第六章 典型污染物在环境各圈层中的转归与效应
环境化学复习资料第六章 典型污染物在环境各圈层中的转归与效应 名词术语
![环境化学复习资料第六章 典型污染物在环境各圈层中的转归与效应 名词术语](https://img.taocdn.com/s3/m/602688f6ad51f01dc281f175.png)
第六章典型污染物在环境各圈层中的转归与效应名词术语1.持久性有毒化学污染物(Persistent toxic substances(PTS))持久性有毒化学污染物是指在全球普遍存在的、具有生物累积性、难以降解、可远距离传输、致癌致突变性和内分泌干扰等特性的一类物质。
这些化合物所引起的污染问题已经引起国际环境保护组织、各国政府和民众的高度关注。
联合国UNEP制订的持久性有毒化学污染物(PTS)目前包括27种有毒化学污染物:1.艾氏剂(Aldrin);2.氯丹(Chlordane);3.滴滴涕(DDT);4.狄氏剂(Dieldrin);5.异狄氏剂(Endrin);6.七氯(Heptachlor);7.六氯代苯(Hexachlorobenzene);8. 灭蚁灵(Mirex);9.毒杀芬(Toxaphene);10.多氯联苯(PCBs);11.二恶英(Dioxins);12.多氯代苯并呋喃(Furans);13.十氯酮(Chlordecone);14.六溴代二苯(Hexabromobiphenyl);15.六六六(HCH);16.多环芳烃(PAHs);17.多溴代二苯醚(PBDE);18.氯化石蜡(Chlorinated Paraffins);19.硫丹(Endosulphan);20.阿特拉津(Atrazine);21.五氯酚(Pentachlorophenol);22.有机汞(Organic Mercury compounds);23.有机锡(Organic Tin compounds);24.有机铅(Organic Lead compounds);25.酞酸酯(Phthalates);26.辛基酚(Octylphenols);27.壬基酚(Nonylphenols)。
2.挥发性氯代烃(Volatile chlorinated hydrocarbons)指正常状态下(20 ℃,760 mmHg),蒸汽压大于0.1 mmHg以上的氯取代烃类化合物,它是重要的化工原料和有机溶剂,广泛的应用于化工、医药、制革、电子等行业。
典型污染物在环境各圈层中的转归与效应
![典型污染物在环境各圈层中的转归与效应](https://img.taocdn.com/s3/m/0c6c471452d380eb62946d09.png)
第六章典型污染物在环境各圈层中的转归与效应内容提要及重点要求:主要介绍了以重金属、持久性有机污染物(Persistent Organic Pollutants,POPs)为代表的持久性有毒污染物(Persistent Toxic Substances, PTS)等典型污染物在各圈层中的转归与效应。
要求了解这些典型污染物的来源、用途和基本性质.掌握它们在环境中的基本转化、归趋规律与效应。
地球环境是一个由大气、水体、土壤、岩石和生物等圈层组成的多介质体系,建立描述污染物在多介质环境中的迁移、转化和归趋规律,弄清化学污染物在这些介质中的浓度、持久性、反应活性以及分配的倾向,是研究污染物转归与效应的重要内容。
污染物在多介质环境中的过程研究主要包括以下几个方向:(1)水/气界面的物质传输:主要研究污染物从水中的挥发、大气复氧以及污染物在水体表面微层的富集行为。
(2)土壤/大气界面的物质传输:主要研究污染物从土壤的挥发和干、湿沉降污染物由大气向土壤的传输两部分。
(3)水/沉积物界面的物质传输:在多介质环境问题研究中,水/沉积物界面是比水/气界面更为复杂的界面,它是水体中水相与沉积物相之间的转换区,是底栖生物栖息的地带。
水/沉积物界面的物质传输,不仅涉及污染物的传输,而且还涉及水和沉积物本身的传输。
因此,污染物在该区域的积累和传输,在很大程度上影响着该污染物的物理、化学和生物行为。
概括说来,水/沉积物界面的化学物质传输是通过沉降、扩散、弥散、吸附、解吸、化学反应和底栖生物的作用等过程完成的。
第一节重金属元素重金属是具有潜在危害的重要污染物。
重金属污染的威胁在于它不能被微生物分解。
相反,生物体可以富集重金属,并且能将某些重金属转化为毒性更强的金属-有机化合物。
重金属元素在环境污染领域中其概念与范围并不是很严格。
一般是指对生物有显著毒性的元素,如汞、镉、铅、铬、锌、铜、钴、镍、锡、钡、锑等,从毒性这一角度通常把砷、铍、锂、硒、硼、铝等也包括在内。
环境化学(袁加程)第六章 典型污染物在环境各圈层中的循环
![环境化学(袁加程)第六章 典型污染物在环境各圈层中的循环](https://img.taocdn.com/s3/m/a3afade8998fcc22bcd10d8a.png)
H3AsO4 + 2H+ + 2e
H3AsO3 + H2O
H3AsO3
甲基钴胺素
甲基钴胺素
CH3AsO(OH)2
(CH3)2AsO(OH)
CH3AsO(OH)2
(CH3)2AsO(OH) + 4H+ + 4e
(CH3)2AsH- 2H2O
(3)砷的毒性与生物效应 ) 三价无机砷毒性高于五价砷; 三价无机砷毒性高于五价砷;溶解砷毒性高于不溶解 性砷; 性砷; 无机砷可抑制酶的活性, 无机砷可抑制酶的活性,三价无机砷还可与蛋白质 的巯基反应。三价砷对线粒体呼吸作用有明显的抑制作用; 的巯基反应。三价砷对线粒体呼吸作用有明显的抑制作用; 长期接触无机砷会对生物体内的许多器官产生影响。 长期接触无机砷会对生物体内的许多器官产生影响。
空气中的汞大部分吸附在颗粒物上, 空气中的汞大部分吸附在颗粒物上,气相 汞的最后归趋是进入土壤和海底沉积物。 汞的最后归趋是进入土壤和海底沉积物。 水中汞与悬浮微粒相结合, 水中汞与悬浮微粒相结合,最终沉降进入 水底沉积物。 水底沉积物。
汞及其化合物的性质 • 氧化还原电位E值高 氧化还原电位E • 能够以零价形态存在 • 汞及其化合物特别容易挥发 • 单质汞常温下呈液态,具流动性和溶解多种金属 单质汞常温下呈液态, 形成汞齐的能力 • 在环境和生物体内具有较大的迁移和分配能力。 在环境和生物体内具有较大的迁移和分配能力。
• 各种形态溶解度差别较大 • 易于配位体形成配合物 • 存在和转化与环境中的E和pH值有关 存在和转化与环境中的E pH值有关
2、水俣病和汞的甲基化 、
汞的甲基化
CH3CoB12 +Hg2+ +H2O → H2OCoB12 +2CH3Hg+ 2CH3CoB12 +Hg2+ +H2O → H2OCoB12 +(CH3) + 2 Hg
典型污染物在环境各圈层中的转归与效应
![典型污染物在环境各圈层中的转归与效应](https://img.taocdn.com/s3/m/366e730cf18583d049645973.png)
第六章典型污染物在环境各圈层中的转归与效应一、名词解释表面活性剂二、填空1、PAH在紫外光照射下很容易光解和氧化。
也可以被微生物降解。
2、气相汞的最后归趋是进入土壤和海底沉积物。
3、无机砷可以抑制酶的活性,三价无机砷可以与蛋白质的巯基反应。
4、含氢卤代烃与OH-自由基的反应是它们在对流层中消除的主要途径。
5、表面活性剂的生物降机理主要是烷基链上的甲基氧化(ω氧化)、β氧化、芳香环的氧化降解和脱磺化。
6、水中PCBs浓度为10-100ug/L时,便会抑制水生植物的生长;浓度为0.1-1.0ug/L时,会引起光合作用减少。
7、PCBs在环境中的主要转化途径是光化学分解和生物转化。
三、多项选择1、下列PCBs中,最不易被生物降解的是 D 。
A、联苯B、四氯联苯C、三氯联苯D、六氯联苯2、表面活性剂含有很强的 B ,容易使不溶于水的物质分散于水体,而长期随水流迁移。
A、疏水基团B、亲水基团C、吸附作用D、渗透作用3、氟利昂主要来源于ABCD 。
A、制冷剂B、飞机推动剂C、塑料发泡剂D、火山爆发四、简答题1.砷在环境中存在的主要化学形态有哪些?其主要转化途径有哪些?2.为什么Hg2+能在人体内长期滞留?举例说明它们可形成哪些化合物?3.简述多氯联苯PCBs在环境中的主要分布、迁移与转化规律。
4.表面活性剂有哪些类型?对环境和人体健康的危害是什么?5.根据多环芳烃形成的基本原理,分析讨论多环芳烃产生与污染的来源有哪些?6.试述PCDD是一具有什么化学结构的化合物?并说明其主要污染来源。
第六章 典型污染物在环境各圈层中的转归与效应
![第六章 典型污染物在环境各圈层中的转归与效应](https://img.taocdn.com/s3/m/22733f0e011ca300a6c390a2.png)
砷在环境中转化模式
砷污染与健康—地方砷中毒
地方性砷中毒是由于原生地质 原因或其它非人为因素引起的 环境中砷含量较高,居民长期 摄入少量砷而引起的砷中毒。
1)饮水型砷中毒 2)燃煤型砷中毒
无机砷可抑制酶的活性,与蛋白质结合,抑制线粒体的呼 吸作用等,同时还引起染色体及器官的异常。
6.2有机污染物
砷在生物体中的分布
植物体中的砷主要来自土壤和水体。陆生植物的砷 含量多数少于1ppm(干重),而海洋植物和海藻则 要比陆生植物明显偏高。不同地域的植物砷含量可 以相差很大。但最近也有研究者发现某些特殊植物 中的砷含量可以高达数千ppm。 动物体中的砷含量与其生活环境紧密相关。 通常海洋动物体中的砷含量高于陆地或淡水动物体 的含量。 正常人体内砷的平均浓度为5ppb,但也有资料认为 是0.1ppb。
汞与人类健康
美国的研究指出,十二分之一或将近5百万名妇女体内 的汞含量高于安全标准,每年可能有高达30万名新生 儿因为汞污染其智力和神经系统受到影响,而在全球, 这一数据可能高达千百万。
水俣病事件
时间地点:1953年日本九 州水俣 原因:食用含有甲基汞的 鱼 汞污染和汞中毒是一个久 远而现实的问题。鉴于此, WHO及各国政府将其列 为首先考虑的环境污染物.
假单胞菌属能够降解甲基汞,也可以将Hg2 + 还原 为金属汞。
汞在环境中的循环
6.1.2 砷—砷在环境中的分布
砷的来源:
据估计每年由自然原因释放的砷约为8×106千克,而由人为 活动释放到环境中的砷则高达24×106千克
自然来源
岩石矿物
土壤的风化 人为来源
火山喷发
温泉
工业生产:冶炼、制药 化石燃料和薪材燃烧 农药使用
典型污染物在环境各圈层中的转归与效应课件
![典型污染物在环境各圈层中的转归与效应课件](https://img.taocdn.com/s3/m/9365e40914791711cc791793.png)
④PCBs在环境中的转化
在动物体内通过代谢作用的转化
–转化速率随分子中氯原子的增多而降低。 –含4个氯以下的低氯代PCBs几乎都可被代谢为 相应的单酚,或二酚。 –含5氯或六氯PCBs同样可被氧化为单酚,但速 度相当慢。 –含7个氯以上的高氯PCBs则几乎不被代谢转化。
23(Βιβλιοθήκη )PCBs的毒性与效应– 随工业废水进入河流和沿岸水体; – 从密封系统渗漏或在垃圾场堆放; –在使用和处理(焚化含PCBs的物质)过程中, 通过挥发进入大气,然后经干、湿沉降转入湖 泊和海洋。
13
(3) PCBs在环境中的迁移与转化
①概况 水体的PCBs极易被颗粒物所吸附,成为沉积物。 近年来PCBs的使用量大大减少,但沉积物中的
除一氯、二氯代物外,均为不可燃物质
低蒸气压、高介电常数和高绝缘性等优点。
7
PCBs的溶解性
PCBs难溶于水
随氯原子数的增加,溶解度降低
8
PCBs的蒸气压
常温下PCBs的蒸汽压很小,属难挥发物质。 PCBs的蒸汽压受温度的影响很大 分子中氯含量越高,PCBs蒸汽压越小,其挥发量越小
PCBs仍然是今后若干年内食物链污染的主要来源。 由于化学惰性而成为环境中的持久性污染物。它 在环境中的主要转化途径是光化学分解和生物转 化。 PCBs污染最初是在赤道到中纬度地区,目前在 北极地区都发现了 PCBs的“足迹” 。
14
① PCBs在大气中的迁移
大气中PCBs的存在形态
– PCBs在大气中主要以气态和吸附态两种形式 存在。 – Poster等人研究表明: 雨水中只有9% 的PCBs 处于真正溶解状态,80%是束缚在亚微粒上的 吸附态。
③焚烧过程
典型污染物在环境各圈层中的转归与效应精品PPT课件
![典型污染物在环境各圈层中的转归与效应精品PPT课件](https://img.taocdn.com/s3/m/2891e9a70b1c59eef9c7b485.png)
❖土壤中PCBs的损失
– 生物降解和可逆吸附都不能造成PCBs的明显减少, – 挥发过程是引起PCBs损失的主要途径。
• PCBs的挥发速率随着温度的升高而升高,但随着土壤中粘土 含量和联苯氯化程度的增加而降低。
17
③PCBs在水体中的迁移
❖水体中PCBs的来源
– 主要通过大气沉降和随工业、城市废水向河、 湖、沿岸水体的排放等方式进入水体。
– Poster等人研究表明: 雨水中只有9% 的PCBs 处于真正溶解状态,80%是束缚在亚微粒上的 吸附态。
15
① PCBs在大气中的迁移
❖大气中PCBs的损失途径
– 直接光解和与OH、NO3 等自由基及O3 作用。
• 全世界每年约有0.6%的PCBs由于OH 基反应而消失。
– 雨水冲洗和干、湿沉降。
❖水体中PCBs的存在形态
– 除小部分溶解外,大部分附着在悬浮颗粒物上, 最终沉降到底泥。
– 底泥中的PCBs含量一般要较上面的水体高 1~2数量级。
• 它是继1987年《保护臭氧层的维也纳公约》和 1992年《气候变化框架公约》之后,第三个具有 强制性减排要求的国际公约。
• 2004年6月25日,十届全国人大常委会第十次会 议批准公约;
• 2004年8月13日,我国政府向联合国交存了批准、 接受、核准和加入书。
5
持久性有机污染物斯德哥尔摩公约 2004年11月11日起对我国生效
• 根据公约规定,缔约方须在公约对缔约方 生效当日起计的两年内制定国家实施方案 并尽快组织实施。
• 我国需要采取必要的法律和行政措施
– 禁止和消除有意生产的POPs的生产和使用, 并严格控制其出口;
– 促进包括最佳可行技术和最佳环境实践的应用; – 查明并以安全、有效和对环境无害化方式处置
(环境管理)《典型污染物在环境各圈层中的转归与效应》重点习题及参考答案
![(环境管理)《典型污染物在环境各圈层中的转归与效应》重点习题及参考答案](https://img.taocdn.com/s3/m/76ec6796d1f34693daef3e3b.png)
《典型污染物在环境各圈层中的转归与效应》重点习题及参考答案1.为什么Hg 2+和CH 3Hg +在人体内能长期滞留?举例说明它们可形成哪些化合物?这是由于汞可以与生物体内的高分子结合,形成稳定的有机汞络合物,就很难排出体外。
此外,烷基汞具有高脂溶性,且它在生物体内分解速度缓慢(其分解半衰期约为70d ),因而会在人体内长期滞留。
Hg 2+和CH 3Hg + 可以与羟基、组氨酸、半胱氨酸、白蛋白形成络合物。
甲基汞能与许多有机配位体基团结合,如—COOH 、—NH 2、—SH 、以及—OH 等。
2.砷在环境中存在的主要化学形态有哪些?其主要转化途径有哪些?砷在环境中存在的主要化学形态有五价无机砷化合物、三价无机砷化合物、一甲基胂酸及其盐、二甲基胂酸及其盐、三甲基胂氧化物、三甲基胂、砷胆碱、砷甜菜碱、砷糖等。
砷的生物甲基化反应和生物还原反应是砷在环境中转化的重要过程。
主要转化途经如下:3.试述PCDD是一类具有什么化学结构的化合物?并说明其主要污染来源。
(1)PCDD这类化合物的母核为二苯并一对二噁英,具有经两个氧原子联结的二苯环结构。
在两个苯环上的1,2,3,4,6,7,8,9位置上可有1-8个取代氯原子,由氯原子数和所在位置的不同可能组合成75种异构体,总称多氯联苯并一对二噁英。
其结构式如右:(2)来源:①在焚烧炉内焚烧城市固体废物或野外焚烧垃圾是PCDD的主要大气污染源。
例如存在于垃圾中某些含氯有机物,如聚氯乙烯类塑料废物在焚烧过程中可能产生酚类化合物和强反应性的氯、氯化氢等,从而进一步生产PCDD类化合物的前驱物。
除生活垃圾外,燃料(煤,石油)、枯草败叶(含除草剂)、氯苯类化合物等燃烧过程及森林火灾也会产生PCDD类化合物。
②在苯氧酸除草剂,氯酚,多氯联苯产品和化学废弃物的生产、冶炼、燃烧及使用和处理过程中进入环境。
③另外,还可能来源于一些意外事故和战争。
4.简述多氯联苯(PCBs)在环境中主要分布、迁移与转化规律。
典型污染物在环境各圈层中的转归与效应
![典型污染物在环境各圈层中的转归与效应](https://img.taocdn.com/s3/m/d772f8bb65ce050876321312.png)
C
OO As O O-
O
1-砷-3-磷酸甘油酯
因为它的性质与磷相似,所以砷会干扰某些有磷参 与的生化反应。
磷参与重要产能物质ATP的生物化学合成。
ATP生成的关键步骤是用3-磷酸甘油醛进行,1,3-二 磷酸甘油酯的酶的合成。
高浓度的砷化物会使蛋白质凝固,可能是因为砷与 蛋白质中的二硫键反应。 对砷常用的解毒剂是含有巯基基团并能与砷酸根结 合的化合物。如BAL(2,3-二巯基丙醇),可从蛋白质 中去除砷酸根,并恢复正常的酶功能。
二、砷
1、来源 ① 自然存在的矿物 ② 工业排放 ③ 农业使用砷酸铅、砷酸钙
2、环境中As的迁移转化 在一般的pH和Ea范围内,As主要以+3,+5存在。 水溶性部分:AsO43-、HAsO42-、H2AsO4-、AsO33-、 H2AsO3-只占5~10%。 因为: A. 水溶性As易与土壤中Fe3+、Al3+、Ca2+、Mg2+ 等离子生成难溶性砷化物(与PO43-相似)。 B. 土壤中As大部分与土壤胶体相结合,呈吸附 状态,且吸附牢固,呈现为AsO43-、AsO33-阴 离子。
(5)食品污染,食物链的生物富集、纸包装材料的迁移和意外事故引起食品污染。
国际对POPs的控制:禁止和限制生产、使用、进出口、人为源排放,管理好含有POPs废 弃物。
持久性有机污染物具有环境持久性、生物累积性、长距离迁移能力和高毒性,因此 能够对人类和野生动物产生大范围、长时间的危害,造成人体内分泌系统紊乱,破 坏生殖和免疫系统,并诱发癌症和神经系统疾病。为解决持久性污染物这一全球性 问题,2001年5月22日国际社会通过了斯德哥尔摩公约。
远距离迁移而不会全部被降解,但半挥发性又使得它们不会永久停留在大气层中
环境化学第6章典型污染物在环境各圈层中的转归与效应
![环境化学第6章典型污染物在环境各圈层中的转归与效应](https://img.taocdn.com/s3/m/95362624f61fb7360a4c65c7.png)
1、表面活性剂的分类
表面活性 剂的疏水基团主 要是含碳氢键的 直链烷基、烷基 苯基以及烷基萘 基等,其性能差 别较小,其亲水 基团部分差别较 大。
2021/1/16
表面活性剂
按
阴离子表面活性剂
亲
水
基
阳离子表面活性剂
团
结
构
两性表面活性剂
和
类
型
非离子表面活性剂
2、表面活性剂的来源、迁移与转化
b.转化
多氯联苯
在 环 境 中 的 转 化
2021/1/16
光化学分解 生物转化
3、多氯联苯的毒性与效应
水中PCBs浓度为10-100ug/L时,便会抑制水生 植物的生长;浓度为0.1-1.0ug/L时,会引起光合 作用减少。而较低浓度就可改变物种的群落结构和 自然海藻的总体组成。
PCBs对哺乳动物的肝脏可诱导 出一系列症状,如腺瘤及癌症的发 展。PCBs进入人体后,可引起皮肤 溃疡、痤疮、囊肿及肝损伤、白细 胞增加等症,而且除可以致癌外, 还可以通过母体转移给胎儿致畸。
2021/1/16
PCBS造成非洲 爪蟾变态发育
由于PCBs在环境中很难降解,污 染控制与治理也很困难。目前唯一的处 理方法是焚烧,但由于多氯联苯中常含 有杂质——多氯代二不苯并二恶英(强 致癌物质),而焚烧多氯联苯可以产生 多氯代二苯并二恶英,所以焚烧处理亦 并非良策。
2021/1/16
多氯代二苯并二恶英和多氯代二 苯并呋喃
4、汞的生物效应
甲基汞能与许多有机配位体基团结 合,如-COOH、 - NH2、 - SH、 - C S - C - 、 - OH等。由于烷基汞具有高脂 溶性,且它在生物体内分解速度缓慢(其 分解半衰期为70d),因此烷基汞比可溶 性无机汞化合物的毒性大10—100倍。
戴树桂《环境化学》(第2版)考研真题精选(典型污染物在环境各圈层中的转归与效应)【圣才出品】
![戴树桂《环境化学》(第2版)考研真题精选(典型污染物在环境各圈层中的转归与效应)【圣才出品】](https://img.taocdn.com/s3/m/23cd5c316bec0975f565e231.png)
第六章典型污染物在环境各圈层中的转归与效应一、选择题1.20世纪日本出现的水俣病是由()污染水体后引起的。
[河北大学2015年研] A.CdB.HgC.PbD.As【答案】B【解析】1953年在日本熊本县水俣湾附近的渔村,发现一种中枢神经性疾患的公害病,称为水俣病。
经过10年研究,于1963年从水俣湾的鱼、贝中分离出CH3HgCl结晶。
并用纯CH3HgCl结晶喂猫进行试验,出现了与水俣病完全一致的症状。
1968年日本政府确认水俣病是由水俣湾附近的化工厂在生产乙醛时排放的汞和甲基汞废水造成的。
2.20世纪日本出现的痛痛病是由()污染水体后引起的。
[西南大学2012年研;河北大学2014年研;浙江工业大学2015年研]A.CdB.HgC.PbD.As【答案】A【解析】1955年首次发现于日本富山县神通川流域,是积累性镉中毒造成的。
发现是由于神通川上游锌矿冶炼排出的含镉废水污染了神通川,用河水灌溉农田,又使镉进入稻田被水稻吸收,致使当地居民因长期饮用被镉污染的河水和食用被镉污染的稻米而引起的慢性镉中毒。
3.下列()工业活动不是铬污染的主要来源。
[浙江工业大学2015年研]A.冶炼B.制革C.电镀D.造纸【答案】D【解析】电镀、皮革、染料和金属酸洗等工业均是环境中铬的污染来源。
对我国某电镀厂周围环境的监测结果发现,该电镀厂下游方向的地下水、土壤和农作物都受到不同程度的六价铬的污染,且离厂区越近,污染越严重。
电镀厂附近居民的血、尿、发中的六价铬水平均超过了正常水平。
4.下列()化合物不属于持久性有机污染物。
[浙江工业大学2015年研]A.滴滴涕B.六六六C.敌敌畏D.氯丹【答案】C【解析】持久性有机污染物(POPs)是指通过各种环境介质(大气、水、生物体等)能够长距离迁移并长期存在于环境,具有长期残留性、生物蓄积性、半挥发性和高毒性,对人类健康和环境具有严重危害的天然或人工合成的有机污染物质。
国际公约中首批控制的12种POPs是艾氏剂、狄氏剂、异狄氏剂、滴滴涕(DDT)、氯丹、六氯苯、灭蚁灵、毒杀芬、七氯、多氯联苯(PCBs)、二噁英和苯并呋喃(PCDD/Fs)。
《环境化学》第6章 典型污染物在环境各圈层中的转归与效应
![《环境化学》第6章 典型污染物在环境各圈层中的转归与效应](https://img.taocdn.com/s3/m/b2f19a62d15abe23492f4d2e.png)
《环境化学》 第六章 典型污染物在环境各圈层 中的转归与效应
第一节 重金属元素(Heavy Metals)
一、汞
Mercury
二、镉
Cadmium
三、铬
Chromium
四、砷
Arsenic
6-3
《环境化学》 第六章 典型污染物在环境各圈层 中的转归与效应
一、汞 (Hg) Mercury
1. 环境中汞的来源、分布与迁移
6-22
《环境化学》 第六章 典型污染物在环境各圈层 中的转归与效应
第一节 重金属元素(Heavy Metals)
一、汞
Mercury
二、镉
Cadmium
三、铬
Chromium
四、砷
Arsenic
6-23
《环境化学》 第六章 典型污染物在环境各圈层 中的转归与效应
三、铬 Chromium
1. 来源与分布
1953年在日本熊本县水俣湾附近的渔村,发现一种 中枢神经性疾患的公害病,称为水俣病。经过十年研究 于1963年从水俣湾的鱼、贝中分离出CH3HgCl结晶。并 用纯CH3HgCl结晶喂猫进行试验,出现了与水俣病完全 一致的症状。1968年日本政府确认水俣病是由水俣湾附 近的化工厂在生产乙醛时排放的汞和甲基汞废水造成的。 这是世界历史上首次出现的重大重金属污染事件。
6-11
《环境化学》 第六章 典型污染物在环境各圈层 中的转归与效应
甲基钴氨素的再生:水合钴氨素(H2OCoB12+)被辅 酶FADH2还原,使其中钴由三价降为一价,然后辅酶甲 基四氢叶酸(THFA-CH3)将正离子CH3+ 转移给钴,并从 钴上取得两个电子,以CH3-与钴结合,完成了甲基钴 氨素的再生,使汞的甲基化能够继续进行。
典型污染物在环境各圈层中的转归与效应
![典型污染物在环境各圈层中的转归与效应](https://img.taocdn.com/s3/m/94110f42178884868762caaedd3383c4bb4cb415.png)
典型污染物在环境各圈层中的转归与效应典型污染物包括空气污染物、水体污染物和土壤污染物,它们在环境各圈层中的转归与效应对于人类的生存和健康具有重要意义。
首先,空气污染物是指大气中存在的有害物质,例如二氧化硫、氮氧化物、臭氧、颗粒物等。
这些污染物通常在工业排放、汽车尾气和能源生产过程中释放出来。
一旦排放到大气中,空气污染物会通过大气循环和沉降作用进一步传播和沉积。
在大气中,污染物的浓度和分布可以受到气候、地形和风向等因素的影响。
空气污染物的转归与效应在大气层中主要表现为光化学反应和气溶胶形成。
光化学反应是指太阳辐射和污染物之间的相互作用,产生臭氧和二次有机气溶胶等有害物质。
臭氧对人体健康有害,可以引发呼吸系统疾病和心血管疾病。
气溶胶是指悬浮在大气中的微小颗粒物,它们对能见度、气候变化和空气质量有重要影响,同时也对人体呼吸系统产生不良影响。
水体污染物是指排放到水体中的有害物质,例如重金属、有机污染物和营养盐等。
这些污染物通常来自工业废水、生活污水和农业面源污染等。
一旦进入水体,水体污染物会通过水流和沉积作用进一步传播和沉积。
在水体中,污染物的浓度和分布可以受到水流速度、水体深度和环境温度等因素的影响。
水体污染物的转归与效应在水体圈层中主要表现为生物富营养化和生物毒性。
生物富营养化是指水体中的营养盐过剩,导致蓝藻和水华等有害生物过度繁殖。
这些有害生物会消耗水中的氧气,导致水体缺氧,对水生生物造成危害。
生物毒性是指水体中存在的有毒有害物质对水生生物和人体健康的危害。
这些有毒有害物质可能通过生物累积,进而影响整个食物链。
土壤污染物是指排放到土壤中的有害物质,例如重金属、农药和化学物质等。
这些污染物通常来自工业废弃物、农业施肥和城市垃圾等。
一旦进入土壤,土壤污染物会通过土壤颗粒的吸附和水分的迁移进一步传播和沉积。
在土壤中,污染物的传播和沉积受到土壤组分和pH值等因素的影响。
土壤污染物的转归与效应在土壤圈层中主要表现为土壤质量下降和农产品安全问题。
第六章 典型污染物在环境各圈层中的转归与效应
![第六章 典型污染物在环境各圈层中的转归与效应](https://img.taocdn.com/s3/m/abcd5e32f46527d3240ce06c.png)
人类对汞的使用
• 氯碱工业 • 电力工业 • 汞合金牙填料 • 金矿开采 • 绘画 • 农业 • 药品
汞的挥发和其主要性质
氯碱 电力 牙汞合金 金矿开采 农业 药品
金属 +++ ++ +++
无机物 + +
+ + ++
烷基
+ +
环境水平Ⅰ
空气(ng/m2) 水(ng/l)
• 随着自然的演化,环境的各个因素中都可能含有汞,形成汞的天然本底。 汞的本底对判断环境中的汞污染程度很有意义。
• 自然界中的汞往往以天然状态存在,地壳中汞的含量为2.7×10-8。 • 地壳中汞平均丰度为0.08ppm, 土壤为0.03~0.3ppm。 • 大气中汞的本底浓度为0.1~1.0ppt。雨水中汞的平均浓度为0.2ppb。 • 水中汞的本底浓度:
汞
来源:造成汞环境污染的来源主要是天然释放和人 为两个方面。
天然来源:地壳气体的排出、火山喷发、水自然态 中的蒸发
人为污染是非常重要的。汞的人为来源与以下几个 方面有关;汞矿和其他金属的冶炼,氯碱工业和 电器工业中的使用以及矿物燃料的燃烧。其中由 于煤炭燃烧造成全世界每年从煤炭中逸出的汞占 人类活动所释放汞的较大部分,据统计,全球每 年向大气中排放的汞的总量约为5000吨,其中 4000吨是人为的结果。
– 内陆地下水为0.1ppb; – 海水为0.03~2ppb; – 泉水可达80ppb以上; – 湖水、河水一般不超过0.1ppb。 • 在多数地区,汞的本底浓度并不构成对人体的危害。
汞
• 汞是室温下唯一的液体金属。汞的熔点低为 -38.87。汞在熔化时即开始有蒸发,故在 0℃时就有一定的汞蒸气,温度越高,蒸气 越多,在20℃时,汞蒸气压就达到 0. 0013mmHg柱,因此具有较大的挥发 性。由于汞蒸气的重量是空气的7倍,并且 表面张力很大,汞易形成小滴,多沉积在厂 房和实验室下部,汞蒸气吸入会危害人体健 康,使用汞时要防止溅洒出来。
典型污染物在环境各圈层中的转归与效应
![典型污染物在环境各圈层中的转归与效应](https://img.taocdn.com/s3/m/39d2343ef78a6529647d535b.png)
二恶英类
(7)焚尸炉 (8)机动车辆,特别是使用含铅汽油的车辆 (9)动物遗骸的销毁 (10)纺织品和皮革染色(使用氯代醌)和修整(碱萃取) (11)处理报废车辆的破碎作业工厂 (12)铜制电缆线的低温燃烧 (13)废油提炼
持久性有机污染物的危害
POPs物质一旦通过各种途径进人生物体内 就会在生物体内的脂肪组织、胚胎和肝脏等器 官中积累下来, 到一定程度后就会对生物体造成 伤害。而且可以肯定的是:POPs物质对人体造 成损害,一般不是某一种或某一族的POPs单独 作用,而是某几族POPs相互协同的结果。
H3 AsO4 2e H3 AsO3 C H3 CH3 AsO(OH )2 2eCH3 As(OH )2 C H3
CH
3
2
AsO(OH
)
2eCH
3
2
As(OH
)
C H3 CH
3
3
AsO
2eCH
3
3
As
三价无机砷毒性高于五价砷 溶解砷比不溶性砷毒性高
持久性有机污染物的特性
持久性 生物蓄积性 半挥发性和长距离迁移性
高毒性
持久性
POPs 半衰期较长,同 时具有高脂溶性和低水 溶性,容易在生物体内 富集而难以排出体外。
生物蓄积性
POPs易溶于脂肪,可通过 食物链(网) 在生物体内蓄 积并逐级放大,对人体健
康造成严重危害。
生物蓄积性
不同的POPs在不同的生物体内蓄积程度存在 较大差异,影响POPs在生物体内蓄积因素主 要有: (1)化合物氯取代的位置和氯取代的多少。 (2)生物体在食物链中的营养级别越高,其 体内的生物蓄积量相应越大。 (3)生物体代谢特征的差异会导致POPs在不同 生物体内的滞留时间有较大的差异。
环境化学第六章污染物在环境各圈的迁移转化
![环境化学第六章污染物在环境各圈的迁移转化](https://img.taocdn.com/s3/m/3bc64d3beefdc8d376ee32f4.png)
三.表面活性剂的来源、迁移与转化 由于它含有很强的亲水基团,不仅本身亲水,也使其他不溶 于水的物质分散于水体,并可长期分散于水中,而随 水流迁移。只有当它与水体悬浮物结合凝聚时才沉入水底。 四.表面活性剂的降解 表面活性剂进入水体后,主要靠微生物降解来消除。但是 表面活性剂的结构对生物降解有很大影响。 ①阴离子表面活性剂 其微生物降解顺序为
(4)汞的生物效应
无机汞化合物在生物体内一般容易排泄。但当汞与生物体内的 高分子结合,形成稳定的有机汞络合物,就很难排出体外。其 中半胱氨酸和白蛋白与甲基汞和汞的络合物相当稳定。 由于烷基汞具有高脂溶性,且它在生物体内分解速度缓慢(其分 解半衰期约为70d),因此烷基汞比可溶性无机汞化合物的毒性 大10-100倍。 水生生物富集烷基汞比富集非烷基汞的能力大很多。
2 寿命
(3)卤化物在大气中的转化①对流层中的转化:含氢卤代 烃与HO自由基的反应是它们在对流层中消除的主要途径。 卤代烃消除途径的起始反应是脱氢。 CHCl3十HO•→H2O十•CCl3 •CCl3自由基再与氧气反应生成碳酰氯(光气)和ClO•: •CCl3十O2→COCl2十ClO• 光气在被雨水冲刷或清除之前,将一直完整地保留着, 如果清除速度很慢,大部分的光气将向上扩散,在平流层 下部发生光解;如果冲刷清除的速度很快,光气对平流层 的影响就小。 ClO•可氧化其他分子并产生氯原子。在对流层中,NO 和H2O可能是参与反应的物质: ClO •十NO →Cl+ NO2 3ClO •十H2O →3C1 •十2HO •十O2 多数氯原子迅速和甲烷作用: Cl•十CH4→HCl+ •CH3 氯代乙烯与HO基反应将打开双键,让氧加成进去。如全氯 乙烯可转化成三氯乙酰氯: C2Cl4十[O] →CCl3COCl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章典型污染物在环境各圈层中的转归与效应
一、名词解释
表面活性剂
二、填空
1、PAH在紫外光照射下很容易光解和氧化。
也可以被微生物降解。
2、气相汞的最后归趋是进入土壤和海底沉积物。
3、无机砷可以抑制酶的活性,三价无机砷可以与蛋白质的巯基反应。
4、含氢卤代烃与OH-自由基的反应是它们在对流层中消除的主要途径。
5、表面活性剂的生物降机理主要是烷基链上的甲基氧化(ω氧化)、β氧化、芳香环的氧化降解和脱磺化。
6、水中PCBs浓度为10-100ug/L时,便会抑制水生植物的生长;浓度为0.1-1.0ug/L时,会引起光合作用减少。
7、PCBs在环境中的主要转化途径是光化学分解和生物转化。
三、多项选择
1、下列PCBs中,最不易被生物降解的是 D 。
A、联苯
B、四氯联苯
C、三氯联苯
D、六氯联苯
2、表面活性剂含有很强的 B ,容易使不溶于水的物质分散于水体,而长期随水流迁移。
A、疏水基团
B、亲水基团
C、吸附作用
D、渗透作用
3、氟利昂主要来源于ABCD 。
A、制冷剂
B、飞机推动剂
C、塑料发泡剂
D、火山爆发
四、简答题
1.砷在环境中存在的主要化学形态有哪些?其主要转化途径有哪些?
2.为什么Hg2+能在人体内长期滞留?举例说明它们可形成哪些化合物?
3.简述多氯联苯PCBs在环境中的主要分布、迁移与转化规律。
4.表面活性剂有哪些类型?对环境和人体健康的危害是什么?
5.根据多环芳烃形成的基本原理,分析讨论多环芳烃产生与污染的来源有哪些?
6.试述PCDD是一具有什么化学结构的化合物?并说明其主要污染来源。