证明不等式的定积分放缩法
利用定积分证明不等式
![利用定积分证明不等式](https://img.taocdn.com/s3/m/22476fea88eb172ded630b1c59eef8c75fbf95ca.png)
热点追踪Җ㊀广东㊀李文东㊀㊀不等式的证明是高考的重要内容,证明的方法多㊁难度大,特别是一些数列和型的不等式.这类不等式常见于高中数学竞赛题和高考压轴题中,由于证明难度较大,往往令人望而生畏.其中有些不等式若利用定积分的几何意义证明,则可达到以简驭繁㊁以形助数的解题效果.1㊀利用定积分证明数列和型不等式数列和型不等式的一般模式为ðni =1a i <g (n )(或ðni =1a i >g (n )),g (n )可以为常数.不失一般性,设数列a n =f (n )>0,此类问题可以考虑如下的定积分证明模式.(1)若f (x )单调递减.因为f (i )<ʏii -1f (x )d x ,从而ðni =1a i =ðn i =1f (i )<ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏi i -1f (x )d x <f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏi i-1f (x )d x <ðn +1i =2f (i -1)=ðni =1a i.㊀㊀(2)若f (x )单调递增.因为f (i )>ʏi i -1f (x )d x ,从而ðni =1a i=ðni =1f (i )>ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏii -1f (x )d x >f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏii-1f (x )d x >ðn +1i =2f (i -1)=ðni =1a i .例1㊀(2013年广东卷理19,节选)证明:1+122+132+ +1n2<74(n ɪN ∗).分析㊀本题证法大多采用裂项放缩来证明,为了得到更一般的结论,我们这里采用定积分来证明.证明㊀因为函数y =1xα(α>0且αʂ1)在(0,+ɕ)上单调递减,故ʏii -11x αd x >1iα(i ȡ3),从而当αʂ1时,ðni =11i α<1+12α+ðni =3ʏii -11x αd x =1+12α+ʏn21x αd x =1+12α-1(α-1)x α-1n 2=1+12α+1(α-1)2α-1-1(α-1)nα-1.㊀㊀利用这个不等式可以得到一些常见的不等式.若α=12,则ðn i =11i<1-32+2n =2n -1+(2-32)<2n -1.㊀㊀当α>1时,ðni =11iα<1+12α+1(α-1)2α-1=1+α+1α-1 12α.特别地,若α=2,则ðni =11i 2<1+2+12-1 122=74;若α=3,则ðni =11i3<1+3+13-1 123=54;若α=32,则ðni =11ii<1+32+132-1 1232=1+524<3;若α=1,则1n<ʏnn -11x d x =l n x nn -1=l n n -l n (n -1),从而可以得到12+13+ +1n +1<ʏn +111xd x =l n (n +1),1n +1+1n +2+ +12n<ʏ2nn1xd x =l n2.㊀㊀另一方面,1n -1>ʏnn -11xd x =l n x n n -1=l n n -l n (n -1),则1+12+13+ +1n -1>ʏn11x d x =l n n .㊀㊀当α=1时,借助定积分的几何意义上述不等式42热点追踪还可以进一步加强.图1是函数y =1x的部分图象,显然S 曲边梯形A B C F <S 梯形A B C F ,于是ʏn +1n1x d x <12(1n +1n +1),得l n (1+1n )<12(1n +1n +1),令n =1,2, ,n ,并采用累加法可得1+12+13+ +1n>l n (n +1)+n2(n+1)(n ȡ1).图1例2㊀证明:l n 42n +1<ðni =1i4i 2-1(n ɪN ∗).分析㊀由于i 4i 2-1=14(12i -1+12i +1),l n 42n +1=14l n (2n +1),故证明l n (2n +1)<ðni =1(12i -1+12i +1).构造函数f (x )=12x +1,显然f (x )单调递减,考虑到ðni =1(12i -1+12i +1)的结构,对函数f (x )采用类似图1中的梯形面积放缩.证明㊀由分析得ʏii -112x +1d x <12(12i -1+12i +1),故12l n (2n +1)=ʏn012x +1d x =ðni =1ʏii -112x +1d x <12ðni =1(12i -1+12i +1),不等式两边除以12即为所证.例3㊀证明13+15+17+ +12n +1<12l n (n +1)(n ɪN ∗).分析㊀若考虑函数y =12x +1,则有12i +1<ʏii -112x +1d x ,则ðni =112i +1<ðni =1ʏii -112x +1d x =ʏn012x +1d x =12l n (2x +1)n0=12l n (2n +1),达不到所证的精度,必须改变定积分放缩的精度.证明㊀结合不等式的右边,考虑函数f (x )=1x.如图2所示,在区间[i ,i +1]上,取区间的中点i +12,并以1i +12为高作矩形A E F B ,则S 矩形A E F B <ʏi +1i 1x d x .于是有22i +1=1i +12<ʏi +1i1xd x ,则ðni =122i +1<ðni =1ʏi +1i1xd x =ʏn +111xd x =l n (n +1),即ðn i =112i +1<12ln (n +1).图2例4㊀设n 是正整数,r 为正有理数.(1)求函数f (x )=(1+x )r +1-(r +1)x -1(x >-1)的最小值;(2)证明:n r +1-(n -1)r +1r +1<n r<(n +1)r +1-nr +1r +1;(3)设x ɪR ,记[x ]为不小于x 的最小整数,例如[2]=2,[π]=4,[-32]=-1.令S =381+382+383+ +3125,求[S ]的值.(参考数据:8043ʈ344 7,8143ʈ350 5,12543ʈ625 0,12643ʈ631 7.)分析㊀出题者的本意是利用第(1)问中的伯努利不等式来证明后两问,但这里我们利用积分来证明.证明㊀(1)f m i n (x )=0(求解过程略).(2)因为r 为正有理数,函数y =x r 在(0,+ɕ)上单调递增,故ʏnn -1x r d x <nr,而52热点追踪ʏnn -1x rd x =x r +1r +1n n -1=n r +1-(n -1)r +1r +1,故n r +1-(n -1)r +1r +1<n r.同理可得n r<ʏn +1n x rd x =x r +1r +1n +1n =(n +1)r +1-n r +1r +1,从而n r +1-(n -1)r +1r +1<n r<(n +1)r +1-n r +1r +1.(3)由于i 13<ʏi +1i x 13d x <(i +1)13,故S =ð125i =81i13<ð125i =81ʏi +1ix 13dx =ʏ12681x 13dx =34x 4312681=34(12643-8143),34(12543-8043)=34x 4312580=ʏ12580x 13d x =ð124i =80ʏi +1ix 13d x <ð124i =80(i +1)13=S .34(12543-8043)<S <34(12643-8043).代入数据,可得34(12543-8043)ʈ210.2,34(12643-8143)ʈ210.9.由[S ]的定义,得[S ]=211.2㊀利用积分证明函数不等式我们知道ʏx 2x 1fᶄ(x )d x =f (x 2)-f (x 1),因此,对于与f (x 2)-f (x 1)有关的问题,可以从定积分的角度去思考.若f (x )的导数f ᶄ(x )在区间(a ,b )上单㊀图3调递减且f ᶄ(x )为凹函数,如图3所示.设A C 的中点为B ,过点B 作B G ʅx 轴与f (x )交于点G ,过点G 作f (x )的切线与直线AH 和C D 分别交于点F 和I .设A (x 1,0),C (x 2,0),则f (x 2)-f (x 1)=ʏx 2x 1fᶄ(x )d x =S 曲边梯形A C J H ,S 矩形A C D E =f ᶄ(x 2+x 12)(x 2-x 1).因为S 曲边三角形E G H >S әE F G =S әD I G >S 曲边三角形J D G ,S 曲边梯形A C J H -S 矩形A C D E =S 曲边三角形E G H -S 曲边三角形J D G >0,于是有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12).借助上述几何意义,一般地我们有如下结论.(1)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凹函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12);(2)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凸函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1<f ᶄ(x 2+x12).例5㊀(1)函数f (x )=l n x ,因为f ᶄ(x )=1x在(0,+ɕ)上为凹函数,则对任意0<x 1<x 2,有l n x 2-l n x 1x 2-x 1>1x 2+x 12,即x 2-x 1l n x 2-l n x 1<x 1+x 22,此为对数均值不等式.(2)函数f (x )=x l n x ,因为f ᶄ(x )=1+l n x 在(0,+ɕ)上为凸函数,则对任意0<x 1<x 2,有x 2l n x 2-x 1l n x 1x 2-x 1<1+l n x 2+x 12.许多考题都是以此为背景命题,比如,如下高三模拟考试的压轴题.例6㊀已知函数f (x )=l n x -a x 22+(a -1)x -32a(a >0),在函数f (x )的图象上是否存在不同两点A (x 1,y 1),B (x 2,y 2),线段A B 中点的横坐标为x 0,直线A B 的斜率为k ,使得k >f ᶄ(x 0).简证㊀由于f ᶄ(x )=1x-a x +a -1(a >0)在(0,+ɕ)上为凹函数,可见结论成立!例7㊀设函数f (x )=xex ,若x 1ʂx 2,且f (x 1)=f (x 2),证明:x 1+x 2>2.分析㊀本题的本质是极值点偏移问题,常见证法是利用对称性构造函数,这里采用定积分来证明.证明㊀不妨设x 1<x 2,由f ᶄ(x )=1-x ex ,可知f (x )在(-ɕ,1]上单调递增,在[1,+ɕ)上单调递减,且f (0)=0.当x >0时,f (x )>0,可知0<x 1<1<x 2.设x 1e x 1=x 2e x 2=t ,则x 1+x 2=t (e x 1+e x 2),x 2-x 1=t (e x 2-e x 1),考虑函数y =e x ,则根据定积分的梯形面积放缩有e x 2-e x 1=ʏx 2x 1e xd x <(e x 1+e x2)(x 2-x 1)2,则x 2-x 1t <12 x 2+x 1t(x 2-x 1),故x 1+x 2>2.(作者单位:广东省中山市中山纪念中学)62。
大学中常用不等式放缩技巧
![大学中常用不等式放缩技巧](https://img.taocdn.com/s3/m/d312a05f69eae009581bec32.png)
大学中常用不等式,放缩技巧大学中常用不等式,放缩技巧一:一些重要恒等式ⅰ:12+22+…+n2=n(n+1)(2n+1)/6ⅱ: 13+23+…+n3=(1+2+…+n)2Ⅲ:cosa+cos2a+…+cos2na=sin2n+1a/2n+1sinaⅳ: e=2+1/2!+1/3!+…+1/n!+a/(n!n) (0<a<1)ⅴ:三角中的等式(在大学中很有用)cosαcosβ= 1/2[cos(α+β)+cos(α-β)]sinαcosβ= 1/2[sin(α+β)+sin(α-β)]cosαsinβ= 1/2 [sin(α+β)+sin(α-β)]sinαsinβ=-1/2[cos(α+β)-cos(α-β)]sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)tan+tanB+tanC=tanAtanBtanCcotAcotB+cotBcotC+cotCcotA=1 tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 sin2A+sin2B+sin2C=4sinAsinBsinCⅵ:欧拉等式e∏i=-1 (i是虚数,∏是pai)ⅶ:组合恒等式(你们自己弄吧,我不知怎样用word编)二重要不等式1:绝对值不等式︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用)2:伯努利不等式(1+x1)(1+x2)…(1+xn)≥1+x1+x2+…+xn(xi符号相同且大于-1)3:柯西不等式(∑ai bi)2≤∑ai2∑bi24:︱sin nx︱≤n︱sin x︱5; (a+b)p≤2pmax(︱ap︱,︱bp︱)(a+b)p≤ap+ bp (0<p<1)(a+b)p≥ap+ bp (p>1)6:(1+x)n≥1+nx (x>-1)7:切比雪夫不等式若a1≤a2≤…≤an, b1≤b2≤…≤bn∑aibi≥(1/n)∑ai∑bi若a1≤a2≤…≤an, b1≥b2≥…≥bn∑aibi≤(1/n)∑ai∑bi三:常见的放缩(√是根号)(均用数学归纳法证)1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1);2:1+1/√2+1/√3+…+1/√n>√n;3:n!<【(n+1/2)】n4:nn+1>(n+1)n n!≥2n-15:2!4!…(2n)!>{(n+1)!}n6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x7:(2/∏)x≤sinx≤x8:均值不等式我不说了(绝对的重点)9:(1+1/n)n<4四:一些重要极限(书上有,但这些重要极限需熟背如流)假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
证明不等式的定积分放缩法
![证明不等式的定积分放缩法](https://img.taocdn.com/s3/m/1a9a9fe951e2524de518964bcf84b9d528ea2ce6.png)
证明不等式的定积分放缩法定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过对不等式两边进行积分,利用积分的性质来证明不等式的正确性。
具体来说,我们可以通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。
下面我们以一个简单的例子来说明定积分放缩法的具体应用。
假设我们要证明如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{3}$$我们可以通过放缩被积函数$x^2$ 的大小来证明该不等式。
具体来说,我们可以将 $x^2$ 放缩为 $x$,即:$$x^2 \leq x, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \int_0^1 x dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 x dx = \frac{1}{2}$$因此,我们可以得到如下结论:$$\int_0^1 x^2 dx \leq \frac{1}{2}$$但是,这个结论并不能证明原不等式的正确性。
为了进一步放缩被积函数的大小,我们可以将 $x$ 放缩为 $1$,即:$$x \leq 1, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x dx \leq \int_0^1 1 dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 1 dx = 1$$因此,我们可以得到如下结论:$$\int_0^1 x dx \leq 1$$综合以上两个结论,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{2} \leq \frac{1}{3}$$因此,原不等式得证。
可以看出,通过定积分放缩法,我们成功地证明了该不等式的正确性。
总的来说,定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。
一类级数不等式的定积分放缩法
![一类级数不等式的定积分放缩法](https://img.taocdn.com/s3/m/72fdd32c67ec102de2bd89be.png)
LHS
0
n i2
1 i
1 i2
n 1
1 x
1 x2
dx l n
x 1 n x 1
l n n 1 1 l nn 1 RHS
n
所以, n N ,不等式 l
nn 1
n i 1
i 1 i2 成立。
1
nN 。
此题解法正是“数形结合”思想的高度运用。
11
天津市第一〇二中学
综述:
定积分放缩法作为一种简洁、优美的解题方法,在解决 由“数项级数”所引申出的“证明数列前 n 项和不等式”的 问题中有相当广泛的应用,具有一定程度的普适性。无疑为 学生遇到问题“无从下手”时,提供了一套系统的构思程序。
由此可见,数学的精神在于各个数学分支的互相穿插与 多种解法间内在紧密联系的数学逻辑。这就是“数学素养”。
参考文献
1.《浅谈高等数学在中学数学中的应用》M .广东石油化工学院,22-24 2.李广修.证明不等式的定积分放缩法J .数学通报,2008,47(7):55-57 3.意琦行,数海拾贝.证明级数不等式的积分放缩法J .光量子,2015;10;29 4.《高等数学》M .同济大学数学系,2014 第 7 版:251-327
大”,再根据“这个不等式是非严格成立的(即含等号)” 判断放大之前需先将首项单独说明,而后再空出首项从第二 项开始进行“放大”(即保留首项取等)。
10
天津市第一〇二中学
例 4 1:(2016 天津六校联考)
证明:l
nn
1
1
1 2
1 3
一类级数不等式的定积分放缩法
![一类级数不等式的定积分放缩法](https://img.taocdn.com/s3/m/72fdd32c67ec102de2bd89be.png)
LHS
n1 1 1 x
1 x2
dx l n
x 1 n1 x 1
l nn 1 1 1 l n n RHS
n 1
即: n
N n i1
e ,不等式 i1 i2
n 成立。
由例 1.及其变式不难看出,利用定积分放缩法往往并不
大”,再根据“这个不等式是非严格成立的(即含等号)” 判断放大之前需先将首项单独说明,而后再空出首项从第二 项开始进行“放大”(即保留首项取等)。
10
天津市第一〇二中学
例 4 1:(2016 天津六校联考)
证明:l
nn
1
1
1 2
1 3
1 n
n
2n
1
n N
n1
dx l nx 1
i1 i 1 1 x 1
1
l
n
n 2
1
l
n
e 2
LHS
所以,
l
n
n 1
n i 1
i i2 1
l
n
n
1 2
n 1 , 2 , 成立。
即: 1
n i 1
i2
i l 1
n
n
1 2
n 1 , 2 , 成立。
定积分放缩法中处处渗透了“数形结合”的数学思想, 并将数列与函数联系起来,使学生深刻地认识到数列是离散 的数值函数这一本质,有机地反映了将“代数-几何-分析” 综合起来的“数学美”,有助于提高学生对数学的学习兴趣。
定积分放缩法是建立在常规放缩法基础之上的拓展,二 者地位等同,相互依存。和一切的数学模型一样,我们希望 但永远不能将所有问题都用一个“统一的方法”来解决。数 学的灵魂,在于各分支间的融会贯通,“统一的方法”和“永 动机”一样是不存在的。数学本身的“包罗万象”,足以从 其自身内部酝酿出千变万化的解题方法。
放缩法证明不等式
![放缩法证明不等式](https://img.taocdn.com/s3/m/62adea0e76c66137ee06195a.png)
放缩法证明不等式所谓放缩法,就是针对不等式的结构特征,运用不等式及有关的性质,对所证明的不等式的一边进行放大或缩小或两边放大缩小同时兼而进行,以达到证明结果的方法。
但无论是放大还是缩小都要遵循不等式传递性法则,保证放大还是缩小的连续性,不能牵强附会,须做到步步有据。
比如:证a <b ,可先证a <h 1,成立,而h 1<b 又是可证的,故命题得证。
数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。
“放缩法”可以和很多知识内容结合,对应变能力有较高的要求。
因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。
利用放缩法证明不等式,既要掌握放缩法的基本方法和技巧,又须熟练不等式的性质和其他证法。
做到放大或缩小恰到好处,才有利于问题的解决。
一、用放缩法证明不等式的基本策略1、运用放大、缩小分母或分子的办法来达到放缩的目的分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.还可利用真分数的分子和分母加上同一个正数,则分数值变大;假分数的分子和分母加上同一个正数,则分数值变小来进行放缩. 例1、若a ,b ,c ,d 是正数.求证:12a b c d a b ca b db c da c d<+++<++++++++证明:a b c d a b c a b db c d a c d+++++++++++1abc da b c d a b c d a b c d a b c d>+++=++++++++++++又2a b c d a b c da b c a b d b c d a c d a b a b c d c d+++<+++=++++++++++++ 或a b c d a b ca b d b c da c d +++++++++++2a bb ca cb d a bcd a b c da b c da b c d++++<+++=++++++++++++(利用(0)a a mm b b m+<>+) ∴12a bcda b ca b d b c d a c d <+++<++++++++例2、求证:213121112222<++++n证明:∵nn n n n111)1(112--=-<∴2222111111*********232231nn nn++++<+-+-++-=-<-【变式】2222111171234n++++<∵nn n n n111)1(112--=-<∴2222211111111151171()()1232231424nn nn++++<++-++-=+-<-本题说明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即放不能太宽、缩不能太窄,真正做到恰到好处。
常见级数不等式放缩公式
![常见级数不等式放缩公式](https://img.taocdn.com/s3/m/21e7f15ccbaedd3383c4bb4cf7ec4afe04a1b1f1.png)
常见级数不等式放缩公式常见级数不等式放缩公式是数学中常用的一种技巧,可以用来对级数进行估计和近似计算。
在实际问题中,我们经常会遇到各种级数,通过对级数进行适当的放缩,可以更好地了解级数的性质和行为。
我们来介绍一些常见的级数不等式放缩公式。
这些公式可以帮助我们对级数进行估计,从而得到级数的一些重要性质。
下面是其中一些常见的放缩公式:1. 比较判别法:对于两个正项级数,如果它们的通项之间存在大小关系,那么级数之和也有相同的关系。
例如,如果对于所有的n,有an ≤ bn,那么an的级数之和小于等于bn的级数之和。
2. 比值判别法:对于正项级数,如果存在常数q,使得an+1/an ≤ q,那么级数收敛;如果an+1/an ≥ q,那么级数发散。
3. 根值判别法:对于正项级数,如果存在常数q,使得lim┬(n→∞)〖(an)〗^(1/n) ≤ q,那么级数收敛;如果lim┬(n→∞)〖(an)〗^(1/n) ≥ q,那么级数发散。
4. 积分判别法:对于正项级数,如果存在连续函数f(x),使得an = f(n),那么级数与定积分∫_(1 to ∞)▒f(x)dx之间有相同的收敛性。
以上是一些常见的级数不等式放缩公式,它们在级数的研究中起着重要的作用。
通过使用这些公式,我们可以得到级数的一些重要性质,比如级数的收敛性、发散性以及级数之和的估计。
接下来,我们来看一些具体的例子,展示如何应用这些级数不等式放缩公式。
以比较判别法为例,我们考虑两个级数an=1/n和bn=1/n^2。
显然,对于所有的n,an ≤ bn,根据比较判别法,我们可以得到an的级数之和小于等于bn的级数之和。
而bn的级数之和是一个著名的数学常数,即π^2/6。
因此,我们可以得到1/n 的级数之和小于等于π^2/6。
这个结果对于研究级数的性质和行为非常有用。
除了比较判别法,还有其他的级数不等式放缩公式可以应用到各种级数的研究中。
例如,比值判别法和根值判别法可以用来判断级数的收敛性,积分判别法可以用来估计级数的和。
高中数学-放缩法(详解)
![高中数学-放缩法(详解)](https://img.taocdn.com/s3/m/86d14301b7360b4c2e3f6446.png)
放缩技巧放缩法:将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。
放缩法的方法有:⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n⑷利用常用结论: Ⅰ、kkk k k 21111<++=-+; Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) 1.若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a【巧证】:记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R+∴1=+++++++++++++++>cb a d db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n3.求证:213121112222<++++n【巧证】:nn n n n 111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n巧练一:设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b 巧练一:【巧证】:yyx x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9•lg11 < 1巧练二:【巧证】:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅巧练三:1)1(log )1(log <+-n n n n巧练三:【巧证】: 222)1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-≤+-n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n 巧练四:若a > b > c , 则0411≥-+-+-ac c b b a 巧练四: 【巧证】: c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((12112巧练五:)2,(11211112≥∈>+++++++n R n nn n n巧练五:【巧证】:左边11111122222=-+=++++>n nn n n n n n 巧练六:121211121<+++++≤nn n 巧练六:【巧证】: 11121<⋅+≤≤⋅n n n n 中式 巧练七:已知a , b , c > 0, 且a 2+ b 2= c 2,求证:a n + b n < c n (n ≥3, n ∈R *)巧练七:【巧证】: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0,∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n ∴1=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛nn c b c a证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查知识的潜能与后继能力,因而成为压轴题及各级各类竞赛试题命题的极好素材。
定积分证明题方法总结六篇
![定积分证明题方法总结六篇](https://img.taocdn.com/s3/m/7f7d7c723c1ec5da50e2709e.png)
定积分证明题方法总结六篇定积分证明题方法总结六篇篇一:定积分计算方法总结一、不定积分计算方法1.凑微分法2.裂项法3.变量代换法1)三角代换2)根幂代换3)倒代换4.配方后积分5.有理化6.和差化积法7.分部积分法(反、对、幂、指、三)8.降幂法二、定积分的计算方法1.利用函数奇偶性2.利用函数周期性3.参考不定积分计算方法三、定积分与极限1.积和式极限2.利用积分中值定理或微分中值定理求极限3.洛必达法则4.等价无穷小四、定积分的估值及其不等式的应用1.不计算积分,比较积分值的大小1)比较定理:若在同一区间[a,b]上,总有f(x)>=g(x),则>=()dx2)利用被积函数所满足的不等式比较之a)b)当0<x<兀2时,2兀<<12.估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m 则M(b-a)<=<=M(b-a)3.具体函数的定积分不等式证法1)积分估值定理2)放缩法3)柯西积分不等式≤%4.抽象函数的定积分不等式的证法1)拉格朗日中值定理和导数的有界性2)积分中值定理3)常数变易法4)利用泰勒公式展开法五、变限积分的导数方法篇二:定积分知识点总结1、经验总结(1)定积分的定义:分割—近似代替—求和—取极限(2)定积分几何意义:①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积ab②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a反数(3)定积分的基本性质:①kf(x)dx=kf(x)dx aabb②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa③f(x)dx=f(x)dx+f(x)dx aac(4)求定积分的方法:baf(x)dx=limf(i)xi ni=1nbbbbbcb①定义法:分割—近似代替—求和—取极限②利用定积分几何意义’③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x)ba篇三:定积分计算方法总结1、原函数存在定理●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。
常用导数放缩法
![常用导数放缩法](https://img.taocdn.com/s3/m/44348155de80d4d8d15a4fbe.png)
一:消参放缩(适合含参)1.已知函数f(x)=e x-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.解:(1)f′(x)=1e xx m -+.由x=0是f(x)的极值点得f′(0)=0,所以m=1.于是f(x)=e x-ln(x+1),定义域为(-1,+∞),f′(x)=1e1 xx-+.函数f′(x)=1e1xx-+在(-1,+∞)单调递增,且f′(0)=0.因此当x∈(-1,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.所以f(x)在(-1,0)单调递减,在(0,+∞)单调递增.(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0.当m=2时,函数f′(x)=1e2xx-+在(-2,+∞)单调递增.又f′(-1)<0,f′(0)>0,故f′(x)=0在(-2,+∞)有唯一实根x0,且x0∈(-1,0).当x∈(-2,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0得0e x=01 2x+,ln(x0+2)=-x0,故f(x)≥f(x0)=01 2x++x0=212xx(+)+>0.综上,当m≤2时,f(x)>0.2.已知函数f(x)=m e x-ln x-1.(Ⅰ)当m =1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m ≥1时,证明:f(x)>1.【答案】(Ⅰ)y =(e -1)x(Ⅱ)当m ≥1时,f (x)= m e x-ln x -1≥e x-ln x -1.(放缩)要证明f (x)>1,只需证明e x-ln x -2>0.3.知函数1()ln(1)(1)nf x a xx=+--,其中*x∈N,a为常数.(Ⅱ)当1a =时,证明:对任意的正整数n ,当2n ≥时,有()1f x x -≤. 当1a =时,1()ln(1)(1)nf x x x =+--.当2x ≥时,对任意的正整数n ,恒有11(1)nx -≤,故只需证明1ln(1)1x x +--≤.令()1(1ln(1))2ln(1)h x x x x x =--+-=---,[)2x ∈+∞,,则12()111x h x x x -'=-=--,当2x ≥时,()0h x '≥,故()h x 在[)2+∞,上单调递增,因此当2x ≥时,()(2)0h x h =≥,即1ln(1)1x x +--≤成立. 故当2x ≥时,有1ln(1)1(1)nx x x +---≤.即()1f x x -≤.二:构造放缩(适合f(x)或其变式的N 项和有关)4.设函数()()2ln 1f x x b x =++.(1)若x =1时,函数()f x 取最小值,求实数b 的值;(2)若函数()f x 在定义域上是单调函数,求实数b 的取值范围;(3)若1b =-,证明对任意正整数n ,不等式33311......31211)1(n <k f nk ++++∑=都成立解:(1)由x + 1>0得x > – 1∴f(x)的定义域为( - 1,+ ∞),对x ∈ ( - 1,+ ∞),都有f(x)≥f(1),∴f(1)是函数f(x)的最小值,故有f /(1) = 0,,022,12)(/=+∴++=bx b x x f 解得b= - 4. 经检验合题意;(2)∵,12212)(2/+++=++=x b x x x b x x f 又函数f(x)在定义域上是单调函数,∴f /(x) ≥0或f /(x)≤0在( - 1,+ ∞)上恒成立.若f /(x) ≥0,∵x + 1>0,∴2x 2+2x+b ≥0在( - 1,+ ∞)上恒成立,即b ≥-2x 2-2x =21)21(22++x 恒成立,由此得b ≥21; 若f /(x) ≤0, ∵x + 1>0, ∴2x 2+2x+b ≤0,即b ≤- (2x 2+2x)恒成立,因-(2x 2+2x) 在( - 1,+ ∞)上没有最小值,∴不存在实数b 使f(x) ≤0恒成立.综上所述,实数b 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21. (3)当b= - 1时,函数f(x) = x 2- ln(x+1),令函数h(x)=f(x) – x 3= x 2– ln(x+1) – x 3,则h /(x) = - 3x 2 +2x - 1)1(31123+-+-=+x x x x ,∴当[)+∞∈,0x 时,h /(x)<0所以函数h(x)在[)+∞∈,0x 上是单调递减.又h(0)=0,∴当()+∞∈,0x 时,恒有h(x) <h(0)=0,[ 即x 2– ln(x+1) <x 3恒成立.故当()+∞∈,0x 时,有f(x) <x 3..∵()1,0,,k N k +∈∴∈+∞取,1k x =则有311(),f k k < ∴33311 (312)11)1(n <k f nk ++++∑=,故结论成立。
不等式证明的若干种方法毕业论文
![不等式证明的若干种方法毕业论文](https://img.taocdn.com/s3/m/48b6352b4693daef5ef73df0.png)
本科生毕业论文题目不等式证明的若干种方法院系_____________ 数学系_____________ 专业数学与应用数学2013年5月本科生毕业设计(论文♦创作)声明本人重声明:所呈交的毕业设计,是本人在指导教师指导下,进行研究工作所取得的成果。
除文中已经注明引用的容外,本设计的研究成果不包含任何他人创作的、已公开发表或没有公开发表的作品容。
对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明。
本设计创作声明的法律责任由本人承担。
作者签名:年月日本人声明:该毕业设计是本人指导学生完成的研究成果,已经审阅过毕业设计的全部容,保证题目、关键词、摘要部分中英文容的一致性和准确性,并通过一定检测手段保证毕业设计未发现违背学术道德诚信的不端行为。
指导教师签名:年月日不等式证明的若干种方法高银梅(师学院数学系数学与应用数学2009级)摘要:无论在初等数学还是高等数学中,不等式都是十分重要的容。
而不等式的证明则是不等式知识的重要组成部分。
在本文中,我总结了一些数学中证明不等式的方法。
在初等数学不等式的证明中经常用到的有比较法、综合法、分析法、换元法、增量代换法'反证法、放缩发、构造法、数学归纳法、判别式法等等。
在高等数学不等式的证明中经常利用中值定理、泰勒公式♦拉格朗日函数以及一些箸名不等式,如:柯西不等式、蔭森不等式、施瓦茨不等式、赫尔德不等式等等。
从而使不等式的证明方法更加完善,有利于我们进一步探讨和研究不等式的证明。
通过学习这些证明方法,可以帮助我们解决一些实际问题,培养逻辑推理论证能力和抽象思维的能力以及养成勤于思考、善于思考的良好学习习惯。
关键词:不等式,证明方法,常用,特殊Abstract: both in elementary mathematics and higher mathematics, the inequality is very important content・ Inequality and the proof is an important part of knowledge・ In this article, I suniniarized some mathematical proof of the method of inequality. Inequality in elementary matheinatics analyst is often used with comparison method, synthesis, analysis, change element method, incremental substitution method, the reduction to absurdity, zooming, construction method, mathematical induction, discriminant method and so on. Inequality in higher mathematics analyst often use of mean value theorem, Taylor formula, Lagrange function, and some well-known inequalities, such as cauchy inequality, Jensen,s inequality, inequality Schwartz, held, and so on. So that the inequality proof method more perfect, good for our further discussion and study of inequality proof・ By studying these proofs, can help us to solve some practical problems, to cultivate logical reasoning ability and abstract thinking ability and the students to form good learning habits of thinking, good at thinking・Keywords: inequality, the proof method, commonly used, special目录1前言 (6)2利用常用方法证明不等式 (7)2. 1比校法 (7)2. 2综合法 (7)2. 3分析法 (8)2. 4换元法 (8)2. 5增量代换法 (8)2. 6反证法 (9)2. 7放缩法 (9)2. 8构造法 (10)2. 9数学归纳法 (10)2.10判别式法。
放缩法技巧全总结
![放缩法技巧全总结](https://img.taocdn.com/s3/m/4d42c7467dd184254b35eefdc8d376eeaeaa17cc.png)
放缩法技巧全总结介绍放缩法也称为二分法,是一种常用的数值计算方法,常用于求解数值问题的近似解。
它的基本思想是通过不断缩小问题范围,逐步逼近问题的解。
本文将总结放缩法的相关技巧,帮助读者更好地理解和应用该方法。
放缩法的基本原理放缩法是一种迭代算法,它的基本原理可以概括为以下几个步骤: 1. 确定问题的上下界限:放缩法需要确定问题的解的上下界限,以便在迭代过程中进行范围缩小。
2. 缩小问题的范围:通过逐步缩小问题的范围,来逼近问题的解,直到满足终止条件。
3. 更新界限:根据当前迭代的结果,更新问题的上下界限,以便下一轮迭代时使用。
放缩法的常用技巧折半查找折半查找是放缩法中的一种常用技巧,它用于在一个有序数组中查找指定的元素。
其基本思想是通过比较中间元素与目标元素的大小来确定目标元素在左半部分还是右半部分,从而缩小问题的范围。
折半查找的伪代码如下:function binarySearch(arr, target):left = 0right = arr.length - 1while (left <= right):mid = left + (right - left) / 2if arr[mid] == target:return midelse if arr[mid] < target:left = mid + 1else:right = mid - 1return -1二分法求解方程放缩法还可以用于求解方程的近似解。
其基本思想是通过不断二分问题的解空间,逐步逼近方程的解。
具体的步骤如下: 1. 确定方程的上下界限:根据方程的特性,确定问题的解的上下界限,以便在迭代过程中进行范围缩小。
2. 缩小解空间:通过不断缩小解空间,逐步逼近方程的解。
3. 更新界限:根据当前迭代的结果,更新问题的上下界限,以便下一轮迭代时使用。
4. 终止条件:当问题的解满足终止条件时,停止迭代,得到近似解。
放缩法证明不等式
![放缩法证明不等式](https://img.taocdn.com/s3/m/fbab11fff90f76c661371a8f.png)
用放缩法证明不等式的方法与技巧放缩法:为放宽或缩小不等式的范围的方法。
常用在多项式中“舍掉一些正(负)项”而使不等式各项之和变小(大),或“在分式中放大或缩小分式的分子分母”,或“在乘积式中用较大(较小)因式代替”等效法,而达到其证题目的。
一.常用公式 1.)1(11)1(12-<<+k k k k k 2.12112-+<<++k k kk k3.22k k≥()4≥k 4.1232kk ⨯⨯⨯⋅⋅⋅⨯≥(4k ≥) 5.⎥⎦⎤⎢⎣⎡--≤!!(!k k k 1)11211(待学) 6.b a b a +≤+ 二.放缩技巧所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧(1)若0,,t a t a a t a >+>-<(2)<>11>n >= (3)21111111(1)1(1)(1)1n n n n n n n n n n-=<<=->++--(4)=<=<=(5)若,,a b m R +∈,则,a a a a m b b m b b+><+ (6)21111111112!3!!222n n -+++⋅⋅⋅+<+++⋅⋅⋅+(7)2221111111111(1)()()232231n n n+++⋅⋅⋅+<+-+-+⋅⋅⋅+--(因为211(1)n n n <-) (7)1111111112321111nn n n n n n n n +++⋅⋅⋅+≤++⋅⋅⋅+=<+++++++或11111111123222222n n n n n n n n n +++⋅⋅⋅+≥++⋅⋅⋅+==+++(8)1++>++==三.常见题型(一).先求和再放缩: 1.设11112612(1)n S n n =+++++ ,求证:1n S <2.设1n b n =(n N *∈),数列2{}n n b b +的前n 项和为n T ,求证:34n T <(二).先放缩再求和: 3.证明不等式:11112112123123n++++<⨯⨯⨯⨯⨯⨯⨯4.设222111123n S n =++++(1)求证:当2n ≥时,21n nS n <<+;(2)试探究:当2n ≥时,是否有65(1)(21)3n n S n n <<++?说明理由.5.设135212462n n b n -=⋅⋅⋅⋅,求证: (1)n b <(2)1231n b b b b ++++<6.设n a n =,212()n n n b a a +=+求证(1)12n n a a +<+(2)*123()1n nb b b b n N n ++++<∈+7. 设2(1)n b n =+,(1)n a n n =+, 求证:1122111512n n a b a b a b +++<+++…8. 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 个图的蜂巢总数.(1)试给出(4),(5)f f 的值,并求()f n 的表达式(不要求证明); (2)证明:11114(1)(2)(3)()3f f f f n ++++< .9.(10广州)设n S 为数列}{n a 的前n 项和,对任意的∈n N *,都有()1n n S m ma =+-m(为常数,且0)m >.(1)求证:数列}{n a 是等比数列;(2)设数列}{n a 的公比()m f q =,数列{}n b 满足()1112,n n b a b f b -== (2n ≥,∈n N *),求数列{}n b 的通项公式;(3)在满足(2)的条件下,求证:数列{}2nb 的前n 项和8918nT<.10.(010深圳)在单调递增数列{}n a 中,11a =,22a =,且21221,,n n n a a a -+成等差数列,22122,,n n n a a a ++成等比数列,1,2,3,n = .(1)分别计算3a ,5a 和4a ,6a 的值;(2)求数列{}n a 的通项公式(将n a 用n 表示);(3)设数列1{}n a 的前n 项和为n S ,证明:42n nS n <+,n *∈N .2.证:1n b n=21111()(2)22n b b b n n n n +==-++1324352n n n T b b b b b b b b +=+++11111111111[()()()()()]2132435462n n =-+-+-+-++-+11113(1)22124n n =+--<++ .3.略4.解:(1)∵当2n ≥时,21111(1)1n n n n n<=--- ∴2221111111111[(1)()()]232231n n n ++++<+-+-++-- =12n-2<又∵21111(1)1n n n n n >=-++ ∴11111(1)()()2231n S n n >-+-++-+ 1111nn n =-=++ ∴当2n ≥时,21n nS n <<+.(2)∵22144112()4(21)(21)2121n n n n n n =<=--+-+ ∴222111*********[()()()]2335572121n n n ++++<+-+-++--+ =52321n -+53< 当2n ≥时,要6(1)(21)n n S n n >++只需61(1)(21)n nn n n >+++ 即需216n +>,显然这在3n ≥时成立 而215144S =+=,当2n ≥时6624(1)(21)(21)(41)5n n n ⨯==++++ 显然5445> 即当2n ≥时6(1)(21)n nS n n >++也成立综上所述:当2n ≥时,有65(1)(21)3n n S n n <<++.5.证法一:∵22414,n n -<∴222(21)(21)4(21)(21)4(21).n n n n n n n -+<⇒-+<-∴212n n -<∴135212462n n -⋅⋅⋅⋅<= .………………10分证法二:212n n -<=,下同证法一. …………10分 证法三:(利用对偶式)设135212462n n A n -=⋅⋅,246235721n nB n =⋅⋅+ , 则121n n A B n =+.又22414n n -<,也即212221n n n n -<+,所以n n A B <,也即2121n n n A A B n <=+, 又因为0n A >,所以n A <.即135212462n n -⋅⋅⋅⋅< ………………10分 证法四:(数学归纳法)①当1n =时, 112x =<,命题成立; ②假设n k =时,命题成立,即135212462k k -⋅⋅<则当1n k =+时,13521212124622(1)2(1)2(2)k k k k k k k -++⋅⋅⋅<=+++ 2222222211(21)(23)4(1)4(1)234(23)(1)(483)(484)104(23)(1)4(23)(1)k k k k k k k k k k k k k k k k +++-+-=++++++-++-==<++++22114(1)23k k k +∴<++<即135212124622(1)k k k k -+⋅⋅⋅<+ 故当1n k =+时,命题成立.综上可知,对一切非零自然数n ,不等式②成立. ………………10分<<所以kb<<从而121)1nb b b++<+++=.也即121nb b b++<………………14分6.证明:(法一)112112322211(),9(1)(1)1111223(1)n nn nnn nna aa aba a n n n nb b bn n++++>∴<=+∴<<+++∴++++<+++⋅⋅+即分b11111111223111nn n n n=-+-++-=-=+++………………12分(法二)(1)当212411,(),21192n b=====⨯+时右右,显然成立…………5分(2)假设n k=时,21212()123kkb b bk k++++<+++………………7分22222222221()1232(2)(23)4(1)(2)(1)(23)(1)(23)(2)(23)[(2)(1)]4(32)(1)(23)(2)k kk k kk k k k k k kk k kk k k k k kk k k++-++++++++-++=++⋅+++-++++=++⋅+221211(1)(23)(2)21()123211112(1)1kk k kk kk k kk kb b bk k+-=<++⋅++∴+<+++++∴+++<=+++分即当1n k=+时,不等式成立,由(1)(2)可得原不等成立。
放缩法技巧全总结材料
![放缩法技巧全总结材料](https://img.taocdn.com/s3/m/45e8830c58fafab068dc025d.png)
放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k nk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)1111(1)1132132(1)n n n n +<+++++<⨯⨯-(5)n n nn 21121)12(21--=- (6) n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n (11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n (12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn (4) 求证:)112(2131211)11(2-+<++++<-+n n n解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k n k 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n. 解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m nk mnk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kkm kkm 而正是成立的,所以原命题成立.例6.已知nn n a 24-=,nnn a a a T +++=212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n nn T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ .解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n+++--<++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n nn ααααααα解析:构造函数x x x f ln )(=,得到22ln ln n n n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n,求和后可以得到答案例10.取1=i 有,)1ln(ln 11-->-n n n , 所以有n n 1211)1ln(+++<+ ,所以综上有n n n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x xx x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x , 所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n n a a a n n +==+++证明2n a e <解析: n n nn n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
不等式放缩方法大全
![不等式放缩方法大全](https://img.taocdn.com/s3/m/104c980750e2524de4187e2a.png)
不等式放缩技巧十法证明不等式,其基本方法参阅<数学是怎样学好的>(下册)有关章节.这里以数列型不等式的证明为例说明证明不等式的一个关键问题: 不等式的放缩技巧。
证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下十种:一 利用重要不等式放缩1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n 求证.2)1(2)1(2+<<+n S n n n 解析 此数列的通项为.,,2,1,)1(n k k k a k=+=2121)1(+=++<+<k k k k k k , )21(11∑∑==+<<∴nk n nk k S k ,即.2)1(22)1(2)1(2+<++<<+n n n n S n n n 注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2ba ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a n a a a a a a nnnn n n22111111++≤++≤≤++其中,3,2=n 等的各式及其变式公式均可供选用。
例2 已知函数bx a x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f[简析] 411()11(0)141422x x x xf x x ==->-≠++•1(1)()(1)22f f n ⇒++>-⨯211(1)(1)2222n+-++-⨯⨯ 1111111(1).42222n n n n -+=-+++=+- 例3 求证),1(221321N n n n C C C C n n nnnn∈>⋅>++++- .简析 不等式左边123nn n n n C C C C ++++=12222112-++++=-n nn n n 122221-⋅⋅⋅⋅⋅> =212-⋅n n ,故原结论成立.【例4】已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1.【解析】使用均值不等式即可:因为22(,)2x y xy x y R +≤∈,所以有22222211221122222n n n n a x a x a x a x a x a x ++++++≤+++2222221212111.2222nna a a x x x ++++++=+=+= 其实,上述证明完全可以改述成求n n x a x a x a +++ 2211的最大值。
不等式证明放缩法doc资料
![不等式证明放缩法doc资料](https://img.taocdn.com/s3/m/2347cca4580216fc710afd60.png)
不等式的证明(放缩法)1.设0,0x y >>,,111x y x yA B x y x y+==+++++,则,A B 的大小关系是( )A. A B =B. A B <C. A B ≤D. A B > 2.已知三角形的三边长分别为,,a b c ,设,,1111a b c a bM N Q a b c a b+=+==+++++,则,M N 与Q 的大小关系是 ( ) A. M N Q << B. M Q N << C. Q N M << D.N Q M << 3.设不等的两个正数,a b 满足3322a b a b -=-,则a b +的取值范围是 ( ) A. (1,)+∞ B. 4(1,)3 C. 4[1,]3D. (0,1] 4.设1010101111112212221A =+++++++L ,则A 与1的大小关系是 . 5.设1S =++L S 的整数部分为 . 6.已知,,a b c 均为正数,且222a b c +=,求证:33332c a b c <+<. 7.设n N *∈,求证:21111925(21)4n +++<+L . 8.设n N *∈,求证:111112122n n n <+++<++L . 9.设n N *∈,求证:222111124(2)n +++<L .10.设L n S ,求证:不等式2(1)(1)22n n n n S ++<<对所有的正整数n 都成立.简答:1.B 提示: 11111x y x y x yA B x y x y x y x y+==+<+=++++++++2.D 提示:由a b c +>,得11a b c <+ ,111111a b c a b a b c c++++=<=+++ 3.B 提示:由条件得22a ab b a b ++=+,所以222()a b a ab b a b +>++=+,故1a b +> .又2()0a b ->,可得22223()4()a ab b a ab b ++<++,从而23()4()a b a b +<+,所以43a b +< ,故413a b <+<. 4.A<15.18 提示:因为2n ≥<<,即<<故181111)19<+<+++<+=L 所以所求整数部分为18.6.解:由已知可知,2220,0,,22a b c a c b c a b c ab +<<<<+>≤=,所以 3322223()a b a a b b c a b c +=+<+=g g ,2333222()()()22c c a b a b a ab b c c +=+-+>-=所以原不等式得证. 7.提示:由222111111()(21)4414441k k k k k k k =<=-+++++,累加即得. 8.提示:1111111111122222122n n n n n n n n n n n n n ==+++<+++<++==++L L L . 9.提示:2211111(2)(1)1n n n n n n<<=---,累加即得.10(1)2k k +<不等式证明五(放缩法、反证法)目的:要求学生掌握放缩法和反证法证明不等式。
数学所有不等式放缩技巧及证明方法
![数学所有不等式放缩技巧及证明方法](https://img.taocdn.com/s3/m/9153bf48f524ccbff021843f.png)
文档收集于互联网,已重新整理排版word 版本可编辑•欢迎下载支持.高考数学所有不等式放缩技巧及证明方法一、裂项放缩畀 2 15例1.⑴求芥门 --------- 7的值; (2)求证:>2 7T V —・A=1 4* — 1Ar = l k3例2・⑴求证:1 +丄+丄+・・・+ —>1-一!一> 2)32 52⑵Li ), 6 2(2n-1)1 1 1 1 114 16 364n 2 2 4n⑶求证丄+12+空+」"•…⑵i2 2-4 2-4-6 2-4-6••…2n例 3•求证: ---- - ---- <i + l +l + ... + -L<-(n +1)( 2/1 + 1)4 9 ir 3例4・(2008年全国一卷)设函数f ⑴二X-H1U.数列仇}满足0<q<l ・% 明:畋+】>b.例 5.已知",加 e 他,兀 > -1,S,” 二 r n + T +3川 + …+ 心求证:/严 < (m +1)5,, <(〃 + 1严 -1例 6.已知® = 4" - T , T n= ------ 二 ----- ,求证:£+◎+◎人 < —.a { + a 2 + ・• • + a n2例7.已知坷=1, £ = < W (mi,"Z),求证:亠*亠+ •..+亠>逅(耐®訓) W - l(n = 2k 、k wZ) 护2 ・x 3 化・x 5.. 4丁 /、 In 2a In 3a In n a hr -n-l例 9.求证——<^—^^>2)例 10.求证:—+ - + ・・・ + —< ln(n + 1) < 1 + —4-・・• +」■2 3 77 + 1 2 n例 11.求证:(1 + \(1 +、•….(1 + ^-Xe 和(1 + ;)(1 + 厶)•….(1 + 点)<辰 2! 3! n\ 9 81 3" 例 12•求证:(1 +1 x 2) • (1 + 2 x 3) ••…[1 + n(n +1)] > 严I12例14.已知4=1。
考研必备(数学分析知识点之_定积分之证明)
![考研必备(数学分析知识点之_定积分之证明)](https://img.taocdn.com/s3/m/f23a1b205901020207409cfe.png)
其中 .
证明1:将 在 处用Taylor公式展开,注意到 有
,
上式两端在 上积分,再两端取绝对值得
其中 .
证明2:考虑 则 在 上三阶可微,且 , , .
由Taylor公式知
其中
从而
又
,
于是
,
得证
例5、2设函数 处处二阶可导,且 又 为任意一连续函数,证明:
证明:由Taylor公式知存在
证明:由 ,对 ,有 ,又 在 上单调不增,有
.从而, .
于是,问题得证. 成立.
评注:当不等式中的积分限不同时,常借助变量代换改变积分限或被积函数,证明不等式.
例1、设 在 上连续,且单调减少 求证:对于满足 的任何 ,有 .
证明:因为 .
令
注意到 在 上单减,
由比较原理(两端从 )得
即
又 由比较原理和
证明:由于 在 上单调递减,则
对于任意 有
所以பைடு நூலகம்
即
而
所以对任何 ,有
评注:比较原理的基本思想:若
(其中等号仅当 时成立)
考察其特殊情况,主要利用定积分的单调性、绝对值及估值不等式来证明,尤其对于 以及 的不等式,可用微积分先求出 在定义的区间的最大值、最小值,再用估值定理求证.
例4、求证
证明:先求被积函数 在区间 上的最值.
所以
,
于是,
.
题目三:设函数 在 上连续,在 上可导, 且
证明:
分析:本题利用拉格朗日中值定理,即可证明.
证明:由拉格朗日微分中值定理
又 所以有
故
于是
评注:对于类似问题题型可采用的方法:
数学所有不等式放缩技巧及证明方法
![数学所有不等式放缩技巧及证明方法](https://img.taocdn.com/s3/m/b6c013192bf90242a8956bec0975f46526d3a752.png)
数学所有不等式放缩技巧及证明方法第一篇:数学所有不等式放缩技巧及证明方法高考数学所有不等式放缩技巧及证明方法一、裂项放缩例1.(1)求例2.(1)求证:1+(2)求证:/ 7 ∑4kk=1n22-1的值;(2)求证:∑k=1n15<3k2.11171++Λ+>-(n≥2)22262(2n-1)35(2n-1)111111+++Λ+2<-4163624n4n(3)求证: 11⋅31⋅3⋅51⋅3⋅5⋅Λ⋅(2n-1)+++Λ+<2n+1-1 22⋅42⋅4⋅62⋅4⋅6⋅Λ⋅2n(4)求证:2(n+1-1)<1+1+1+Λ+1<2(2n+1-1)23n例3.求证:例4.(2008年全国一卷)设函数6n1115≤1+++Λ+2<(n+1)(2n+1)49n3a-bf(x)=x-xlnx.数列{a}满足0<a1<1.an+1=f(an).设b∈(a1,1),整数k≥1.证na1lnb明:ak+1>b.mmmmm+1m+1n,m∈N,x>-1,S=1+2+3+Λ+nn<(m+1)S<(n+ 1)-1.例5.已知,求证: +mn例6.已知n例7.已知x1=1,xna=4-2nn32nT+T+T+Λ+T<,Tn=,求证:1.23n2a1+a2+Λ+an111⎧n(n=2k-1,k∈Z)++Λ+>2(n+1-1)(n∈N*)=⎨,求证:4x⋅x4x⋅x4xxn-1(n=2k,k∈Z)⎩23452n2n+1ln2ln3ln4ln3n5n+6二、函数放缩例8.求证:+++Λ+n<3n-(n∈N*).23436ln2αln3αlnnα2n2-n-1(n≥2)例9.求证:(1)α≥2,α+α+Λ+α<2(n+1)23n 例10.求证:例11.求证:(1+2n-3(1+1⨯2)⋅(1+2⨯3)⋅Λ⋅[1+n(n+1)]>e例12.求证:/ 7 11111++Λ+<ln(n+1)<1++Λ+23n+12n111111)(1+)⋅Λ⋅(1+)<e 和(1+)(1+)⋅Λ⋅(1+2n)<e.2!3!n!9813例14.已知a1=1,an+1=(1+例16.(2008年福州市质检)已知函数三、分式放缩例19.姐妹不等式:(1+1)(1+)(1+)Λ(1+11an)a+.n2n证明n+n2<e2.f(x)=xlnx.若a>0,b>0,证明:f(a)+(a+b)ln2≥f(a+b)-f(b).13151)>2n+1和(1-1)(1-1)(1-1)Λ(1+1)<1也可以表示成为2n-12462n2n+112n+1 1⋅3⋅5⋅Λ⋅(2n-1)2⋅4⋅6Λ⋅2n<>2n+1和2⋅4⋅6⋅Λ⋅2n1⋅3⋅5⋅Λ⋅(2n-1) 例20.证明:(1+1)(1+)(1+)Λ(1+四、分类放缩例21.求证:1+例23.(2007年泉州市高三质检)已知函数1,0].若数列{bn}满足bn=14171)>33n+1.3n-2111n++Λ+n>232-12f(x)=x2+bx+c(b≥1,c∈R),若f(x)的定义域为[-1,0],值域也为[-f(n)*(n∈N),记数列{bn}的前n项和为Tn,问是否存在正常数A,使得对于任意正3n整数n都有Tn<A?并证明你的结论。