27.2 相似三角形同步练习 新人教版

合集下载

人教版八年级数学上册 27.2 相似三角形(2)同步练习(附答案解析)

人教版八年级数学上册 27.2 相似三角形(2)同步练习(附答案解析)

27.2相似三角形同步练习(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、若四条线段成比例,且则线段的长为( )A.B.C.D.2、如图,已知和相交于点,则为( )A.B.C.D.3、如图,四边形的对角线、相交于点,且将这个四边形分成①、②、③、④四个三角形.若,则下列结论中一定正确的是( )A. ②和④相似B. ①和④相似C. ①和③相似D. ①和②相似4、已知,点、、对应点分别是、、,,等于( )A.B.C.D.5、如图,小华用长为的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距、与旗杆相距,则旗杆的高度为().A.B.C.D.6、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()A. 原三角形向轴的负方向平移一个单位即为所得三角形B. 关于原点对称C. 关于轴对称D. 关于轴对称7、如图,为了估计河的宽度,在河的对岸选定一个目标点,在近岸取点和,使点在一条直线上,且直线与河垂直,在过点且与垂直的直线上选择适当的点,与过点且与垂直的直线的交点为.如果,,,则河的宽度为( )A.B.C.D.8、如图,已知,与相交于点,,那么下列式子正确的是( )A.B.C.D.9、如图,直线,两直线和与分别相交于点和点.下列各式中,不一定成立的是( )A.B.C.D.10、如图,已知,,,,则的值为( )A.B.C.D.11、已知线段,线段是线段、的比例中项,则( )A.B.C.D.12、以下列长度(同一单位)为长的四条线段中,不成比例的是( )A.B.C.D.13、不为的四个实数、,、满足,改写成比例式错误的是( )A.B.C.D.14、阳光通过窗口照射到室内,在地面上留下米的亮区(如图所示),已知亮区到窗口下的墙角的距离米,窗口高米,则窗口底边离地面的高为( )A. 米B. 米C. 米D. 米15、如图,、是双曲线上的点,、两点的横坐标分别是、,线段的延长线交轴于点,若.则的值是( )A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,在平行四边形中,是上一点,交于,,,,则.17、将边长为的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为_________.18、如图,在中,为边上的中点,,交于点,交的延长线于点,若,,则的长是 .19、如图,平行四边形中,是的延长线上一点,与交于点,,若的面积为,则平行四边形的面积为________.20、已知在坐标平面内三顶点的坐标分别为、、.以为位似中心,画出与相似(与图形同向),且相似比是的三角形,它的三个对应顶点的坐标分别是( , )、( , )、( , )三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在矩形中,已知,,、分别是、上的点,且,两动点、分别从、两点,同时出发沿、且均以速度分别向、运动,猜想当、运动多长时间时矩形与矩形相似?写出你的猜想过程.22、如图,是一块锐角三角形的材料,边,高,要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,这个正方形零件的边长是多少.23、如图,在中,点分别在边上,若,,,求的值.27.2相似三角形同步练习(二) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、若四条线段成比例,且则线段的长为( )A.B.C.D.【答案】B【解析】解:根据题意得:,即,解得,故答案为:.2、如图,已知和相交于点,则为( )A.B.C.D.【答案】D【解析】解:,,,,,,,.故答案为:.3、如图,四边形的对角线、相交于点,且将这个四边形分成①、②、③、④四个三角形.若,则下列结论中一定正确的是( )A. ②和④相似B. ①和④相似C. ①和③相似D. ①和②相似【答案】C【解析】解:,又,.故正确答案是:①和③相似.4、已知,点、、对应点分别是、、,,等于( )A.B.C.D.【答案】A【解析】解:,,故选:.5、如图,小华用长为的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距、与旗杆相距,则旗杆的高度为().A.B.C.D.【答案】A【解析】解:由题意得:,,,,,,,.故答案选:.6、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()A. 原三角形向轴的负方向平移一个单位即为所得三角形B. 关于原点对称C. 关于轴对称D. 关于轴对称【答案】D【解析】解:∵横坐标都乘以,纵坐标不变,∴对应点的横坐标互为相反数,纵坐标不变,∴对应点关于轴对称,∴所得图形关于轴对称,7、如图,为了估计河的宽度,在河的对岸选定一个目标点,在近岸取点和,使点在一条直线上,且直线与河垂直,在过点且与垂直的直线上选择适当的点,与过点且与垂直的直线的交点为.如果,,,则河的宽度为( )A.B.C.D.【答案】C【解析】解:,,,,,即,.8、如图,已知,与相交于点,,那么下列式子正确的是( )A.B.C.D.【答案】B【解析】解:,,,.9、如图,直线,两直线和与分别相交于点和点.下列各式中,不一定成立的是( )A.B.C.D.【答案】C【解析】解:直线,,,,故选项不一定成立.故正确答案是:10、如图,已知,,,,则的值为( )A.B.C.D.【答案】D【解析】解:,,,即,解得.11、已知线段,线段是线段、的比例中项,则( )A.B.C.D.【答案】B【解析】解:线段是线段、的比例中项,,.12、以下列长度(同一单位)为长的四条线段中,不成比例的是( )A.B.C.D.【答案】B【解析】解:,故本选项正确;,故本选项正确;,故本选项错误;,故本选项正确.13、不为的四个实数、,、满足,改写成比例式错误的是( )A.B.C.D.【答案】A【解析】解:,故本选项正确;,故本选项正确;,故本选项正确;,故本选项错误.14、阳光通过窗口照射到室内,在地面上留下米的亮区(如图所示),已知亮区到窗口下的墙角的距离米,窗口高米,则窗口底边离地面的高为( )A. 米B. 米C. 米D. 米【答案】A【解析】解:连接、,光是沿直线传播的,,,,即,解得:.15、如图,、是双曲线上的点,、两点的横坐标分别是、,线段的延长线交轴于点,若.则的值是( )A.B.C.D.【答案】B【解析】解:作轴于,轴于,如图,设反比例函数解析式为,、两点的横坐标分别是、,、两点的纵坐标分别是、,,,,,,,,,,而,.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,在平行四边形中,是上一点,交于,,,,则.【答案】18/5【解析】解:在平行四边形中,是上一点,交于,,,,,,,,,,,故正确答案为:17、将边长为的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为_________.【答案】【解析】解:如图,、、、、、分别为各边的三等分点,,,为等边三角形,,,,,为等边三角形,同理,都是边长为的等边三角形,.正确答案是:.18、如图,在中,为边上的中点,,交于点,交的延长线于点,若,,则的长是 .【答案】5【解析】解:,,,为边上的中点,,则,,,,,即,得.故正确答案是.19、如图,平行四边形中,是的延长线上一点,与交于点,,若的面积为,则平行四边形的面积为________.【答案】【解析】解:,平行四边形,,,,的面积为,的面积为,四边形的面积为.,平行四边形,,,,,的面积为,的面积为,平行四边形的面积为.故正确答案是.20、已知在坐标平面内三顶点的坐标分别为、、.以为位似中心,画出与相似(与图形同向),且相似比是的三角形,它的三个对应顶点的坐标分别是( , )、( , )、( , )【答案】-6、0、3、3、0、-3【解析】解:把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形.所画图形如下所示:它的三个对应点的坐标分别是:、、.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在矩形中,已知,,、分别是、上的点,且,两动点、分别从、两点,同时出发沿、且均以速度分别向、运动,猜想当、运动多长时间时矩形与矩形相似?写出你的猜想过程.【解析】解:设运动时间是秒,那么.,,由矩形可得,.,.当矩形与矩形相似时,就有,或者.,或者.(秒),或者(秒).故当、运动秒或秒长的时间时,矩形与矩形相似.22、如图,是一块锐角三角形的材料,边,高,要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,这个正方形零件的边长是多少.【解析】解:设正方形的边长为,则,是正方形,,,,即,解得,所以,这个正方形零件的边长是.23、如图,在中,点分别在边上,若,,,求的值.【解析】解:,,,.。

人教版九年级下册数学 27.2相似三角形 同步练习(含解析)

人教版九年级下册数学 27.2相似三角形 同步练习(含解析)

27.2相似三角形同步练习一.选择题1.如图,△ABC∽△DCA,∠B=33°,∠D=117°,则∠BAD的度数是()A.150°B.147°C.135°D.120°2.两个相似三角形对应角平分线的比为4:3,那么这两个三角形的面积的比是()A.2:3B.4:9C.16:36D.16:93.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.且∠B=∠DC.D.且∠A=∠D4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中能判断△ABC∽△AED 的是()①∠AED=∠B;②∠ADE=∠C;③=;④=.A.①②B.①②③C.①②④D.①②③④5.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=5:2,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.5:7B.10:4C.25:4D.25:496.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A.若△AEF与△ABC相似,则EF∥BCB.若AE×BE=AF×FC,则△AEF与△ABC相似C.若,则△AEF与△ABC相似D.若AF•BE=AE•FC,则△AEF与△ABC相似7.如图,在△ABC,D是BC上一点,BD:CD=1:2,E是AD上一点,DE:AE=1:2,连接CE,CE的延长线交AB于F,则AF:AB为()A.1:2B.2:3C.4:3D.4:78.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1:4B.1:5C.1:6D.1:79.如图,AD∥BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△P AD 与△PBC相似,则这样的点P有()A.1 个B.2 个C.3 个D.4 个10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于F,连接DF,若BF=,BC =3,则DF=()A.4B.3C.2D.二.填空题11.已知△ABC∽△A′B′C′,且AB=3cm,A′B′=5cm,则相似比为.12.如图,△ABC中,CA=CB,点E在BC边上,点D在AC边上,连接AE、DE,若AB =AE,2∠AEB+∠ADE=180°,BE=8,CD=,则CE=.13.如图,在△ABC中,若DE∥BC,EF∥CD,AE=2EC,则AF:FD:DB=.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值是.15.如图,在矩形ABCD中,AD=2,AB=4,E、F分别是AB、CD边上的动点,EF⊥AC,则AF+CE的最小值为.三.解答题16.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.17.如图,在△ABC中,点D、E分别在AB、AC上,DE、BC的延长线相交于点F,且EF•DF=CF•BF.求证:△CAB∽△DAE.18.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.参考答案一.选择题1.解:∵△ABC∽△DCA,∴∠BAC=∠D=117°,∠DAC=∠B=33°,∴∠BAD=∠BAC+∠DAC=150°,故选:A.2.解:∵两个相似三角形对应角平分线的比为4:3,∴它们的相似比为4:3,∴它们的面积比为16:9.故选:D.3.解:A、∠A=∠D,∠B=∠F,可以得出△ABC∽△DFE,故此选项不合题意;B、=且∠B=∠D,不是两边成比例且夹角相等,故此选项符合题意;C、==,可以得出△ABC∽△DEF,故此选项不合题意;D、=且∠A=∠D,可以得出△ABC∽△DEF,故此选项不合题意;故选:B.4.解:∵∠A=∠A,∴∠AED=∠B或∠ADE=∠C时,△ABC∽△AED.∵=,∴=∵∠A=∠A,∴△ABC∽△AED,故①②③可以判断三角形相似,故选:B.5.解:设DE=5k,EC=2k,则CD=7k,∵四边形ABCD是平行四边形,∴AB=CD=7k,DE∥AB,∴△DEF∽△BAF,∴===,故选:D.6.解:选项A错误,∵△AEF与△ABC相似,可能是∠AEF=∠C,推不出EF∥BC.选项B错误,由AE×BE=AF×FC,推不出△AEF与△ABC相似.选项C错误,由,推不出△AEF与△ABC相似.选项D正确.理由:∵AF•BE=AE•FC,∴=,∴EF∥BC,∴△AEF∽△ABC.故选:D.7.解:过D作DH∥AB交CF于H,如图,∵DH∥BF,∴=,∵BD:CD=1:2,∴CD:BC=2:3,∴BF=DH,∵DH∥AF,∴==2,∴AF=2DH,∴AF:BF=2DH:DH=4:3,∴AF:AB=4:7.故选:D.8.解:∵四边形ABCD是平行四边形,∴BO=DO,AB∥CD,∵E为OD的中点,∴DE=EO=DO,∴BO=2EO,BE=3DE,∵DF∥AB,∴△DFE∽△BAE,∴=()2=,设S△DEF=x,则S△BEA=9x,∵BO=2OE,∴S△AOB=6x=S△DOC,∴四边形EFCO的面积=5x,∴△DEF与四边形EFCO的面积比=1:5,故选:B.9.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.设DP的长为x,则CP长为6﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则DP:CP=AD:BC,即x:(6﹣x)=3:4,解得:x=②若△APD∽△BPC,则DP:PC=AD:BC,即x:4=3:(6﹣x),整理得:x2﹣6x+12=0,∵△<0,这种情形不存在,∴满足条件的点P的个数是1个,故选:A.10.解:如图,连接BD,∵∠AEF=∠BEA,∠AFE=∠BAE=90°,∴△AEF∽△BEA,∴=,∵AE=ED,∴=,又∵∠FED=∠DEB,∴△FED∽△DEB,∴∠EFD=∠EDB,∵∠EFD+∠DFC=90°,∠EDB+∠ODC=90°,∴∠DFC=∠ODC,∵在矩形ABCD中,OC=AC,OD=BD,AC=BD,∴OD=OC,∴∠OCD=∠ODC,∴∠DFC=∠OCD,∴DF=DC,在Rt△BCF中,FC===2,∵AD∥BC,∴△AEF∽△CBF,∴==,∴AF=FC=,∴AB===3,∴DF=3,故选:B.二.填空题11.解:由题意得,=,∵△ABC∽△A′B′C′,∴△ABC与△A′B′C′的相似比为=,故答案为:.12.解:如图,过点A作AM⊥BE于E,过点D作DN⊥EC于N,∵CA=CB,AB=AE,∴∠B=∠CAB,∠B=∠AEB,∴∠B=∠CAB=∠AEB,∵∠B+∠BAC+∠C=180°,∠B+∠AEB+∠BAE=180°,∴∠C=∠BAE,∴2∠AEB+∠C=180°,又∵2∠AEB+∠ADE=180°,∴∠C=∠ADE,又∵∠ADE=∠C+∠DEC,∴∠C=∠DEC,∴DE=DC=,∵AB=AE,AM⊥BE,DE=CC,DN⊥EC,∴BM=ME=BE=4,EN=NC=EC,AM∥DN,∴△CDN∽△CAM,∴,∴,∴EC=12,EC=﹣5(不合题意舍去),故答案为:12.13.解:∵EF∥CD,AE=2EC,∴==2,∵DE∥BC,∴==2,设DF=m,则AF=2m,AD=3m,DB=m,∴AF:DF:DB=2m:m:m=4:2:3.故答案为:4:2:3.14.解:∵DE∥AC,∴△DOE∽△COA,∴=()2=,∴=,∵DE∥AC,∴△BDE∽△BAC,∴=,∴=,故答案为:.15.解:如图所示:设DF=x,则FC=4﹣x;过点C作CG∥EF,且CG=EF,连接FG,当点A、F、G三点共线时,AF+FG的最值小;∵CG∥EF,且CG=EF,∴四边形CEFG是平行四边形;∴EC∥FG,EC=FG,又∵点A、F、G三点共线,∴AF∥EC,又∵四边形ABCD是矩形,∴AE∥DC,∠D=90°,∴四边形AECF是平行四边形,∴OA=OC,OE=OF,又∵EF⊥AC,AF=CF=4﹣x,在Rt△ADF中,由勾股定理得:AD2+DF2=AF2,又∵AD=2,DF=x,则FC=4﹣x,∴22+x2=(4﹣x)2,解得:x=,∴AF=,在Rt△ADC中,由勾股定理得:AD2+DC2=AC2,∴AC=,∴AO=,又∵OF∥CG,∴△AOF∽△ACG,∴=,∴AG=5,又∵AG=AF+FG,FG=EC,∴AF+EC=5,故答案为5.三.解答题16.证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.17.证明:∵EF•DF=CF•BF.∴,∵∠EFC=∠BFD,∴△EFC∽△BFD,∴∠CEF=∠B,∴∠B=∠AED,∵∠CAB=∠DAE,∴△CAB∽△DAE.18.(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.。

九年级数学下册第二十七章相似27.2相似三角形27.2.1相似三角形的判定同步练习新版新人教版

九年级数学下册第二十七章相似27.2相似三角形27.2.1相似三角形的判定同步练习新版新人教版

相似三角形的判定一、基础题目1.如图,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( ) A.AD AC =AE AB =DE BC B.AD AB =AE AC C.AD AE =AC AB =DE BC D.AE EC =DE BC2.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD =2AD ,则( ) A.AD AB =12 B.AE EC =12 C.AD EC =12 D.DE BC =123.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若AB BC =12,则DEEF=( ) A.13 B.12 C.23D .1第1题图 第2题图 第3题图4. 如果△ABC ∽△A′B′C′,△ABC 与△A′B′C′的相似比为2,那么△A′B′C′与△ABC 的相似比为 .5.如图,AB ∥CD ∥EF ,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,那么BCCE 的值等于 .6.如图,AB 、CD 相交于点O ,OC =2,OD =3,AC ∥BD.EF 是△ODB 的中位线,且EF =2,则AC 的长为 . 7.如图,在△ABC 中,DE ∥BC ,且AD =2,DB =3,则DEBC= .第5题图 第6题图 第7题图 8.如图,EG ∥BC ,GF ∥CD ,AE =3,EB =2,AF =6,求AD 的值.二、训练题目9.如图,△ABC 中,DE ∥BC ,EF ∥AB ,则图中相似三角形的对数是( ) A .1对 B .2对 C .3对 D .4对10.如图,在▱ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF ∶FC 等于( ) A .3∶2 B .3∶1 C .1∶1 D .1∶211.如图,在ABC ∆中,DE ∥BC ,3,2AD BD ==,则ADE ∆和ABC ∆的相似比是 ;若6DE =,则BC =第9题图 第10题图 第11题图12.一个三角形的三边长分别为8 cm,6 cm,12 cm,另一个与它相似的三角形的最短边为3 cm ,则其余两边长为______________.13.如图,在ABC ∆中,DE ∥BC ,DE 分别与,AB AC 相交于D E 、,若4AD =,2DB =,求:DE BC 的值。

人教版八年级数学上册 27.2 相似三角形(3)同步练习(附答案解析)

人教版八年级数学上册 27.2 相似三角形(3)同步练习(附答案解析)

27.2相似三角形同步练习(三)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如果,则下列各式中不成立的是()A.B.C.D.2、若四条线段成比例,且则线段的长为()A.B.C.D.3、如图,四边形的对角线、相交于点,且将这个四边形分成①、②、③、④四个三角形.若,则下列结论中一定正确的是( )A. ②和④相似B. ①和④相似C. ①和③相似D. ①和②相似4、已知,点、、对应点分别是、、,,等于( )A.B.C.D.5、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()A. 原三角形向轴的负方向平移一个单位即为所得三角形B. 关于原点对称C. 关于轴对称D. 关于轴对称6、如图,已知,与相交于点,,那么下列式子正确的是()A.B.C.D.7、如图,直线,两直线和与分别相交于点和点.下列各式中,不一定成立的是()A.B.C.D.8、如图,已知,,,,则的值为()A.B.C.D.9、以下列长度(同一单位)为长的四条线段中,不成比例的是()A.B.C.D.10、若,则等于()A.B.C.D.11、如图,在中,,以为直径的交于点.过点作,在上取一点,使,连接.对于下列结论:①;②;③;④为的切线,一定正确的结论全部包含其中的选项是()A. ①②B. ①②③C. ①④D. ①②④12、阳光通过窗口照射到室内,在地面上留下米的亮区(如图所示),已知亮区到窗口下的墙角的距离米,窗口高米,则窗口底边离地面的高为()A. 米B. 米C. 米D. 米13、如图,一个斜边长为的红色三角形纸片,一个斜边长为的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.B.C.D.14、如图,、分别是的边、上的点,,若,则的值为()A.B.C.D.15、如图,在平行四边形中,,,的平分线交于点,交的延长线于点,,垂足为.若,则的面积是()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,在平行四边形中,,与相交于点,则_______.17、将边长为的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为_________.18、如图,已知,,,且,则.19、已知在坐标平面内三顶点的坐标分别为、、.以为位似中心,画出与相似(与图形同向),且相似比是的三角形,它的三个对应顶点的坐标分别是(, )、(, )、(, )20、如图,在中,,,为边上的高.动点从点出发,沿→方向以的速度向点运动.设的面积为,矩形的面积为,运动时间为秒(),则秒时,.三、解答题(本大题共有3小题,每小题10分,共30分)21、阳光下,小亮测量“望月阁”的高.(如图),由于观测点与“望月阁”底部间的距离不易测得,因此他首先在直线上点处固定平放一平面镜,在镜面上做了一个标记,小亮看着镜面上的标记,他来回走动,走到点时,看到“望月阁”顶端点在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度米,米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:小亮从点沿方向走了米,到达“望月阁”影子的末端点处,此时,测得小亮身高的影长米,米.已知,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高的长度.22、如图,已知、分别是等边的边、上的点,,,,求的边长.23、如图,是一块锐角三角形的材料,边,高,要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,这个正方形零件的边长是多少.27.2相似三角形同步练习(三) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如果,则下列各式中不成立的是()A.B.C.D.【答案】D【解析】解:根据题意,可设,,,选项正确,不能选;,选项正确,不能选;,选项正确,不能选;,选项错误;故正确答案为:.2、若四条线段成比例,且则线段的长为()A.B.C.D.【答案】B【解析】解:根据题意得:,即,解得,故答案为:.3、如图,四边形的对角线、相交于点,且将这个四边形分成①、②、③、④四个三角形.若,则下列结论中一定正确的是( )A. ②和④相似B. ①和④相似C. ①和③相似D. ①和②相似【答案】C【解析】解:,又,.故正确答案是:①和③相似.4、已知,点、、对应点分别是、、,,等于( )A.B.C.D.【答案】A【解析】解:,,故选:.5、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()A. 原三角形向轴的负方向平移一个单位即为所得三角形B. 关于原点对称C. 关于轴对称D. 关于轴对称【答案】D【解析】解:∵横坐标都乘以,纵坐标不变,∴对应点的横坐标互为相反数,纵坐标不变,∴对应点关于轴对称,∴所得图形关于轴对称,6、如图,已知,与相交于点,,那么下列式子正确的是()A.B.C.D.【答案】B【解析】解:,,,.7、如图,直线,两直线和与分别相交于点和点.下列各式中,不一定成立的是()A.B.C.D.【答案】C【解析】解:直线,,,,故选项不一定成立.故正确答案是:8、如图,已知,,,,则的值为()A.B.C.D.【答案】D【解析】解:,,,即,解得.9、以下列长度(同一单位)为长的四条线段中,不成比例的是()A.B.C.D.【答案】B【解析】解:,故本选项正确;,故本选项正确;,故本选项错误;,故本选项正确.10、若,则等于()B.C.D.【答案】A【解析】解:,,.11、如图,在中,,以为直径的交于点.过点作,在上取一点,使,连接.对于下列结论:①;②;③;④为的切线,一定正确的结论全部包含其中的选项是()A. ①②B. ①②③C. ①④【答案】D【解析】解:为直径,,,而,,所以①正确;,,而,,,,,,所以②正确;不能确定为直角三角形,不能确定等于,与不能确定相等,所以③错误;,点在以为直径的圆上,,,而,,为的切线,所以④正确.综上,正确的有①②④.12、阳光通过窗口照射到室内,在地面上留下米的亮区(如图所示),已知亮区到窗口下的墙角的距离米,窗口高米,则窗口底边离地面的高为()A. 米B. 米C. 米D. 米【答案】A【解析】解:连接、,光是沿直线传播的,,,,即,解得:.13、如图,一个斜边长为的红色三角形纸片,一个斜边长为的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.B.C.D.【答案】D【解析】解:如图,正方形的边,,,,,,设,则,,,在中,,即,解得,红、蓝两张纸片的面积之和为.14、如图,、分别是的边、上的点,,若,则的值为()A.B.C.D.【答案】D【解析】解:,,,,,,,,.故正确答案是:15、如图,在平行四边形中,,,的平分线交于点,交的延长线于点,,垂足为.若,则的面积是()A.B.C.D.【答案】B【解析】解:平分,;又四边形是平行四边形,,,,,垂足为,.在中,,,,,;.,,,.,,,则.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,在平行四边形中,,与相交于点,则_______.【答案】【解析】解:四边形是平行四边形,,,,,,,又两个三角形以为顶点时高相同,,故正确答案为:.17、将边长为的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为_________.【答案】【解析】解:如图,、、、、、分别为各边的三等分点,,,为等边三角形,,,,,为等边三角形,同理,都是边长为的等边三角形,.正确答案是:.18、如图,已知,,,且,则.【答案】10【解析】解:过点作的平行线,分别交于点、交于点、交于点.,,,,,,,四边形、、都是平行四边形,.,即,,.,,即,,,,.,.,,,,,,..故答案为:.19、已知在坐标平面内三顶点的坐标分别为、、.以为位似中心,画出与相似(与图形同向),且相似比是的三角形,它的三个对应顶点的坐标分别是(, )、(, )、(, )【答案】-6、0、3、3、0、-3【解析】解:把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形.所画图形如下所示:它的三个对应点的坐标分别是:、、.20、如图,在中,,,为边上的高.动点从点出发,沿→方向以的速度向点运动.设的面积为,矩形的面积为,运动时间为秒(),则秒时,.【答案】6【解析】解:中,,,为边上的高,,又,则,,,,,,,,,解得.三、解答题(本大题共有3小题,每小题10分,共30分)21、阳光下,小亮测量“望月阁”的高.(如图),由于观测点与“望月阁”底部间的距离不易测得,因此他首先在直线上点处固定平放一平面镜,在镜面上做了一个标记,小亮看着镜面上的标记,他来回走动,走到点时,看到“望月阁”顶端点在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度米,米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:小亮从点沿方向走了米,到达“望月阁”影子的末端点处,此时,测得小亮身高的影长米,米.已知,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高的长度.【解析】解:,,由题意得:,,故,则,即解得:答:“望月阁”的高的长度为.22、如图,已知、分别是等边的边、上的点,,,,求的边长.【解析】解:为等边三角形,,.设的边长,那么,.,,.,,..又,....即的边长是.23、如图,是一块锐角三角形的材料,边,高,要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,这个正方形零件的边长是多少.【解析】解:设正方形的边长为,则,是正方形,,,,即,解得,所以,这个正方形零件的边长是.。

人教版九年级数学下册 第二十七章 相似 27.2 相似三角形 同步练习(含答案)

人教版九年级数学下册 第二十七章 相似 27.2 相似三角形  同步练习(含答案)

人教版九年级数学下册第二十七章相似27.2 相似三角形同步练习一、选择题1、能判定与相似的条件是()A. B.,且C.且D.,且2、如图,下列条件中不能判定的是()A. B.C. D.3、.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠CB.∠ADB=∠ABCC.D.4、如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有()A.①②③ B.①②④ C.①③④ D.②③④5、如图,△ABC中,点D、E分别在AB、AC边上,则下列条件中,不一定能使△AED∽△ABC的是()A.∠2=∠B B.∠1=∠C C.D.6、如图,△ABC中,BD是∠ABC的平分线,DE∥AB交BC于E,EC=6,BE=4,则AB长为()A. 6 B. 8 C.D.7、如图,DE是△ABC的中位线,已知△ABC的面积为8,则△ADE的面积为().A. 2 B. 4 C. 6 D. 88、如图所示,在河的一岸边选定一个目标A,再在河的另一岸边选定B和C,使AB⊥BC,然后选定E,使EC⊥BC,用视线确定BC和AE相交于D,此时测得BD=120米,CD=60米,为了估计河的宽度AB,还需要测量的线段是()A.CEB.DEC.CE或DED.无法确定9、已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对B.2对C.3对D.4对10、某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是()A.12米 B.11米 C.10米 D.9米11、.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值为()A. B. C. D.12、如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是( )A. 4.5秒B.3秒C. 3秒或4.8秒D.4.5秒或4.8秒二、填空题13、如图,是的中位线,的面积为,则四边形的面积为.14、如图,已知零件的外径为25,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC∶OA=1∶2,量得CD=10,则零件的厚度.15、如图,AC与BD交于点E,AB∥CD∥EF,AB=10,CD=15,则EF的长为16、已知△ABC∽△A′B′C′,且,△ABC的周长比△A′B′C′的周长少8cm,则△A′B′C′的周长为 cm 。

人教版九年级数学下27.2相似三角形(三)同步练习附答案解析

人教版九年级数学下27.2相似三角形(三)同步练习附答案解析

27.2相似三角形同步练习(三)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如果,则下列各式中不成立的是()A.B.C.D.2、若四条线段成比例,且则线段的长为()A.B.C.D.3、如图,四边形的对角线、相交于点,且将这个四边形分成①、②、③、④四个三角形.若,则下列结论中一定正确的是( )A. ②和④相似B. ①和④相似C. ①和③相似D. ①和②相似4、已知,点、、对应点分别是、、,,等于( )A.B.C.D.5、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()A. 原三角形向轴的负方向平移一个单位即为所得三角形B. 关于原点对称C. 关于轴对称D. 关于轴对称6、如图,已知,与相交于点,,那么下列式子正确的是()A.B.C.D.7、如图,直线,两直线和与分别相交于点和点.下列各式中,不一定成立的是()A.B.C.D.8、如图,已知,,,,则的值为()A.B.C.D.9、以下列长度(同一单位)为长的四条线段中,不成比例的是()A.B.C.D.10、若,则等于()A.B.C.D.11、如图,在中,,以为直径的交于点.过点作,在上取一点,使,连接.对于下列结论:①;②;③;④为的切线,一定正确的结论全部包含其中的选项是()A. ①②B. ①②③C. ①④D. ①②④12、阳光通过窗口照射到室内,在地面上留下米的亮区(如图所示),已知亮区到窗口下的墙角的距离米,窗口高米,则窗口底边离地面的高为()A. 米B. 米C. 米D. 米13、如图,一个斜边长为的红色三角形纸片,一个斜边长为的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.B.C.D.14、如图,、分别是的边、上的点,,若,则的值为()A.B.C.D.15、如图,在平行四边形中,,,的平分线交于点,交的延长线于点,,垂足为.若,则的面积是()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,在平行四边形中,,与相交于点,则_______.17、将边长为的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为_________.18、如图,已知,,,且,则 .19、已知在坐标平面内三顶点的坐标分别为、、.以为位似中心,画出与相似(与图形同向),且相似比是的三角形,它的三个对应顶点的坐标分别是( , )、( , )、( , )20、如图,在中,,,为边上的高.动点从点出发,沿→方向以的速度向点运动.设的面积为,矩形的面积为,运动时间为秒(),则秒时,.三、解答题(本大题共有3小题,每小题10分,共30分)21、阳光下,小亮测量“望月阁”的高.(如图),由于观测点与“望月阁”底部间的距离不易测得,因此他首先在直线上点处固定平放一平面镜,在镜面上做了一个标记,小亮看着镜面上的标记,他来回走动,走到点时,看到“望月阁”顶端点在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度米,米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:小亮从点沿方向走了米,到达“望月阁”影子的末端点处,此时,测得小亮身高的影长米,米.已知,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高的长度.22、如图,已知、分别是等边的边、上的点,,,,求的边长.23、如图,是一块锐角三角形的材料,边,高,要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,这个正方形零件的边长是多少.27.2相似三角形同步练习(三) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如果,则下列各式中不成立的是()A.B.C.D.【答案】D【解析】解:根据题意,可设,,,选项正确,不能选;,选项正确,不能选;,选项正确,不能选;,选项错误;故正确答案为:.2、若四条线段成比例,且则线段的长为()A.B.C.D.【答案】B【解析】解:根据题意得:,即,解得,故答案为:.3、如图,四边形的对角线、相交于点,且将这个四边形分成①、②、③、④四个三角形.若,则下列结论中一定正确的是( )A. ②和④相似B. ①和④相似C. ①和③相似D. ①和②相似【答案】C【解析】解:,又,.故正确答案是:①和③相似.4、已知,点、、对应点分别是、、,,等于( )A.B.C.D.【答案】A【解析】解:,,故选:.5、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()A. 原三角形向轴的负方向平移一个单位即为所得三角形B. 关于原点对称C. 关于轴对称D. 关于轴对称【答案】D【解析】解:∵横坐标都乘以,纵坐标不变,∴对应点的横坐标互为相反数,纵坐标不变,∴对应点关于轴对称,∴所得图形关于轴对称,6、如图,已知,与相交于点,,那么下列式子正确的是()A.B.C.D.【答案】B【解析】解:,,,.7、如图,直线,两直线和与分别相交于点和点.下列各式中,不一定成立的是()A.B.C.D.【答案】C【解析】解:直线,,,,故选项不一定成立.故正确答案是:8、如图,已知,,,,则的值为()A.B.C.D.【答案】D【解析】解:,,,即,解得.9、以下列长度(同一单位)为长的四条线段中,不成比例的是()A.B.C.D.【答案】B【解析】解:,故本选项正确;,故本选项正确;,故本选项错误;,故本选项正确.10、若,则等于()A.B.C.D.【答案】A【解析】解:,,.11、如图,在中,,以为直径的交于点.过点作,在上取一点,使,连接.对于下列结论:①;②;③;④为的切线,一定正确的结论全部包含其中的选项是()A. ①②B. ①②③C. ①④D. ①②④【答案】D【解析】解:为直径,,,而,,所以①正确;,,而,,,,,,所以②正确;不能确定为直角三角形,不能确定等于,与不能确定相等,所以③错误;,点在以为直径的圆上,,,而,,为的切线,所以④正确.综上,正确的有①②④.12、阳光通过窗口照射到室内,在地面上留下米的亮区(如图所示),已知亮区到窗口下的墙角的距离米,窗口高米,则窗口底边离地面的高为()B. 米C. 米D. 米【答案】A【解析】解:连接、,光是沿直线传播的,,,,即,解得:.13、如图,一个斜边长为的红色三角形纸片,一个斜边长为的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.B.C.D.【解析】解:如图,正方形的边,,,,,,设,则,,,在中,,即,解得,红、蓝两张纸片的面积之和为.14、如图,、分别是的边、上的点,,若,则的值为()A.B.C.D.【答案】D【解析】解:,,,,,,,,.故正确答案是:15、如图,在平行四边形中,,,的平分线交于点,交的延长线于点,,垂足为.若,则的面积是()A.B.C.D.【答案】B【解析】解:平分,;又四边形是平行四边形,,,,,垂足为,.在中,,,,,;.,,,.,,,则.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,在平行四边形中,,与相交于点,则_______.【答案】【解析】解:四边形是平行四边形,,,,,,,又两个三角形以为顶点时高相同,,故正确答案为:.17、将边长为的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为_________.【答案】【解析】解:如图,、、、、、分别为各边的三等分点,,,为等边三角形,,,,,为等边三角形,同理,都是边长为的等边三角形,.正确答案是:.18、如图,已知,,,且,则 .【答案】10【解析】解:过点作的平行线,分别交于点、交于点、交于点.,,,,,,,四边形、、都是平行四边形,.,即,,.,,即,,,,.,.,,,,,,..故答案为:.19、已知在坐标平面内三顶点的坐标分别为、、.以为位似中心,画出与相似(与图形同向),且相似比是的三角形,它的三个对应顶点的坐标分别是( , )、( , )、( , )【答案】-6、0、3、3、0、-3【解析】解:把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形.所画图形如下所示:它的三个对应点的坐标分别是:、、.20、如图,在中,,,为边上的高.动点从点出发,沿→方向以的速度向点运动.设的面积为,矩形的面积为,运动时间为秒(),则秒时,.【答案】6【解析】解:中,,,为边上的高,,又,则,,,,,,,,,解得.三、解答题(本大题共有3小题,每小题10分,共30分)21、阳光下,小亮测量“望月阁”的高.(如图),由于观测点与“望月阁”底部间的距离不易测得,因此他首先在直线上点处固定平放一平面镜,在镜面上做了一个标记,小亮看着镜面上的标记,他来回走动,走到点时,看到“望月阁”顶端点在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度米,米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:小亮从点沿方向走了米,到达“望月阁”影子的末端点处,此时,测得小亮身高的影长米,米.已知,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高的长度.【解析】解:,,由题意得:,,故,则,即解得:答:“望月阁”的高的长度为.22、如图,已知、分别是等边的边、上的点,,,,求的边长.【解析】解:为等边三角形,,.设的边长,那么,.,,.,,..又,....即的边长是.23、如图,是一块锐角三角形的材料,边,高,要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,这个正方形零件的边长是多少.【解析】解:设正方形的边长为,则,是正方形,,,,即,解得,所以,这个正方形零件的边长是.。

人教版数学九年级下册 第27章 相似 27.2 相似三角形 27.2.1相似三角形 同步训练 含答案

人教版数学九年级下册 第27章  相似  27.2 相似三角形 27.2.1相似三角形 同步训练 含答案

第27章 相似 27.2 相似三角形 27.2.1相似三角形 同步训练1. 如图所示,△ABC 与△A′B′C′相似,那么下列记法中正确的是( )A .△ACB∽△A′B′C′B .△BAC∽△C′B′A′C .△BCA∽△B′C′A′D .△ABC∽△C′A′B′2.已知△ABC ∽△A 1B 1C 1,且∠A =60°,∠B =95°,则∠C 1的度数为( )A .60°B .95° C.25° D .15°3.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,若BD =2AD ,则( ) A.AD AB =12 B .AE EC =12 C.AD EC =12 D .DE BC =124. 如图,△ABC ∽△DEF ,相似比为1∶2.若BC =1,则EF 的长是( )A .1B .2C .3D .45. 如图,在△ABC 中,DE ∥BC ,AD AB =13,BC =12,则DE 的长是( ) A .3 B .4 C.5 D .66. 下列命题不正确的是( )A .相似三角形一定全等B .两个等腰直角三角形相似C .两个全等三角形一定相似D .在△ABC ∽△A′B′C′,那么∠A =∠A′,∠B =∠B′7. 如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,点F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是( )A.AD AB =AE EC B .AG GF =AE BD C.BD AD =CE AE D .AG AF =AC EC8.如图,在△ABC 中,DE ∥BC ,,∠ADE =∠EFC ,AD ∶BD =5∶3,CF =6,则DE 的长为( )A .6B .8C .10D .129. 若△ABC ∽△A 1B 1C 1,AB =2,A 1B 1=3;则△A 1B 1C 1与△ABC 的相似比为 .10. 如图,点F 是▱ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误的是( ) A.ED EA =DF AB B .DE BC =EF FB C.BC DE =BF BE D .BF BE =BC AE11.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,AD AB =13,AD +DE +AE AB +BC +AC= .12. 如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F.若CD =5,BC =8,AE =2,则AF = .13. 如图所示,△ABC 是等边三角形,P 是BC 上一点,且△ABP ∽△PCD.求∠APD 的度数.14. 在平行四边形ABCD 中,E 为BC 边上的一点.连接AE.(1)若AB =AE ,求证:∠DAE =∠D ;(2)若点E 为BC 的中点,连接BD ,交AE 于F ,求EF ∶FA 的值.15.如图,梯形ABCD 中,AB ∥CD ,点F 在BC 上,DF 与AB 的延长线交于点G.(1)求证:△CDF ∽△BGF ;(2)当点F 是BC 的中点时,过F 作EF ∥CD 交AD 于点E ,若AB =6cm ,EF =4cm ,求CD 的长.参考答案:1---8 CCBDB ACC9. 3∶210. C11. 1312. 16913. 解:△ABP ∽△PCD ,∴∠BAP =∠CPD.∵△ABC 是等边三角形,∴∠B =60°,∴∠BAP +∠BPA =180°-60°=120°,∴∠BPA +∠CPD =120°,∴∠APD =180°-(∠BPA +∠CPD)=180°-120°=60°.14. 解:(1)证明:∵四边形ABCD 为平行四边形,∴∠B =∠D ,AD ∥BC ,∴∠AEB =∠EAD ,又∵AE =AB ,∴∠B =∠AEB ,∴∠B =∠EAD ,∴∠EAD =∠D ;(2)∵AD ∥BC ,∴∠FAD =∠FEB ,∠ADF =∠EBF ,∴△ADF ∽△EBF ,∴EF ∶FA =BE ∶AD =BE ∶BC =1∶2.15. 解:(1)证明:∵梯形ABCD 中,AB ∥CD ,即CD ∥BG ,∴△CDF ∽△BGF ;(2)由(1)得△CDF ∽△BGF ,且F 是BC 中点,∴DF =FG ,CD =BG.又∵EF ∥CD ,AB ∥CD ,∴EF ∥AG ,∴△DEF ∽△DAG.∴EF AG =DF DG =12,∴AG =8cm ,∴CD =BG =AG -AB =2cm.。

数学人教版九年级下册27.2相似三角形同步练习(有答案)普通用卷

数学人教版九年级下册27.2相似三角形同步练习(有答案)普通用卷

27.2相似三角形同步练习一、选择题1.在△ABC与△A′B′C′中,有下列条件:,;(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A. 1组B. 2组C. 3组D. 4组2.如图在△ABC中,DE//FG//BC,AD:AF:AB=1:3:6,则S△ADE:S四边形DEGF:S四边形FGCB=()A. 1:8:27B. 1:4:9C. 1:8:36D. 1:9:363.如图所示,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P是BC的中点;④BP:BC=2:3,其中能推出△ABP∽△ECP的有()A. 1个B. 2个C. 3个D. 4个4.如图,直角△ABC中,∠B=30∘,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为()A. 12B. √54C. 23D. √33第 1 页5.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=30m,EC=15m,CD=30m,则河的宽度AB长为()A.90mB. 60mC. 45mD. 30m6.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm 时,则AB的长为()A. 7.2cmB. 5.4cmC. 3.6cmD. 0.6cm7.如图,已知在Rt△ABC中,∠ABC=90∘,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B. 增大C. 减小D. 先变大再变小8.如图△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90∘,AC=5,BC=3,DG=1,则BN的长度为()A.43B. 32C. 85D. 1279.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.√5B. 136C. 1D. 5610.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是12,其中正确结论的个数是()A. 2B. 3C. 4D. 5二、填空题11.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=______时,以A、D、E为顶点的三角形与△ABC相似.12.如图,△ABC中,D、E分别在AB、AC上,DE//BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.13.在△ABC中,AB=6cm,点P在AB上,且∠ACP=∠B,若点P是AB的三等分点,则AC的长是______.14.如图,矩形ABCD中,点E是边AD的中点,BE交对角线AC于点F,则△AFE与△BCF的面积比等于______.15.如图,梯形ABCD中,AD//BC,且AD:BC=1:3,对角线AC,BD交于点O,那么S△AOD:S△BOC:S△AOB=______.三、计算题16.如图,在△ABC中,∠C=90∘,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=第 3 页6.求DE 的长.17. 如图,在矩形ABCD ,AB =1,BC =2,点E 在AD上,且ED =3AE .(1)求证::△ABC∽△EAB.(2)AC 与BE 交于点H ,求HC 的长.18. 小亮同学想利用影长测量学校旗杆AB 的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD 处,另一部分在某一建筑的墙上CD 处,分别测得其长度为9.6米和2米,求旗杆AB 的高度.【答案】1. C2. A3. B4. D5. B6. B7. C8. D9. D 10. D 11. 125或53 12. 1:9 13. 2√3cm 或2√6cm14. 1415. 1:9:316. 解:在△ABC 中,∠C =90∘,AC =8,BC =6,∴AB =√AC 2+BC 2=10,(2分)又∵BD =BC =6,∴AD =AB −BD =4,(4分)∵DE ⊥AB ,∴∠ADE =∠C =90∘,(5分)又∵∠A =∠A ,∴△AED∽△ABC ,(6分)∴DE BC =ADAC ,(7分)∴DE =AD AC⋅BC =48×6=3.(8分) 17. (1)证明:∵四边形ABCD 是矩形,∴AB =CD =1,BC =AD =2,∠ABC =∠BAD =90∘,∵ED =3AE ,第 5 页 ∴AE =12,ED =32, ∵AB AE =2,BC AB =2, ∴AB AE =BC AB ,∵∠ABC =∠BAE =90∘,∴△ABC∽△EAB .(2)解:∵△ABC∽△EAB ,∴∠ACB =∠ABE ,∵∠ABE +∠CBH =90∘,∴∠ACB +∠CBE =90∘,∴∠BHC =90∘,∴BH ⊥AC ,在Rt △ACB 中,∵∠ABC =90∘,AB =1,BC =2, ∴AC =√AB 2+BC 2=√12+22=√5,∵12⋅AB ⋅BC =12⋅AC ⋅BH ,∴BH =AB⋅BCAC =2√55, ∴CH =√CB 2−BH 2=4√55. 18. 解:如图,∵某一时刻立1米长的标杆测得其影长为1.2米,∴CD :DF =1:1.2,∴DF =1.2CD =1.2×2=2.4,∴BF =BD +DF =9.6+2.4=12,∵AB :BF =1:1.2,∴AB =12×11.2=10.答:旗杆AB 的高度为10m .。

人教版数学九年级下册第二十七章相似27.2相似三角形同步练习

人教版数学九年级下册第二十七章相似27.2相似三角形同步练习

初三数学第二学期人教版(2012)九年级下册第二十七章相似27.2相似三角形同步练习一、选择题1.如图,已知12,∠=∠则添加下列一个条件后,仍无法判定ABC ADE ∆∆的是( )A .AB BC AD DE = B .AB AC AD AE = C .B ADE ∠=∠ D .C E ∠=∠2.如图,在△ABC 与△ADE 中,∠BAC=∠D ,要使△ABC 与△ADE 相似,还需满足下列条件中的( )A .AC AB AD AE = B .AC BC AD DE = C .AC AB AD DE = D .AC BC AD AE= 3.如图,正方形ABCD ,对角线AC ,BD 交于点O ,将一个三角板的直角顶点与点O 重合,两直角边分别与BC ,CD 交于点E ,F 连接EF 交OC 于点G ,下列3个结论:①△OBE ≌△OCF ;②△OGF ∽△OFC ;③BE 2+DF 2=2OG•OC .其中正确的结论有( )A.①②B.①③C.②③D.①②③4.下列说法,其中正确的有()①各有一个角是60°的两个等腰三角形相似;②各有一个角是80°的两个等腰三角形相似;③各有一个角是100°的两个等腰三角形相似;④两边成比例的两个等腰三角形相似.A.1个B.2个C.3个D.4个5.已知△ABC∽△A1B1C1,且∠A=60°,∠B1=40°,则∠C1的度数为()A.40°B.60°C.80°D.100°6.如图,小明为了测量大楼MN的高度,在离N点30米放了一个平面镜,小明沿NA方向后退1.5米到C 点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN 的高度是()A.32米B.2558米C.36米D.2458米7.如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m,树的顶端在水中的倒影距自己5m远,该同学的身高为1.7m,则树高为()m.A.3.4B.5.1C.6.8D.8.58.如图,小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜.手电筒的灯泡位于点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处.点E到地面的高度ED=3.5m,点F到地面的高度FC=1.5m,灯泡到木板的水平距离AC=5.4m,墙到木板的水平距离为CD=4m.已知光在镜面反射中的入射角等于反射角,图中点A、B、C、D在同一水平面上,则灯泡到地面的高度GA为()A.1.2m B.1.3m C.1.4m D.1.5m9.已知△ABC∽△DEF,△ABC与△DEF面积之比为1:4.若BC=1,则EF的长是()A B.2C.4D.1610.若△ABC∽△DEF,AB:DE=9:4,则△ABC与△DEF的面积之比为()A.3:2B.9:4C.4:9D.81:16∆∆的是()11.如图,下列选项中不能判定ACD ABCA .2AC AD AB =⋅B .2BC BD AB =⋅ C .ACD B ∠=∠ D .ADC ACB ∠=∠12.已知△ABC ∽△DEF ,且相似比为1△2,则△ABC 与△DEF 的面积比为△ △ A .1△4 B .4△1 C .1△2 D .2△113.教学楼在地面上的影子长为24米,此时测得2米高的标杆在地面上的影子长为3米,则教学楼的高度是( )A .16米B .27米C .36米D .72米14.如图,正方形ABCD 中,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出ABP ∆与ECP ∆相似的是( )A .APB EPC ∠=∠ B .90APE ∠=C .P 是BC 的中点D .:2:3BP BC = 15.如图,在 ABCD 中, G 是 BC 延长线上的一点, AG 与 BD 交于点E ,与 DC 交与点F ,则图中相似三角形共有( )A.3对B.4对C.5对D.6对二、填空题16.如图,在矩形ABCD中,AB=4,BC=10,点P是BC边上一点,若△ABP与△DCP相似,则BP=______.17.如图,有一个广告牌OE,小明站在距广告牌OE10米远的A处观察广告牌顶端,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则广告牌OE的高度为______米.18.如图,△ADE∽△ABC,AD=6,AE=8,BE=10,CA的长为__.19.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AB,AC于点N,M,再分别以点M,N为圆心,大于MN长为半径画弧,两弧交于点P,射线AP交边BC于点D,若△DAC∽△ABC,则∠B=__度.20.如图,在△ABC中,AB=9,AC=6,D为AB边上一点,且△ABC∽△ACD,则AD=__.三、解答题21.如图,王华同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行12 m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部.已知王华同学的身高是1.6 m ,两个路灯的高度都是9.6 m(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD 处时,他在路灯AC 下的影子长是多少?22.如图,在等边三角形ABC 中,点D ,E 分别在BC ,AB 上,且60ADE ∠=︒.求证:ADC ∽DEB .23.如图,在平行四边形ABCD 中,过点D 作DE△AB ,垂足为点E ,连接CE ,F 为线段CE 上一点,且△DFE =△A .(1)求证:△DFC△△CBE ;(2)若AD =4,CD =6,DE =3,求DF 的长.24.如图所示,三个边长为1个单位长度的正方形ABCD,ABEF,EFGH拼在一起.(1)请找出中相似的两个三角形,并证明;(2)直接写出∠1,∠2,∠3这三个角度数之和.参考答案1.A2.C3.D4.B5.C6.A7.B8.A9.B10.D11.B12.A13.A14.C15.D 16.2或8或517.2.518.24.19.30.20.4.21.△1△18;△2△3.622.略23.(1)略;(2)DF .24.(1)ACF∽△AHC;(2)90°。

新人教版八年级数学下册27.2.2 相似三角形的性质(同步练习)

新人教版八年级数学下册27.2.2 相似三角形的性质(同步练习)

27.2.2 相似三角形的性质1. 若△ABC ∽△A`B`C`,则相似比k 等于( )A .A`B`:AB B .∠A: ∠A`C .S △ABC :S △A`B`C`D .△ABC 周长:△A`B`C`周长2. 把一个三角形改成和它相似的三角形,如果面积扩大到原来的100倍,那么边长扩大到原来的( )A .10000倍B .10倍C .100倍D .1000倍3. 两个相似三角形,其周长之比为3:2,则其面积比为( )A .2:3B .3:2C .9:4D .不能确定4. 把一个五边形改成和它相似的五边形,如果面积扩大到原来的49倍,那么对应的对角线扩大到原来的( )A .49倍B .7倍C .50倍D .8倍5. 两个相似多边形的一组对应边分别为3cm 和4.5cm ,如果它们的面积和为78cm 2,那么较大多边形的面积为( )A .46.8 cm 2B .42 cm 2C .52 cm 2D .54 cm 26. 两个多边形的面积之比为5,周长之比为m ,则m5为( ) A .1 B .55 C .5 D .5 7. 在一张1:10000的地图上,一块多边形地区的面积为6cm 2,则这块多边形地区的实际面积为( )A .6m 2B .60000m 2C .600m 2D .6000m 28. 已知△ABC ∽△A`B`C`,且BC :B`C`=3:2,△ABC 的周长为24,则△A`B`C`的周长为_______.9. 两个相似三角形面积之比为2:7,较大三角形一边上的高为2,则较小三角形的对应边上的高为_______.10. 两个相似多边形最长的的边分为10cm 和25cm ,它们的周长之差为60cm ,则这两个多边形的周长分别为_______.11. 四边形ABCD ∽四边形A`B`C`D`,他们的面积之比为36:25,他们的相似比_____,若四边形A`B`C`D`的周长为15cm ,则四边形ABCD 的周长为________.12. 如图,矩形ABCD 中,E ,F 分别在BC ,AD 上,矩形ABCD ∽矩形ECDF ,且AB =2,S 矩形ABCD =3S 矩形ECDF 。

人教版数学九年级下册 27.2.2相似三角形的性质 同步练习(包含答案)

人教版数学九年级下册 27.2.2相似三角形的性质 同步练习(包含答案)
A. 2 B. 3 C. 6 D. 54
3.如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是()
A. AB2=BC•BD B. AB2=AC•BD C. AB•AD=BD•BC D. AB•AD=AD•CD
4.已知△ABC∽△A′B′C′, ,AB边上的中线CD长4cm,△ABC的周长20cm,则△A′B′C′的周长和A′B′边上的中线C′D′分别长()
它们的面积比为:4:9,
设此两个三角形的面积分别为 , ,
它们的面积之差为 ,

解得: ,
它们的面积之和是: .
故答案为:B.
【分析】根据两个相似三角形的周长比等于相似比、等于面积的比的平方即可求解。
二、填空题
10.【答案】
【解析】【解答】解:∵△ABC∽△DEF,且相似比为3:4
∴S△ABC:S△DEF=9:16
∴ = = ,即 = = ,
∴ABC=8+5+6=19,
即△ABC的周长为19
【解析】【分析】通过相似三角形的对应边成比例,求得边长和周长。
18.【答案】(1)证明:∵四边形ABCD是长方形,
∴AD∥BC,∠ABE=90°.
∴∠DAF=∠AEB.
又∵DF⊥AE,
∴∠AFD=90°
∴此两个三角形的相似比为:3:4,
∴对应中线长的比为:3:4.
故答案为:A.
【分析】两个相似三角形对应中线比等于三角形的相似比。
6.【答案】C
【解析】【解答】解:因为面积扩大了5倍,
所以边长扩大了 倍,边长扩大5倍,则面积扩大25倍.
故答案为:C
【分析】根据两个相似三角形的面积比为边长比的平方进行求解即可。

九年级数学下册第二十七章相似27.2相似三角形27.2.2相似三角形的性质同步练习新版新人教版

九年级数学下册第二十七章相似27.2相似三角形27.2.2相似三角形的性质同步练习新版新人教版

九年级数学下册第二十七章相像 27.2 相像三角形相像三角形的性质同步练习新版新人教版《27.2.2 相像三角形的性质》分层练习一.基础题AC 31. 已知△ ABC ∽△ A ′B ′ C ′, BD 和 B ′ D ′是它们的对应中线,且 A C = 2 , B ′ D ′=4,则 BD 的长为。

2. 已知△ ABC ∽△ A ′ B ′C ′ ,AD 和 A ′ D ′是它们的对应角均分线,且 AD=8 cm, A ′D ′ =3cm.,则△ ABC 与△ A ′ B ′ C ′对应高的比为。

3. 两个相像三角形的相像比为2 ∶ 3,它们周长的差是25,那么较大三角形的周长是________,这两个三角形的面积比为。

14. 把一个三角形改做成和它相像的三角形,假如面积减小到本来的 2倍,那么边长应减小到本来的 ________倍。

5. 已知 △ ABC 与 △ DEF 相像且面积比为 4∶ 25,则 △ ABC 与 △DEF 的相像比为 。

6. 已知 △ABC ∽△AB C 且S△ABC: S△ABC1:2,则 AB:AB =。

7. 在 △ABC 和 △DEF 中, AB 2DE , AC 2DF , AD ,假如 △ ABC 的周长是 16,面积是 12,那么 △DEF 的周长、面积挨次为( )A .8,3B .8,6C .4, 3D .4,6AO8. 如图,正方形 ABCD 中,E 为 AB 的中点,AF ⊥ DE 于点 O ,则 DO等于()2 5121A .3B . 3C. 3D . 29. 已知△ ABC ∽△ DEF ,且 AB :DE=1: 2,则△ ABC 的面积与△ DEF 的面积之比为()A.1 : 2B.1 :4C.2 :1D.4 : 110. 两相像三角形的对应边的比为4:5,周长和为 360cm ,这两个三角形的周长分别是多少?二.能力题11. 若△ ABC ∽△ A ′ B ′C ′, AB=4, BC=5, AC=6,△ A ′ B ′ C ′的最大边长为15,那么它们的相像比是 ________, △ A′ B′ C′的周长是 ________。

第27章 相似三角形 同步练习 2022-2023学年人教版九年级数学下册

第27章  相似三角形  同步练习   2022-2023学年人教版九年级数学下册

人教新版九年级下27.2 相似三角形一.选择题(共8小题)1.如图,在△ABC中,点D在边AB上,若∠ACD=∠B,AD=3,BD=4,则AC的长为()A.2 √3B.√21C.5 D.2 √72.如图,在▱ABCD中,G是AB延长线上一点,连接DG交BC 于点E,则图中相似三角形共有()A.2对B.3对C.4对D.5对3.如图,l 1 ∥l 2 ∥l 3 ,若ABBC = 23,DF=15,则DE等于()A.5 B.6 C.7 D.94.如图,在▱ABCD中,点E为AD的中点,点F为边AB上一点,且AF:BF=2:3,连接CF,BE,相交于点G,则BG:GE=()A.6:7 B.7:6 C.3:4 D.4:55.如图,在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB的平行线交BC于点F.则下列说法错误的是()A.ADAB = AEACB.DEBC= AEACC.ADAB= BFFCD.CFBC= BDAB6.根据下列条件.可以判定△ABC与△A′B′C′相似的条件有()①∠C=∠C′=90°,∠A=25°,∠B′=65°;②∠C=90°,AC=6cm,BC=4cm,∠C′=90°,A′C′=9cm,B′C′=6cm;③AB=10cm,BC=12cm,AC=15cm,A′B′=150cm,B′C′=180cm,A′C′=2 25cm;④△ABC与△A′B′C′是有一个角为80°的等腰三角形.A.1个B.2个C.3个D.4个7.如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥AB),那么小管口径DE的长度是()A.5毫米B.103毫米C.52毫米D.2毫米8.如图所示,在等边三角形ABC中,D为AC边的中点,E为边BC延长线上一点,BD=DE,DF⊥BE垂足为点F.下列结论:①AD=CE;②CE+CD=AB;③∠BDE=120°;④CF:BF=1:3;⑤S△CDE = 16S △ABE .其中正确的有()A.2个B.3个C.4个D.5个二.填空题(共4小题)9.已知两个相似三角形的一对对应边长分别是35cm和14cm,且它们的周长相差60cm,这两个三角形的周长为________ .10.如图,在▱ABCD中,点E、F分别是AB、AD的中点,EF交AC于点G,则AGAC的值是 ________ .11.已知矩形ADNM中,AD=2AM=12,点E在边DN上,DE=5.动点F、K分别在边AD、MN上,且FK⊥AE,求S △DEF +S △ENK +S△AMK= ________ .12.如图Rt△AOB∽△DOC,∠AOB=∠COD=90°,M为OA的中点,OA=6,OB=8,直线AD,CB交于P点,连接MP,△AOB保持不动,将△COD绕O点旋转,则MP的最大值是 ________ .三.解答题(共5小题)13.在△ABC中,AD⊥BC,BC=AD=20cm,现有若干张长为5cm宽为3cm的矩形纸片,打算如图方向平铺在三角形内.(纸片均不能重叠和超出三角形ABC三边)(1)如果纸片只平铺底层,最多能平铺几张完整的矩形纸片,说明理由;(2)三角形内最多可以平铺几张完整的矩形纸片,说明理由.14.如图,AB为⊙O的直径,AC是⊙O的一条弦,D为弧BC的中点,过点D作DE⊥AC,垂足为AC的延长线上的点E,连接DA、DB.(1)求证:DE是⊙O的切线;(2)试探究线段AB、BD、CE之间的数量关系,并说明理由.15.如图,已知⊙O经过菱形ABCD的顶点A,C,且与CD相切,直径CF交AB于点E.(1)求证:AD与⊙O相切;(2)若DCCF = 34,求AE―CE的值.16.如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)求证:△ABD∽△DBC;(3)若∠CDB=60°,AB=6,求\stackrel⟶AD的长.17.在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,点E 是边BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)若AD=4,BD=9,求⊙O的半径.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.2 相似三角形专题一相似形中的开放题1.如图,在正方形网2.格中,点A、B、C、D都是格点,点E是线段AC上任意一点.如果AD=1,那么当AE= 时,以点A、D、E为顶点的三角形与△ABC相似.1.已知:如图,△ABC中,点D、E分别在边AB、AC上.连接DE并延长交BC的延长线于点F,连接DC、BE,∠BDE+∠BCE=180°.(1)写出图中三对相似三角形(注意:不得添加字母和线);(2)请你在所找出的相似三角形中选取一对,说明它们相似的理由.专题二相似形中的实际应用题3.如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x.专题三相似形中的探究规律题4.某班在布置新年联欢晚会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图在Rt△ABC中,∠C=90°,AC=30 cm,AB=50 cm,依次裁下宽为1 cm的矩形纸条a1、a2、a2…若使裁得的矩形纸条的长都不小于5 cm,则每张直角三角形彩纸能裁成的矩形纸条的总数是( )A.24 B.25 C.26 D.275.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.(1)如图①,四边形DEFG为△ABC的内接正方形,求正方形的边长;(2)如图②,正方形DKHG,EKHF组成的矩形内接于△ABC,求正方形的边长;(3)如图③,三个正方形组成的矩形内接于△ABC,求正方形的边长;(4)如图④,n个正方形组成的矩形内接于△ABC,求正方形的边长.专题四相似形中的阅读理解题6.某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去,例如,可以定义:圆心角相等且半径和弧长对应成比例的两个扇形叫相似扇形;相似扇形有性质:弧长比等于半径比,面积比等于半径比的平方…,请你协助他们探索下列问题:(1)写出判定扇形相似的一种方法:若,则两个扇形相似;(2)有两个圆心角相同的扇形,其中一个半径为a,弧长为m,另一个半径为2a,则它的弧长为;(3)如图1,是—完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同,面积是它的一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径.图 1 图2专题五相似形中的操作题7.宽与长的比是215 的矩形叫黄金矩形,心理测试表明:黄金矩形令人赏心悦目,它给我们以协调、匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.8.如图①,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF 叠放在一起.(1)操作:如图②,将△ECF的顶点F固定在△ABD的BD 边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA 于点G(G点不与D点重合).求证:BH•GD=BF2;(2)操作:如图③,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG= DB,请给予证明.专题六相似形中的综合题9.正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM= 时,四边形ABCN 的面积最大.10.如图,在锐角△ABC中,AC是最短边,以AC的中点O 1AC长为半径作⊙O,交BC于E,过O作OD∥BC 为圆心,2交⊙O于D,连接AE、AD、DC.(1)求证:D 是 ⌒AE 的中点; (2)求证:∠DAO =∠B +∠BAD ; (3)若21=∆∆OCDCEF S S ,且AC =4,求CF 的长.【知识要点】1.平行线分线段成比例定理:三条平行线截两条直线,所得对应线段成比例.2.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等.3.平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似.5.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.6.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.7.相似三角形周长的比等于相似比.相似多边形周长的比等于相似比.8.相似三角形对应高的比等于相似比.9.相似三角形面积的比等于相似比的平方. 相似多边形面积的比等于相似比的平方.【温馨提示】1.平行线分线段成比例时,一定找准对应线段.2.当已知两个三角形有一组对应角相等,利用夹这个角的两边对应成比例来判定它们相似时,比例式常有两种情况,考虑不全面是遗漏解的主要原因.3.数学猜想需要严密的推理论证说明其正确性,规律的发现与提出需要从特殊到一般的数学归纳思想,平时要养成观察、分析问题的习惯.【方法技巧】1.相似三角形对应角平分线的比等于相似比;相似三角形对应中线的比等于相似比.2.在平面几何中,求图形中等积式或等比式时,一般地首先通过观察找出图形中相似的三角形,再从理论上证明观察结论的正确性,最后运用相似形的性质来解决问题.参考答案1.22或42【解析】根据题意得AD =1,AB=3,AC =2266+=26,∵∠A=∠A ,∴若△ADE∽△ABC 时,ACAEABAD =,即2631AE=,解得AE =22.若△ADE∽△ACB 时,AB AEAC AD =,362AE =,解得AE=42.∴当AE =22或42时,以点A 、D 、E 为顶点的三角形与△ABC 相似.2.解:(1)△ADE∽△ACB ,△CEF∽△DBF ,△EFB∽△CFD (不唯一).(2)由∠BDE+∠BCE =180°,可得∠ADE=∠BCE . ∵∠A=∠A,∴△ADE∽△ACB ;∴ACAD =ABAE .∵ ∠A=∠A ,∴△AEB∽△ADC ;∵∠BDE+∠BC E =180°,∠BCE+∠ECF =180°,∴∠ECF=∠BDF , 又∠F=∠F , ∴△CEF∽△DBF ;∴BFEF =DFCF ,而∠F=∠F ,∴△EFB∽△CFD .3.解:∵ OA :OC =OB :OD =n 且∠AOB=∠COD,∴△AOB∽△COD .∵ OA:OC =AB:CD =n ,又∵CD =b,∴AB=CD ·n =nb ,∴x =a -AB 2 =a -nb2.4.C 【解析】设裁成的矩形纸条的总数为n ,且每条纸条的长度都不小于5cm ,40(cm)BC ==.设矩形纸条的长边分别与AC 、AB 交于点M 、N ,因为 △AMN ∽△ACB ,所以BCMNACAM=.又因为AM=AC-1·n=30-n ,MN ≥5 cm ,所以4053030≥-n ,得n ≤26.25,所以n 最多取整数26.5.解:(1)在题图①中过点C 作CN ⊥AB 于点N ,交GF 于点M .因为∠C =90°,AC =4,BC =3,所以AB =5. 因为21×5CN=21×3×4,所以CN=512.因为GF∥AB ,所以∠CGF=∠A ,∠CFG=∠B ,所以△CGF∽△CAB ,所以ABGF CNCM =.设正方形的边长为x ,则1251255xx -=,解得3760=x .所以正方形的边长为3760.(2)同(1),有12251255x x -=,解得4960=x .(3)同(1),有12351255xx -=,解得6160=x .(4)同(1),有1251255x nx -=,解得n x 122560+=.6.解:(1)答案不唯一,如“圆心角相等” “半径和弧长对应成比例”(2)由相似扇形的性质知半径和弧长对应成比例,设另一个扇形的弧长为x ,则a a 2=xm ,∴x =2m.(3)∵两个扇形相似,∴新做扇形的圆心角与原来扇形的圆心角相等,等于120°.设新做扇形的半径为γ,则230γ⎛⎫⎪⎝⎭=21,γ=152,即新做扇形的半径为152㎝.7.证明:在正方形ABCD 中,取AB=2a ,∵N 为BC 的中点,∴12NC BC a ==.在Rt△DNC 中,2222(2)5.ND NC CD a a a =++∵NE=ND ,∴(51)CE NE CN a =-=.∴2152)15(-=-=a a CDCE,故矩形DCEF 为黄金矩形.8.解:(1)证明:∵将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,∴∠B=∠D.∵将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,∴BF=DF.∵∠HFG=∠B,∴∠GFD=∠BHF,∴△BFH∽△DGF,∴BF BH,DG DF∴BH•GD=BF2.(2)证明:∵AG∥CE,∴∠FAG∥∠C.∵∠CFE=∠CEF,∴∠AGF=∠CFE,∴AF=AG.∵∠BAD=∠C,∴∠BAF=∠DAG,△ABF≌△ADG,∴FB=DG,∴FD+DG=DB,9.210.解:(1)证明:∵AC是⊙O的直径,∴AE⊥BC. ∵OD∥BC,AE的中点.∴AE⊥OD,∴D是⌒(2)方法一:证明:如图,延长OD交AB于G,则OG∥BC.∴∠AGD=∠B.∵OA=OD,∴∠DAO=∠ADO. ∵∠ADO=∠BAD+∠AGD,∴∠DAO=∠B +∠BAD.方法二:证明:如图,延长AD交BC于H,则∠ADO=∠AHC.∵∠AHC=∠B +∠BAD ,∴∠ADO =∠B +∠BAD . ∵OA=OD ,∴∠DAO=∠B +∠BAD .(3) ∵AO=OC ,∴12OCD ACD S S ∆∆=.∵12CEF OCDS S ∆∆=,∴14CEF ACDS S ∆∆=.∵∠ACD=∠FCE ,∠ADC=∠FEC =90°,∴△ACD∽△FCE .∴2CEF ACD S CF S AC ∆∆⎛⎫= ⎪⎝⎭,即2144CF ⎛⎫= ⎪⎝⎭,∴CF =2.。

相关文档
最新文档