浙教版八年级下数学《第二章一元二次方程》单元检测卷含答案
第二章 一元二次方程单元培优测试题(含答案)
浙教版八下数学第2章《一元二次方程》单元培优测试题考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列方程中,属于一元二次方程的是( )A. B. C. D.2.若关于的一元二次方程(≠0)的解是= 1,则+ 的值是()A. 5B. -5C. 6D. -63.用配方法解方程x2﹣x﹣1=0时,应将其变形为()A.(x﹣)2=B.(x+ )2=C.(x﹣)2=0D.(x﹣)2=4.如果关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是( )A. B.且 C. D.且5.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )A. B.C. D.6.一个三角形的两边长分别为3和6,第三边的边长是方程x2-6x+8=0的根,则这个三角形的周长是()A.11B.11或13C.13D.以上选项都不正确7.若两个不相等的实数m、n满足m2-6m=4,n2-4=6n,则mn的值为()A.6B.-6C.4D.-48.一元二次方程(2x+1)(x﹣2)=1的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 只有一个实数根9.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. 80(1+x)2=100B. 100(1﹣x)2=80C. 80(1+2x)=100D. 80(1+x2)=10010.若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+ 的值是()A. 3B. ﹣3C. 5D. ﹣5二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.写出一个一元二次方程使其一个根为1________.12.若是方程的一个解,则=________.13.把方程3x(x-1)=(x+2)(x-2)+9化成ax2+bx+c=0的形式为________.14.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为________.15.已知x为实数,且满足,那么16.某摄影小组的学生,将自己的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x 名学生,根据题意列出的方程是________。
浙教版八年级数学下册《第2章一元二次方程》章节综合测试【含答案】
浙教版八年级数学下册《第2章一元二次方程》章节综合测试一.选择题1.关于x的方程m2x2﹣8mx+12=0至少有一个正整数解,且m是整数,则满足条件的m 的值的个数是( )A.5个B.4个C.3个D.2个2.若关于x的一元二次方程x2﹣(k+3)x+2k+2=0有一根小于1,一根大于1,则k的取值范围是( )A.k≠1B.k<0C.k<﹣1D.k>03.关于未知数x的方程ax2+4x﹣1=0只有正实数根,则a的取值范围为( )A.﹣4≤a≤0B.﹣4≤a<0C.﹣4<a≤0D.﹣4<a<0 4.对于一元二次方程,我国及其他一些国家的古代数学家曾研究过其几何解法,以方程x2+2x﹣35=0为例,公元9世纪,阿拉伯数学家阿尔•花拉子米采用的方法是:将原方程变形为(x+1)2=35+1,然后构造如图,一方面,正方形的面积为(x+1)2;另一方面,它又等于35+1,因此可得方程的一个根x=5,根据阿尔•花拉子米的思路,解方程x2﹣4x﹣21=0时构造的图形及相应正方形面积(阴影部分)S正确的是( )A.S=21+4=25B.S=21﹣4=17C.S=21+4=25D.S=21﹣4=17 5.关于x的方程ax2﹣(a+2)x+2=0只有一解(相同解算一解),则a的值为( )A.a=0B.a=2C.a=1D.a=0或a=26.已知关于x的一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的最大整数值是( )A.2B.1C.0D.﹣17.代数式2x2﹣4x+3的值一定( )A.大于3B.小于3C.等于3D.不小于18.关于x的一元二次方程ax2+bx+c=0的两根分别为x1=,x2=,下列判断一定正确的是( )A.a=﹣1B.c=1C.ac=1D.=﹣19.已知x为实数,且﹣(x2+3x)=2,则x2+3x的值为( )A.1B.1或﹣3C.﹣3D.﹣1或310.有一块长28cm、宽20cm的长方形纸片,要在它的四角截去四个全等的小正方形,折成一个无盖的长方体盒子,使它的底面积为180cm2,为了有效利用材料,则截去的小正方形的边长是( )A.3cm B.4cm C.5cm D.6cm二.填空题11.如果方程(x﹣1)(x2﹣2x+)=0的三根可以作为一个三角形的三边之长,那么实数k的取值范围是 .12.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为 .13.若实数a,b满足a2+a﹣1=0,b2+b﹣1=0,则= .14.若关于x的一元二次方程(m+2)x|m|+2x﹣1=0是一元二次方程,则m= .15.已知m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为 .16.已知关于x的方程m(x+a)2+n=0的解是x1=﹣3,x2=1,则关于x的方程m(x+a﹣2)2+n=0的解是 .三.解答题17.已知关于x的一元二次方程x2﹣2x﹣3m2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.18.解一元二次方程:(1)(2x﹣5)2=9(2)x2﹣4x=96(3)3x2+5x﹣2=0(4)2(x﹣3)2=﹣x(3﹣x)19.已知x2﹣x﹣1=0,求:(1)求x的值.(2)求的值.20.已知:关于x的一元二次方程2x2﹣2x+4﹣k=0有两个不相等的实数根,请化简:.21.某淘宝网店销售台灯,成本为每个30元.销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)若售价下降1元,每月能售出 个台灯,若售价下降x元(t>0),每月能售出 个台灯.(2)为迎接“双十一”1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.(3)月获利能否达到9600元,说明理由.22.已知关于x的方程ax2+(3﹣2a)x+a﹣3=0.(1)求证:无论a为何实数,方程总有实数根.(2)如果方程有两个实数根x1,x2,当|x1﹣x2|=时,求出a的值.23.已知关于x的一元二次方程x2﹣(m+4)x+2m+4=0(1)求证:该一元二次方程总有两个实数根;(2)若该方程只有一个小于4的根,求m的取值范围;(3)若x1,x2为方程的两个根,且n=x12+x22﹣4,判断动点P(m,n)所形成的数图象是否经过点A(﹣5,9),并说明理由.24.某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)对应的点(x,y)在函数y=kx+b的图象上,如图.(1)求y与x的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多少万元?25.观察下列一元二次方程,并回答问题:第1个方程:x2+x=0;第2个方程:x2﹣1=0;第3个方程:x2﹣x﹣2=0;第4个方程:x2﹣2x﹣3=0;…(1)第2023个方程是 ;(2)直接写出第n个方程,并求出第n个方程的解;(3)说出这列一元二次方程的解的一个共同特点.参考答案一.选择题1.解:m2x2﹣8mx+12=0,当方程为一元一次方程时,m=0,原方程不符合题意,所以原方程只能是一元二次方程,解法一:Δ=(﹣8m)2﹣4m2×12=16m2,∴x==,∴x1=,x2=,解法二:(mx﹣2)(mx﹣6)=0,∴x1=,x2=,∵关于x的方程m2x2﹣8mx+12=0至少有一个正整数解,且m是整数,∴>0,>0,∴m=1或2或3或6,则满足条件的m的值的个数是4个,故选:B.2.解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,一根大于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.故选:B.3.解:当a=0时,方程是一元一次方程,方程是4x﹣1=0,解得x=,是正根;当a≠0时,方程是一元二次方程.∵a=a,b=4,c=﹣1,∴Δ=16+4a≥0,x1+x2=﹣>0,x1•x2=﹣>0解得:﹣4≤a<0.总之:﹣4≤a≤0.故选:A.4.解:x2﹣4x﹣21=0x2﹣4x+4=21+4(x﹣2)2=25正方形面积(阴影部分)S=21+4=25,故选:C.5.解:当a≠0时,方程ax2﹣(a+2)x+2=0为一元二次方程,若方程有相等的两解,则Δ=[﹣(a+2)]2﹣4×a×2=0,整理得a2﹣4a+4=0,即Δ=(a﹣2)2=0,解得a=2;当a=0时,方程ax2﹣(a+2)x+2=0为一元一次方程,原方程转化为:﹣2x+2=0,此时方程只有一个解x=1.所以当a=0或a=2关于x ax2﹣(a+2)x+2=0只有一解.故选:D.6.解:∵关于x的一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,∴Δ=4+4(1﹣k)>0,且1﹣k≠0,解得k<2,且k≠1,则k的最大整数值是0.故选:C.7.解:∵(x﹣1)2≥0,∴代数式2x2﹣4x+3=2(x2﹣2x+1)+1=2(x﹣1)2+1≥1,则代数式2x2﹣4x+3的值一定不小于1.故选:D.8.解:根据一元二次方程的求根公式可得:x1=,x2=,∵关于x的一元二次方程ax2+bx+c=0的两根分别为x1=,x2=,∴x1+x2=﹣b=﹣,x1•x2==﹣1,∴当b≠0时,a=1,c=﹣1,则ac=﹣1,故选:D.9.解:设x2+3x=y,则原方程变为:﹣y=2,方程两边都乘y得:3﹣y2=2y,整理得:y2+2y﹣3=0,(y﹣1)(y+3)=0,∴y=1或y=﹣3,当x2+3x=1时,Δ>0,x存在.当x2+3x=﹣3时,Δ<0,x不存在.∴x2+3x=1,故选:A.10.解:设截去的小正方形的边长是xcm,由题意得(28﹣2x)(20﹣2x)=180,解得:x1=5,x2=19,∵20﹣2x>0,∴x<10.∴x2=19,不符合题意,应舍去.∴x=5.∴截去的小正方形的边长是5cm.故选:C.二.填空题11.解:由题意,得:x﹣1=0,x2﹣2x+=0;设x2﹣2x+=0的两根分别是m、n(m≥n);则m+n=2,mn=;m﹣n==;根据三角形三边关系定理,得:m﹣n<1<m+n,即<1<2;∴,解得3<k≤4.12.解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则Δ=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2+;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.13.解:若a≠b,∵实数a,b满足a2+a﹣1=0,b2+b﹣1=0,∴a、b看作方程x2+x﹣1=0的两个根,∴a+b=﹣1,ab=﹣1,则====﹣3.若a=b,则原式=2.故答案为:2或﹣314.解:因为是关于x的一元二次方程,这个方程一定有一个二次项,则(m+2)x|m|一定是此二次项.所以得到,解得m=2.15.解:∵m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,∴m+n=3,mn=a,∵(m﹣1)(n﹣1)=﹣6,∴mn﹣(m+n)+1=﹣6即a﹣3+1=﹣6解得a=﹣4.故答案为:﹣4.16.解:∵关于x的方程m(x+a)2+n=0的解是x1=﹣3,x2=1,∴方程m(x+a﹣2)2+n=0可变形为m[(x﹣2)+a]2+n=0,∵此方程中x﹣2=﹣3或x﹣2=1,解得x1=﹣1或x2=3.故答案为:x1=﹣1,x2=3.三.解答题17.(1)证明:∵a=1,b=﹣2,c=﹣3m2,∴Δ=(﹣2)2﹣4×1•(﹣3m2)=4+12m2>0,∴方程总有两个不相等的实数根;(2)解:由题意得:,解得:,∵αβ=﹣3m2,∴﹣3m2=﹣3,∴m=±1,∴m的值为±1.18.解:(1)(2x﹣5)2=92x﹣5=±32x=±3+5x1=4,x2=1;(2)x2﹣4x=96x2﹣4x﹣96=0(x+8)(x﹣12)=0x+8=0或x﹣12=0x1=﹣8,x2=12;(3)3x2+5x﹣2=0(x+2)(3x﹣1)=0x+2=0或3x﹣1=0x1=﹣2,x2=;(4)2(x﹣3)2=﹣x(3﹣x)2(x﹣3)2﹣x(x﹣3)=0(x﹣3)(2x﹣6﹣x)=0x﹣3=0或x﹣6=0x1=3,x2=6.19.解:(1)x2﹣x﹣1=0,b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5,∴x=,∴x1=,x2=.(2)x2﹣x﹣1=0,∴x2=x+1,x4=(x2)2=(x+1)2=x2+2x+1=x+1+2x+1=3x+2,x5=x(3x+2)=3x2+2x=3(x+1)+2x=5x+3,2x2=2(x+1)=2x+2,∴===1.20.解:∵关于x的一元二次方程2x2﹣2x+4﹣k=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4×2×(4﹣k)>0,∴4﹣32+8k>0,∴8k>28,∴k>,∴2﹣k<0,k+1>0,∴原式=k﹣2﹣(k+1)﹣(k﹣2)=k﹣2﹣k﹣1﹣k+2=﹣1﹣k.21.解:(1)若售价下降1元,每月能售出:600+200=800(个),若售价下降x元(x>0),每月能售出(600+200x)个.故答案为800,(600+200x)(2)(40﹣30﹣x)(600+200x)=8400整理,得x2﹣7x+12=0解得x1=3,x2=4,因为库存1210个,降价3元或4元获利恰好为8400元,但是实际销量要够卖,需小于等于1210个,当x=4时,1400>1210(舍去)当x=3时,1200<1210,可取,所以售价为37元答:每个台灯的售价为37元.(3)月获利不能达到9600元,理由如下:(40﹣30﹣x)(600+200x)=9600整理,得x2﹣7x+18=0∵Δ=49﹣72=﹣23<0方程无实数根.答:月获利不能达到9600元.222.(1)证明:①当a=0时,方程为3x﹣3=0,是一元一次方程,有实数根;②当a≠0时,方程是一元二次方程,∵关于x的方程ax2+(3﹣2a)x+a﹣3=0中,Δ=(3﹣2a)2﹣4a(a﹣3)=9>0,∴无论a为何实数,方程总有实数根.(2)解:如果方程的两个实数根x1,x2,则x1+x2=,x1•x2=,∵|x1﹣x2|=,∴=,解得a=±2.故a的值是﹣2或2.23.(1)证明:∵Δ=[﹣(m+4)]2﹣4(2m+4)=m2≥0,∴该一元二次方程总有两个实数根;(2)解:∵关于x的一元二次方程x2﹣(m+4)x+2m+4=0∴a=1,b=﹣(m+4),c=2m+4∴由一元二次方程的求根公式得:x==∴x1=m+2,x2=2∵该方程只有一个小于4的根∴m+2≥4∴m≥2;(3)由韦达定理得:x1+x2=m+4,x1x2=2m+4∴n=x12+x22﹣4=﹣2x1x2﹣4=(m+4)2﹣2(2m+4)﹣4=m2+4m+4∴动点P(m,n)可表示为(m,m2+4m+4)∴当m=﹣5时,m2+4m+4=25﹣20+4=9∴动点P(m,n)所形成的数图象经过点A(﹣5,9).24.解:(1)依题意有,解得.故y与x的函数关系式是y=﹣10x+80;(2)设该设备的销售单价为x万元/台,依题意有(x﹣2)(﹣10x+80)=80,整理方程,得x2﹣10x+24=0.解得x1=4,x2=6.∵此设备的销售单价不高于5万元,∴x2=6(舍),所以x=4.答:该设备的销售单价是4万元.25.解:(1)第2023个方程是:x2﹣2021x﹣2022=0;(2)第n个方程是:x2﹣(n﹣2)x﹣(n﹣1)=0,解得,x1=﹣1,x2=n﹣1;(3)这列一元二次方程的解的一个共同特点是:有一根是﹣1.。
浙教版八年级下数学第二章一元二次方程单元检测卷及答案
浙教版数学八年级下册第二章一元二次方程单元检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列方程中,是关于x的一元二次方程的是()A.x2+3y=1 B.x2+3x=1 C.ax2+bx+c=0 D.2.关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2,则m2()=()A.B.C.4 D.﹣43.已知(x2+y2)2-(x2+y2)-12=0,则(x2+y2)的值是()A.-3 B.4 C.-3或4 D.3或-44.一元二次方程4x2﹣2x+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80C.80(1+2x)=100 D.80(1+x2)=1006.若方程式的两根均为正数,其中为整数,则的最小值为何?()A.1 B.8 C.16 D.617.设a、b是方程x2+x﹣2014=0的两个实数根,则a2+2a+b的值为()A.2014 B.2015 C.2012 D.20138.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或119.鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( )A. 10只B. 11只C. 12只D. 13只10.设x, x2是方程的两个实数根,则 ( ) .1A. 2016 B. 2017 C. 2018 D. 2019二、填空题(本大题共6小题,每小题4分,共24分)11.方程(x﹣3)(x﹣9)=0的根是.12.关于x的一元二次方程x2+bx+2=0有两个不相等的实数根,写出一个满足条件的实数b的值:b=______.13.已知关于的一元二次方程一根为,则________.14.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.15.通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=,x1•x2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x 的一元二次方程x2+kx+k+1=0的两实数根分别为x1,x2,且x12+x22=1,则k的值为.16.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=__________.三、解答题(本大题共8小题,共66分)17.关于x的一元二次方程x(x﹣2)=﹣x﹣2①与一元一次方程2x+1=2a﹣x②.(1)若方程①的一个根是方程②的根,求a的值;(2)若方程②的根不小于方程①两根中的较小根且不大于方程①两根中的较大根,求a的取值范围.18.有一个三角形,面积为30cm2,其中一边比这边上的高的4倍少1cm.若设这边上的高为xcm,请你列出关于x的方程,并判断它是什么方程?若是一元二次方程,把它化为一般形式,并指出二次项系数、一次项系数和常数项.19.已知关于x的方程(m+1)+(m-2)x-1=0.(1)m取何值时,它是一元二次方程?并写出这个方程的解;(2)m取何值时,它是一元一次方程?20.解方程:(1)(x+8)2=36; (2)x(5x+4)-(4+5x)=0;(3)x2+3=3(x+1); (4)2x2-x-1=0.21.已知关于x的方程x2﹣mx﹣8=0.(1)当m=2时,求方程的根;(2)设原方程的两个根是x1、x2,若x12+x22﹣4x1x2=97,求m的值.22.收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k 为负整数时,试判断|m|≤2是否成立?请说明理由.答案解析一、选择题1.B2. D3. B4. B5. A6. B7. D8. D9. C 10. C二、填空题11. x1=3,x2=9. 12. 3 13.−214. k>且k≠1 15.﹣1. 16. 16.三、解答题17.解:解方程①,得x1=1,x2=2,解方程②,得x=.当=1时,a=2;当=2时,a=.综上所述,a的值是2或;(2)由题可知,1≤≤2,解得2≤a≤.18.解:x(4x-1)=30,是一元二次方程,一般形式为2x2-x-30=0,二次项系数为2,一次项系数为-,常数项为-30.19.解:(1)由解得m=1,∴方程为2x2-x-1=0,∴x1=-,x2=1.(2)当时,解得m=-1;当时,解得m=0,即当m=-1或0时,是一元一次方程.20.解方程:(1)(x+8)2=36;x+8= 6,122,14x x =-=-.(2)x (5x +4)-(4+5x )=0; (4+5x )(x -1)=0,124,15x x =-=.(3)x 2+3=3(x +1);230x x -=,x (x -3)=0,120,3x x ==.(4)2x 2-x -1=0 (2x +1)(x -1)=0,1211,2x x ==-.21.解:(1)m=2时,方程为:x 2﹣2x ﹣8=0,(x+2)(x ﹣4)=0, ∴x 1=﹣2,x 2=4; (2)x 1+x 2=m ,x 1x 2=﹣8,x 12+x 22﹣4x 1x 2=(x 1+x 2)2﹣6x 1x 2=m 2+48, 由已知得:m 2+48=97, 解得:m 1=7,m 2=﹣7.22.解:(1)设2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是x ,依题意得:400(1+x )2=484, 解得x 1=0.1=10%,x 2=﹣2.2(舍去).答:2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是10%; (2)设甜甜在2017年六一收到微信红包为y 元, 依题意得:2y+34+y=484, 解得y=150所以484﹣150=334(元).答:甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元. 23.解:(1)设该果农今年收获樱桃x 千克,根据题意得:400﹣x ≤7x , 解得:x ≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.24.解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2==1﹣,∴1﹣为整数,∴m=1或﹣1,∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,x2﹣3x+2=0,(x﹣1)(x﹣2)=0,x1=1,x2=2;(3)|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2,m2﹣4=1,m2=5,m=±,∴|m|≤2不成立.。
浙教版八年级数学下册单元测试卷附答案第二章一元二次方程
浙教版八年级数学下册单元测试卷附答案第二章一元二次方程一、选择题(共13小题;共52分)1. 下列方程是一元二次方程的是A. B.C. D.2. 一元二次方程的两个实数根分别为,,则的值为3. 用配方法解方程,配方后的方程是A. B. C. D.4. 方程的解是A. B. , C. , D. ,5. 已知一元二次方程的两根之和是,两根之积是A. B. C. D.6. 若关于的一元二次方程有不相等实数根,则的取值范围是A. B. C. 且 D. 且7. 方程的根为A. ,B.C.D.8. 已知直角三角形的两条直角边恰好是方程的两个根,则此直角三角形的斜边长是A. B. C. D.9. 把方程化成的形式,则,的值是A. ,, D.10. 若方程的解是有理数,则实数不能取下列四个数中的A. B.11. 已知方程,当时,方程的解为A. B. C. D.12. 若一元二次方程有实数根,则的取值范围是A. B. C. D. 且13. 某种品牌的手机经过四、五月份连续两次降价,每部售价由元降到了元.则平均每月降价的百分率为A. B. C. D.二、填空题(共8小题;共33分)14. 写出方程的一个正根.15. 把方程变形为的形式,其中,为常数,.16. 若是关于的一元二次方程,则的值是.17. 方程的解是.18. 已知方程的一个根是,则另一个根是,的值是.19. 某楼盘年房价为每平方米元,经过两年连续降价后年房价为元.设该楼盘这两年房价平均降低率为,根据题意可列方程为.20. 关于的一元二次方程有两个不相等的实数根,则实数的取值范围是.21. 用配方法解一元二次方程:.解:方程的两边同除以,得.移项,得.配方,得..,.三、解答题(共5小题;共65分)22. 一元二次方程化为一般形式后为,试求,,的值.23. 解方程:.24. 解下列方程(1);(2);(3);25. 已知关于的一元二次方程有两个相等的实数根,求的值及此时这个方程的根.26. 已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.答案第一部分1. B2. D3. A4. B5. D6. C7. A8. A9. C10. D11. C12. D 【解析】因为一元二次方程有实数根,所以且,解得且.13. C第二部分14.15.17. ,【解析】设方程的另一根为,又,解得,.19.。
浙教版八年级数学下册第二章【一元二次方程】单元测试卷(一)含答案与解析
浙教版八年级数学下册第二章单元测试卷(一)一元二次方程学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根2.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 3.已知一次函数y=ax+c 图象如图,那么一元二次方程ax 2+bx+c=0根的情况是( )A .方程有两个不相等的实数根B .方程有两个相等的实数根C .方程没有实数根D .无法判断4.关于x 的二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .0.5 5.某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为( )A .15%B .20%C .5%D .25% 6.若5k 200+<,则关于x 的一元二次方程2x 4x k 0+-=的根的情况是( ) A .没有实数根 B .有两个相等的实数根=m]C .有两个不相等的实数根D .无法判断7.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x 米,则可列方程为( )A .x(x -10)=200B .2x +2(x -10)=200C .x(x +10)=200D .2x +2(x +10)=200 8.已知下面三个关于x 的一元二次方程2ax bx c 0++=,2bx cx a 0++=,2cx ax b 0++=恰好有一个相同的实数根a ,则a b c ++的值为( )A .0B .1C .3D .不确定 9.已知一元二次方程2x -4x +3=0两根为x 1、x 2,则x 1•x 2=( )A .4B .3C .-4D .-310.关于x 的方程m (x+h )2+k=0(m ,h ,k 均为常数,m≠0)的解是x 1=-3,x 2=2,则方程m (x+h-3)2+k=0的解是( )A .x 1=-6,x 2=-1B .x 1=0,x 2=5C .x 1=-3,x 2=5D .x 1=-6,x 2=2 11.已知4是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .10C .11D .10或11 12.某商务酒店客房有50间供客户居住.当每间房 每天定价为180元时,酒店会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有客户居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,酒店当天的利润为10890元?设房价定为x 元,根据题意,所列方程是( )A .()18020501089010x x ⎛⎫+--= ⎪⎝⎭ B .()1805050201089010x x ⎛⎫+--⨯= ⎪⎝⎭C .1805050201089010x x -⎛⎫--⨯= ⎪⎝⎭ D .()18020501089010x x -⎛⎫--= ⎪⎝⎭二、填空题(本大题共6小题,每小题3分,共18分)13.某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价_________元.14.参加一次足球联赛的每两队之间都进行两场比赛,共比赛90场比赛,共有____个队参加比赛.15.设a ,b 是一个直角三角形两条直角边的长,且2222112a b a b +++=()(),则这个直角三角形的斜边长为________.16.已知关于x 的一元二次方程ax 2+bx +c =0(a≠0)的一个根是1,则代数式的值等于 _______.17.已知x=1是方程x 2+mx-n=0的一个根,则m 2-2mn +n 2=__________.18.若关于x 的一元二次方程x 2+3x+k=0有两个不相等的实数根,则k 的取值范围是 .三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.已知关于x 的方程x 2 -(m+1)x+2(m-1)=0,(1)求证:无论m 取何值时,方程总有实数根;(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长. 20.已知关于x 的方程x 2﹣(2k+1)x+4(k ﹣12)=0 (1)求证:无论k 取何值,这个方程总有实数根;(2)若等腰三角形ABC 的一边长a=4,另两边b 、c 恰好是这个方程的两个根,求△ABC 的周长.21.已知关于x 的方程2x 2+kx -1=0.(1)求证:方程有两个不相等的实数根.(2)若方程的一个根是-1,求方程的另一个根.22.已知关于x 的一元二次方程()2x m 6x 3m 90-+++=的两个实数根分别为1x ,2x . ()1求证:该一元二次方程总有两个实数根;()2若12n x x 5=+-,判断动点()P m,n 所形成的函数图象是否经过点()A 4,5,并说明理由.23.已知关于x 的一元二次方程2210x x m --+=.()1若3x =是此方程的一个根,求m 的值和它的另一个根;()2若方程2210x x m --+=有两个不相等的实数根,试判断另一个关于x 的一元二次方程()22120x m x m --+-=的根的情况. 24.“低碳生活,绿色出行”,自行车成为人们喜爱的交通工具.某品牌共享自行车在温州的投放量自2017年起逐月增加,据统计,该品牌共享自行车1月份投放了640辆,3月份投放了1000辆.(1)该品牌共享自行车前3个月的投放量的月平均增长率相同,则这三个月一共投放了多少辆自行车?(2)考虑到增强客户体验,该品牌共享自行车准备投入3万元向自行车生产厂商定制了一批两种规格比较高档的自行车,之后投放到某高端写字楼区域.已知自行车生产厂商生产A 型车的成本价为300元/辆,售价为500元/辆,生产B 型车的成本价为700元/辆,售价为1000元/辆.根据指定要求,B 型车的数量需超过12辆,且A 型车的数量不少于B 型车的2倍.自行车生产厂商应如何设计生产方案才能获得最大利润?最大利润是多少?参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。
浙教版八年级数学下第2章《一元二次方程》单元练习含答案
第2章 一元二次方程 单元练习一、填空题1.方程x(2x -1)=5(x+3)的一般形式是___________,其中一次项系数是_________,二次项系数是_________,常数项是_________.2.关于x 的方程(k+1)x 2+3(k -2)x+k 2-42=0的一次项系数是-3,则k=_____.3.3x 2-10=0的一次项系数是_________.4.一元二次方程ax 2+bx+c=0的两根为_________.5.x 2+10x+_________=(x+_________)26.x 2-x+_________=(x+_________)27.一个正方体的表面积是384 cm 2,则这个正方体的棱长为_________. 8.m_________时,关于x 的方程m(x 2+x)= x 2-(x+2)是一元二次方程? 9.方程x 2-8=0的解是_________,3x 2-36=0的解是_________. 10.关于x 的方程(a+1)x +x -5=0是一元二次方程,则a=_________.11.一矩形的长比宽多4 cm ,矩形面积是96 cm 2,则矩形的长与宽分别为____.12.活期储蓄的年利率为0.72%;存入1000元本金,5个月后的本息和(不考虑利息税)是_________.二、选择题13.下列方程中,关于x 的一元二次方程有( )①x 2=0 ②ax 2+bx+c=0 ③ x 2-3= x ④a 2+a -x=0 ⑤(m -1)x 2+4x+=0 ⑥+= ⑦=2 ⑧(x+1)2=x 2-9 A.2个 B.3个 C.4个 D.5个14.方程2x(x -3)=5(x -3)的解是( ) A.x=3B.x=C.x 1=3,x 2=D.x=-3232122--a a252m 21x x 13112-x 252515.若n 是方程x 2+mx+n=0的根,n≠0,则m+n 等于( ) A.-B.C.1D.-116.方程 (x+)2+(x+)(2x -1)=0的较大根为( )A.-B.C.D.17.若2,3是方程x 2+px+q=0的两实根,则x 2-px+q 可以分解为( ) A.(x -2)(x -3) B.(x+1)(x -6) C.(x+1)(x+5)D.(x+2)(x+3)18.关于x 的方程 x 2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是( )A.m=0,n=0B.m=0,n≠0C.m≠0,n=0D.m≠0,n≠019.某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为( )A.15%B.20%C.5%D.25%20.2是关于x 的方程x 2-2a=0的一个根,则2a -1的值是( )A.3B.4C.5D.621.下列方程适合用因式方程解法解的是( ) A.x 2-3x+2=0 B.2x 2=x+4 C.(x -1)(x+2)=70D.x 2-11x -10=022.已知x=1是二次方程(m 2-1)x 2-mx+m 2=0的一个根,那么m 的值是( ) A.或-1 B.-或 1 C.或 1 D.23.方程x 2-(+)x+=0的根是( )212131313192312123221212121236A.x 1=,x 2=B.x 1=1,x 2=C.x 1=-,x 2=-D.x=±24.方程x 2+m(2x+m)-x -m=0的解为( ) A.x 1=1-m ,x 2=-m B.x 1=1-m ,x 2=m C.x 1=m -1,x 2=-mD.x 1=m -1,x 2=m25.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台实际售价为( )A.(1+25%)(1+70%)a 元B.70%(1+25%)a 元C.(1+25%)(1-70%)a 元D.(1+25%+70%)a 元三、解答题26.某公司一月份营业额100万元,第一季度总营业额为331万元,求该公司二、三月份营业额平均增长率是多少?27.以大约与水平成45°角的方向,向斜上方抛出标枪,抛出的距离s (单位:m )与标枪出手的速度v(单位:m/s)之间大致有如下关系:s=+2如果抛出40米,求标枪出手速度(精确到0.1 m/s ).28.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x(min)之间满足: y=-0.1x 2+2.6x+43(0≤x≤30),求当y=59时所用的时间.29.一个容器盛满纯药液63升,第一次倒出一部分纯药液后,用水加满,第二次又倒出同样多的药液,再用水加满,这时,容器内剩下的纯药液是28升,每次倒出液体多少升?2363238.92v30.请同学们认真阅读下面的一段文字材料,然后解答题目中提出的有关问题.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则原方程可化为y 2-5y+4=0 ①解得y 1=1,y 2=4当y=1时,x 2-1=1,∴x 2=2,x=± 当y=4时,x 2-1=4,∴x 2=5,x=±∴原方程的解为x 1=,x 2=-,x3=,x 4=- 解答问题:(1)填空:在由原方程得到方程①的过程中,利用_________法达到了降次的目的,体现了_________的数学思想.(2)解方程x 4-x 2-6=031.如图1,A 、B 、C 、D 为矩形的四个顶点,AB=16 cm ,AD=6 cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm/s 的速度向D 移动.(1)P 、Q 两点从出发开始到几秒时四边形PBCQ 的面积为33 cm 2? (2)P 、Q 两点从出发开始到几秒时,点P 和点Q 的距离是10 cm ?图1252255参考答案一、填空题1.2x 2-6x -15=0 -6 2 -152.13.04.x=5.25 56.- 7.8 cm 8.≠9.±2 ±2 10.311.12 cm 8 cm 12.1003元 二、选择题13.A 14.C 15.D 16.B 17.D 18.C 19.B 20.C 21.C 22.B 23.A 24.A 25.B三、解答题 26.10% 27.19.3 m/s 28.10或16分钟29.设每次倒出液体x 升, 63(1-)2=28 x 1=105(舍),x 2=2130.(1)换元 转化 (2)x 1=,x 2=-aac b b 242-±-1694322363x 33831.(1)5秒(2)秒5。
浙教版八年级下-第二章-一元二次方程测试题(含答案)
第二章 一元二次方程测试(120分)(附答案)班级 学号 姓名 得分(A )()()12132+=+x x (B)02112=-+x x(C )02=++c bx ax (D ) 1222-=+x x x 2、已知3是关于x 的方程012342=+-a x 的一个解,则2a 的值是( ) (A )11 (B)12 (C )13 (D )143、关于x 的一元二次方程02=+k x 有实数根,则( )(A )k <0 (B )k >0 (C )k ≥0 (D )k ≤0 4、已知x 、y 是实数,若0=xy ,则下列说法正确的是( )(A)x 一定是0 (B )y 一定是0 (C)0=x 或0=y (D )0=x 且0=y 5、若12+x 与12-x 互为倒数,则实数x 为( ) (A)±21(B )±1 (C )±22 (D)±26、若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( )(A )1,0 (B )—1,0 (C )1,—1 (D )无法确定 7、用配方法解关于x 的方程x 2+ px + q = 0时,此方程可变形为( )(A ) 22()24p p x +=(B ) 224()24p p qx -+=(C ) 224()24p p qx +-=(D ) 224()24p q p x --=8、使分式2561x x x --+ 的值等于零的x 是 ( )(A )6 (B )-1或6 (C )—1 (D )—6 9、方程0)2)(1(=-+x x x 的解是( )(A )-1,2 (B)1,-2 (C )、0,—1,2 (D )0,1,-210、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为 ( ) (A)x(x +1)=1035 (B)x (x -1)=1035×2 (C)x(x -1)=1035 (D)2x (x +1)=1035二、填空题(每格2分,共36分)11、把一元二次方程4)3(2=-x 化为一般形式为: ,二次项为: ,一次项系数为: ,常数项为: 。
浙教版八年级下册第二章 一元二次方程 章末检测(附答案)
浙教版八年级下册第二章一元二次方程章末检测(附答案)一、单选题(共10题;共30分)1.下列方程是一元二次方程的是()A. x+2y=1B. x2+5=0C.D. 3x+8=6x+22.若关于的一元二次方程有一个根为,则的值是()A. B. C. D.3.下列关于x的方程是一元二次方程的是A. B. C. D.4.若(a+b﹣1)(a+b+1)﹣4=0,则a+b的值为( )A. 2B. ±2C.D. ±5.用配方法解一元二次方程2x2-4x-2=1的过程中,变形正确的是()A. B. C. D.6.一元二次方程的根的情况是()A. 两个实根和为5B. 两个实根之积为7C. 有两个相等的实数根D. 没有实数根7.已知是一元二次方程的一个根,若,则下列各数中与最接近的是()A. -4B. -3C. -2D. -18.方程x2-4x-12=0的解为()A. ,B. ,C. ,D. ,9.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A. 6B. 8C. 14D. 1610.一个长30cm,宽20cm的长方形纸板,将四个角各剪去一个边长为xcm的小正方形后,剩余部分刚好围成一个底面积为200cm2的无盖长方体盒子,根据题意可列方程()A. (30﹣x)(20﹣x)=200B. (30﹣2x)(20﹣2x)=200C. 30×20﹣4x2=200D. 30×20﹣4x2﹣(30+20)x=200二、填空题(共6题;共24分)11.若x=2是方程x2-x-c=0的一个根,则c=________.12.在一元二次方程中,实数a,b,c满足a+b+c=0,则此方程必有一个根为________13.若关于x的一元二次方程mx2+4x+3=0有实数根,则m的取值范围是________14.设是方程的两个根,则________ .15.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有________个班级参赛.16.已知a和它的倒数是一元二次方程x2﹣2x+m=0(m为非零常数)的两个根,则a2+ =________.三、解答题(共8题;共66分)17.解方程:.18.若x=-1是关于x的一元二次方程(m-1)x2-x-2=0的一个根,求m的值及另一个根.19.已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)若,求的值及方程的根.20.如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m.鸡场的面积能达到150m2吗?如果能,请你给出设计方案;如果不能,请说明理由.21.已知关于x的一元二次方程-x2+(3-k)x+k-1=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等的实数根;(2)若函数y=-x2+(3-k)x+k-1的图象不经过第二象限,求k的取值范围.22.已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x 元(x为整数),每星期的销售利润为w元.(1)求w与x之间的函数关系式,并写出自变量x的取值范围;(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元?(3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果.23.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根,满足,求k的值.24.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?答案一、单选题1.B2. B3. C4. D5. C6. D7. B8. C9. C 10. B二、填空题11. 2 12. x=1 13. 且m≠014. 1 15. 6 16. 2三、解答题17. 解:由原方程,得:3x2﹣5x﹣2=0,∴(x﹣2)(3x+1)=0,∴x﹣2=0,或3x+1=0解得:x=2,或x=﹣18. 解:将x=-1代入一元二次方程可得,(m-1)+1-2=0∴m=2∴一元二次方程为x2-x-2=0∴(x-2)(x+1)=0x=2,x=-119. (1)解:∵关于的一元二次方程有两个不相等的实数根,∴△>0,即,整理得,,解得:,故实数的取值范围为(2)解:∵方程的两个根分别为,∴,解得:,∴原方程为,∴,20. 解:设与墙垂直的一边长为xm,则与墙平行的边长为(35-2x)m,可列方程为x(35-2x)=150,即2x2-35x+150=0,解得x1=10,x2=7.5,当x=10时,35-2x=15,当x=7.5时,35-2x=20>18(舍去). 答:鸡场的面积能达到150m2,方案是与墙垂直的一边长为10m,与墙平行的边长为15m. 21. (1)证明:∵△=(3-k)2-4×(-1)(k-1)=k2-2k+5=(k-1)2+4>0,∴无论k为何值,方程总有两个不相等实数根(2)解:∵二次项系数a=-1,∴抛物线开口方向向下,∵△=(k-1)2+4>0,∴抛物线与x轴有两个交点,设抛物线与x轴的交点的横坐标分别为x1,x2,∵二次函数y=-x2+(3-k)x+k-1的图象不经过第二象限,∴x1+x2=3-k>0,x1•x2=-(k-1)≥0,解得k≤1,即k的取值范围是k≤122. (1)解:w=(20﹣x)(300+20x)=﹣20x2+100x+6000,∵300+20x≤380,∴x≤4,且x为整数;(2)解:w=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∵﹣20(x﹣)2≤0,且x≤4的整数,∴当x=2或x=3时有最大利润6120元,即当定价为57或58元时有最大利润6120元;(3)解:根据题意得:﹣20(x﹣)2+6125≥6000,解得:0≤x≤5.又∵x≤4,∴0≤x≤4答:售价不低于56元且不高于60元时,每星期利润不低于6000元.23. (1)解:∵原方程有两个不相等的实数根,∴△=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,解得:k>;(2)解:∵k>,∴x1+x2=﹣(2k+1)<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1,∵|x1|+|x2|=x1•x2,∴2k+1=k2+1,∴k1=0,k2=2,又∵k>,∴k=2.24. (1)解:设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)解:设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.。
浙教版数学八年级下册第2章《一元二次方程》单元检测卷 含答案
浙教版2021年八年级下册第2章《一元二次方程》单元检测卷(试卷满分:100分)姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是关于x的一元二次方程的是()A.2x2﹣x﹣y2=0 B.x(x﹣2)=0 C.ax2+bx+c=0 D.x﹣=82.用配方法解方程x2﹣6x﹣5=0时,配方结果正确的是()A.(x﹣3)2=4 B.(x﹣6)2=41 C.(x+3)2=14 D.(x﹣3)2=14 3.方程(x+2)(3x﹣1)=6化为一般形式后,常数项为()A.6 B.﹣8 C.2 D.﹣44.已知x=2是一元二次方程x2+mx+4=0的一个解,则m的值是()A.﹣4 B.4 C.0 D.0或45.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=6.已知关于x的一元二次方程(k﹣1)x2+2x+1=0没有实数根,则k的取值范围是()A.k<2 B.k<2且k≠1 C.k>2 D.k≥27.若m、n是方程x2+x﹣1=0的两个实数根,则m2+2m+n的值为()A.0 B.2 C.﹣1 D.38.自从国家实行“精准扶贫”政策以来,很多贫困人口走上了致富道路,据统计某地区2018年6月份有贫困人口2.85万人,通过社会各界的努力,2020年6月份统计贫困人口减少至0.73万人,若设2018年6月份到2020年6月份该地区贫困人口的年平均下降率为x,则根据题意可列方程为()A.2.85(1﹣2x)=0.73 B.0.73(1+x)2=2.85C.0.73(1+2x)=2.85 D.2.85(1﹣x)2=0.739.某商场销售一批衬衣,平均每天可售出30件,每件衬衣盈利50元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利2000元.每件衬衣应降价()元.A.10 B.15 C.20 D.2510.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有()个.①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若p、q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程ax2+bx+c=0是倍根方程,则必有2b2=9ac.A.1 B.2 C.3 D.4二.填空题(共8小题,满分24分,每小题3分)11.关于x的方程(m+2)x|m|+2mx+2=0是一元二次方程,则m的值为.12.方程(1﹣x)2=9的根是.13.关于x的方程kx2﹣2x﹣1=0有实数根,其中k为非正整数,则满足条件的k的代数和为.14.代数式﹣x2+2x﹣4有最值,最值是.15.如果一个直角三角形的两边长是一元二次方程x2﹣7x+12=0的两个根,那么这个直角三角形的斜边长为.16.2021年元旦联欢会上,某班同学之间互赠新年贺卡,共赠贺卡1190张,设全班有x名同学,则可列方程为.17.由于新能源汽车越来越多,为了解决充电难的问题,现对一面积为12000m2的矩形停车场进行改造,将该矩形停车场的长减少20m,减少的这部分区域用于修建电动汽车充电桩,原停车场的剩余部分就变成了正方形,则原停车场的长是m.18.已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为.三.解答题(共6小题,满分46分)19.(6分)按要求解下列方程:(1)3x2+6x﹣4=0(配方法);(2)(2x﹣1)2=x2+6x+9(因式分解法).20.(6分)如图,长方形绿地长32m、宽20m,要在这块绿地上修建宽度相同且与长方形各边垂直的三条道路,使六块绿地面积共570m2,问道路宽应为多少?21.(8分)已知关于x的一元二次方程x2﹣5x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1,x2,且满足3x1﹣2x2=5,求实数m的值.22.(8分)若a2+b2=c2,则我们把形如ax2+cx+b=0(a≠0)的一元二次方程称为“勾系一元二次方程”.(1)当a=3,b=4时,写出相应的“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”ax2+cx+b=0(a≠0)必有实数根.23.(9分)某区各街道居民积极响应“创文明社区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二个月增长了2m%,两个月后,街道居民的知晓率达到76%,求m的值.24.(9分)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=,=,=;(2)2x2﹣7x+2=0(x≠0),求的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、方程2x2﹣x﹣y2=0含有2个未知数,所以A选项不符合题意;B、方程整理为x2﹣2x=0,它为一元二次方程,所以B选项符合题意;C、当a=0时,方程ax2+bx+c=0不是一元二次方程,所以C选项不符合题意;D、方程x﹣=8含有分式,它不是一元二次方程,所以D选项不符合题意.故选:B.2.解:∵x2﹣6x﹣5=0,∴x2﹣6x=5,则x2﹣6x+9=5+9,即(x﹣3)2=14,故选:D.3.解:一元二次方程(x+2)(3x﹣1)=6化为一般形式后3x2﹣5x﹣8=0,其常数项为﹣8,故选:B.4.解:因为x=2是一元二次方程x2+mx+4=0的一个解,所以22+2m+4=0,解得m=﹣4.故选:A.5.解:∵△=12﹣4×(﹣1)=5>0,∴方程有两个不相等的两个实数根,即x=.故选:D.6.解:∵关于x的一元二次方程(k﹣1)x2﹣2x+1=0没有实数根,∴△<0且k﹣1≠0,即△=4﹣4(k﹣1)<0且k≠1,∴k>2,故选:C.7.解:∵m、n是方程x2+x﹣1=0的两个实数根,∴m+n=﹣1,m2+m=1,∴m2+2m+n=m2+m+m+n=1﹣1=0.故选:A.8.解:依题意得:2.85(1﹣x)2=0.73.故选:D.9.解:设每件衬衫应降价x元.根据题意,得:(50﹣x)(30+2x)=2000,整理,得x2﹣35x+250=0,解得x1=10,x2=25.∵“增加盈利,减少库存”,∴x1=10应舍去,∴x=25.答:每件衬衫应降价25元.故选:D.10.解:①解方程x2﹣x﹣2=0得,x1=2,x2=﹣1,得,x1≠2x2,∴方程x2﹣x﹣2=0不是倍根方程;故①不正确;②若(x﹣2)(mx+n)=0是倍根方程,x1=2,因此x2=1或x2=4,当x2=1时,m+n=0,当x2=4时,4m+n=0,∴4m2+5mn+n2=(m+n)(4m+n)=0,故②正确;③∵pq=2,则px2+3x+q=(px+1)(x+q)=0,∴,x2=﹣q,∴,因此是倍根方程,故③正确;④方程ax2+bx+c=0的根为:,,若x1=2x2,则,即,∴,∴,∴,∴9(b2﹣4ac)=b2,∴2b2=9ac.若2x1=x2时,则,则,∴,∴,∴,∴b2=9(b2﹣4ac),∴2b2=9ac.故④正确,∴正确的有:②③④共3个.故选:C.二.填空题(共8小题,满分24分,每小题3分)11.解:∵关于x的方程(m+2)x|m|+3mx+1=0是一元二次方程,∴|m|=2且m+2≠0,解得m=2.故答案是:2.12.解:∵(1﹣x)2=9,∴1﹣x=3或1﹣x=﹣3,解得x1=﹣2,x2=4,故答案为:x1=﹣2,x2=4.13.解:①当k=0时,原方程化为:﹣2x﹣1=0,解得:x=﹣,故k=0符合题意;②当k≠0时,原方程为关于x的一元二次方程,∵有实数根,∴△=(﹣2)2﹣4k×(﹣1)=4+4k≥0,解得:k≥﹣1,∵k为非正整数,k≠0,∴k=﹣1.∴满足条件的k的代数和为﹣1.故答案为:﹣1.14.解:﹣﹣x2+2x﹣4=﹣(x2﹣2x)﹣4=﹣(x2﹣2x+1)+1﹣4=﹣(x﹣1)2﹣3=﹣3﹣(x﹣1)2,∵(x﹣1)2≥0,∴﹣(x﹣1)2≤0,∴﹣3﹣(x﹣1)2≤﹣3,∴x=1时,代数式有最大值﹣3.故答案为:﹣3.15.解:∴x2﹣7x+12=0,(x﹣3)(x﹣4)=0,解得x1=3,x2=4,当4是直角边的长时,则斜边长为=5,当4是斜边的长时,则斜边长为4,故答案为:4或5.16.解:由题意可得,x(x﹣1)=1190,故答案为:x(x﹣1)=1190.17.解:设原矩形的长为x米,则宽为(x﹣20)米,根据题意得:x(x﹣20)=12000,解得:x=120或x=﹣100(舍去),故答案为:120.18.解:∵x2﹣2x﹣a=0,∴△=4+4a,∴①当a>﹣1时,△>0,方程有两个不相等的实根,故①正确,②当a>0时,两根之积<0,方程的两根异号,故②错误,③方程的根为x==1±,∵a>﹣1,∴方程的两个实根不可能都小于1,故③正确,④当a>3时,由(3)可知,两个实根一个大于3,另一个小于3,故④正确,故答案为3.三.解答题(共6小题,满分46分)19.解:(1)∵3x2+6x﹣4=0.∴x2+2x=,配方得:x2+2x+1=+1,即(x+1)2=,开方得:x+1=±,∴原方程的解是:x1=﹣1+,x2=﹣1﹣.(2)∵(2x﹣1)2=x2+6x+9.∴(2x﹣1)2﹣(x+3)2=0,因式分解得(3x+2)(x﹣4)=0,∴3x+4=0或x﹣4=0,∴x1=﹣,x2=4.20.解:设道路宽为xm,则六块绿地可合成长为(32﹣2x)m,宽为(20﹣x)m的长方形,依题意得:(32﹣2x)(20﹣x)=570,整理得:x2﹣36x+35=0,解得:x1=1,x2=35(不符合题意,舍去).答:道路宽为1m.21.解:(1)∵方程有实数根,∴△=25﹣4m≥0,解得,m≤;(2)由一元二次方程根与系数的关系可知,x1+x2=5,x1•x2=m,∵3x1﹣2x2=5,∴3x1+3x2﹣5x2=5,∴﹣5x2=﹣10,解得,x2=2,把x=2代入原方程得,m=6.22.(1)解:当a=3,b=4时,c=±5,相应的勾系一元二次方程为3x2±5x+4=0;(2)证明:根据题意,得△=(c)2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0即△≥0∴勾系一元二次方程ax2+cx+b=0(a≠0)必有实数根.23.解:(1)设A社区居民人口有x万人,则B社区有(7.5﹣x)万人,依题意得:7.5﹣x≤2x,解得x≥2.5.即A社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m%)2+1×(1+m%)×(1+2m%)=7.5×76%设m%=a,方程可化为:1.2(1+a)2+(1+a)(1+2a)=5.7化简得:32a2+54a﹣35=0解得a=0.5或a=﹣(舍)∴m=50答:m的值为50.24.解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.。
浙教版八年级数学下册第2章 一元二次方程 章节综合测试【含答案】
浙教版八年级数学下册第2章一元二次方程章节综合测试一、单选题x2=2x1.一元二次方程的解为( )A.-2B.2C.0或-2D.0或22.在下列关于x的一元二次方程中,有两个相等实数根的方程是( )x2−2x−1=0x2+3x+6=0x2+8x+16=0(x−1)2=9 A.B.C.D.(x−1)(x+2)=03.方程的两个根为( )x1=−2x2=1x1=−1x2=2A.,B.,x1=−2x2=−1x1=1x2=2C.,D.,4.解方程(x-3)2=4,最合适的方法是( )A.直接开平方法B.配方法C.公式法D.因式分解法5.把一元二次方程(x+1)(x﹣1)=3x化成一般形式,正确的是( )A.x2﹣3x﹣1=0B.x2﹣3x+1=0C.x2+3x﹣1=0D.x2+3x+1=06.某电影上映第一天票房收入约1亿元,以后每天票房收入按相同的增长率增长,三天后累计票房x收入达到4亿元.若增长率为,则下列方程正确的是( )1+x=4(1+x)2=4A.B.1+(1+x)2=41+(1+x)+(1+x)2=4 C.D.ax2−2x+1=07.若关于x的一元二次方程有实数根,则a应满足( )a≤1a≥1A.B.a≥−1a≠0a≤1a≠0C.且D.且x2−7x+12=08.已知三角形的两边长为3和6,第三边的长是方程的一个根,则这个三角形的周长是( )A.12B.13C.12或13D.15x(x−9)2=m+4m9.如果关于的方程可以用直接开平方法求解,那么的取值范围是( )m>3m≥3m>−4m≥−4 A.B.C.D.10.某农业基地现有杂交水稻种植面积36公顷,计划两年后将杂交水稻种植面积增加到48公顷,设该农业基地杂交水稻种植面积的年平均增长率为x,则可列方程为( )48(1+x)2=3648(1−x)2=36A.B.36(1+x)2=4836(1−x)2=48C.D.二、填空题x2+mx=011.关于x的方程的一个根是-2,则m的值为 .x2−4x−5=012.一元二次方程的解是: .13.如果关于x的一元二次方程(m+3)x2+3x+m2﹣9=0有一个解是0,那么m的值是 .14.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路,余下的部分种上草坪,要使草坪的面积为540m2,求道路的宽若设道路宽为xm,则根据题意可列方程为 三、计算题15.解下列方程:m2−6m−2=0(1)(配方法);2x2−x−6=0(2).16.用适当的方法解下列方程:(1)(2x−1)2=3x(2x−1)(2)3x2−5x+5=7四、解答题3x2+mx−8=017.已知:关于x的方程有一个根是-4,求另一个根及m的值.18.在用配方法解一元二次方程4x 2﹣12x﹣1=0时,李明同学的解题过程如下:解:方程4x 2﹣12x﹣1=0可化成(2x )2﹣6×2x﹣1=0,移项,得(2x )2﹣6×2x =1.配方,得(2x )2﹣6×2x+9=1+9,即(2x﹣3)2=10.由此可得2x﹣3=± ∴x 1,x 2 .10=3+102=3−102晓强同学认为李明同学的解题过程是错误的,因为用配方法解一元二次方程时,首先把二次项系数化为1,然后再配方,你同意晓强同学的想法吗?你从中受到了什么启示?19.如图,要在墙边围一个矩形花圃.花圃的一边靠墙(墙的长度不限),另三边用篱笆围成.如果矩形花圃的面积为50平方米,篱笆长20米,求矩形花圃的长和宽各是多少米?20.列方程解应用题:某工厂一月份的产品产量为 100 万件,由于工厂管理理念更新,管理水平提高,产量逐月提高,三月份的产量提高到144万件,求一至三月该工厂产量的月平均增长率.五、综合题21.已知关于x 的一元二次方程x 2﹣(m+3)x+3m =0.(1)求证:无论m 取任何实数,方程总有实数根;(2)若等腰三角形的其中一边为4,另两边是这个方程的两根,求m 的值.22.如图,一长方形草坪长50米,宽30米,在草坪上有两条互相垂直且宽度相等的长方形小路(阴影部分),非阴影部分的面积是924米.2(1)求小路的宽度;(2)每平方米小路的建设费用为200元,求修建两条小路的总费用.23.为节省材料,某水产养殖户利用水库堤岸(堤岸足够长)为一边,用总长为120米的围网在水库中围成如图所示的①②③三块矩形区域,且三块区域面积相等.设BC的长度为xm.(1)求AE的长(用含x的代数式表示).(2)当矩形ABCD的面积为600m2时,求BC的长.答案解析部分1.【答案】Dx2=2x【解析】【解答】解:,x2-2x=0,x(x-2)=0,x=0或x-2=0,∴x=0或2,故答案为:D.【分析】利用因式分解法解方程即可。
浙教版八年级下册数学 第二章一元二次方程 单元综合检测(含答案)
第二章一元二次方程综合检测一、选择题1.一元二次方程x2+1=0的根的情况为()A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根2.一元二次方程x2﹣20的解是()A. 0B. 2C. 0,﹣2D. 0,23.若代数式x2+56与-1的值相等,则x的值为()A. x1=-1,x2=-5B. x1=-6,x2=1C. x1=-2,x2=-3D. -14.两个实根之和为3的一元二次方程是()A. 2x2﹣31=0B. x2+1=3xC. x2﹣34=0D. 3x2+9x﹣1=05.关于x的一元二次方程(a﹣4)x22﹣16=0的一个根是0,则a的值是()A. ﹣4B. 4C. 4或﹣4D. ﹣4或06.将一元二次方程化为的形式,则()A. 3B. 4C. 6D. 137.下列一元二次方程有两个相等的实数根的是()A. x2+1=0B. x2+4x﹣4=0C. x2=0D. x2﹣=08.已知关于x方程x26=02的一个根是3,则实数k的值为()A. 1B. -1C. 2D. -29.把方程x2﹣4x﹣7=0化成(x﹣m)2的形式,则m、n的值是()A. 2,7B. ﹣2,11C. ﹣2,7D. 2,1110.关于x的一元二次方程x2﹣30没有实数根,则实数m的取值范围为()A. B. C. D.11.若关于x的一元二次方程(2)x2+32-k-6=0必有一根为0,则k的值是()A. 3 或-2B. -3或2C. 3D. -212.下面结论错误的是()A. 方程x2+45=0,则x12=﹣4,x1x2=5B. 方程2x2﹣30有实根,则m≤C. 方程x2﹣81=0可配方得(x﹣4)2=15D. 方程x2﹣1=0两根x1=,x2=二、填空题13.写出二次项系数为5,以x1=1,x2=2为根的一元二次方程14.一元二次方程x(x﹣1)﹣1的解是.15.已知关于x的方程2+2x﹣4=0是一元二次方程,则m的取值范围是.16.已知方程x2﹣3x﹣4=0的两个根x1和x2,则.17.方程的根是.18.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为.19.方程x2﹣2x﹣3=0的一个实数根为m,则m2﹣22019.20.方程x(4)=﹣3(4)的解是.三、解答题21.关于x的方程x2﹣(1)x﹣6=0的一个根是2,求k的值和方程的另一根.22.毕业在即,某商店抓住商机,准备购进一批纪念品,若商店花440元可以购进50本学生纪念品和10本教师纪念品,其中教师纪念品的成本比学生纪念品的成本多8元.(1)请问这两种不同纪念品的成本分别是多少?(2)如果商店购进1200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利2500元,问第二周每个纪念品的销售价格为多少元?23.已知:x2+31=0.求:(1);(2)x2+ .24.如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙长25米),另三边用竹篱笆围成,竹篱笆的长为40米,若要围成的养鸡场的面积为180平方米,求养鸡场的宽各为多少米,设与墙平行的一边长为x 米.(1)填空:(用含x的代数式表示)另一边长为米;(2)列出方程,并求出问题的解.参考答案一、选择题D D A B C C C A D A C A二、填空题13.5x2﹣1510=014.x12=115.m≠016.1717.x142=418.(35﹣2x)(20﹣x)=600(或2x2﹣75100=0)19.201920.x1=﹣3,x2=﹣4三、解答题21.解:把2代入x2﹣(1)x﹣6=0,得4﹣2(1)﹣6=0,解得﹣2,解方程x2﹣6=0,解得:x1=2,x2=﹣3.答:﹣2,方程的另一个根为﹣3.22.解:(1)设学生纪念品的成本为x元,根据题意得:5010(8)=440,解得:6,∴8=6+8=14.答:学生纪念品的成本为6元,教师纪念品的成本为14元.(2)第二周单价降低x元后,这周销售的销量为400+100x,由题意得出:400×(10﹣6)+(10﹣x﹣6)(400+100x)+(4﹣6)[(1200﹣400)﹣(400+100x)]=2500,即1600+(4﹣x)(400+100x)﹣2(400﹣100x)=2500,整理得:x2﹣21=0,解得:x12=1,则10﹣1=9元.答:第二周每个纪念品的销售价格为9元.23.(1)解:∵x2+31=0,而x≠0,∴3+ =0,∴=﹣3;(2)解:x2+ =()2﹣2=(﹣3)2﹣2=7.24.(1)(2)解:设平行于墙的一边为x米,则另一边长为米,根据题意得:x• =180,整理得出:x2﹣40360=0,解得:x1=20+2 ,x2=20﹣2 ,由于墙长25米,而20+2 >25,∴x1=20+2 ,不合题意舍去,∵0<20﹣2 <25,∴x2=20﹣2 ,符合题意,此时=10+ ,答:此时鸡场靠墙的一边长(20﹣2 )米,宽是(10+ )米。
数学浙教版八年级下第二单元检测卷(附答案)
数学浙教版八年级下第二单元检测卷(附答案)八年级(下)数学单元检测(二)第二章一元二次方程班级学号姓名得分一、选择题(每小题3分,共30分)1.下列方程中,关于x的一元二次方程是()B)3x+1=2x-32.方程2x2+3x-1=0的二次项系数,一次项系数,常数项分别为()A)2,3,-13.一元二次方程x2=4的根是()B)x=24.方程x2=x的根是()A)x=15.已知一元二次方程x2+x-1=0,下列判断正确的是()B)该方程有两个不相等的实数根6.如果3是一元二次方程x2=c的一个根,那么常数c是()C)97.用配方法解方程x2-4x+2=0,下列配方正确的是()A)(x-2)2=28.XXX的某纪念品原价200元,连续两次降价a%后售价为148元。
下列所列方程中正确的是()B)200(1-a)2=1489.若三角形ABC两边的长分别是8和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的面积是()C)4810.观察下列方程及其解的特征:1)x2-15x+2=0的解为x1=1,x2=15;2)x2+x-6=0的解为x1=2,x2=-3;3)x3+x2-37x+30=0的解为x1=3,x2=5,x3=6;请猜想:方程x4+x3-52x2+51x-12=0的解为()D)x1=4,x2=5,x3=6,x4=1二、填空题(每小题3分,共30分)1.解方程x2+2x-3=0,得到的两个根之和为(-2)。
2.解方程2x2-3x-2=0,得到的两个根之积为(-1/2)。
3.解方程x2-4x+3=0,得到的两个根分别为(1,3)。
4.解方程x2-5x+6=0,得到的两个根之和为(5)。
5.解方程x2-5x+6=0,得到的两个根之积为(6)。
6.解方程x2-6x+8=0,得到的两个根分别为(2,4)。
7.解方程x2-8x+12=0,得到的两个根之和为(8)。
8.解方程x2-8x+15=0,得到的两个根之积为(15)。
浙教版八年级下数学《第二章一元二次方程》单元检测卷含答案
第二章一元二次方程单元检测卷姓名:__________ 班级:__________一、选择题(共12小题;每小题3分,共36分)1.请判别下列哪个方程是一元二次方程()A. x+2y=1B. x2+5=0C. 2x+=8D. 3x+8=6x+22.一元二次方程﹣x2+2x=﹣1的两个实数根为α,β,则α+β与α•β的值分别为()A. 2,﹣1B. ﹣2,﹣1C. 2,1D. ﹣2,13.方程2x2=3(x-6)化为一般式后二次项系数、一次项系数和常数项分别为 ( )A. 2、3、-6B. 2、-3、18C. 2、-3、6D. 2、3、64.如果一元二次方程x2﹣2x﹣3=0的两根为x1、x2,则x12x2+x1x22的值等于()A. -6B. 6C. -5D. 55.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A. 15%﹣5%=xB. 15%﹣5%=2xC. (1﹣5%)(1+15%)=2(1+x)D. (1﹣5%)(1+15%)=(1+x)26.方程2x2﹣6x+3=0较小的根为p,方程2x2﹣2x﹣1=0较大的根为q,则p+q等于()A. 3B. 2C. 1D.7.商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是()A. 0.64B. 0.8C. 8D. 6.48.下列说法不正确的是()A. 方程x2=x有一根为0B. 方程x2﹣1=0的两根互为相反数C. 方程(x﹣1)2﹣1=0的两根互为相反数D. 方程x2﹣x+2=0无实数根9.下列方程中,两根之和是3的是()A. x2﹣3x+ =0B. ﹣x2+3x+ =0C. x2+3x﹣=0D. x2+3x+ =010.近几年安徽省民生事业持续改善,2012年全省民生支出3163亿元,2014年全省民生支出4349亿元,若平均每年民生支出的增长率相同,设这个增长率为x,则下列列出的方程中正确的是()A. 3163(1+x)2=4349B. 4349(1﹣x)2=3163C. 3163(1+2x)=4349D. 4349(1﹣2x)=316311.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A. k≤B. k≥﹣且k≠0C. k≥﹣D. k>﹣且k≠012.一元二次方程x(x﹣2)=x﹣2的根是()A. 0B. 1C. 1,2D. 0,2二、填空题(共10题;共40分)13.若(x2+y2)(x2+y2﹣1)=12,则x2+y2=________.14.关于x的一元二次方程x2﹣3x+k=0有一个根为1,则k的值等于________.15.若对于实数a,b,规定a*b=,例如:2*3,因2<3,所以2*3=2×3﹣22=2.若x1, x2是方程x2﹣2x﹣3=0的两根,则x1*x2=________ .16.请你给出一个c值,c=________,使方程x2﹣3x+c=0无实数根.17.以3、-5为根且二次项系数为1的一元二次方程是________.18.若x=2是方程x2+3x﹣2m=0的一个根,则m的值为________.19.若方程x2﹣3x+1=0的两根分别为x1和x2,则代数式x1+x2﹣x1x2=________.20.已知如图所示的图形是一无盖长方体的铁盒平面展开图,若铁盒的容积为3m3,则根据图中的条件,可列出方程:________.21.一元二次方程x2﹣6x﹣4=0两根为x1和x2,则x1+x2=________x1x2=________x1+x2﹣x1x2=________.22.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为________米.三、计算题(共2小题;共24分)23.解方程(1)x2+x﹣1=0;(2)(x﹣1)(x+3)=5.(3) x2﹣2x﹣3=0;24.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?参考答案一、选择题B A B A D BC C B A C C二、填空题13. 4 14. 2 15. 12或﹣416. 3 17. 18. 519. 2 20. x(x+1)=3 21. 6;﹣4;10 22. 1三、计算题23. (1)解:x2+x﹣1=0; a=1,b=1,c=﹣1,∵b2﹣4ac=5>0,∴x= ,∴x1= ,x2=(2)解:(x﹣1)(x+3)=5.整理得,x2+2x﹣8=0,分解因式得,(x+4)(x﹣2)=0,∴x+4=0,x﹣2=0,∴x1=﹣4,x2=2(3 ) 解:因式分解得:(x+1)(x﹣3)=0,即x+1=0或x﹣3=0,解得:x1=﹣1,x2=3;24. 解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得 : (100﹣4x)x=400,解得 x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米。
浙教版数学八下第二章《一元二次方程》测试题(含答案)
第二章 一元二次方程测试(120分)(附答案)班级 学号 姓名 得分(A )()()12132+=+x x (B )02112=-+x x(C )02=++c bx ax (D ) 1222-=+x x x 2、已知3是关于x 的方程012342=+-a x 的一个解,则2a 的值是( ) (A )11 (B )12 (C )13 (D )143、关于x 的一元二次方程02=+k x 有实数根,则( )(A )k <0 (B )k >0 (C )k ≥0 (D )k ≤0 4、已知x 、y 是实数,若0=xy ,则下列说法正确的是( )(A )x 一定是0 (B )y 一定是0 (C )0=x 或0=y (D )0=x 且0=y 5、若12+x 与12-x 互为倒数,则实数x 为( )(A )±21(B )±1 (C )±22 (D )±26、若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( )(A )1,0 (B )-1,0 (C )1,-1 (D )无法确定7、用配方法解关于x 的方程x 2+ px + q = 0时,此方程可变形为 ( )(A ) 22()24p p x += (B ) 224()24p p qx -+=(C ) 224()24p p q x +-= (D ) 224()24p q p x --=8、使分式2561x x x --+ 的值等于零的x 是 ( )(A )6 (B )-1或6 (C )-1 (D )-69、方程0)2)(1(=-+x x x 的解是( ) (A )—1,2 (B )1,—2 (C )、0,—1,2 (D )0,1,—210、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为 ( ) (A )x(x +1)=1035 (B )x(x -1)=1035×2 (C )x(x -1)=1035 (D )2x(x +1)=1035二、填空题(每格2分,共36分)11、把一元二次方程4)3(2=-x 化为一般形式为: ,二次项为: ,一次项系数为: ,常数项为: 。
浙教版 八年级数学下册 第2章 一元二次方程 单元综合练习(Word版 含解析)
浙教版八年级数学下册《第2章一元二次方程》单元综合练习(附答案)一.选择题1.下列方程属于一元二次方程的是()A.x3+x2+2=0B.y=5﹣x C.x+=5D.x2+2x=32.已知关于x的一元二次方程x2﹣x﹣4=0,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定3.关于x的方程x(x﹣5)=3(x﹣5)的根是()A.x=5B.x=﹣5C.x1=﹣5;x2=3D.x1=5;x2=3 4.若x=1是关于x的一元二次方程ax2﹣bx﹣1=0的一个根,则2020+2a﹣2b的值为()A.2018B.2020C.2022D.20245.若关于x的方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1B.m>﹣1且m≠0C.m>﹣1D.m≥﹣1且m≠0 6.有一块矩形铁皮,长50cm,宽30cm,在它的四个角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,要制作的无盖方盒的底面积为800cm2.设切去的正方形的边长为xcm,可列方程为()A.4x2=800B.50×30﹣4x2=800C.(50﹣x)(30﹣x)=800D.(50﹣2x)(30﹣2x)=8007.等腰三角形的两条边长分别是方程x2﹣8x+12=0的两根,则该等腰三角形的周长是()A.10B.12C.14D.10或148.若x=是某个一元二次方程的根,则这个一元二次方程是()A.3x2+2x﹣1=0B.2x2+4x﹣1=0C.﹣x2﹣2x+3=0D.3x2﹣2x﹣1=0 9.已知x1,x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值为()A.﹣3或1B.﹣1或3C.﹣1D.310.对于实数m,n,先定义一种新运算“⊗”如下:m⊗n=,若x⊗(﹣2)=10,则实数x等于()A.3B.﹣4C.8D.3或8二.填空题11.若(m+2)x|m|+(m﹣1)x﹣1=0是关于x的一元二次方程,则m的值是.12.代数式﹣x2+2x﹣4有最值,最值是.13.已知(a2+b2)(a2+b2﹣2)=8,那么a2+b2=.14.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=.三.解答题15.解方程:(1)4x2+2x﹣1=0;(2)2y(y﹣2)=y2﹣2.16.用适当的方法解下列方程:(1)2x2﹣3x﹣1=0;(2)3x(x﹣1)=2﹣2x;(3)(x+1)2=(2x﹣1)2.17.已知方程x2﹣3x+m=0的一个根是x1=1,求方程的另一个根x2.18.已知关于x的方程(m﹣1)+2x﹣3=0是一元二次方程.(1)求m的值;(2)解该一元二次方程.19.已知m和n是方程2x2﹣5x﹣3=0的两根,求:(1)+的值;(2)m2﹣mn+n2的值.20.已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.21.已知:关于x的一元二次方程x2﹣(m+2)x+4(m﹣2)=0.(1)求证:方程总有两个实数根;(2)若方程有两个相等的实数根,求m的值及方程的根.22.用一面足够长的墙为一边,其余各边用总长42米的围栏建成如图所示的生态园,中间用围栏隔开.由于场地限制,垂直于墙的一边长不超过7米.(围栏宽忽略不计)(1)若生态园的面积为144平方米,求生态园垂直于墙的边长;(2)生态园的面积能否达到150平方米?请说明理由.23.白银市各级公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨0.5元/个,则月销售量将减少5个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?参考答案一.选择题1.解:A.未知数的最高次数是3,不是一元二次方程,故该选项不符合题意;B.方程中未知数个数为2,不是一元二次方程,故该选项不符合题意;C.是分式方程,故该选项不符合题意;D.该方程是一元二次方程,故该选项符合题意;故选:D.2.解:∵关于x的一元二次方程x2﹣x﹣4=0,∴Δ=(﹣1)2﹣4×1×(﹣4)=1+16=17>0,∴方程有两个不相等的实数根.故选:A.3.解:∵x(x﹣5)=3(x﹣5),∴x(x﹣5)﹣3(x﹣5)=0,则(x﹣5)(x﹣3)=0,∴x﹣5=0或x﹣3=0,解得x1=5,x2=3,故选:D.4.解:∵x=1是关于x的一元二次方程ax2﹣bx﹣1=0的一个根,∴a﹣b﹣1=0,∴a﹣b=1,∴2020+2a﹣2b=2(a﹣b)+2020=2×1+2020=2022.故选:C.5.解:∵关于x的方程mx2+2x﹣1=0有两个不相等的实数根,∴,解得:m>﹣1且m≠0.故选:B.6.解:设正方形的边长为xcm,则盒子底的长为(50﹣2x)cm,宽为(30﹣2x)cm,根据题意得:(50﹣2x)(30﹣2x)=800,故选:D.7.解:x2﹣8x+12=0,(x﹣6)(x﹣2)=0,x﹣6=0或x﹣2=0,所以x1=6,x2=2,因为2+2=4<6,所以等腰三角形的腰长为6,底边长为2,所以这个等腰三角形的周长=6+6+2=14.故选:C.8.解:∵x=是某个一元二次方程的根,∴此一元二次方程二次项系数a=3,一次项系数b=﹣2,常数项c=﹣1,∴这个一元二次方程可以是3x2﹣2x﹣1=0,故选:D.9.解:∵x1、x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,∴x1+x2=2m+3,x1x2=m2,∴+===1,解得:m=3或m=﹣1,把m=3代入方程得:x2﹣9x+9=0,Δ=(﹣9)2﹣4×1×9>0,此时方程有解;把m=﹣1代入方程得:x2+x+1=0,Δ=1﹣4×1×1<0,此时方程无解,即m=﹣1舍去.故选:D.10.解:当x≥﹣2时,x2+x﹣2=10,解得:x1=3,x2=﹣4(不合题意,舍去);当x<﹣2时,(﹣2)2+x﹣2=10,解得:x=8(不合题意,舍去);∴x=3.故选:A.二.填空题11.解:由题意得,|m|=2,m+2≠0,解得m=2.故答案为:2.12.解:﹣﹣x2+2x﹣4=﹣(x2﹣2x)﹣4=﹣(x2﹣2x+1)+1﹣4=﹣(x﹣1)2﹣3=﹣3﹣(x﹣1)2,∵(x﹣1)2≥0,∴﹣(x﹣1)2≤0,∴﹣3﹣(x﹣1)2≤﹣3,∴x=1时,代数式有最大值﹣3.故答案为:﹣3.13.解:设a2+b2=t(t≥0),则t(t﹣2)=8,整理,得(t﹣4)(t+2)=0,解得t=4或t=﹣2(舍去),则a2+b2=4.故答案是:4.14.解:方程(x+1)(x﹣4)=﹣5可化为x2﹣3x+1=0,∵α、β是方程(x+1)(x﹣4)=﹣5的两实数根,∴α+β=3,αβ=1,∴α2+β2=(α+β)2﹣2αβ=7,α4+β4=(α2+β2)2﹣2α2•β2=47,∴==47,故答案为:47.三.解答题15.解:(1)4x2+2x﹣1=0,这里:a=4,b=2,c=﹣1,∵Δ=b2﹣4ac=22﹣4×4×(﹣1)=4+16=20>0,∴x===,解得:x1=,x2=;(2)2y(y﹣2)=y2﹣2整理为y2﹣4y+2=0,这里:a=1,b=﹣4,c=2,∵Δ=b2﹣4ac=(﹣4)2﹣4×1×2=16﹣8=8>0,∴y===2±,解得:y1=2﹣,y2=2+.16.解:(1)2x2﹣3x﹣1=0,∵a=2,b=﹣3,c=﹣1,∴Δ=(﹣3)2﹣4×2×(﹣1)=17>0,∴x==,∴x1=,x2=;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣;(3)(x+1)2=(2x﹣1)2,(x+1)2﹣(2x﹣1)2=0,=0,3x(2﹣x)=0,∴3x=0或2﹣x=0,∴x1=0,x2=2.17.解:依题意得:x1+x2=3,即1+x2=3,解得:x2=2.∴方程的另一个根x2=2.18.解:(1)∵关于x的方程(m﹣1)+2x﹣3=0是一元二次方程,∴,解得m=﹣1;(2)方程为﹣2x2+2x﹣3=0,即2x2﹣2x+3=0,∵a=2,b=﹣2,c=3,∴b2﹣4ac=(﹣2)2﹣4×2×3=4﹣24=﹣20<0,故原方程无解.19.解:(1)∵m和n是方程2x2﹣5x﹣3=0的两根,∴m+n=,mn=﹣,∴+===﹣;(2)m2﹣mn+n2=(m+n)2﹣3mn=()2﹣3×(﹣)=+=10.20.解:(1)△ABC是等腰三角形,理由是:∵把x=1代入方程(a+c)x2﹣2bx+(a﹣c)=0得:a+c﹣2b+a﹣c=0,∴2a=2b,∴a=b,∴△ABC的形状是等腰三角形;(2)∵△ABC是等边三角形,∴a=b=c,∵(a+c)x2﹣2bx+(a﹣c)=0,∴(a+a)x2﹣2ax+a﹣a=0,即x2﹣x=0,解得:x1=0,x2=1,即这个一元二次方程的根是x1=0,x2=1.21.(1)证明:∵Δ=(m+2)2﹣16(m﹣2)=m2﹣12m+36=(m﹣6)2≥0,∴方程总有两个实数根;(2)解:∵方程有两个相等的实数根,∴Δ=(m﹣6)2=0,解得m=6,此时方程为x2﹣8x+16=0,∴(x﹣4)2=0,∴x1=x2=4.22.解:(1)设生态园垂直于墙的边长为x米,则平行于墙的边长为(42﹣3x)米,依题意,得(42﹣3x)x=144.解得x1=6,x2=8.由于x2=8>7,所以不合题意,舍去.所以x=6符合题意.答:生态园垂直于墙的边长为6米;(2)依题意,得(42﹣3x)x=150.整理,得x2﹣14x+50=0.因为Δ=(﹣14)2﹣4×1×50=﹣4<0.所以该方程无解.所以生态园的面积不能达到150平方米.23.解:(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%.(2)设该品牌头盔的实际售价为y元,依题意,得:(y﹣30)(600﹣×5)=10000,整理,得:y2﹣130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,答:该品牌头盔的实际售价应定为50元.。
【单元卷】浙教版八年级数学下册:第2章 一元二次方程 单元质量检测卷(一)含答案与解析
浙教版八年级数学下册单元质量检测卷(一)第2章一元二次方程姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共27题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.方程(x+3)2=4的根是()A.x1=﹣1,x2=﹣5 B.x1=1,x2=﹣5C.x1=x2=﹣1 D.x1=﹣1,x2=52.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是()A.1 B.﹣1 C.﹣D.﹣33.有两个人患了流感,经过两轮传染后共有242个人患了流感,设每轮传染中平均一个人传染了x个人,则x满足的方程是()A.(1+x)2=242 B.(2+x)2=242C.2(1+x)2=242 D.(1+2x)2=2424.已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为()A.k=4 B.k=﹣4 C.k=±4 D.k=±25.关于x的一元二次方程x2+2x+k+1=0的两根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围是()A.k>﹣2 B.k>2 C.﹣2<k≤0 D.0≤k<26.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3 B.4 C.5 D.67.在《代数学》中记载了求方程x2+8x=33正数解的几何方法:如图1,先构造一个面积为x2的正方形,再以正方形的边为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7﹣4=3.小明尝试用此方法解关于x的方程x2+10x+c=0时,构造出如图2所示正方形.已知图2中阴影部分的面积和为39,则该方程的正数解为()A.2B.2 C.3 D.48.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为15cm2,则点P运动的时间是()A.2s B.3s C.4s D.5s9.自然数n满足等式,这样n的个数是()A.3 B.4 C.5 D.710.两个关于x的一元二次方程ax2+bx+c=0和cx2+bx+a=0,其中a,b,c是常数,且a+c=0.如果x=2是方程ax2+bx+c=0的一个根,那么下列各数中,一定是方程cx2+bx+a=0的根的是()A.B.﹣C.2 D.﹣2二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.关于x的方程(m+2)x|m|+2mx+2=0是一元二次方程,则m的值为.12.如果ax2+3x+=(3x+)2+m,则a,m的值分别是.13.若a,b是方程x2﹣x﹣5=0的两个不同的实数根,则a3﹣a2+5b﹣2=.14.设x1,x2是方程2x2+3x﹣4=0的两个实数根,则+的值为.15.某电子产品的首发价为8000元,在经历一年的两次降价后(每次降价的百分率相同),此产品目前的售价已降到6480元,则该产品每次降价的百分率为.16.如图,邻边不等的矩形花园ABCD,它的一边AD利用已有的围墙(墙足够长),另外三边所围的栅栏的总长度是18m,若矩形的面积为36m2,则AB的长度是m.17.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.18.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=﹣.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.解下列方程:(1)(y﹣2)(y﹣3)=12;(2)2x2+3x﹣1=0(请用配方法解).20.已知m是方程x2﹣2016x+1=0的一个不为0的根,求m2﹣2015m+的值.21.(1)已知x和y满足:4x2+12x+y2﹣4y+13=0,求(x+y)﹣2.(2)解方程:﹣=1.(3)若关于x的分式方程=2﹣的解为正数,求正整数m的值.22.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.23.如图,在长为50米,宽为30米的矩形地面上修建三条同样宽的道路,余下部分种植草坪,草坪总面积为1392平方米.(1)求道路宽多少米;(2)现需要A、B两种类型的步道砖,A种类型的步道砖每平方米原价300元,现打八折出售,B种类型的步道板每平方米价格是200元,若铺路费用不高于23600元,(不考虑步道砖损失的情况下)最多选A种类型步道砖多少平方米?24.如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?25.先阅读,再解决问题.阅读:材料一配方法可用来解一元二次方程.例如,对于方程x2+2x﹣1=0可先配方(x+1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.材料二对于代数式3a2+1,因为3a2≥0,所以3a2+1≥1,即3a2+1有最小值1,且当a=0时,3a2+1取得最小值为1.类似地,对于代数式﹣3a2+1,因为﹣3a2≤0,所以﹣3a2+1≤1,即﹣3a2+1有最大值1,且当a=0时,﹣3a2+1取得最大值为1.解答下列问题:(1)填空:①当x=时,代数式2x2﹣1有最小值为;②当x=时,代数式﹣2(x+1)2+1有最大值为.(2)试求代数式2x2﹣4x+1的最小值,并求出代数式取得最小值时的x的值.(要求写出必要的运算推理过程)参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.方程(x+3)2=4的根是()A.x1=﹣1,x2=﹣5 B.x1=1,x2=﹣5C.x1=x2=﹣1 D.x1=﹣1,x2=5【答案】A【分析】利用直接开平方法解方程即可.【解答】解:(x+3)2=4,∴x+3=±2,∴x1=﹣1,x2=﹣5,故选:A.【知识点】解一元二次方程-直接开平方法2.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是()A.1 B.﹣1 C.﹣D.﹣3【答案】C【分析】根据关于x的方程ax2﹣2ax+1=0的一个根是﹣1,可以得到a+2a+1=0,然后即可得到a的值.【解答】解:∵关于x的方程ax2﹣2ax+1=0的一个根是﹣1,∴a+2a+1=0,∴3a+1=0,解得a=﹣,故选:C.【知识点】一元二次方程的解3.有两个人患了流感,经过两轮传染后共有242个人患了流感,设每轮传染中平均一个人传染了x个人,则x满足的方程是()A.(1+x)2=242 B.(2+x)2=242C.2(1+x)2=242 D.(1+2x)2=242【答案】C【分析】根据经过两轮传染后患病的人数,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得:2(1+x)2=242.故选:C.【知识点】由实际问题抽象出一元二次方程4.已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为()A.k=4 B.k=﹣4 C.k=±4 D.k=±2【答案】C【分析】根据方程的系数结合根的判别式△=0,即可得出关于k的方程,解之即可得出k值.【解答】解:∵一元二次方程x2﹣kx+4=0有两个相等的实数根,∴△=(﹣k)2﹣4×1×4=0,解得:k=±4.故选:C.【知识点】根的判别式5.关于x的一元二次方程x2+2x+k+1=0的两根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围是()A.k>﹣2 B.k>2 C.﹣2<k≤0 D.0≤k<2【答案】C【分析】根据根与系数的关系以及不等式的解法即可求出答案.【解答】解:由题意可知:x1+x2=﹣2,x1x2=k+1,∵x1+x2﹣x1x2<﹣1,∴﹣2﹣k﹣1<﹣1,∴k>﹣2,∵△=4﹣4(k+1)≥0,∴k≤0,∴﹣2<k≤0,故选:C.【知识点】根的判别式、根与系数的关系6.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3 B.4 C.5 D.6【答案】C【分析】先根据根的判别式和一元二次方程的定义求出a的范围,再求出不等式组的解集,再根据题意得出a的值,最后得出选项即可.【解答】解:∵整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,∴△=(2a)2﹣4(a+2)(a﹣1)≥0且a+2≠0,解得:a≤2且a≠﹣2,∴解不等式组得:a<x≤3,∵关于x的不等式组有解且最多有6个整数解,∴﹣3≤a<3,∴a可以为2,1,0,﹣1,﹣3,共5个,故选:C.【知识点】一元二次方程的定义、根的判别式、一元一次不等式组的整数解7.在《代数学》中记载了求方程x2+8x=33正数解的几何方法:如图1,先构造一个面积为x2的正方形,再以正方形的边为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7﹣4=3.小明尝试用此方法解关于x的方程x2+10x+c=0时,构造出如图2所示正方形.已知图2中阴影部分的面积和为39,则该方程的正数解为()A.2B.2 C.3 D.4【答案】C【分析】根据已知的数学模型,同理可得空白小正方形的边长为,先计算出大正方形的面积等于阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可得解.【解答】解:如图2,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x 的矩形,得到大正方形的面积为:39+()2×4=39+25=64,∴该方程的正数解为﹣×2=3.故选:C.【知识点】一元二次方程的应用8.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为15cm2,则点P运动的时间是()A.2s B.3s C.4s D.5s【答案】B【分析】设出动点P,Q运动t秒,能使△PBQ的面积为15cm2,用t分别表示出BP和BQ的长,利用三角形的面积计算公式即可解答.【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使△PBQ的面积为15cm2.故选:B.【知识点】一元二次方程的应用9.自然数n满足等式,这样n的个数是()A.3 B.4 C.5 D.7【答案】B【分析】分①n2﹣2n=1;②n2﹣2n=﹣1;③n2﹣2n≠±1④n=0⑤当n=0,五种情况讨论即可确定n的所有可能的值.【解答】解:①当n2﹣2n=1 时,无论指数为何值等式成立.解方程得n=1±(不合题意,舍去);②当n2﹣2n=﹣1 时,解得:n=1;③当n2﹣2n≠±1 时,当n为自然数,则n2﹣2n≠0,所以n2+47=16n﹣16等式成立.解方程得n1=7,n2=9.④当n=2时,左边=051=0,右边=016=0,所以左边=右边,n=2成立,⑤当n=0,无意义,综上所述,满足条件的n值有4个.故选:B.【知识点】一元二次方程的应用10.两个关于x的一元二次方程ax2+bx+c=0和cx2+bx+a=0,其中a,b,c是常数,且a+c=0.如果x=2是方程ax2+bx+c=0的一个根,那么下列各数中,一定是方程cx2+bx+a=0的根的是()A.B.﹣C.2 D.﹣2【答案】D【分析】根据一元二次方程的定义以及一元二次方程的解法即可求出答案.【解答】解:∵a≠0,c≠0,∴=﹣1,∴x2+x+=0,x2+x+1=0,∴x2+x﹣1=0,x2﹣x﹣1=0,∵x=2是方程ax2+bx+c=0的一个根,∴x=2是方程x2+x﹣1=0的一个根,∴x=﹣2是方程x2﹣x﹣1=0的一个根,即x=﹣2时方程cx2+bx+a=0的一个根故选:D.【知识点】一元二次方程的解二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.关于x的方程(m+2)x|m|+2mx+2=0是一元二次方程,则m的值为.【答案】2【分析】根据一元二次方程的定义得到|m|=2且m+2≠0,由此求得m的值.【解答】解:∵关于x的方程(m+2)x|m|+3mx+1=0是一元二次方程,∴|m|=2且m+2≠0,解得m=2.故答案是:2.【知识点】一元二次方程的定义、绝对值12.如果ax2+3x+=(3x+)2+m,则a,m的值分别是.【分析】根据完全平方公式把等式的右边变形,根据题意列式计算即可.【解答】解:(3x+)2+m=9x2+3x++m,则a=9,+m=,解得,m=,故答案为:9,.【知识点】配方法的应用13.若a,b是方程x2﹣x﹣5=0的两个不同的实数根,则a3﹣a2+5b﹣2=.【答案】3【分析】根据一元二次方程的解及根与系数的关系可得出a2﹣a=5,a+b=1,进而可得出a3﹣a2=5a,再结合a3﹣a2+5b﹣2=5(a+b)﹣2即可求出结论.【解答】解:∵a,b是方程x2﹣x﹣5=0的两个不同的实数根,∴a2﹣a=5,a+b=1,∴a3﹣a2=5a,∴a3﹣a2+5b﹣2=5a+5b﹣2=5(a+b)﹣2=5×1﹣2=3.故答案为:3.【知识点】根与系数的关系14.设x1,x2是方程2x2+3x﹣4=0的两个实数根,则+的值为.【分析】先根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,再把+通分得到,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣,x1x2=﹣2,所以+===.故答案为.【知识点】根与系数的关系15.某电子产品的首发价为8000元,在经历一年的两次降价后(每次降价的百分率相同),此产品目前的售价已降到6480元,则该产品每次降价的百分率为.【答案】10%【分析】解答此题利用的数量关系是:电子产品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.【解答】解:设这种电子产品平均每次降价的百分率为x,根据题意列方程得,8000×(1﹣x)2=6480,解得x1=0.1,x2=﹣1.9(不合题意,舍去);答:这种电子产品平均每次降价的百分率为10%.故答案为:10%.【知识点】一元二次方程的应用16.如图,邻边不等的矩形花园ABCD,它的一边AD利用已有的围墙(墙足够长),另外三边所围的栅栏的总长度是18m,若矩形的面积为36m2,则AB的长度是m.【答案】3【分析】根据栅栏的总长度是18m,AB=xm,则BC=(18﹣2x)m,再根据矩形的面积公式列方程,解一元二次方程即可.【解答】解:设AB=xm,则BC=(18﹣2x)m.根据题意可得,x(18﹣2x)=36.解得x1=6(舍去),x2=3.答:AB的长为3m.故答案是:3.【知识点】一元二次方程的应用17.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.【知识点】因式分解的应用、一元二次方程的解18.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=﹣.【分析】由根与系数的关系得a n+b n=n+3,a n•b n=﹣3n2,所以(a n﹣3)(b n﹣3)=a n b n﹣3(a n+b n)+9=﹣3n2﹣3(n+3)+9=﹣3n(n+1),则==﹣(﹣),然后代入即可求解.【解答】解:由根与系数的关系得a n+b n=n+3,a n•b n=﹣3n2,所以(a n﹣3)(b n﹣3)=a n b n﹣3(a n+b n)+9=﹣3n2﹣3(n+3)+9=﹣3n(n+1),则==﹣(﹣),∴原式=﹣(1﹣+﹣+﹣+…+﹣)=﹣×(1﹣)=﹣×=﹣,故答案为:﹣【知识点】根与系数的关系三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.解下列方程:(1)(y﹣2)(y﹣3)=12;(2)2x2+3x﹣1=0(请用配方法解).【分析】(1)根据因式分解法即可求出答案.(2)根据配方法即可求出答案.【解答】解:(1)∵(y﹣2)(y﹣3)=12,∴y2﹣5y﹣6=0,∴(y﹣6)(y+1)=0,∴y1=6或y2=﹣1.(2)∵2x2+3x﹣1=0,∴2(x2+x)=1,2(x2+x+﹣)=1,∴2(x+)2﹣=1,∴2(x+)2=,∴(x+)2=,∴x=.∴x1=或x2=.【知识点】解一元二次方程-配方法、解一元二次方程-公式法20.已知m是方程x2﹣2016x+1=0的一个不为0的根,求m2﹣2015m+的值.【分析】把x=m代入方程x2﹣2016x+1=0有m2﹣2016m+1=0,变形得m2﹣2015m=m﹣1,m2+1=2016m,再将所求代数式m2﹣2015m+变形为﹣1,将=2016代入,计算即可求出结果.【解答】解:∵m是方程x2﹣2016x+1=0的一个不为0的根,∴m2﹣2016m+1=0,∴m2﹣2015m=m﹣1,m2+1=2016m,∴==,∴m2﹣2015m+=m﹣1+=﹣1=2016﹣1=2015.【知识点】一元二次方程的解21.(1)已知x和y满足:4x2+12x+y2﹣4y+13=0,求(x+y)﹣2.(2)解方程:﹣=1.(3)若关于x的分式方程=2﹣的解为正数,求正整数m的值.【分析】(1)利用配方法对4x2+12x+y2﹣4y+13=0进行变形,由偶次方的非负性可得x与y的值,再代入(x+y)﹣2计算即可.(2)先去分母,将原方程转化为整式方程,求得方程的解,再检验即可得出答案.(3)先去分母,将原方程转化为整式方程,求得方程的解,再根据解为正数及m为正整数求得答案即可.【解答】解:(1)∵4x2+12x+y2﹣4y+13=0,∴4[x2+3x+]+(y2﹣4y+4)(y﹣2)2=0,∴4(x+)2+(y﹣2)2=0,∵4(x+)2≥0,(y﹣2)2≥0,∴x+=0,y﹣2=0,∴x=﹣,y=2,∴(x+y)﹣2=(﹣+2)﹣2==4.(2)在方程﹣=1两边同时乘以(x+1)2得:x2﹣(x+1)=(x+1)2,∴x2﹣x﹣1=x2+2x+1,∴﹣3x=2,∴x=﹣.检验:当x=﹣时,(x+1)2≠0,∴x=﹣是原方程的解.∴原方程的解是x=﹣.(3)方程=2﹣两边同时乘以(x﹣2)得:x=2(x﹣2)+m,∴x=2x﹣4+m,∴x=4﹣m,∵解为正数,∴4﹣m>0,∴m<4,又∵m为正整数,∴m=1或m=2或m=3.∵当x=4﹣m=2时,x﹣2=0,∴m=2不符合题意.∴正整数m的值为1或3.【知识点】负整数指数幂、分式方程的解、非负数的性质:偶次方、配方法的应用、解一元一次不等式、解分式方程22.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.【分析】(1)根据该商店去年“十一黄金周”这七天的总营业额=前六天的总营业额+第七天的营业额,即可求出结论;(2)设该商店去年8、9月份营业额的月增长率为x,根据该商店去年7月份及9月份的营业额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.【知识点】一元二次方程的应用23.如图,在长为50米,宽为30米的矩形地面上修建三条同样宽的道路,余下部分种植草坪,草坪总面积为1392平方米.(1)求道路宽多少米;(2)现需要A、B两种类型的步道砖,A种类型的步道砖每平方米原价300元,现打八折出售,B种类型的步道板每平方米价格是200元,若铺路费用不高于23600元,(不考虑步道砖损失的情况下)最多选A种类型步道砖多少平方米?【分析】(1)设道路宽x米,根据题意列出方程,求出方程的解即可得到结果.(2)设选A种类型步道砖y平方米,根据铺路费用不高于23600元,列出不等式求解即可.【解答】解:(1)设道路宽x米,根据题意得:(50﹣2x)(30﹣x)=1392,整理得:x2﹣55x+54=0,解得:x=1或x=54(不合题意,舍去),故道路宽1米.(2)设选A种类型步道砖y平方米,根据题意得:300×0.8y+200×[50×1+(30﹣1)×1×2﹣y]≤23600,解得:y≤50.故最多选A种类型步道砖50平方米.【知识点】一元二次方程的应用24.如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?【分析】(1)如图,过点P作PE⊥CD于E,设x秒后PQ=10cm,利用勾股定理得出即可.(2)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.【解答】解:(1)过点P作PE⊥CD于E.则根据题意,得设x秒后,点P和点Q的距离是10cm.(16﹣2x﹣3x)2+62=102,即(16﹣5x)2=64,∴16﹣5x=±8,∴x1=,x2=;∴经过s或sP、Q两点之间的距离是10cm;(2)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤时,则PB=16﹣3y,∴PB•BC=12,即×(16﹣3y)×6=12,解得y=4;②当<x≤时,BP=3y﹣AB=3y﹣16,QC=2y,则BP•CQ=(3y﹣16)×2y=12,解得y1=6,y2=﹣(舍去);③<x≤8时,QP=CQ﹣PQ=22﹣y,则QP•CB=(22﹣y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的面积为 12cm2.【知识点】一元二次方程的应用25.先阅读,再解决问题.阅读:材料一配方法可用来解一元二次方程.例如,对于方程x2+2x﹣1=0可先配方(x+1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.材料二对于代数式3a2+1,因为3a2≥0,所以3a2+1≥1,即3a2+1有最小值1,且当a=0时,3a2+1取得最小值为1.类似地,对于代数式﹣3a2+1,因为﹣3a2≤0,所以﹣3a2+1≤1,即﹣3a2+1有最大值1,且当a=0时,﹣3a2+1取得最大值为1.解答下列问题:(1)填空:①当x=时,代数式2x2﹣1有最小值为;②当x=时,代数式﹣2(x+1)2+1有最大值为.(2)试求代数式2x2﹣4x+1的最小值,并求出代数式取得最小值时的x的值.(要求写出必要的运算推理过程)【答案】【第1空】0【第2空】-1【第3空】-1【第4空】1【分析】(1)根据材料二得出的规律,可直接得出答案;(2)先把代数式2x2﹣4x+1变形为2(x﹣1)2﹣1,再根据2(x﹣1)2≥0,得出2(x﹣1)2﹣1≥﹣1,即可求出代数式取得最小值时的x的值.【解答】解:(1)根据题意得:①当x=0时,代数式2x2﹣1有最小值为﹣1;②当x=﹣1时,代数式﹣2(x+1)2+1有最大值为1;故答案为:0,﹣1;﹣1,1.(2)∵2x2﹣4 x+1=2(x2﹣2x)+1=2(x2﹣2x+1﹣1)+1=2(x﹣1)2﹣1,2(x﹣1)2≥0,∴2(x﹣1)2﹣1≥﹣1,即2(x﹣1)2﹣1有最小值﹣1,当x=1时,2(x﹣1)2﹣1取得最小值﹣1.【知识点】配方法的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章一元二次方程单元检测卷
姓名:__________ 班级:__________
题号一二三总分
评分
一、选择题(共12小题;每小题3分,共36分)
1.请判别下列哪个方程是一元二次方程()
A. x+2y=1
B. x2+5=0
C. 2x+=8
D. 3x+8=6x+2
2.一元二次方程﹣x2+2x=﹣1的两个实数根为α,β,则α+β与α•β的值分别为()
A. 2,﹣1
B. ﹣2,﹣1
C. 2,1
D. ﹣2,1
3.方程2x2=3(x-6)化为一般式后二次项系数、一次项系数和常数项分别为( )
A. 2、3、-6
B. 2、-3、18
C. 2、-3、6
D. 2、3、6
4.如果一元二次方程x2﹣2x﹣3=0的两根为x1、x2,则x12x2+x1x22的值等于()
A. -6
B. 6
C. -5
D. 5
5.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()
A. 15%﹣5%=x
B. 15%﹣5%=2x
C. (1﹣5%)(1+15%)=2(1+x)
D. (1﹣5%)(1+15%)=(1+x)2
6.方程2x2﹣6x+3=0较小的根为p,方程2x2﹣2x﹣1=0较大的根为q,则p+q等于()
A. 3
B. 2
C. 1
D.
7.商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是()
A. 0.64
B. 0.8
C. 8
D. 6.4
8.下列说法不正确的是()
A. 方程x2=x有一根为0
B. 方程x2﹣1=0的两根互为相反数
C. 方程(x﹣1)2﹣1=0的两根互为相反数
D. 方程x2﹣x+2=0无实数根
9.下列方程中,两根之和是3的是()
A. x2﹣3x+ =0
B. ﹣x2+3x+ =0
C. x2+3x﹣=0
D. x2+3x+ =0
10.近几年安徽省民生事业持续改善,2012年全省民生支出3163亿元,2014年全省民生支出4349亿元,若平均每年民生支出的增长率相同,设这个增长率为x,则下列列出的方程中正确的是()
A. 3163(1+x)2=4349
B. 4349(1﹣x)2=3163
C. 3163(1+2x)=4349
D. 4349(1﹣2x)=3163
11.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()
A. k≤
B. k≥﹣且k≠0
C. k≥﹣
D. k>﹣且k≠0
12.一元二次方程x(x﹣2)=x﹣2的根是()
A. 0
B. 1
C. 1,2
D. 0,2
二、填空题(共10题;共40分)
13.若(x2+y2)(x2+y2﹣1)=12,则x2+y2=________.
14.关于x的一元二次方程x2﹣3x+k=0有一个根为1,则k的值等于________.
15.若对于实数a,b,规定a*b=,例如:2*3,因2<3,所以2*3=2×3﹣22=2.若x1,x2是方程x2﹣2x﹣3=0的两根,则x1*x2=________ .
16.请你给出一个c值,c=________,使方程x2﹣3x+c=0无实数根.
17.以3、-5为根且二次项系数为1的一元二次方程是________.
18.若x=2是方程x2+3x﹣2m=0的一个根,则m的值为________.
19.若方程x2﹣3x+1=0的两根分别为x1和x2,则代数式x1+x2﹣x1x2=________.
20.已知如图所示的图形是一无盖长方体的铁盒平面展开图,若铁盒的容积为3m3,则根据图中的条件,可列出方程:________.
21.一元二次方程x2﹣6x﹣4=0两根为x1和x2,则x1+x2=________x1x2=________x1+x2﹣x1x2=________.
22.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为________米.
三、计算题(共2小题;共24分)
23.解方程
(1)x2+x﹣1=0;
(2)(x﹣1)(x+3)=5.
(3)x2﹣2x﹣3=0;
24.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?
参考答案
一、选择题
B A B A D B
C C B A C C
二、填空题
13.4 14.2 15.12或﹣4
16.3 17.18.5
19.2 20.x(x+1)=3 21.6;﹣4;10 22.1
三、计算题
23.(1)解:x2+x﹣1=0;a=1,b=1,c=﹣1,
∵b2﹣4ac=5>0,
∴x= ,
∴x1= ,x2=
(2)解:(x﹣1)(x+3)=5.整理得,x2+2x﹣8=0,
分解因式得,(x+4)(x﹣2)=0,
∴x+4=0,x﹣2=0,
∴x1=﹣4,x2=2
(3 ) 解:因式分解得:(x+1)(x﹣3)=0,
即x+1=0或x﹣3=0,
解得:x1=﹣1,x2=3;
24.解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得: (100﹣4x)x=400,
解得x1=20,x2=5.
则100﹣4x=20或100﹣4x=80.
∵80>25,
∴x2=5舍去.
即AB=20,BC=20.
答:羊圈的边长AB,BC分别是20米、20米。