然科学版),2000,23(5):106[2] 张盈.Cauchy-Schwarz不等式的证明、推广及应用[J].高师理科学刊,2014,34(3):34-37[3] 黄群宾.积分不等式的证明[J].川北教育学院学报,1996,6(4):22-27[4] 李志飞.积分不等式的证明[J].高等数学研究,2014,17(6):50-51[5]郝涌,王娜,王霞,郭淑利.数学分析选讲[M].北京:国防工业出版社,2014[6]张瑞,蒋珍.定积分不等式证明方法的研究[J].河南教育学院学报(自然科学版),2011,20(2):18[7]林忠.一个积分不等式的几种证明方法[J].成都教育学院学报,2006,20(12):66[8]刘法贵.证明积分不等式的几种方法[J].高等数学研究,2008,11(1):122[9] 苏德矿,李铮,铁军.数学强化复习全书[M].北京:中国证法大学出版社,2015[10] 李小平,赵旭波.定积分不等式几种典型证法[J].高等数学研究,2009,12(6):13-17[11] 黄云美.重积分在积分不等式证明中的应用[J].杨凌职业技术学院学报,2014,13(3):27-33[12] 葛亚平.积分不等式证明的再认识[J].河南教育学院学报(自然科学版),2015,24(3):18-20[13] 王丽颖,张芳,吴树良.积分不等式的证法[J].白城师范学院学报,2007,21(3): 19-22。

证明一类定积分不等式的有效方法

证明一类定积分不等式的有效方法

。 zdx +y) dy

分 别 取 D 为
DI x + y ≤ N x 0, ≥ 0, : 2 ,≥ y D2 O x N , ≤ Y N :≤ ≤ O ≤
收 稿 日 期 :0 2 0 2 2 0… 3 7
作 者 简 介 : 修 章 ( 4 奚 1 一 )女 . 东 省 鱼 台县 人 . 宁 师 专数 学 系 副 教 授 。 9 9年 . 山 济

g b





把 左右 两 个二重 积 分化 为极 坐卡 示系 F的 彤 式
于是
』。 三 x』 』a。N a 』 a 』 。 : 三o』/e a 一 一 a ; , 三 a 卜  ̄ 一 。 . -
< z2 , 2 -J 。 < .- Xx E m J/ ex _  ̄ d 薹 . - N
文 章 编 号 : 0 — 1 7 ( 0 2) 3 0 0 — 0 1 4 72 0 0 — 06 0 8 2
证 明 一 类 定 积 分 不 等 式 的 有 效 方 法
奚 修 章
( 宁 师 专数 学 系, 东济 宁 2 2 , ) 济 山 7 0 5 1
摘 要 : 据 定 积 分 不 等 式 的 结 构 特 征 . 证 明 较 繁 或 难 以 入 手 的 定 积 分 不 等 式 问题 . 讨 出 简 洁 明 根 把 探
现新得 途 径 , 而 简洁 明快 的获 得证 明 。 从
1 蕴 含 有 累 次 积 分 型 的 定 积 分 不 等 式 , 考 虑 二 重 积 分 法 . 可
例 1 设 fx 为 [ , ] 的单 调 增 加 的 连 续 函 数 : () O 1 上
求 证
证 明 : 证 问题 归 结 为 证 明 所

考研必备(数学分析知识点之_定积分之证明)

考研必备(数学分析知识点之_定积分之证明)
例5、1若 在 上二次可微,且 证明:
其中 .
证明1:将 在 处用Taylor公式展开,注意到 有

上式两端在 上积分,再两端取绝对值得
其中 .
证明2:考虑 则 在 上三阶可微,且 , , .
由Taylor公式知
其中
从而

,
于是

得证
例5、2设函数 处处二阶可导,且 又 为任意一连续函数,证明:
证明:由Taylor公式知存在
证明:由 ,对 ,有 ,又 在 上单调不增,有
.从而, .
于是,问题得证. 成立.
评注:当不等式中的积分限不同时,常借助变量代换改变积分限或被积函数,证明不等式.
例1、设 在 上连续,且单调减少 求证:对于满足 的任何 ,有 .
证明:因为 .

注意到 在 上单减,
由比较原理(两端从 )得

又 由比较原理和
证明:由于 在 上单调递减,则
对于任意 有
所以பைடு நூலகம்


所以对任何 ,有
评注:比较原理的基本思想:若
(其中等号仅当 时成立)
考察其特殊情况,主要利用定积分的单调性、绝对值及估值不等式来证明,尤其对于 以及 的不等式,可用微积分先求出 在定义的区间的最大值、最小值,再用估值定理求证.
例4、求证
证明:先求被积函数 在区间 上的最值.
所以

于是,
.
题目三:设函数 在 上连续,在 上可导, 且
证明:
分析:本题利用拉格朗日中值定理,即可证明.
证明:由拉格朗日微分中值定理
又 所以有

于是
评注:对于类似问题题型可采用的方法:

探讨定积分不等式的证明方法

探讨定积分不等式的证明方法

探讨定积分不等式的证明方法定积分不等式是数学中的一种重要的不等式,它在数学分析、微积分和概率论等领域中具有广泛的应用。

证明定积分不等式的方法也非常多样,下面将介绍几种常用的证明方法。

对于给定的定积分不等式,我们可以通过研究被积函数的性质来进行证明。

常用的方法有以下几种。

1.利用导数和极值的性质对于被积函数f(x),我们可以通过研究f'(x)的符号和f(x)的极值来判断f(x)在给定区间上的大小关系。

通过推导f'(x)的性质和计算f(x)的极值点,可以得到定积分不等式的证明。

2.利用函数的凸性或凹性凸函数具有性质:对于给定的区间上任意两个点,函数在这两个点之间的值不大于这两个点处的函数值的线性插值。

而凹函数则相反,函数在这两个点之间的值不小于这两个点处的函数值的线性插值。

通过研究函数的凸性或凹性,我们可以得到定积分不等式的证明。

3.利用函数的连续性和单调性如果被积函数f(x)在给定区间上是连续的,且在该区间上单调递增或单调递减,则可以利用这些性质来进行证明。

通过推导f(x)的导数或利用中值定理,可以得到定积分不等式的证明。

定积分不等式的证明通常需要对积分区间进行适当的分割,以便研究被积函数的性质。

常用的方法有以下几种。

1.利用分段函数的性质进行分割被积函数f(x)在给定区间上可能是分段定义的,在不同的区间段上具有不同的性质。

通过将给定区间分成几个子区间,并对每个子区间上的被积函数进行分析,可以得到定积分不等式的证明。

2.利用辅助函数进行分割如果被积函数f(x)难以分割或分析,我们可以引入辅助函数g(x)来研究定积分不等式。

通过将f(x)与g(x)进行比较,可以将定积分不等式转化为对辅助函数g(x)的定积分的不等式来进行证明。

积分中值定理是微积分中的基本定理之一,它为定积分不等式的证明提供了有力的工具。

常用的方法有以下几种。

1.利用平均值定理平均值定理是积分中值定理的一种特殊形式,它将定积分转化为函数的平均值与函数在给定区间上的其中一点处的函数值的乘积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档